Stereometrie pro učební obory



Podobné dokumenty
M - Příprava na 1. zápočtový test - třída 2SB

Stereometrie pro studijní obory

M - Příprava na 2. čtvrtletku - třída 3ODK

4. Vypočítejte objem dané krychle, jestliže víte, že objem krychle s hranou poloviční délky má objem 512 m 3.

S = 2. π. r ( r + v )

Vypočítejte délku tělesové úhlopříčky krychle o hraně délky a cm.

Otázky z kapitoly Stereometrie

Digitální učební materiál

8. Stereometrie 1 bod

M - Příprava na 4. zápočtový test pro třídu 2D

Geometrické těleso je prostorově omezený geometrický útvar. Jeho hranicí, povrchem, je uzavřená plocha.

+ S pl. S = S p. 1. Jehlan ( síť, objem, povrch ) 9. ročník Tělesa

Zadání. stereometrie. 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK =3 AK ; M EH; HM =3 EM.

Kolik otáček udělá válec parního válce, než uválcuje 150 m dlouhý úsek silnice? Válec má poloměr 110 cm a je 3 m dlouhý.

f(x) = 9x3 5 x 2. f(x) = xe x2 f(x) = ln(x2 ) f(x) =

Slouží k procvičení aplikace vzorců pro povrch a objem těles ve slovních úlohách

Povrch a objem těles

Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ),

Digitální učební materiál

Vzorové příklady k přijímacím zkouškám. 1) Doplňte číselné řady o další dvě čísla. a) 3, 6, 12, 24, 48, 96,... b) 875, 764, 653, 542, 431,...

Zapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r.

STEREOMETRIE 9*. 10*. 11*. 12*. 13*

Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů

Válec - slovní úlohy

Autor: Jana Krchová Obor: Matematika. Hranoly

Přijímačky nanečisto

Geometrie. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Příklady pro 8. ročník

7/ Podstavou kolmého trojbokého hranolu ABCA BĆ je rovnoramenný trojúhelník ABC. Určete odchylku přímek: a) BA ; BC b) A B ; BC c) AB ; BC

Povrchy, objemy. Krychle = = = + =2 = 2 = 2 = 2 = 2 =( 2) + = ( 2) + = 2+ =3 = 3 = 3 = 3 = 3

Příklady pro přijímací zkoušku z matematiky školní rok 2012/2013

5.1.1 Úvod do stereometrie

Výukový materiál zpracován v rámci projektu EU peníze školám

Variace. Mechanika kapalin

10)(- 5) 2 = 11) 5 12)3,42 2 = 13)380 2 = 14)4, = 15) = 16)0, = 17)48,69 2 = 18) 25, 23 10) 12) ) )

Mária Sadloňová. Fajn MATIKA. 150 řešených příkladů (vzorek)

Geometrie. 1 Metrické vlastnosti. Odchylku boční hrany a podstavy. Odchylku boční stěny a podstavy

CVIČENÍ č. 3 STATIKA TEKUTIN

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Metodické pokyny k pracovnímu listu č Povrchy a objemy těles II

Gymnázium Jiřího Ortena, Kutná Hora

Čtyřúhelníky. Příklad 1: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 2: Sestroj rovnoběžník ABCD, je-li dáno:

je-li dáno: a) a = 4,6 cm; α = 28 ; b) b = 8,4 cm; β = 64. Při výpočtu nepoužívejte Pythagorovu větu!

M - Řešení pravoúhlého trojúhelníka

Přípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro

Modelové úlohy přijímacího testu z matematiky

Příklady k opakování učiva ZŠ

STEREOMETRIE ZÁKLADNÍ POJMY, METRICKÉ VLASTNOSTI, ODCHYLKY, VZDÁLENOSTI. STEREOMETRIE geometrie v prostoru

3. Mocnina a odmocnina. Pythagorova věta

Gymnázium Jiřího Ortena, Kutná Hora. volné rovnoběžné promítání průmětna

- zvládá orientaci na číselné ose

Úlohy. b) číslo 0,8 o 35% d) číslo 220 o 22 % 1 % ze z 10,80 Kč č 10,80 Kč 103,5 = 1117,80 Kč

Přehled učiva matematiky 7. ročník ZŠ

Modelové úlohy přijímacího testu z matematiky

Matematika 9. ročník

MATEMATIKA Charakteristika vyučovacího předmětu 2. stupeň

STEREOMETRIE, TĚLESA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách. Registrační číslo projektu: CZ.1.07/1.4.00/

MATEMATIKA / 1. ROČNÍK. Strategie (metody a formy práce)

C. METRICKÉ VLASTNOSTI ÚTVARŮ V PROSTORU

ILUSTRAÈNÍ TEST LIBERECKÝ KRAJ

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Příprava na závěrečnou písemnou práci

1. Tři shodné obdélníky jsou rozděleny různými způsoby. První je rozdělen na 4 shodné části, poslední obdélník na 6 shodných částí.

Aplikační úlohy z geometrie

M - Příprava na 3. čtvrtletku - třída 3ODK

Pracovní list: Hustota 1

Vyučovací předmět: Matematika. Charakteristika vyučovacího předmětu

Základní škola Ruda nad Moravou. Označení šablony (bez čísla materiálu): EU-OPVK-MAT-8+9- Slovní úlohy

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

2.3 Tlak v kapalině vyvolaný tíhovou silou Tlak ve vzduchu vyvolaný tíhovou silou... 5

Matematika a geometrie

matematika 5 stavební fakulta ČVUT 1. Poměr objemů pravidelného čtyřbokého hranolu a jemu vepsaného rotačního válce je

Seminární práce k předmětu Didaktika matematiky. Téma práce: Aplikační matematické úlohy

Povrch a objem válce - slovní úlohy

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Očekávané ročníkové výstupy z matematiky 9.r.

SMART Notebook verze Aug

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

VZDĚLÁVACÍ OBLAST: MATEMATIKA A JEJÍ APLIKACE VZDĚLÁVACÍ OBOR: MATEMATIKA A JEJÍ APLIKACE PŘEDMĚT: MATEMATIKA 8

Základní škola Moravský Beroun, okres Olomouc

Tělesa můžeme v rovině zobrazit pomocí volného rovnoběžného promítání.

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.

5.4.1 Mnohostěny. Předpoklady:

CVIČNÝ TEST 40. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

Určování výměr Srážka mapového listu Výpočet objemů Dělení pozemků

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna

MATEMATIKA vyšší úroveň obtížnosti

fyzika v příkladech 1 a 2

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor M/01 STROJÍRENSTVÍ

Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 5.

Úloha č. 1 Rozměry fotografie jsou a = 12 cm a b = 9 cm. Fotografii zvětšíme v poměru 5 : 3. Určete rozměry zvětšené fotografie.

3. Středoškolská stereometrie v anaglyfech

Euklidovský prostor Stručnější verze

Několik úloh z geometrie jednoduchých těles

= prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty

Transkript:

Variace 1 Stereometrie pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz

1. Vzájemná poloha prostorových útvarů Stereometrie je prostorová geometrie; zabývá se prostorovými útvary - tělesy. Vzájemná poloha přímek v prostoru Přímky v prostoru mohou být: rovnoběžné rovnoběžné různé (nemají žádný společný bod) rovnoběžné splývající (mají nekonečně mnoho společných bodů) různoběžné (mají právě jeden společný bod); zvláštním případem různoběžných přímek jsou přímky, které jsou na sebe kolmé. mimoběžné (nemají žádný společný bod, ale nejsou rovnoběžné) Vzájemná poloha rovin v prostoru Roviny v prostoru mohou být: rovnoběžné rovnoběžné různé (nemají žádný společný bod a vzdálenost obou rovin v kterémkoliv místě je vždy stejná) rovnoběžné splývající (mají nekonečně mnoho společných bodů a kterákoliv z obou rovin je vždy podmnožinou roviny druhé) různoběžné (mají nekonečně mnoho společných bodů, které vytvářejí přímku, zvanou průsečnice rovin); zvláštním případem různoběžných rovin jsou dvě roviny, které jsou na sebe kolmé. 2. Krychle, kvádr, hranol Krychle Krychle je prostorové těleso, které je tvořeno osmi vrcholy, šesti stěnami, které jsou shodné, a dvanácti hranami. Použité veličiny: a hrana krychle S povrch krychle V objem krychle u s stěnová úhlopříčka krychle 2

u t tělesová úhlopříčka krychle Důležité vzorce: Povrch krychle: Objem krychle: Stěnová úhlopříčka krychle: Tělesová úhlopříčka krychle: Kvádr Kvádr je těleso, které je tvořeno osmi vrcholy, šesti stěnami, z nichž každé dvě protější jsou shodné a dvanácti hranami, z nichž zpravidla čtyři jsou vždy shodné. Použité veličiny: a, b, c délky různých hran kvádru S povrch kvádru V objem kvádru u s stěnová úhlopříčka kvádru u t tělesová úhlopříčka kvádru Zkratka CZ značí tzv. cyklickou záměnu, což představuje záměnu hran v odpovídajícím pořadí. 3

Důležité vzorce: Povrch kvádru: Objem kvádru: Stěnová úhlopříčka kvádru: Tělesová úhlopříčka kvádru: Pozn.: Zvláštním případem je kvádr se čtvercovou podstavou Pokud budeme uvažovat a = b, pak vzorce budou v následující podobě: Povrch kvádru se čtvercovou podstavou: Objem kvádru se čtvercovou podstavou: Stěnová úhlopříčka kvádru se čtvercovou podstavou: pro podstavu nebo pro boční stěnu Tělesová úhlopříčka kvádru se čtvercovou podstavou: Hranol Hranol je prostorové těleso, které je tvořeno dvěma shodnými podstavami, které mohou mít tvar libovolného n-úhelníku, a pláštěm, který tvoří n obecně různých obdélníků. 4

Použité veličiny: S p Obsah podstavy hranolu S Q Obsah pláště hranolu v Výška hranolu Uvedené vzorce musíme vždy konkretizovat pro konkrétní zadané těleso. Pozn.: Pokud n-úhelník tvořící podstavu má všechny strany stejně dlouhé, pak nazýváme hranol pravidelný. V tomto případě plášť tvoří shodné obdélníky. Pozn.: Pokud má hranol kteroukoliv boční hranu kolmou k rovině podstavy, nazýváme ho hranol kolmý. Budeme se zabývat v dalších výpočtech pouze kolmými hranoly. 3. Krychle, kvádr, hranol - ukázkové příklady 1. Je dána krychle o hraně 5,4 cm. Vypočtěte její tělesovou úhlopříčku. a = 5,4 cm u t =? [cm] -------------------------------- u t = a. 3 u t = 5,4. 3 u t = 9,4 cm (přibližně) Tělesová úhlopříčka krychle má délku asi 9,4 cm. 2828 5

2. V akváriu tvaru kvádru o rozměrech dna 25 cm a 30 cm je 13,5 litru vody. Vypočtěte, do jaké výšky voda sahá. a = 25 cm = 2,5 dm b = 30 cm = 3,0 dm V = 13,5 l = 13,5 dm 3 c =? [cm] --------------------------------- V = a.b.c 2829 c = 1,8 dm = 18 cm Voda v akváriu sahá do výšky 18 cm. 2830 3. Trojboký hranol má podstavu tvaru pravoúhlého trojúhelníku, jehož odvěsny mají délky 3 cm a 4 cm. Výška hranolu je 0,25 m. Vypočtěte jeho objem. a = 3 cm b = 4 cm v = 0,25 m = 25 cm V =? [cm 3 ] ---------------------------------- V = S p.v V = 150 cm 3 Objem hranolu je 150 cm 3. 4. Krychle, kvádr, hranol - procvičovací příklady 1. Kolik tun slámy lze v prostoru pod střechou domu 150 dm dlouhého a 8 m širokého, kde výška trojúhelníkového štítu je 350 cm, uskladnit, je-li hmotnost 1 m 3 lisované slámy 100 kg a prostor je možno zaplnit pouze na 75 %? 15,75 t 2810 2. Hranol má podstavu tvaru pravoúhlého trojúhelníka. Přepona tohoto trojúhelníka měří 15 cm, jedna odvěsna 12 cm. Objem hranolu je 1,512 dm 3. Vypočítejte výšku hranolu a jeho povrch. Výška 28 cm, povrch 1 116 cm 2 2818 3. Hranol s kosočtverečnou podstavou má jednu úhlopříčku podstavy 20 cm a hranu podstavy 26 cm. Hrana podstavy je k výšce hranolu v poměru 2 : 3. Vypočítejte objem hranolu. 18 720 cm 3 2819 4. Na obdélníkové zahradě o rozměrech 30 m a 16 m napršely 4 mm vody. Kolika desetilitrovým konvím toto množství odpovídá? 192 2815 5. Silniční násep má průřez tvaru rovnoramenného lichoběžníka o základně 16 m a 10 m, ramena délky 5 m. Kolik tun zeminy o hustotě 2 000 kg/m 3 je v náspu o délce 1 km? 104 000 t 6. Nádoba tvaru kvádru se čtvercovou podstavou a výškou 56 cm byla naplněna po okraj vodou. Do nádoby bylo ponořeno těleso a přitom z nádoby vyteklo 7,5 litru vody. Po vyjmutí tělesa z nádoby poklesla hladina vody v nádobě o 12 cm. Vypočtěte, kolik litrů vody zbylo v nádobě. 27,5 l 2827 2809 6

2823 7. Určete objem a povrch sloupu, který má podstavu tvaru kosočtverce s úhlopříčkami 60 cm a 144 cm. Výška sloupu je 2,5 m. Objem 1,08 m 3 ; povrch 8,7 m 2 2813 8. Rozměry kvádru jsou v poměru 2 : 3 : 6. Jeho tělesová úhlopříčka má délku 14 cm. Určete jeho povrch a objem. Objem je 288 cm 3, povrch je 288 cm 2. 9. Kvádr má rozměry a = 3 cm, b = 6 cm, c = 8 cm. Vypočtěte velikost největší stěnové úhlopříčky. 2814 10 cm 2812 10. Nádrž má obdélníkové dno. Délka strany a = 30 dm a úhlopříčky u = 5 m. Za jak dlouho se naplní do výšky 200 cm, je-li přítok 2 l za sekundu? Čas vyjádřete v hodinách a minutách. 3 h 20 min 11. Objem trojbokého kolmého hranolu je 1 248 cm 3 2824. Jeho podstavou je rovnoramenný trojúhelník, který má rameno délky 13 cm a výšku na základnu 5 cm. Vypočtěte tělesovou výšku hranolu. 20,8 cm 2826 12. Jaký objem má prostor pod střechou domu 150 dm dlouhého a 8 m širokého, je-li výška trojúhelníkového štítu v = 350 cm? 210 m 3 2817 13. Podstava kolmého trojbokého hranolu je pravoúhlý trojúhelník s odvěsnou 6 cm. Obsah největší stěny pláště je 120 cm 2 a výška hranolu je 12 cm. Vypočítejte objem tělesa. 288 cm 3 2808 14. Těleso tvaru kvádru s podstavou obdélníka (24 cm, 12 cm) bylo naplněno vodou do výšky 20 cm. Vypočítejte objem tělesa ponořeného do vody, jestliže voda stoupne o 3 cm. 864 cm 3 15. Povrch kvádru je 1 008 cm 2 2820. Šířka kvádru je o 20 % menší než jeho délka, výška kvádru je o 50 % větší než jeho délka. Vypočtěte objem kvádru. 2 074 cm 3 16. Z dřevěné válcové klády poloměru 15 cm a délky 5 m o hustotě 750 kg/m 3 byl otesán trám o tloušťce 18 cm s největším možným obdélníkovým průřezem. Vypočítejte hmotnost trámu a počet procent odpadlého materiálu. 162 kg, 39 % 2811 17. Trojboký hranol má podstavu tvaru pravoúhlého trojúhelníku, jehož odvěsny mají délky 3 cm a 4 cm. Výška hranolu je 0,25 m. Vypočítejte jeho povrch. 312 cm 2 2816 18. Kolikrát se zvětší objem krychle s hranou 2 dm, jestliže bude hrana 3-krát větší? 27 krát 2821 2825 19. Hranol s kosočtvercovou podstavou má jednu úhlopříčku podstavy 20 cm a hranu podstavy 26 cm. Hrana podstavy je k výšce hranolu v poměru 2 : 3. Vypočítejte objem a povrch hranolu. Objem 18 720 cm 3 ; povrch 5 016 cm 2 2822 20. Bazén má tvar kvádru, jeho dno je čtvercové. Délka strany čtverce je 25 m. V bazénu je 937 500 litrů vody. Do jaké výšky sahá voda? 1,5 m 7

5. Válec Válec je prostorové těleso, které je tvořeno dvěma shodnými kruhovými podstavami a pláštěm. Použité veličiny: r poloměr podstavy válce d průměr podstavy válce v výška válce S povrch válce V objem válce Důležité vzorce: Objem válce pomocí průměru: Povrch válce pomocí průměru: 8

Pozn.: Budeme se zabývat pouze tzv. rotačním válcem, což je takový válec, který může rotovat kolem své osy, která prochází středy obou podstav. Síť válce tvoří obdélník (rozvinutý plášť) a dva kruhy. 6. Válec - ukázkové příklady 1. Vypočtěte obsah podstavy válce o objemu 62,8 l a výšce 0,5 m. V = 62,8 l = 62,8 dm 3 v = 0,5 m = 5 dm S p =? [dm 2 ] ---------------------------------------- 2921 V = S p. v S p = V / v S p = 62,8 / 5 S p = 12,56 dm 2 Obsah podstavy válce je 12,56 dm 2. 9

2920 2. Na nátěr otevřeného sudu o průměru 60 cm a výšce 85 cm bylo spotřebováno 0,72 l barvy. Kolik barvy je potřeba na 1 m 2, jestliže se sud natíral zvenku i zevnitř? d = 60 cm = 6 dm v = 85 cm = 8,5 dm V 0 = 0,72 l = 0,72 dm 3 V =? [dm 3 ] ---------------------------------- Počítáme povrch válce bez jedné podstavy a výsledek musíme vzít dvakrát (dva nátěry): S = d 2 /2 + 2.d.v S = 3,14.6 2 /2 + 2.3,14.6.8,5 = 376,8 S = 376,8 dm 2 = 3,77 m 2 (přibližně) V = V 0 /S V = 0,72 / 3,77 V = 0,191 l (přibližně) Na nátěr jednoho metru čtverečného sudu se spotřebuje přibližně 0,191 l barvy. 7. Válec - procvičovací příklady 1. Vypočtěte výšku válce o objemu 62,8 litru, je-li obsah podstavy 12,56 dm 2. Výška válce je 5 dm. 2917 2919 2. V nádrži tvaru válce o poloměru 3 m je 942 hl vody. Voda sahá do dvou třetin hloubky nádrže. Jaký je objem celé nádrže? 1 413 hl 2911 3. Kolik litrů vody za sekundu může maximálně odvádět koryto, které má průřez půlkruh o poloměru 0,5 m, je-li rychlost proudu 80 cm za sekundu? Koryto může odvádět maximálně 314 litrů vody za sekundu. 4. Kanystr tvaru pravidelného čtyřbokého hranolu o délce podstavné hrany 25 cm a výšce 40 cm je plný vody. Vodu jsme přelili do válce o stejné výšce. Jaký průměr má válec, jestliže je také plný? Válec má průměr 28,2 cm. 2912 5. Nádoba tvaru válce má průměr podstavy 0,8 m a obsah podstavy je roven obsahu pláště. Kolik celých litrů vody můžeme nejvýše nalít do nádoby? Do nádoby můžeme nalít maximálně 100 litrů vody. 6. Při nátěru otevřeného sudu zvenku i zevnitř se spotřebuje 0,191 litru barvy na 1 m 2 2916. Sud má poloměr 30 cm a výšku 85 cm. Kolik barvy se na nátěr sudu spotřebuje? Na nátěr sudu se spotřebuje 0,72 litru barvy. 7. Kolik kilogramových plechovek ekologické barvy je třeba koupit k nátěru padesáti dvousetlitrových otevřených sudů na vodu, jejichž průměr je 60 cm? Výrobce udává, že 1 kg barvy vystačí na plochu o obsahu 5 m 2. Je zapotřebí 33 plechovek. 8. Kanystr tvaru válce s průměrem 28,22 cm a výškou 40 cm je plný vody. Vodu jsme přelili do jiného kanystru tvaru kvádru se čtvercovou podstavou a výškou jako má válec. Jaký je obsah podstavy kvádru, je-li po přelití vody také plný? Obsah podstavy kvádru je 625 cm 2. 2913 9. Nádoba tvaru válce má průměr podstavy 0,8 m a obsah podstavy je roven obsahu pláště. Do jaké výše naplníme nádobu vodou, chceme-li ji zaplnit ze 30%? Nádobu naplníme do výše asi 0,6 dm. 2914 2910 2918 10

2915 10. V nádrži tvaru válce o průměru 6 m je 942 hl vody. Voda sahá do dvou třetin hloubky nádrže. Jaká je hloubka nádrže? Hloubka nádrže je 5 m. 8. Jehlan Jehlan je prostorové těleso, které je tvořeno podstavou tvaru libovolného n-úhelníka a dále navíc jedním vrcholem, který nazýváme hlavní. U jehlanu, podobně jako u dalších prostorových těles, počítáme povrch a objem. Použité veličiny: V Objem jehlanu S Povrch jehlanu S p Obsah podstavy jehlanu S Q Obsah pláště jehlanu v výška jehlanu Podstava je tvořena n-úhelníkem, plášť několika trojúhelníky, které mohou být i shodné. Shodné jsou tehdy, jestliže podstava je tvořena pravidelným n-úhelníkem. V tomto případě pak jehlan nazýváme pravidelný. Pozn.: Budeme se zabývat pouze tzv. kolmými jehlany, což jsou takové, které mají výšku kolmou k podstavě. Jehlan, který má za podstavu trojúhelník, nazýváme čtyřstěn. Význam má hlavně pravidelný čtyřstěn, který má podstavu i všechny stěny pláště shodné. 9. Jehlan - ukázkové příklady 11

1. Objem pravidelného čtyřbokého jehlanu je 72,0 cm 3 2777. Výška jehlanu se rovná délce podstavné hrany. Vypočítejte délku podstavné hrany a povrch jehlanu. V = 72,0 cm 3 v = a =? S =? --------------------------------------------- V = S p.v/3 V = a 3 /3 Po dosazení: a = 6 cm Stěnová výška v a : Po dosazení: v a = 6,71 cm (přibližně) Obsah jedné stěny: S 1 = a.v a /2 Obsah pláště: S Q = 4.S 1 = 2.a.v a Povrch jehlanu: S = S P + S Q = a 2 + 2.a.v a Po dosazení: S = 6 2 + 2.6.6,71 S = 116,5 cm 2 (přibližně) Hrana jehlanu má délku 6 cm a povrch tělesa je 116,5 cm 2. 2. Kolik korun bude stát natření střechy věžičky tvaru pravidelného čtyřbokého jehlanu o hraně podstavy 8,4 m a výšce tělesa 6,5 m, stojí-li 1 kg barvy 63 Kč a z jednoho kilogramu natřeme 12 m 2. Zaokrouhlete na stovky. a = 8,4 m v = 6,5 m m 0 = 1 kg c 0 = 63 Kč S 0 = 12 m 2 c =? [Kč] -------------------------------------------- Je zapotřebí spočítat obsah pláště, proto musíme nejprve spočítat stěnovou výšku 2778 po dosazení dostáváme v a = 7,74 m (přibližně) S = 4. a.v a /2 = 2a.v a S = 2. 8,4.7,74 S = 130 m 2 (přibližně) c = S/S 0.c 0 c = 130/12.63 c = 682,5 Kč, což je přibližně 700 Kč Natření stříšky bude stát přibližně 700 Kč. 10. Jehlan - procvičovací příklady 2783 1. Vypočtěte objem pravidelného osmibokého jehlanu, jestliže hrana podstavy má délku 3 cm a výška tělesa je 9 cm. Objem pravidelného osmibokého jehlanu je asi 130,3 cm 3. 12

2784 2. Vypočtěte objem čtyřbokého jehlanu s lichoběžníkovou podstavou, je-li a = 7 cm, c = 4 cm, v a = 3 cm, v = 12 cm. Objem jehlanu s lichoběžníkovou podstavou je 66 cm 3. 2781 3. Plášť pravidelného čtyřbokého jehlanu je čtyřikrát větší než podstava. Podstavná hrana má délku 1 dm. Určete tělesovou výšku jehlanu. Tělesová výška jehlanu je asi 1,94 dm. 2786 4. Žulový obelisk o výšce 18 m a stranou čtvercové podstavy 0,8 m se má ustavit na místo jeřábem. Jakou minimální nosnost musí jeřáb mít? Hustota žuly se počítá 2 800 kg/m 3. Jeřáb musí mít minimální nosnost 11 tun. 2789 5. Vypočtěte objem pravidelného čtyřbokého jehlanu, který má boční hranu dvakrát delší než je hrana podstavy, je-li poloměr kružnice opsané podstavě 6 cm. Objem čtyřbokého jehlanu je asi 381,5 cm 3. 2790 6. Kolik korun bude stát natření střechy věžičky tvaru pravidelného čtyřstěnu s podstavou o obsahu 20 m 2, stojí-li natření jednoho metru čtverečního 5,25 Kč? Natření střechy bude stát 315 Kč. 2782 7. Pobočné hrany o délce 1 dm čtyřbokého jehlanu mají od obdélníkové podstavy odchylku 58 34. Obsah podstavy je 20 cm 2. Jak velká je tělesová výška jehlanu? Tělesová výška jehlanu je asi 8,53 cm. 2788 8. Vypočti povrch jehlanu s obdélníkovou podstavou, je-li a = 16 cm, b = 12 cm, h = 20 cm, kde a, b jsou hrany podstavy a h je pobočná hrana. Povrch jehlanu je asi 714 cm 2. 2780 9. Ve čtyřbokém kolmém jehlanu jsou dány podstavné hrany a 1 = 20 cm, a 2 = 8 cm a tělesová výška v = 17 cm. Vypočtěte velikost pobočné hrany. Délka pobočné hrany je asi 20,1 cm. 10. Vypočtěte objem pravidelného trojbokého jehlanu, je-li a = 17 cm, v = 35 cm. Objem pravidelného trojbokého jehlanu je asi 1 460 cm 3. 2785 2791 11. Vypočti povrch jehlanu s obdélníkovou podstavou, je-li a = 10 cm, b = 8 cm a tělesová výška je 15 cm. Povrch jehlanu je 362 cm 2. 2792 12. Vypočtěte objem pravidelného šestibokého jehlanu, který má hranu podstavy dlouhou 6 cm a výšku tělesa dlouhou 8 cm. Objem jehlanu je asi 249,6 cm 3. 2787 13. Vypočti povrch pravidelného čtyřbokého jehlanu, má-li hranu podstavy 4 cm a pobočnou hranu dlouhou 15 cm. Povrch pravidelného čtyřbokého jehlanu je asi 135 cm 2. 11. Kužel Kužel je prostorové těleso, které je tvořeno jednou podstavou a pláštěm. Podstava má tvar kruhu, plášť, kdybychom ho rozvinuli do roviny, bude mít tvar kruhové výseče. 13

U kužele počítáme, podobně jako u dalších těles, povrch a objem. Použité veličiny: r Poloměr kruhové podstavy kuželu d Průměr kruhové podstavy kuželu v Výška kuželu V Hlavní vrchol kuželu s Strana kuželu S Povrch kuželu V Objem kuželu Důležité vzorce: Obsah podstavy: Obsah pláště: Objem pomocí poloměru: Objem kuželu pomocí průměru: Povrch kuželu pomocí poloměru: Povrch kuželu pomocí průměru: 14

Vzhledem k tomu, že výše zobrazený kužel může rotovat kolem své výšky, nazýváme tento typ kužele rotační kužel. Budeme se zabývat právě takovými kuželi. Pozn.: Někdy se kužel také definuje jako těleso, které vznikne rotací pravoúhlého trojúhelníka kolem jedné z jeho odvěsen. 12. Kužel - ukázkové příklady 1. Objem kužele je 12 cm 3, jeho výška je 4 cm. Jaký je obsah podstavy kužele? V = 12 cm 3 v = 4 cm S p =? [cm 2 ] ---------------------------------------- 2831 S p =3V/v S p = 3.12/4 S p = 9 cm 2 Obsah podstavy kužele je 9 cm 2. 15

2832 2. Jak velký objem by měl kužel, který by vznikl rotací rovnoramenného trojúhelníku s úhlem při základně 25 a ramenem délky 0,75 m? Výška tělesa je tedy zároveň výškou trojúhelníka. = 25 s = 0,75 m V =? [m 3 ] ---------------------------------------------- sin = v/s v = s. sin v = 0,75. sin 25 v = 0,75. 0,4226 v = 0,316 95 m = 0,32 m (po zaokrouhlení) cos = r/s r = s. cos r = 0,75. cos 25 r = 0,75. 0,9063 r = 0,679 725 m = 0,68 (po zaokrouhlení) V = r 2 v/3 V = 3,14.0,68 2.0,32/3 V = 0,155 m 3 (po zaokrouhlení) V = 155 dm 3 Objem kužele je 155 dm 3. 16

2833 3. Plechová stříška tvaru kužele má průměr podstavy 80 cm a výšku 60 cm. Vypočtěte spotřebu barvy na natření této stříšky, spotřebuje-li se 1 kg barvy na 6 m 2 plechu. d = 80 cm v = 60 cm m 0 = 1 kg S 0 = 6 m 2 m =? [kg] --------------------------------------------------------- Natíráme pouze plášť kužele, proto S = d.s/2 (1) Neznáme s, proto ho spočítáme pomocí Pythagorovy věty: s = 72,11 (po zaokrouhlení) Dosadíme do (1): S = 3,14. 80. 72,11/2 S = 9057 cm 2 = 0,91 m 2 (po zaokrouhlení) 1 kg 6 m 2 m [kg] 0,91 m 2 --------------------------------------- Jedná se o přímou úměrnost, proto m = 1. 0,91/6 m = 0,152 kg (o zaokrouhlení) Na natření stříšky je zapotřebí asi 0,152 kg barvy. 13. Kužel - procvičovací příklady 1. Nálevka na 1 litr má tvar kužele s poloměrem podstavy 10 cm. Jaká je výška nálevky? Výška nálevky je asi 9,6 cm. 2834 2835 2. Vypočti objem kužele, který má průměr podstavy roven výšce tělesa. Poloměr podstavy kužele je 7 cm. Objem kužele je 718 cm 3. 3. Nádoba tvaru kužele s průměrem dna 60 cm a stranou délky 50 cm je zcela naplněna vodou. Vodu přelijeme do nádoby, která má tvar válce o poloměru dna 30 cm a výšce 20 cm. Kolik litrů vody je třeba do nádoby tvaru válce dolít, aby byla zcela naplněna? Do nádoby musíme dolít asi 18,8 litru vody. 4. Rotační kužel má obsah podstavy 28,26 cm 2 a objem celého tělesa je 131,88 cm 3 2840. Určete jeho výšku. Výška kužele je 14 cm. 5. Nádobka tvaru kužele o poloměru podstavy 20 cm a výšce 36 cm byla zcela naplněna vodou. Voda byla přelita do nádoby tvaru válce o poloměru podstavy 12 cm. Jak vysoko byla voda v nádobě tvaru válce? Voda v nádobě tvaru válce sahala do výšky asi 33,3 cm. 2846 2847 6. Vypočti povrch kužele, jehož strana je 10 cm a průměr podstavy je 10 cm. Povrch kužele je 235,5 cm 2. 7. Kužel má objem 83,7 cm 3 a průměr podstavy 8 cm. Vypočti výšku tělesa. Výška kužele je 5 cm. 2843 2839 17

8. Kužel má objem 1 441 cm 3 a výšku 17 cm. Vypočti poloměr podstavy tohoto kužele. Poloměr podstavy kužele je 9 cm. 9. Vypočti povrch kužele, který má výšku 16 cm a poloměr podstavy 0,3 m. Povrch kužele je 6 029 cm 2. 2838 2844 2841 10. Kolik metrů krychlových je uloženo na hromadě tvaru kužele, je-li výška hromady 2,6 m a největší šířka hromady 7 m? Na hromadě je uloženo asi 33,3 m 3 písku. 11. V závodě na výrobu nápojového skla vyrábějí dva typy skleniček ve tvaru kužele. První typ o průměru 9 cm s výškou 6,5 cm a druhý typ o průměru 6 cm s výškou 14,5 cm. Která sklenička má větší objem? Vejdou se do některé z nich 2 dl nápoje? Větší objem má sklenička 1. typu; 2 dl nápoje se ale nevejdou do žádné skleničky. 2842 12. Vypočti objem kužele s průměrem podstavy 32 cm a výškou tělesa 0,5 m. Objem kužele je 13 397 cm 3. 13. Vypočti objem kužele o poloměru podstavy 35 cm, je-li výška tělesa rovna 19 cm. Objem kužele je 24 361 cm 3. 14. Vypočti povrch kužele, je-li jeho výška 15 cm a strana 17 cm. Povrch kužele je 628 cm 2. 2837 2836 2845 14. Koule Koule je prostorové těleso. Jedná se o těleso, které je tvořeno body, jež mají od jediného pevně zvoleného bodu vzdálenost menší nebo rovnu poloměru. U koule počítáme opět povrch nebo objem. Použité veličiny: r poloměr koule d průměr koule S povrch koule V objem koule Povrch i objem můžeme počítat buď pomocí poloměru nebo pomocí průměru. Vzorce pro výpočet pomocí poloměru: Objem: 18

Povrch: Vzorce pro výpočet pomocí průměru: Objem: Povrch: 15. Koule - ukázkové příklady 1. Vypočti objem koule o průměru 75 cm. d = 75 cm V =? [cm 3 ] --------------------------- 2806 V = 220 781,25 cm 3 = 0,22 m 3 (po zaokrouhlení) Objem koule je asi 0,22 m 3. 2807 2. Kolik metrů čtverečních materiálu bylo potřeba na zhotovení balonu pro vzduchoplavce, jestliže měl poloměr 2,5 m? r = 2,5 m S =? [m 2 ] --------------------------- S = 4..r 2 = 4. 3,14. 2,5 2 S = 78,5 m 2 Na zhotovení balonu bylo zapotřebí 78,5 m 2 materiálu. 16. Koule - procvičovací příklady 1. Na nafukovací plážový míč se spotřebovalo 1,2 m 2 materiálu, ze kterého 30 % činil odpad. Jak velký průměr má míč? Míč má průměr asi 0,52 m. 2804 2802 2. Jaký průměr má kovová kulička, jestliže po vhození do válcové nádoby o průměru 3 cm naplněné vodou hladina stoupne o 1 mm? Kovová kulička má průměr asi 11 mm. 19

3. Kolik olověných kuliček o průměru 18 mm se odlije z 1 kg materiálu o hustotě 10 600 kg/m 3? 2803 Z uvedeného materiálu odlijeme asi 31 kuliček. 2801 4. Kolik litrů vody se vejde do akvária tvaru koule, mají-li být vodou zaplněny čtyři pětiny objemu celé koule o průměru 0,5 m? Do akvária se vejde asi 52,3 litru vody. 5. Vypočti povrch koule o poloměru 0,7 m. Povrch koule je asi 6,2 m 2. 6. Vypočti objem koule o poloměru 52 cm. Objem koule je 589 dm 3. 7. Vypočti povrch koule, která má objem 874 cm 3. Povrch koule je asi 442 cm 2. 2795 2793 2799 8. Jaký poloměr musí mít pouzdro tvaru koule, aby se do něho vešla krychle o hraně 10 cm a byla pevně uložena? Pouzdro musí mít poloměr asi 8,66 cm. 2805 9. Vypočti objem koule, je-li její povrch 450 cm 2. Objem koule je asi 898 cm 3. 10. Vypočti poloměr koule, jejíž objem je 1 litr. Koule má poloměr asi 6,2 cm. 11. Vypočti povrch koule o poloměru 2 m. Povrch koule je asi 50,2 m 2. 12. Vypočti objem koule o poloměru 0,4 m. Objem koule je 268 dm 3. 13. Vypočti povrch koule o průměru 45 cm. Povrch koule je asi 63,6 dm 2. 2800 2798 2796 2794 2797 20

Obsah 1. Vzájemná poloha prostorových útvarů 2. Krychle, kvádr, hranol 3. Krychle, kvádr, hranol - ukázkové příklady 4. Krychle, kvádr, hranol - procvičovací příklady 5. Válec 6. Válec - ukázkové příklady 7. Válec - procvičovací příklady 8. Jehlan 9. Jehlan - ukázkové příklady 10. Jehlan - procvičovací příklady 11. Kužel 12. Kužel - ukázkové příklady 13. Kužel - procvičovací příklady 14. Koule 15. Koule - ukázkové příklady 16. Koule - procvičovací příklady 2 2 5 6 8 9 10 11 11 12 13 15 17 18 19 19 21