Dřevo představuje obnovitelný zdroj energie, je to druh biomasy.



Podobné dokumenty
Před zahájením vlastních výpočtů je potřeba analyzovat konstrukci a zvolit vhodný návrhový

6 Mezní stavy únosnosti

NÁVRH A POSOUZENÍ DŘEVĚNÝCH KROKVÍ

NÁVRH A POSOUZENÍ DŘEVĚNÉHO PRŮVLAKU

kde je rychlost zuhelnatění; t čas v minutách. Pro rostlé a lepené lamelové dřevo jsou rychlosti zuhelnatění uvedeny v tab. 6.1.

Navrhování dřevěnỳch konstrukcí podle Eurokódu

Úvod Požadavky podle platných technických norem Komentář k problematice navrhování

7.1 Úvod. 7 Dimenzování prvků dřevěných konstrukcí. σ max σ allow. σ allow = σ crit / k. Petr Kuklík

3 Návrhové hodnoty materiálových vlastností

Dřevo EN1995. Dřevo EN1995. Obsah: Ing. Radim Matela, Nemetschek Scia, s.r.o. Konference STATIKA 2013, 16. a 17.

Použitelnost. Obvyklé mezní stavy použitelnosti betonových konstrukcí podle EC2: mezní stav omezení napětí, mezní stav trhlin, mezní stav přetvoření.


pracovní verze pren "Glass in Building", v níž je uveden postup výpočtu

Dřevěné konstrukce. Dřevo - od nepaměti. Zavedení výroby řeziva na pilách Výroba kovových spojovacích prostředků Lepené konstrukce

OCELOVÉ A DŘEVĚNÉ PRVKY A KONSTRUKCE Část: Dřevěné konstrukce

Úloha 1 - Posouzení nosníku na ohyb, smyk a průhyb

Zvyšování kvality výuky technických oborů

Statický výpočet střešního nosníku (oprava špatného návrhu)

Od roku 2016 je firma Střechy 92, s.r.o. dodavatelem vrstveného dřeva Ultralam pro Českou republiku.

12.1 Návrhové hodnoty vlastností materiálu

Úloha 1 - Posouzení nosníku na ohyb, smyk a průhyb

OCELOVÉ A DŘEVĚNÉ PRVKY A KONSTRUKCE Část: Dřevěné konstrukce

1) Pokud dlouhé svisle zavěšené těleso (např. lano) neunese svou vlastní tíhu, jakým opatřením nedosáhneme zlepšení?

NAVRHOVÁNÍ DŘEVĚNÝCH KONSTRUKCÍ DLE ČSN EN , ZÁKLADNÍ PROMĚNNÉ

7 Mezní stavy použitelnosti

9. Spřažené ocelobetonové nosníky Spřažené ocelobetonové konstrukce, návrh nosníků teorie plasticity a pružnosti.

LVL lepené vrstvené dřevo Nosné stavební prvky přirozeně ze dřeva

Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí

Průvodní zpráva ke statickému výpočtu

ČVUT v Praze, Fakulta stavební. seminář Stanovení vlastností materiálů při hodnocení existujících konstrukcí Masarykova kolej, 3. 4.

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

A. 1 Skladba a použití nosníků

GESTO Products s.r.o.

LVL lepené vrstvené dřevo Nosné stavební prvky přirozeně ze dřeva

Konstrukce dřevěné haly rozvržení kce

studentska kopie =0,9 (rostlé dřevo, krátkodobé zatížení, třída vlhkosti 1) MPa Posudek krokve Průřezové charakteristiky Krokev 80/180

Jméno a příjmení uchazeče (tiskace):... Číselný kód přihlášky:

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY ZASTŘEŠENÍ SPORTOVNÍ HALY VE VSETÍNĚ THE ROOF STRUCTURE OF THE SPORT HALL IN VSETÍN

PODKLADY PRO DIMENZOVÁNÍ NOSNÉHO BEDNĚNÍ PODLAH A REGÁLŮ Z DESEK OSB/3 Sterling

STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK) DŘEVĚNÉ KONSTRUKCE

Tento materiál slouží výhradně jako pomůcka do cvičení a v žádném případě objemem ani typem informací nenahrazuje náplň přednášek.

13. Zděné konstrukce. h min... nejmenší tloušťka prvku bez omítky

NEXIS 32 rel Posudky dřevěných prutů

þÿ Ú n o s n o s t o c e l o v ý c h o t e vy e n ý c h þÿ u z a vy e n ý c h p r o f i lo z a p o~ á r u

1 Použité značky a symboly

Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3)

Dřevěné konstrukce požární návrh. Doc. Ing. Petr Kuklík, CSc.

NOSNÁ KONSTRUKCE AUTOSALONU 02 STATICKÝ VÝPOČET

K normalizaci dřevěných konstrukcí po roce 2015

STATICKÉ POSOUZENÍ K AKCI: RD TOSCA. Ing. Ivan Blažek NÁVRHY A PROJEKTY STAVEB

Úloha 6 - Návrh stropu obytné budovy

Manuál. Návrh dřevěných konstrukcí

ZATÍŽENÍ STAVEBNÍCH KONSTRUKCÍ

Sada 2 Dřevěné a ocelové konstrukce

10.1 Úvod Návrhové hodnoty vlastností materiálu. 10 Dřevo a jeho chování při požáru. Petr Kuklík

Dřevěné konstrukce podle ČSN EN : Petr Kuklík

Akce: Modřice, Poděbradova 413 přístavba a stavební úpravy budovy. Náměstí Svobody Modřice STATICKÉ POSOUZENÍ

Obsah: 1. Technická zpráva ke statickému výpočtu 2. Seznam použité literatury 3. Návrh a posouzení monolitického věnce nad okenním otvorem

Dřevo hlavní druhy dřeva, vlastnosti, anizotropie

Nosné konstrukce II - AF01 ednáška Navrhování betonových. použitelnosti

Navrhování konstrukcí z korozivzdorných ocelí

Posouzení piloty Vstupní data

F Zug F H. F Druck. Desky Diamant 07/2010. Knauf Diamant. Diamant deska, která unese dům

Posouzení za požární situace

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ 02 STATICKÝ VÝPOČET

NOVÉ MOŽNOSTI V NAVRHOVÁNÍ VELKOROZPONOVÝCH DŘEVĚNÝCH KONSTRUKCÍ PODLE PLATNÝCH EVROPSKÝCH NOREM

Bakalářská práce Statický výpočet

Principy navrhování stavebních konstrukcí

Zvyšování kvality výuky technických oborů

Sylabus přednášek OCELOVÉ KONSTRUKCE. Vzpěrná pevnost skutečného prutu. Obsah přednášky. Únosnost tlačeného prutu. Výsledky zkoušek tlačených prutů

RIB stavební software s.r.o. Zelený pruh 1560/99 tel.: Praha 4 fax: info@rib.cz 21.

STATICKÝ VÝPOČET: PŘESTUPNÍ UZEL HULVÁKY 1.ETAPA: obj. SO 01 Sociální zařízení MHD obj. SO 02 Veřejné WC

6 Navrhování dřevěných mostů podle ČSN EN

Spoje se styčníkovými deskami s prolisovanými trny. Ing. Milan Pilgr, Ph.D. DŘEVĚNÉ KONSTR.

Investor: Měřítko: Počet formátů: Obec Vrátkov. Datum: D.1.2 STAVEBNĚ KONSTRUKČNÍ ČÁST DSP

JSOU LEHKÉ, STABILNÍ, ALE VYDRŽÍ VELKOU ZÁTĚŽ

NAVRHOVÁNÍ DŘEVĚNÝCH KONSTRUKCÍ, SPOJE DŘEVĚNÝCH KONSTRUKCÍ

Principy navrhování stavebních konstrukcí

Tabulky únosností trapézových profilů ArcelorMittal (výroba Senica)

STATICKÝ VÝPOČET

Statický výpočet komínové výměny a stropního prostupu (vzorový příklad)

D STAVEBNĚ KONSTRUKČNÍ ŘEŠENÍ

Posouzení za požární situace

PŘÍKLAD VÝPOČTU RÁMU PODLE ČSN EN

Dřevo hoří bezpečně chování dřeva a dřevěných konstrukcí při požáru

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška B2. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6


Pilotové základy úvod

Přijímací zkoušky na magisterské studium, obor M

VYHLÍDKOVÉ DOMEČKY. Karlovy Vary, k.ú. Karlovy Vary, parc.čís. 3416, D.1.2. Stavebně konstrukční část DOKUMENTACE PRO PROVEDENÍ STAVBY

Principy návrhu Ing. Zuzana Hejlová

Marek Pavlas FA ČVUT Ústav stavitelství I PS VII. Konstrukční systémy na bázi dřeva

STATICKÉ POSOUZENÍ K AKCI: RD BENJAMIN. Ing. Ivan Blažek NÁVRHY A PROJEKTY STAVEB

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

Schválení Vruty EASYfast 8-12 mm, technické schválení pro izolační systémy

Program dalšího vzdělávání

Použitelnost. Žádné nesnáze s použitelností u historických staveb

Řezivo. Pořez podélné dělení výřezů, výroba řeziva. 1 středové řezivo 2 boční řezivo 3 krajina 4 řezná spára

Cvičební texty 2003 programu celoživotního vzdělávání MŠMT ČR Požární odolnost stavebních konstrukcí podle evropských norem

Transkript:

11. Dřevo, materiálové vlastnosti. Dřevo a materiály na bázi dřeva, vlastnosti, třídy trvání zatížení, třídy provozu, charateristicé hodnoty pro výpočty, MSÚ, MSP. Dřevo představuje obnovitelný zdroj energie, je to druh biomasy. Druhy dřevin pro dřevěné onstruce: - jehličnaté: smr, jedle, borovice, modřín.. (další výjimečně: douglasa, jalovec...) - listnaté: dub, bu... (další výjimečně: aát, jilm, aštanovní, ovocné stromy...) Strutura dřeva: Dřevo je organicý, nehomogenní, anizotropní a hygrosopicý materiál. Tvoří jej buňy: u jehličňanů zejména vodivé cévy ve směru mene ( vlána ) zvané tracheidy, u listnáčů tracheje a další buňy, např. s vyztužovací funcí apod. dřeň letoruh Terminologie: jarní dřevo letní dřevo dřeňové paprsy ambium lýo tangenciální řez radiální řez NNK ocelové onstruce (11) 1

Vlastnosti dřeva Jsou různé pro směr: - rovnoběžně s vlány, - olmo vlánům (navíc různé v radiálním a tangenciálním směru). Fyziální vlastnosti: Objemová hmotnost (hustota) záleží na vlhosti. např. [g/m 3 ] čerstvý vlhost 15% vlhost 0% dub až 1300 690 650 smr 850 470 430 Vlhost: Ovlivňuje změnu rozměrů, únosnost i další vlastnosti dřeva. Při nasycení činí cca 5 35 %, před použitím se dřevo vysouší, jina vzniají trhliny, popř. napětí. Tepelná vodivost, roztažnost (záleží na orientaci vlánům: ǁ, ): Dřevo má malou vodivost (izoluje), např. λ 0,15 W/mK (ocel má λ 50). Roztažnost α ǁ 0,000 005; α 0,000 034. Mechanicé vlastnosti dřeva (pevnost, modul pružnosti): Obecně jsou ovlivněny druhem dřeva, rozměry, vadami, zatížením, vlhostí. Charateristicé hodnoty jsou stanoveny podle tříd pevnosti v normách (viz dále). NNK ocelové onstruce (11)

Dřevo a materiály na bázi dřeva pro stavební onstruce Rostlé dřevo: desové řezivo (prna, fošny), hraněné řezivo (latě, hranoly), polohraněné řezivo, ulatina. Pro stavební účely musí být vysušeno (pro lepené prvy s vlhostí do 15 %, pro ryté onstruce do 0 %). Přeližované desy: Přeližy (z lichého počtu dýh lepených vzájemně olmo), laťovy a sendviče. dýha laťovový střed přeližy laťovy NNK ocelové onstruce (11) 3

Dřevovlánité desy Výroba z dřevních vláen s přídavem lepidla a aditiv zlepšující vlastnosti desy. Vyrábí se morou (výroba a lisování ve vodě) nebo suchou cestou. Je mnoho typů, např.: měé dřevovlánité desy (hobra), hobra DVD (dřevovlánité desy Sololit, Solola), MDF (Medium Density Fiberboard), HDF (High Density Fibreboard) spíše pro nábyte. sololit Dřevotřísové desy Výroba z tříse dřeva, slepením a slisováním. Mnoho typů podle výrobců. OSB desy (Oriented Strand Board) Vyrábí se lisováním velých ( 7cm) dřevních štepů ve 3 4 vrstvách, vrchní vrstvy s třísami směřují vesměs v podélném směru, lepí se prysyřicí a lisují. po lisování NNK ocelové onstruce (11) 4

Lepené lamelové dřevo Výroba z řeziva na automaticých linách (max. rozměr prvu 0,4 x x 35 [m]). Používají se obvyle melaminová lepidla, nastavení dély lamel zubovitým styem. Vrstvené dřevo (LVL Laminated Veneer Lumber, ob. zn. Kerto, Micro-Lam, Parallam, Intrallam). Výroba z dýh tl. 3, mm lepených souběžně (max. rozměr prvů 75x180x600 cm). Křížem vrstvené dřevo (CLT cross laminated timber) Desový systém obdobný formě přeližy, avša z pren ( 1 45 mm) spojovaných na linách lepením a zalisováním, popř. mechanicy. NNK ocelové onstruce (11) 5

Navrhování podle ČSN EN 1995-1-1 (Navrhování dřevěných onstrucí, Část 1-1: Obecná pravidla Společná pravidla a pravidla pro pozemní stavby) Rozlišuje se doba trvání zatížení a vlhost materiálu za provozu při 0 ºC: Třídy trvání zatížení: stálé dlouhodobé střednědobé rátodobé oamžiové trvá déle než 10 let 6 měsíců až 10 let 1 týden až 6 měsíců méně než 1 týden Třídy provozu (podle vlhosti provozu): třída provozu 1 vlhost > 65 % pouze něoli týdnů v roce třída provozu vlhost > 85 % pouze něoli týdnů v roce třída provozu 3 vyšší vlhost než u třídy Charateristicé hodnoty pevnostních vlastností Pro onstruční dřevo jsou uvedeny podle tříd v ČSN EN 338. Pro lepené lamelové dřevo jsou uvedeny podle tříd v ČSN EN 1194. Hodnoty jsou uvedeny v následujících tabulách. NNK ocelové onstruce (11) 6

Konstruční dřevo: Charateristicé hodnoty v MPa Hodnoty odpovídají dřevu při teplotě vzduchu 0 ºC a relativní vlhosti 65 %. Jehličnaté dřeviny třídy pevnosti: C14 C16 C18 C0 C C4 C7 C30 C35 C40 C45 C50 ohyb f m, 14 16 18 0 4 7 30 35 40 45 50 tah ǁ s vlány f t,0, 8 10 11 1 13 14 16 18 1 4 7 30 tah vlánům f t,90, 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 tla ǁ s vlány f c,0, 16 17 18 19 0 1 3 5 6 7 9 tla vlánům f c,90,,0,,,3,4,5,6,7,8,9 3,1 3, smy f v, 3,0 3, 3,4 3,6 3,8 4,0 4,0 4,0 4,0 4,0 4,0 4,0 modul pružnosti E 0,mean 7 8 9 9,5 10 11 11,5 1 13 14 15 16 ǁ s vlány [GPa] E 0,05 4,7 5,4 6 6,4 6,7 7,4 7,7 8 8,7 9,4 10 10,7 průměr modulu E 90,mean 0,3 0,7 0,30 0,3 0,33 0,37 0,38 0,40 0,43 0,47 0,50 0,53 pružnosti [GPa] průměr modulu G mean 0,44 0,5 0,56 0,59 0,63 0,69 0,7 0,75 0,81 0,88 0,94 1,00 ve smyu [GPa] průměrná hustota ρ mean 350 370 380 390 410 40 450 460 480 500 50 550 [g/m 3 ] NNK ocelové onstruce (11) 7

Konstruční dřevo: Charateristicé hodnoty v MPa Hodnoty odpovídají dřevu při teplotě vzduchu 0 ºC a relativní vlhosti 65 %. Listnaté dřeviny třídy pevnosti: D18 D4 D30 D35 D40 D50 D60 D70 ohyb f m, 18 4 30 35 40 50 60 70 tah ǁ s vlány f t,0, 11 14 18 1 4 30 36 4 tah vlánům f t,90, 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 tla ǁ s vlány f c,0, 18 1 3 5 6 9 3 34 tla vlánům f c,90, 7,5 7,8 8,0 8,1 8,3 9,3 10,5 13,5 smy f v, 4,0 4,0 4,0 4,0 4,0 4,0 4,5 5,0 modul pružnosti E 0,mean 9,5 10 11 1 13 14 17 0 ǁ s vlány [GPa] E 0,05 8 8,5 9, 10,1 10,9 11,8 14,3 16,8 průměr modulu E 90,mean 0,63 0,67 0,73 0,80 0,86 0,93 1,13 1,33 pružnosti [GPa] průměr modulu G mean 0,59 0,6 0,69 0,75 0,81 0,88 1,06 1,5 ve smyu [GPa] průměrná hustota ρ mean 570 580 640 650 660 750 840 1080 [g/m 3 ] NNK ocelové onstruce (11) 8

Lepené ombinované lamelové dřevo: Charateristicé hodnoty v MPa Hodnoty lze apliovat, poud zoušy podle EN 408 a EN1193 nedávají hodnoty menší. Pozn.: pro homogenní lamelové dřevo (de jsou všechny lamely ze stejné jaosti) jsou pevnosti označené písmenem h (např. GL 4h) a pevnosti mohou být vyšší (viz norma). třídy pevnosti: GL 4c GL 8c GL 3c GL 36c ohyb f m,g, 4 8 3 36 pevnost v tahu f t,0,g, 14 16,5 19,5,5 f t,90,g, 0,35 0,40 0,45 0,50 pevnost v tlau f c,0,g, 1 4 6,5 9 f c,90,g,,4,7 3,0 3,3 pevnost ve smyu f v,g,,,7 3, 3,8 modul pružnosti ǁ E 0,g,mean 11600 1600 13700 14700 E 0,g,0,05 9400 1000 11100 11900 modul pružnosti E 90,g,mean 30 390 40 460 modul ve smyu G g,mean 590 70 780 850 průměrná hustota ρ g, 350 380 410 430 [g/m 3 ] NNK ocelové onstruce (11) 9

Globální analýza dřevěných onstrucí Výpočet vnitřních sil podle teorie 1. řádu se provádí pružnostní analýzou (LA) s průměrnými hodnotami modulů pružnosti E mean, G mean (viz předchozí tabuly). Pozn: Poud je průběh sil ovlivněn rozdělením tuhosti v onstruci (např. ompozitní prvy s rozdílnými vlastnostmi podle závislosti na čase), použijí se onečné průměrné hodnoty: Emean Gmean Emean, fin = Gmean, fin = 1+ψ ) 1+ψ ) ( def ( def de součinitel dotvarování def podle třídy provozu: třída provozu 1 3 rostlé dřevo 0,60 0,80,00 lepené lamelové dřevo 0,60 0,80,00 a ψ je součinitel pro vazistálou hodnotu proměnného zatížení. Výpočet vnitřních sil podle teorie. řádu se provádí pružnostní analýzou (GNA) s návrhovými hodnotami bez zohlednění dély trvání zatížení, tj.: Emean Gmean E d = G d = de γ M je uvedeno pro různé materiály γ M γ M dále (např. pro rostlé dřevo γ M =1,3, pro lepené lamelové dřevo γ M =1,5). NNK ocelové onstruce (11) 10

Mezní stavy únosnosti (MSÚ) Návrhová hodnota únosnosti (viz předešlé tabuly) obecně: R = d mod R γ M mod je modifiační součinitel zohledňující vliv trvání zatížení a vlhosti: materiál rostlé dřevo lepené lamelové dřevo třída provozu 1 3 1 3 třída trvání zatížení stálé dlouhodobé střednědobé rátodobé oamžiové 0.6 0.7 0.8 0.9 1.1 0.6 0.7 0.8 0.9 1.1 0.5 0.55 0.65 0.7 0.9 0.6 0.7 0.8 0.9 1.1 0.6 0.7 0.8 0.9 1.1 0.5 0.55 0.65 0.7 0.9 Pozn.: Pro průřezy malých rozměrů (pro rostlé dřevo < 150 mm, pro lamelové dřevo < 600 mm) lze charateristicé hodnoty f a f zvětšit součinitelem m, t,0, h (viz ČSN EN 1995-1-1). NNK ocelové onstruce (11) 11

Záladní případy namáhání Dílčí součinitele materiálu a únosnosti γ M : rostlé dřevo γ M = 1,3 lepené lamelové dřevo γ M = 1,5 LVL, OSB γ M = 1, spoje γ M = 1,3 ovové desy s prolisovanými trny γ M = 1,3 Tah ǁ s vlány: t,0, d f t,0,d de t,0,d, je návrhové napětí v tahu ǁ s vlány. Pozn.: Pro tah vlánům musí být uvážen vliv veliosti prvu. Tla ǁ s vlány: c,0, d f c,0,d de c,0,d, je návrhové napětí v tlau ǁ s vlány. NNK ocelové onstruce (11) 1

Tla vlánům: c,90, d c,90 f c,90,d Fc,90,d de c,90,d je návrhové napětí v tlau Aef vlánům v dotyové ploše, c,90 součinitel pro soustředěný tla (1,0 4,0). Prostý šimý ohyb (momentové namáhání): f m,y,d m,y,d + m f m,z,d m,z,d 1 a současně m f m,y,d m,y,d + f m,z,d m,z,d 1 de m,y,d a m,z,d jsou návrhová napětí v ohybu hlavním osám, m = 0,7 pro obdélníové průřezy, pro ostatní m = 1,0. Smy: τ d f v,d de τ d je návrhové napětí ve smyu. Pozn.: Síly působící do vzdálenosti výšy nosníu od podpory se do posouvající síly neuvažují. NNK ocelové onstruce (11) 13

Vzpěrný tla: c,0, d c f c,0,d de součinitel (vzpěrnosti) c je menší z hodnot pro vybočení y nebo z: c,y = y + 1 y λ rel,y c,z = z + 1 z λ rel,y = 0, 5( 1+ β ( λ 0, ) + λ ) = 0, 5( 1+ β ( λ 0, ) + λ ) y c rel,y 3 rel,y z c rel,z 3 rel,z de pro rostlé dřevo β. = 0 ; pro lepené lamelové dřevo β c = 0,1 c, Štíhlosti: λ y = λ = z L cr,y i L y cr,z i z λy λ rel,y = π λz λ rel,z = π f E f E c,0, 0, 05 c,0, 0, 05 NNK ocelové onstruce (11) 14

Příčná a torzní stabilita při ohybu (lopení): m, d critfm,d de součinitel (lopení) crit se určí podle poměrné štíhlosti: crit = 1 pro crit =, 56 0, 75 crit 1 λ 1 = λ rel,m a poměrná štíhlost λ rel,m = f m, m,crit rel,m pro pro π m,crit = = W λ 0 75 rel, m, 0 rel, m,, 75 < λ 1 4 1, 4 < λ ef rel,m M y,crit 0, 05 z 0, 05 y E l I W G y I t Pozn.: Pro obdélníový průřez (bxh) z jehličnatého dřeva lze uvažovat Efetivní déla: pro prostý nosní onzervativně (podrobně viz Euroód) l ef = L. m,crit = 0, 78b h l ef E 0, 05 NNK ocelové onstruce (11) 15

Mezní stavy použitelnosti (MSP) Průhyby: Omezuje se oamžitý průhyb: w inst l/300 l/500 a onečný průhyb: w fin l/150 l/300 w c w inst w creep w fin... možné nadvýšení... oamžitý průhyb... od dotvarování... onečný průhyb Oamžitý průhyb se vypočte pro charateristicou ombinaci zatížení a průměrné hodnoty modulů pružnosti. Konečný průhyb se vypočte pro vazistálou ombinaci zatížení (viz souč. ψ ) s ohledem na dotvarování v čase. Pro prvy se stejným dotvarováním: u = u + u + Σu fin fin,g de pro stálé zatížení G: pro hlavní proměnné Q 1 : ostatní proměnná Q i : fin,q1 fin, Q i ( ) u fin, = u 1+ G inst,g def u fin, Q,1 = uinst,q,1( 1+ψ, 1 def ) u fin, Q,i = u inst,q,i ( ψ +ψ ) 0,i NNK ocelové onstruce (11) 16, i def ( def viz str. 10)

Pozn.: Pro průhyby prvů se spoji ve střihu se musí uvážit jejich proluz. Do výpočtů potom vstupuje modul proluzu K ser jednoho střihu, jehož hodnotu uvádí pro různé spojovací prostředy Euroód v čl. 7.1. Např. pro hřebíy (bez předvrtání) průměru d a dřevo hmotnosti ρ m platí: 1,5 0, 8 ρm d K ser= 30 Kmitání: U stropů obytných budov se má provést posouzení poud první vlastní frevence f 1 8 Hz, limit vša Euroód neuvádí. Pro vyšší frevenci f 1 je naznačeno ompliované posouzení, i dyž vysoá frevence evidentně není na závadu. NNK ocelové onstruce (11) 17