Měření tíhového zrychlení matematickým a reverzním kyvadlem

Podobné dokumenty
Rychlost, zrychlení, tíhové zrychlení

STANOVENÍ TÍHOVÉHO ZRYCHLENÍ REVERZNÍM KYVADLEM A STUDIUM GRAVITAČNÍHO POLE

Měření tíhového zrychlení reverzním kyvadlem

3. Vypočítejte chybu, které se dopouštíte idealizací reálného kyvadla v rámci modelu kyvadla matematického.

TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s.

5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole

PRAKTIKUM I Mechanika a molekulová fyzika

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace.

ZÁKLADY FYZIKÁLNÍCH MĚŘENÍ FJFI ČVUT V PRAZE. Úloha 5: Měření tíhového zrychlení

Pracovní list vzdáleně ovládaný experiment. Obr. 1: Matematické kyvadlo.

Laboratorní úloha č. 5 Faradayovy zákony, tíhové zrychlení

VY_52_INOVACE_2NOV42. Autor: Mgr. Jakub Novák. Datum: Ročník: 8.

Měření momentu setrvačnosti z doby kmitu

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL

1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti.

Popis tíhové síly a gravitace. Očekávaný výstup. Řešení základních příkladů. Datum vytvoření Druh učebního materiálu.

MOMENT SETRVAČNOSTI 2009 Tomáš BOROVIČKA B.11

Laboratorní úloha č. 4 - Kmity II

2. Fyzikální kyvadlo (2.2) nebo pro homogenní tělesa. kde r je vzdálenost elementu dm, resp. dv, od osy otáčení, ρ je hustota tělesa, dv je objem

Měření momentu setrvačnosti

Název: Studium kmitů na pružině

Laboratorní úloha č. 3 Spřažená kyvadla. Max Šauer

Mechanické kmitání - určení tíhového zrychlení kyvadlem

Praktikum I Mechanika a molekulová fyzika

Laboratorní práce č. 3: Měření součinitele smykového tření

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Měření momentu setrvačnosti prstence dynamickou metodou

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

Příklady kmitavých pohybů. Mechanické kmitání (oscilace)

[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles.

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině

Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D.

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES

LABORATORNÍ CVIČENÍ Z FYZIKY

Určení hmotnosti zeměkoule vychází ze základního Newtonova vztahu (1) mezi gravitačním zrychlením a g a hmotností M Z gravitačního centra (Země).

Mechanické kmitání (oscilace)

INSTITUT FYZIKY VŠB-TU OSTRAVA Číslo práce

Digitální učební materiál

Jednoduché stroje. Mgr. Dagmar Panošová, Ph.D. KFY FP TUL

Měření kinematické a dynamické viskozity kapalin

Měření hodnoty g z periody kmitů kyvadla

Fyzikální praktikum 1

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:

SCLPX 07 2R Ověření vztahu pro periodu kyvadla

7. Gravitační pole a pohyb těles v něm

Digitální učební materiál

Pohyby HB v některých význačných silových polích

Vybrané experimenty v rotujících soustavách

I Mechanika a molekulová fyzika

ELEKTRICKÉ STROJE - POHONY

5. Pro jednu pružinu změřte závislost stupně vazby na vzdálenosti zavěšení pružiny od uložení

1 Tuhé těleso a jeho pohyb

Testovací příklady MEC2

Název: Studium kmitů hudebních nástrojů, barva zvuku

1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku.

Registrační číslo projektu: CZ.1.07/1.4.00/

Praktická úloha celostátního kola 48.ročníku FO

Několik nápadů o volném pádu. Pracovní listy

1. Měření hodnoty Youngova modulu pružnosti ocelového drátu v tahu a kovové tyče v ohybu

Měření měrné tepelné kapacity látek kalorimetrem

Fyzikální učebna vybavená audiovizuální technikou, fyzikální pomůcky

1. Změřte Hallovo napětí v Ge v závislosti na proudu tekoucím vzorkem, magnetické indukci a teplotě. 2. Stanovte šířku zakázaného pásu W v Ge.

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne:

MECHANIKA TUHÉHO TĚLESA

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky

Hydromechanické procesy Hydrostatika

Digitální učební materiál

Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole

Laboratorní úloha č. 7 Difrakce na mikro-objektech

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:

Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

F - Mechanika tuhého tělesa

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Mechanika tuhého tělesa

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: Číslo DUM: VY_32_INOVACE_20_FY_B

Mechanické kmitání a vlnění

Dynamika rotačního pohybu

DYNAMIKA ROTAČNÍ POHYB

1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83

Univerzita Tomáše Bati ve Zlíně, Fakulta technologická Ústav fyziky a materiálového inženýrství

FYZIKA I. Kyvadlový pohyb. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

Určení hlavních geometrických, hmotnostních a tuhostních parametrů železničního vozu, přejezd vozu přes klíny

Fyzikální praktikum II

Univerzita Tomáše Bati ve Zlíně

Název: Konstrukce vektoru rychlosti

D. Halliday, R. Resnick, J. Walker: Fyzika. 2. přepracované vydání. VUTIUM, Brno 2013

A:Měření tlaku v závislosti na nadmořské výšce B:Cejchování deformačního manometru závažovou pumpou C:Diferenciální manometry KET/MNV (5.

Fyzikální praktikum I

pracovní list studenta

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

3. Diskutujte výsledky měření z hlediska platnosti Biot-Savartova zákona.

Měření a analýza mechanických vlastností materiálů a konstrukcí. 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály

FYZIKA I. Pohyb setrvačníku. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

Transkript:

Úloha č. 3 Měření tíhového zrychlení matematickým a reverzním kyvadlem Úkoly měření: 1. Určete tíhové zrychlení pomocí reverzního a matematického kyvadla. Pro stanovení tíhového zrychlení, viz bod 1, měřte průměrnou dobu 10 až 20 kmitů pomocí digitálních stopek. 2. Pro stanovení tíhového zrychlení pomocí reverzního kyvadla najděte takovou rovnovážnou polohu a 0 (změnou polohy závaží) v níž je doba kmitů kolem obou pevně daných os stejná a jejich vzájemná vzdálenost je nazývána tzv. redukovanou délkou. Výsledky tohoto měření zaznamenejte do grafu závislosti průměrné doby kmitu T (s) na poloze závaží a (cm). 3. Měření podle bodu 1, 2 a 3 opakujte třikrát pro jednotlivá kyvadla a zvolené nastavení závaží. Pro každou zvolenou metodu vypočítejte průměrnou hodnotu tíhového zrychlení. 4. V závěru protokolu porovnejte průměrné hodnoty tíhového zrychlení získané z jednotlivých metod, viz bod 1 a 2, s tabelovanou hodnotou tíhového zrychlení. Zhodnoťte přesnost jednotlivých metod a z nich získaných výsledků. Použité přístroje a pomůcky: 1. Závěs pro reverzní a matematické kyvadlo, reverzní kyvadlo, závaží, provázek, doraz pro uvolnění kyvadel pod požadovaným úhlem, držák kamery. 2. Stopky, kamera, počítač, software pro střih videa, metr, mikrometr, nůžky. Základní pojmy, teoretický úvod: Gravitace Gravitace je přitažlivé silové působení mezi všemi formami hmoty a má nekonečný dosah. Pro malé rychlosti a slabá pole se k popisu tohoto působení používá Newtonův gravitační zákon. Tento zákon nelze použít pro silná pole a velké rychlosti blížící se rychlosti světla, kde se používá relativistická teorie, kterou se nyní nebudeme podrobněji zabývat. - 1 -

Newtonův gravitační zákon: Gravitační síla F g, kterou se přitahují každé dva hmotné body je přímo úměrná součinu jejich hmotností m 1, m 2 a nepřímo úměrná čtverci jejich vzdálenosti r 2. F g m m 1 2 G, (1) 2 r kde G je gravitační konstanta s hodnotou 6,67.10-11 N.m 2.kg -2. Tíhové vs. gravitační zrychlení Tíhové zrychlení g (m.s -2 ) je zrychlením padajícího tělesa v gravitačním poli Země v důsledku gravitační síly F g a odstředivé síly F o, vznikající při rotačním pohybu Země, viz obr. 1. Z druhého Newtonova zákona tedy plyne, že tíhové zrychlení g je rovno podílu tíhové síly F a hmotnosti tělesa m. Obr. 1: Vztah mezi gravitačním a tíhovým zrychlením. Proto je nutné rozlišovat mezi gravitačním zrychlení a g (pro Zemi v klidu) a tíhovým zrychlením g (pro rotující Zemi). Vzhledem k rotaci Země a jejímu tvaru, je jasné, že tíhové zrychlení bude záviset na zeměpisné šířce (rozdílné vzdálenosti od osy rotace) a nadmořské výšce, proto zavádíme pojem normální tíhové zrychlení. Jako normální tíhové zrychlení se definuje pro 45 severní zeměpisné šířky při hladině moře hodnota: g = 9,80665 m.s -2 Experimentálně zjištěný vztah pro závislost tíhového zrychlení na zeměpisné šířce a nadmořské výšce nebudeme rozvádět. Omezíme se pouze na stanovení tíhového zrychlení pomocí námi používaných technik, viz níže. - 2 -

Principy jednotlivých metod: Fyzické kyvadlo Fyzickým kyvadlem může být libovolné těleso kývající se v tíhovém poli kolem osy neprocházející těžištěm tohoto tělesa. Nejkratší doba, po níž se pohyb tělesa z výchozího bodu sledování opakuje, je doba kmitu T, definovaná vztahem: J 1 2 T 2 1 sin mgl 4 2. (2) Kde: L vzdálenost těžiště od osy otáčení, m - hmotnost kyvadla, g tíhové zrychlení, J moment setrvačnosti kyvadla vzhledem k ose otáčení, maximální úhlová výchylka těžiště z rovnovážné polohy. Pro malá, se dá vztah (2) zjednodušit následovně: T J 2. (3) mgl Matematické kyvadlo Matematické kyvadlo je zjednodušeným případem fyzického kyvadla v podobě hmotného bodu upevněného na konci nehmotného závěsu délky L, jehož druhý konec se může volně otáčet okolo osy procházející místem závěsu. Pro dobu kmitu platí vztah (2), respektive pro malé úhly vztah (3), který můžeme upravit následovně, když víme, že pro moment setrvačnosti v tomto případě platí J = m.l 2 : L L 1 2 Tm 2 pro malé Tm 2 1 sin g g 4 2. (4) Ze vztahu (4), pro malé (pro = 10 je chyba asi 0.1 %, pro = 20 je chyba už skoro 1 %), lze jednoduchou úpravou získat vztah pro výpočet tíhové zrychlení g, z měření doby kmitu pomocí matematického kyvadla, ve tvaru: g 2 4 L. (5) 2 T m Reverzní kyvadlo Reverzní kyvadlo je zvláštním případem fyzického kyvadla, u něhož mají dvě osy otáčení, ležící v rovině těžiště tělesa, konstantní dobu kmitů T r. Pokud doba kmitů není stejná, jedná se o fyzické kyvadlo. Existují dvě situace, v nichž lze dostat konstantní dobu kmitů: 1) pokud jsou obě osy otáčení symetricky umístěny vzhledem k těžišti, 2) pokud jsou tyto dvě osy vzdáleny o tzv. redukovanou délku fyzického kyvadla L r. - 3 -

Experimentální měření, jenž bude prováděno v naší laboratoři, se týká druhého případu. Nemusíme tedy výpočtem nebo experimentálně hledat těžiště soustavy a nastavovat osy otáčení. Schéma námi používaného reverzního (fyzického, před nastavení redukované délky L r ) kyvadla je uvedeno na obrázku č. 2 vlevo. Toto kyvadlo je tvořeno železnou tyčí s dvěma rovnoběžnými břity vzdálenými o pevnou vzdálenost L. Na jednom konci tyče je umístěno přemístitelné závaží, sloužící k dosažení nesymetričnosti celé soustavy vhodnou volbou vzdálenosti a, tak aby mělo kyvadlo stejnou dobu kmitů okolo obou pevně daných os (tj. okolo pevných břitů se závažím v horní a spodní poloze). Obr. 2: Schéma reverzního kyvadla s jeho nastavením do dvou pozic pro zjištění polohy závaží a 0 (vlevo), graf znázorňující hledanou polohu a 0 (vpravo). Poloha a v níž je doba kmitání T stejná okolo obou os, daných břity železné tyče, je mezní polohou a 0. Tuto polohu můžeme prakticky zjistit pomocí grafické interpolace uvedené na obrázku 2 vpravo tak, že budou měřeny doby kmitů pro zvolené polohy závaží a v horní a spodní poloze závaží. Po experimentálním zjištění a nastavení polohy a 0, viz obr. 2, se z našeho fyzického kyvadla stává reverzní. Z toho plyne, že délku L můžeme označit jako redukovanou L r a dobu kmitů T jako T r, pro niž platí následující vztah, pro malé : T r Lr 2, (6) g - 4 -

z něhož lze určit hodnotu tíhového zrychlení g stejnou úpravou jako v případě vztahu (4). Postupy měření a pokyny k úloze: 1. Měření tíhového zrychlení pomocí matematického kyvadla - Nehmotným závěsem simulujícím zavěšení v případě matematického kyvadla bude tenký provázek délky 80-100 cm. Hmotným bodem bude závažíčko, k němuž se přiváže provázek uchycený druhým koncem k pevném závěsu tak, aby byla přesně definovaná osa otáčení. Následně se přesně změří délka závěsu od místa uchycení (osy otáčení) ke středu závažíčka. - Pomocí stopek třikrát změřte dobu 20 kmitů zavěšeného závaží, s malou počáteční výchylkou od rovnovážné polohy. Měření zopakujte s použitím záznamu obrazu do počítače pomocí webové kamery pro cca 20 kmitů při vychýlení 10, 20 a 30. Z analýzy záznamu, pomocí přiloženého softwaru ke kameře, zjistěte dobu deseti kmitů při jednotlivých vychýleních. - Z naměřených hodnot, pro každou z použitých metod (stopky, záznam obrazu) stanovte průměrné doby jednotlivých kmitů s chybou měření. Vypočítejte hodnoty tíhového zrychlení a průměrnou hodnotu s chybou měření. - Pečlivě zaznamenejte podmínky měření jako je délka závěsu, úhel vychýlení, hmotnost závaží, atd. - Zpracujte výsledky do tabulek a grafů podle zadání laboratorního cvičení. 2. Měření tíhového zrychlení pomocí reverzního kyvadla - Podle zadání v laboratorním cvičení nastavte 5 různých poloh závaží a v horní a spodní poloze podle obr. 2 vlevo. U každé nastavené polohy závaží změřte pomocí stopek třikrát dobu 10 kmitů pro malé počáteční vychýlení od rovnovážné polohy. Z naměřených hodnot sestrojte závislost T na a, viz obr. 2 vpravo a určete hodnotu a 0. - Při nastavené hodnotě a 0 (se závažím nahoře a následně dole) změřte pomocí stopek 3x dobu 10 kmitů při malém počátečním vychýlení od rovnovážné polohy. Měření zopakujte s použitím záznamu obrazu do počítače pomocí webové kamery pro cca 20 kmitů při vychýlení 10, 20 a 30. Z analýzy záznamu, pomocí přiloženého softwaru ke kameře, zjistěte dobu deseti kmitů. - Z naměřených hodnot, pro každou z použitých metod (stopky, záznam obrazu), stanovte průměrné doby jednotlivých kmitů s chybou měření. Vypočítejte hodnoty tíhového zrychlení a průměrnou hodnotu s chybou měření. - Pečlivě zaznamenejte podmínky měření jako redukovaná délka kyvadla, polohy závaží, časy všech měření, úhly vychýlení, atd. - Zpracujte výsledky do tabulek a grafů podle zadání laboratorního cvičení, včetně postupu pro stanovení hodnoty a 0. Seznam použité a doporučené literatury: [1] Halliday D., Resnick R., Walker J.: Fyzika, VUT v Brně, Nakladatelství VUTIUM, (2000). - 5 -

[2] Kvasnica J., a kolektiv: Mechanika, Academia, Nakladatelství AV ČR, Praha (2004). - 6 -