DYNAMIKA ROTAČNÍ POHYB

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "DYNAMIKA ROTAČNÍ POHYB"

Transkript

1 DYNAMIKA ROTAČNÍ POHYB

2 Dynamika rotačního pohybu hmotného bodu kolem pevné osy - při rotační pohybu hmotného bodu kolem stálé osy stálými otáčkami kolem pevné osy (pak hovoříme o rovnoměrném rotačním pohybu) působí na hmotný bod odstředivá síla, která je reakcí k síle dostředivé - aby se bod pohyboval po kružnici musí dostředivá síla hmotnému bodu udílet stálé dostředivé neboli normálové zrychlení do středu pohybu; - jak bylo vysvětleno v části Kinematika, při rovnoměrném rotačním pohybu bodu mění obvodová rychlost pohybu neustále svůj směr a postupně otáčí ke středu otáčení;

3 Dynamika rotačního pohybu hmotného bodu kolem pevné osy -z toho plyne, že rotující hmotný bod je neustále urychlován do středu kružnice a proto při rotačním pohybu bodu mu musí být udělováno směrem ke středu zrychlení nazývané dostředivé nebo normálové zrychlení a n, protože působí ve směru normály pohybu; -v Kinematice byl odvozen vztah v závislosti : v je obvodová rychlost hmotného bodu ω je úhlová rychlost hmotného bodu; - obvodová rychlost je vπ.d.n 2π.R.n, kde n[s -1 ] jsou otáčky hmotného bodu,d [m] je průměr dráhy pohybu a R [m] je poloměr dráhy

4 Dynamika rotačního pohybu hmotného bodu kolem pevné osy - úhlová rychlost hmotného bodu je ω2π.n (s -1 ) - po dosazení za v a ω dostaneme vztah a n 2 [ m ] v R ω s R 2 2 F m m R ω [ N ] - síla odstředivá C n je dle třetího Newtonova zákona reakcí dostředivé síly; a 2

5 Dynamika rotačního pohybu hmotného bodu kolem pevné osy m F c F d a n - u rotačního pohybu hmotného bodu kolem stálé osy musíme rozlišit případ rotace stálými otáčkami kolem svislé a vodorovné osy;

6 Rotační pohyb hmotného bodu kolem svislé osy - rotace ve vodorovné rovině - působení odstředivé síly - ve svislém směru působí stálá tíhová síla - například průjezd vozidla zatáčkou

7 Příklad : Průjezd vozidla zatáčkou Vypočtěte, jak velkou rychlostí může projet automobil o hmotnosti 1000 kg vodorovnou neklopenou zatáčkou o poloměru 25 m, jestliže rozchod kol je 1400 mm, těžiště vozidla je 800 mm nad vozovkou a součinitel smykového tření je 0,2.

8 Rotační pohyb hmotného bodu kolem vodorovné osy - při rotaci hmotného bodu ve svislé rovině kolem pevné osy stálou úhlovou rychlostí působí odstředivá síla vždy ze středu otáčení ve směru normály ; - neustále se měnící se směr odstředivé síly způsobuje, že výsledná síla působící na hmotný bod (je dána vektorovým součtem odstředivé a gravitační síly, viz obr) s úhlem natočení a mění svůj směr i velikost; - pak výsledná síla je 2 2 F F + G + 2 F G cosα V C - například rotace tělesa kolem pevné vodorovné osy, centrifuga nebo přejezd vozidla přes terénní nerovnosti C

9 Rotační pohyb hmotného bodu kolem vodorovné osy - aby se bod udržel na kruhové dráze (např. lano stále napnuto, voda nevyteče z nádoby): horní poloha : F C G m.r. ω 2 m.g

10 Zadání příkladu : Nádoba s vodou se otáčí ve svislé rovině v kruhu o poloměru 800 mm. Určete nejmenší počet otáček, aby voda z nádoby nevytékala.

11 Zadání příkladu : Na vodorovné desce leží ve vzdálenosti R 300 mm od středu otáčení těleso o hmotnosti m 20 kg. Určete max. otáčky, nemá-li těleso z desky sklouznout (f 0,1).

12 Rotující deska

13 Zadání příkladu : Jeřábový vozík s břemenem o hmotnosti m 300 kg zavěšeným na laně o délce l 5 m se náhle zastaví při dopravní rychlosti v 2 m/s. Určete vzdálenost x, do jaké se vychýlí břemeno následkem setrvačnosti.

14 v 5 m m z x

15 Příklad : Průjezd moto zatáčkou Vypočtěte, s jakým sklonem může projet motocyklista vodorovnou neklopenou zatáčkou o poloměru 20 m. Hmotnost motocyklu s řidičem je 200 kg, těžiště motocyklu je b 800 mm nad vozovkou a součinitel smykového tření je 0,2.

16 Dynamika - rotační pohyb tělesa představme si pohyb plného dokonale tuhého rotujícího válce kolem pevné osy způsobený kroutícím momentem; celý válec rozdělíme na části stejné hmotnosti m;

17 Dynamika rotační pohyb tělesa pokud je osa rotace v těžišti, můžeme zanedbat tíhu hmotných elementů, protože se dynamický účinek tíhy vyruší; při uložení válce v jeho těžišti, se odstředivé síly F C a dostředivé síly F d všech elementárních částí tělesa vyruší, nebo-li jsou v rovnováze;

18 Dynamika - rotační pohyb tělesa -tečná nebo-li obvodová síla F t je způsobena momentem M a způsobuje zvyšování obvodové rychlosti elementu a tím také otáček válce; -pak M F t.r, po dosazení za sílu z druhého pohybového zákona dostaneme M m.a t.r a pokud dosadíme za tečné zrychlení vztah a t r.ε, získáme výraz pro elementární kroutící moment M m.r.ε.r m.r 2.ε.; -nyní sečteme všechny dílčí kroutící momenty všech částí válce a získáme celkový zrychlující moment:

19 Dynamika - rotační pohyb tělesa -tečná nebo-li obvodová sila F t je způsobena momentem M a způsobuje zvyšování obvodové rychlosti elementu a tím také otáček válce; -pak M F t.r, po dosazení za sílu z druhého pohybového zákona dostaneme M m.a t.r a pokud dosadíme za tečné zrychlení vztah a t r.ε, získáme výraz pro elementární kroutící moment M m.r.ε.r m.r 2.ε.; -nyní sečteme všechny dílčí kroutící momenty všech částí válce a získáme celkový zrychlující moment: M n i 1 M i n i 1 m i r 2 i ε ε n i 1 m i r 2 i

20 Dynamika - rotační pohyb tělesa -kde vztah I o n i 1 m i r i 2 je moment setrvačnosti hmoty tělesa k ose rotace a má jednotky [kg.m 2 ] -zrychlující moment: M I o. ε vztah je analogický druhému pohybovému zákonu o zrychlující síle u přímočarého pohybu F m. a;

21 Dynamika - rotační pohyb tělesa -pohybová rovnice rotačního pohybu má tvar M n K I0 ε M Pi 0 i 1, kde M K [N.m] je hnací moment, I 0 [kg.m 2 ] je moment setrvačnosti tělesa, ε [s -2 ] je úhlové zrychlení tělesa, M Pi [Nm] je moment odporů při pohybu překonávaných. (například moment čepového tření, vnější zatěžující momenty lan, řemenů, pásů, řetězů, ozubených kol

22 Dynamika - rotační pohyb tělesa I 0 [kg.m 2 ] - moment setrvačnosti tělesa, - je fyzikálně veličina obdobná kvadratickému momentu plochy (viz Mechanika PP) a pro výpočet momentu setrvačnosti platí obdobné principy jako pro stanovení kvadratického momentu plochy; -momenty setrvačnosti dílčích hmot (těles) I 01, I 02, I 03, až I 0n lze algebraicky sčítat nebo odčítat ; -moment setrvačnosti hmoty, jejíž těžiště neleží na ose rotace o se počítá pomocí Steinerovy věty, která zní: moment setrvačnosti hmoty tělesa k ose neprocházející jeho těžištěm (osa o ) se rovná momentu setrvačnosti hmoty tělesa k ose procházející těžištěm tohoto tělesa (osa o T ) rovnoběžné s osou o, zvětšenému o součin hmotnosti tělesa a druhé mocniny vzdálenosti obou os;

23 Dynamika - rotační pohyb tělesa I + T I m a m T o T a o

24 Dynamika - rotační pohyb tělesa - moment setrvačnosti válce k jeho ose z materiálu o hustotě ρ [kg.m -3 ] je: I O π 4 D B 32 ρ D [m] je průměr válce, B [m] je výška válce, -moment ; setrvačnosti hranolu o rozměrech a x b x c k jeho ose rovnoběžné s rozměrem c a procházející těžištěm: ( 2 2 ) a b c a b I + O 12 ρ

25 Dynamika - rotační pohyb tělesa - moment setrvačnosti válce k jeho ose z materiálu o hustotě ρ [kg.m -3 ] je: I O π 4 D B 32 ρ D [m] je průměr válce, B [m] je výška válce, -moment ; setrvačnosti hranolu o rozměrech a x b x c k jeho ose rovnoběžné s rozměrem c a procházející těžištěm: ( 2 2 ) a b c a b I + O 12 ρ

26 Dynamika - rotační pohyb tělesa -moment setrvačnosti kužele k jeho ose z materiálu o hustotě ρ [kg.m -3 ] I O π 4 D H 160 ρ D [m] je průměr kužele H [m] je výška kužele ;

27 Příklad : moment setrvačnosti tělesa Vypočtěte moment setrvačnosti součásti dle obr. z oceli o hustotě 7850 kg.m -3 k ose o T, jestliže D mm, D 2 80 mm, D3 40 mm, h 1 40 mm a h 2 30

28 Příklad : moment setrvačnosti kliky Vypočtěte moment setrvačnosti kliky dle obrázku z materiálu o hustotě 7850 kg.m -3 k ose rotace, jestliže D 200mm, d 1 60mm, d 2 30mm, a 50mm, b 40mm a výstřednost e 75mm. Dále vypočtěte velikost kroutícího momentu, jestliže se roztáčí rovnoměrně zrychleně působením stálého kroutícího momentu z klidu a za 30 s setrvačník dosáhne otáček 300 min -1.

29 Impulsové věty první impulsová věta řeší přímočarý pohyb tělesa - je odvozena z druhého Newtonova pohybového zákona - zákona zrychlující síly, tj. Fm.a; vztah Fm.a vynásobíme přírůstkem času t a pak dostaneme: kde účinku síly; m F t v I H F m m, se nazývá impuls síly a je mírou časového, se nazývá změna hybnosti hmoty; první impulsová věta zní: Impuls síly se rovná změně hybnosti hmoty t a t v

30 Impulsové věty uvádíme-li těleso do pohybu z klidu, pak impuls síly se rovná hybnosti hmoty z nulové počáteční rychlosti a dostaneme vztah F t m v U druhé impulsové věty vyjdeme ze zrychlujícího momentu M k I O a opět vynásobíme časem ε t M k t I O ε t I O ω

31 Impulsové věty druhá impulsová věta zní: Impuls momentu se rovná změně momentu hybnosti M k t L se nazývá impuls momentu; I 0 ω b se nazývá změna momentu hybnosti;. pro pohyb z klidu dostaneme vztah M k t I O ω

32 Příklad : impulsová věta Jak dlouho musí působit na ocelový kotouč o hustotě 7850 kg.m -3, průměru 500mm a tloušťce 50 mm kroutící moment 50 N.m, aby kotouč získal z klidu otáčky 1500 min-1.

33 Mechanická práce mechanickou práci konáme, překonáváme-li odpory silou působící po určité dráze. Velikost mechanické práce je rovna součinu síly působící na hmotný bod a dráhy hmotného bodu ve směru síly; pak W F s [ J ], kde F[N] je hnací síla ve směru dráhy pohybu tělesa a s[m] je dráha pohybu tělesa;. jednotkou mechanické práce je joule [J]; pokud stálá síla působí v nesouhlasném směru k dráze, musíme počítat se složkou síly ve směru dráhy; pro určení velikosti mechanické práce síly proměnné velikosti využíváme grafu F-s, kde plocha grafu je úměrná velikosti práce

34 Mechanická práce.

35 Mechanická práce při rotačním pohybu síla F mění neustále svůj směr a tudíž stále působí ve směru dráhy, síla F na dráze odpovídající úhlu natočení ϕ s W R ϕ F R ϕ dosadíme-li za [ N m J ] W M k ϕ vykoná práci. F R M k dostaneme vztah pro práci při rotačním pohybu kde M k [Nm] je kroutící moment, ϕ[rad] je úhlová dráha pohybu tělesa.

36 Mechanická práce -ke stejnému vztahu dospějeme při odvození práce obvodové síly F za jednu otáčku, kdy dráha je rovna obvodu kružnice o 2 π -pak práce při jedné otáčce R W W 1 F o F 2 π. -celková práce při rotačním pohybu je dána jako práce při jedné otáčce vynásobené počtem otáček, pak. R W i F 2π R i F R 2π 1, kde i počet otáček; dosadíme-li za 2π i ϕ dostaneme i W M ϕ k [ J ]

37 Příklad : práce při rotačním pohybu Ocelový kotouč o hustotě 7850 kg.m -3 tvaru kotouče o průměru 200 mm a tloušťce 20 mm se roztáčí z klidu a za 20 s získá otáčky 120 min -1. Vypočtěte velikost kroutícího momentu potřebného k rozběhu tělesa a množství vynaložené práce.

38 Výkon Výkon je mechanická práce vykonaná za jednotku času. P W t W [J] vykonaná mechanická práce t [s] čas konání mechanické práce jednotkou mechanické výkonu watt, který má rozměr.. W J s kg m při přímočarém pohybu můžeme vztah pro výpočet výkonu upravit tak, že za dosadíme za práci a dostaneme P W t F s t F v F[N] - hnací síla ve směru pohybu tělesa, v [m.s -1 ] - rychlost pohybu tělesa (v s/t) 2 s 3

39 Energie rotačního pohybu 2 po dosazení za m r I n i 1 i i O, což je moment setrvačnosti tělesa, dostaneme vztah pro kinetickou energii rotujícího tělesa ve tvaru I O ω 2 E [ 2 2 J kg m s ] R 2. - rozdíl kinetických energii počáteční a konečné je roven práci zrychlujících sil vynaložené na zvýšení otáček tělesa nebo práci vykonané při snížení jeho otáček (princip práce setrvačníku);. - pak práce daná změnou energie se vypočte ze vztahu I O W E R2 E R1 2 2 ( 2 ω ω 2 ) 1 [ J]

40 Obecný rovinný pohyb obecný rovinný pohyb je vlastně rotačním pohybem kolem okamžité osy otáčení úhlovou rychlostí ω, respektive kolem pólu otáčení P, kdy osa otáčení (pól) neustále mění svou polohu. valení válce ( jednodušší obecný rovinný pohyb) po vodorovné podložce si lze představit jako současně probíhající pohyb přímočarý. posuvný rychlostí v T a rotační pohyb kolem osy válce procházející jeho těžištěm T úhlovou rychlostí otáčení ω R

41 Obecný rovinný pohyb celková pohybová energie valivého pohybu je dána jako součet kinetické energie posuvného pohybu tělesa E KP a kinetické energie rotačního pohybu kolem okamžité osy otáčení E R E K 2 m v T I 0 ω R. m [kg] - hmotnost tělesa, v T [m.s -1 ] - rychlost posuvného pohybu tělesa; I 0 [kg.m 2 ] - moment setrvačnosti tělesa, ω R [s -1 ] - úhlová rychlost rotačního pohybu tělesa k ose tělesa..

42 Příklad - obecný rovinný pohyb Jakou pohybovou energii má ocelový válec o hustotě 7850 kg.m -3, průměru 100 mm a délce 500 mm, který se valí po vodorovné rovině stálou rychlostí 5 m.s -1...

43 Vyvažování Zajištění klidného chodu zařízení je velmi důležité : - stroj bez vibrací a hluku působí z fyziologického hlediska lépe na obsluhu - klidný chod dlouhodobý bezporuchový provoz klesají náklady na opravy, zkracují se prostoje - nevyváženost otáčejících se částí vzniká nerovnoměrným rozložením hmoty součásti. vzhledem o ose rotace - neváženost odstředivé síly chvění Vyvažování rotujících hmot. a) dynamické náročné metody na specielních vyvažovacích strojích na principu pružných rámů (viz VŠ)

44 Vyvažování rotujících hmot b) statické jednoduché, ale jen na hrubo pomocným vývažkem při konstrukci účinek odstředivé síly otáčející se hmoty nevyvážené části tělesa F C vyrušíme odstředivou silou jiné rotující hmoty F V,tak zvaného. vývažku;. podmínkou takovéhoto způsobu vyvážení je, že síly F C a F V musí být v rovnováze n Fi 0 F F 0 F F i 1 C V C V

45 .. Vyvažování rotujících hmot úhlová rychlost rotačního pohybu tělesa i vývažku musí být stejná 2 ω R m F C 2 ω V V V R m F V V V V V C R m R m R m R m F F 2 2 ω ω

46 1) volíme poloměr dráhy rotačního pohybu vývažku a počítáme hmotnost vývažku.. Vyvažování rotujících hmot Možnosti výpočtu : V V V V m m R R R m R m V V V V R R m m R m R m 2) zvolíme hmotnost vývažku a vypočítáme poloměr dráhy rotačního pohybu

47 Příklad - vyvažování rotujících hmot Navrhněte rozměry vývažku tvaru válce (o průměru D V a výšce H V ) u součásti dle obrázku, jestliže nevyvážená hmota má také tvar válce o průměru D1 40mm a výšce H1 50mm. Součást je z materiálu o hustotě 7850kg.m -3 a má otáčky 600min -1. Těžiště nevyvážené hmoty se pohybuje o. kružnici o poloměru R 120mm, poloměr dráhy vývažku je R V 150mm a průměr vývažku je D V 50mm..

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

n je algebraický součet všech složek vnějších sil působící ve směru dráhy včetně

n je algebraický součet všech složek vnějších sil působící ve směru dráhy včetně Konzultace č. 9 dynamika dostředivá a odstředivá síla Dynamika zkoumá zákonitosti pohybu těles se zřetelem na příčiny (síly, silové účinky), které pohyb vyvolaly. Znalosti dynamiky umožňují řešit kinematické

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU

Více

11. Dynamika Úvod do dynamiky

11. Dynamika Úvod do dynamiky 11. Dynamika 1 11.1 Úvod do dynamiky Dynamika je částí mechaniky, která se zabývá studiem pohybu hmotných bodů a těles při působení sil. V dynamice se řeší takové případy, kdy síly působící na dokonale

Více

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky 3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

MECHANIKA TUHÉHO TĚLESA

MECHANIKA TUHÉHO TĚLESA MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny

Více

Dynamika. Dynamis = řecké slovo síla

Dynamika. Dynamis = řecké slovo síla Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou

Více

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové

Více

Druhy a charakteristika základních pasivních odporů Určeno pro první ročník strojírenství 23-41-M/01 Vytvořeno listopad 2012

Druhy a charakteristika základních pasivních odporů Určeno pro první ročník strojírenství 23-41-M/01 Vytvořeno listopad 2012 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Mechanika, statika Pasivní odpory Ing.Jaroslav Svoboda

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje);

Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje); Newtonovy pohybové zákony: Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje); předpokládáme soustředění hmoty tělesa a všech

Více

ELEKTRICKÉ STROJE - POHONY

ELEKTRICKÉ STROJE - POHONY ELEKTRICKÉ STROJE - POHONY Ing. Petr VAVŘIŇÁK 2013 2.1 OBECNÉ ZÁKLADY EL. POHONŮ 2. ELEKTRICKÉ POHONY Pod pojmem elektrický pohon rozumíme soubor elektromechanických vazeb a vztahů mezi elektromechanickou

Více

1 Tuhé těleso a jeho pohyb

1 Tuhé těleso a jeho pohyb 1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité

Více

TŘENÍ A PASIVNÍ ODPORY

TŘENÍ A PASIVNÍ ODPORY Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 3. BŘEZNA 2013 Název zpracovaného celku: TŘENÍ A PASIVNÍ ODPORY A) TŘENÍ SMYKOVÉ PO NAKLONĚNÉ ROVINĚ Pohyb po nakloněné rovině bez

Více

Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony

Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony OPVK CZ.1.07/2.2.00/28.0220, "Inovace studijních programů zahradnických oborů s důrazem na jazykové a odborné dovednosti a konkurenceschopnost

Více

F - Mechanika tuhého tělesa

F - Mechanika tuhého tělesa F - Mechanika tuhého tělesa Učební text pro studenty dálkového studia a shrnující text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem

Více

Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D.

Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D. Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D. Ze zadaných třinácti příkladů vypracuje každý posluchač samostatně

Více

III/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Název projektu Registrační číslo projektu Autor Střední průmyslová škola strojírenská a azyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky CZ.1.07/1.5.00/34.1003

Více

FYZIKA I. Pohyb setrvačníku. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

FYZIKA I. Pohyb setrvačníku. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Pohyb setrvačníku Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar

Více

Mechanika tuhého tělesa

Mechanika tuhého tělesa Mechanika tuhého tělesa Tuhé těleso je ideální těleso, jehož tvar ani objem se působením libovolně velkých sil nemění Síla působící na tuhé těleso má pouze pohybové účinky Pohyby tuhého tělesa Posuvný

Více

Příklad 5.3. v 1. u 1 u 2. v 2

Příklad 5.3. v 1. u 1 u 2. v 2 Příklad 5.3 Zadání: Elektron o kinetické energii E se srazí s valenčním elektronem argonu a ionizuje jej. Při ionizaci se část energie nalétávajícího elektronu spotřebuje na uvolnění valenčního elektronu

Více

Úvod. 1 Převody jednotek

Úvod. 1 Převody jednotek Úvod 1 Převody jednotek Násobky a díly jednotek: piko p 10-12 nano n 10-9 mikro μ 10-6 mili m 10-3 centi c 10-2 deci d 10-1 deka da 10 1 hekto h 10 2 kilo k 10 3 mega M 10 6 giga G 10 9 tera T 10 12 Ve

Více

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0 Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:

Více

Digitální učební materiál

Digitální učební materiál Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ..07/.5.00/4.080 Zkvalitnění výuky prostřednictvím ICT III/ Inovace a zkvalitnění výuky prostřednictvím

Více

Ing. Oldřich Šámal. Technická mechanika. kinematika

Ing. Oldřich Šámal. Technická mechanika. kinematika Ing. Oldřich Šámal Technická mechanika kinematika Praha 018 Obsah 5 OBSAH Přehled veličin A JEJICH JEDNOTEK... 6 1 ÚVOD DO KINEMATIKY... 8 Kontrolní otázky... 8 Kinematika bodu... 9.1 Hmotný bod, základní

Více

Fyzika - Kvinta, 1. ročník

Fyzika - Kvinta, 1. ročník - Fyzika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence k učení Učivo fyzikální

Více

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný

Více

Fyzikální učebna vybavená audiovizuální technikou, fyzikální pomůcky

Fyzikální učebna vybavená audiovizuální technikou, fyzikální pomůcky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Mechanika 1. ročník, kvinta 2 hodiny Fyzikální učebna vybavená audiovizuální technikou, fyzikální pomůcky Úvod Žák vyjmenuje základní veličiny

Více

Hydromechanické procesy Hydrostatika

Hydromechanické procesy Hydrostatika Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice

Více

Přijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy

Přijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy Přijímací zkouška na navazující magisterské studium 013 Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy Studijní program Učitelství pro základní školy - obor Učitelství fyziky

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83 Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice

Více

Dynamika soustav hmotných bodů

Dynamika soustav hmotných bodů Dynamika soustav hmotných bodů Mechanický model, jehož pohyb je charakterizován pohybem dvou nebo více bodů, nazýváme soustavu hmotných bodů. Pro každý hmotný bod můžeme napsat pohybovou rovnici. Tedy

Více

BIOMECHANIKA KINEMATIKA

BIOMECHANIKA KINEMATIKA BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti

Více

6. MECHANIKA TUHÉHO TĚLESA

6. MECHANIKA TUHÉHO TĚLESA 6. MECHANIKA TUHÉHO TĚLESA 6.1. ZÁKLADNÍ VLASTNOSTI A POJMY Tuhé těleso: Tuhé těleso je fyzikální model tělesa u kterého uvažujeme s jeho.. a. Zanedbáváme.. Pohyb tuhého tělesa: 1). Při posuvném pohybu

Více

Dynamika vázaných soustav těles

Dynamika vázaných soustav těles Dynamika vázaných soustav těles Většina strojů a strojních zařízení, s nimiž se setkáváme v praxi, lze považovat za soustavy těles. Složitost dané soustavy závisí na druhu řešeného případu. Základem pro

Více

TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s.

TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s. TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD Soustavu souřadnic spojenou se Zemí můžeme považovat prakticky za inerciální. Jen při několika jevech vznikají odchylky, které lze vysvětlit vlastním pohybem Země vzhledem

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 1 Mechanika 1.1 Pohyby přímočaré, pohyb rovnoměrný po kružnici 1.2 Newtonovy pohybové zákony, síly v přírodě, gravitace 1.3 Mechanická

Více

17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N?

17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N? 1. Za jaký čas a jakou konečnou rychlostí (v km/hod.) dorazí automobil na dolní konec svahu dlouhého 25 m a skloněného o 7 0 proti vodorovné rovině, jestliže na horním okraji začal brzdit na hranici možností

Více

Měření momentu setrvačnosti

Měření momentu setrvačnosti Měření momentu setrvačnosti Úkol : 1. Zjistěte pro dané těleso moment setrvačnosti, prochází-li osa těžištěm. 2. Zjistěte moment setrvačnosti daného tělesa k dané ose metodou torzních kmitů. Pomůcky :

Více

Dynamika. Síla a její účinky na těleso Newtonovy pohybové zákony Tíhová síla, tíha tělesa a síly brzdící pohyb Dostředivá a odstředivá síla

Dynamika. Síla a její účinky na těleso Newtonovy pohybové zákony Tíhová síla, tíha tělesa a síly brzdící pohyb Dostředivá a odstředivá síla Dynamika Síla a její účinky na těleso Newtonovy pohybové zákony Tíhová síla, tíha tělesa a síly brzdící pohyb Dostředivá a odstředivá síla Dynamika studuje příčiny pohybu těles (proč a za jakých podmínek

Více

Rychlost, zrychlení, tíhové zrychlení

Rychlost, zrychlení, tíhové zrychlení Úloha č. 3 Rychlost, zrychlení, tíhové zrychlení Úkoly měření: 1. Sestavte nakloněnou rovinu a změřte její sklon.. Změřte závislost polohy tělesa na čase a stanovte jeho rychlost a zrychlení. 3. Určete

Více

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D.

Více

DYNAMIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika

DYNAMIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika DYNAMIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Dynamika Obor mechaniky, který se zabývá příčinami změn pohybového stavu těles, případně jejich deformací dynamis = síla

Více

Měření tíhového zrychlení matematickým a reverzním kyvadlem

Měření tíhového zrychlení matematickým a reverzním kyvadlem Úloha č. 3 Měření tíhového zrychlení matematickým a reverzním kyvadlem Úkoly měření: 1. Určete tíhové zrychlení pomocí reverzního a matematického kyvadla. Pro stanovení tíhového zrychlení, viz bod 1, měřte

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ TĚŽIŠTĚ

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ TĚŽIŠTĚ Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.10 TĚŽIŠTĚ Těžiště (hmotný střed) je působiště tíhové síly působící na těleso. Těžiště zavádíme jako působiště

Více

[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles.

[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles. 5. GRAVITAČNÍ POLE 5.1. NEWTONŮV GRAVITAČNÍ ZÁKON Gravitace Gravitace je všeobecná vlastnost těles. Newtonův gravitační zákon Znění: Dva hmotné body se navzájem přitahují stejně velkými gravitačními silami

Více

7. Gravitační pole a pohyb těles v něm

7. Gravitační pole a pohyb těles v něm 7. Gravitační pole a pohyb těles v něm Gravitační pole - existuje v okolí každého hmotného tělesa - představuje formu hmoty - zprostředkovává vzájemné silové působení mezi tělesy Newtonův gravitační zákon:

Více

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ 56 12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Těžiště I. impulsová věta - věta o pohybu těžiště II. impulsová věta Zákony zachování v izolované soustavě hmotných bodů Náhrada pohybu skutečných objektů pohybem

Více

Mechanika - síla. Zápisy do sešitu

Mechanika - síla. Zápisy do sešitu Mechanika - síla Zápisy do sešitu Síla a její znázornění 1/3 Síla popisuje vzájemné působení těles (i prostřednictvím silových polí). Účinky síly: 1.Mění rychlost a směr pohybu 2.Deformační účinky Síla

Více

Mechanická práce při rotačním pohybu síla F mění neustále svůj směr a tudíž stále působí ve směru dráhy, síla F na dráze odpovídající úhlu natočení ϕ s W = R ϕ = F R ϕ dosadíme-li za [ N m J ] W = M k

Více

Kinematika pístní skupiny

Kinematika pístní skupiny Kinematika pístní skupiny Centrický mechanismus s = r( cos(α)) + l [ ( λ 2 sin 2 α) 2] Dva členy z binomické řady s = r [( cos (α)) + λ ( cos (2α))] 4 I. harmonická s I = r( cos (α)) II. harmonická s II

Více

Literatura: a ČSN EN s těmito normami související.

Literatura: a ČSN EN s těmito normami související. Literatura: Kovařík, J., Doc. Dr. Ing.: Mechanika motorových vozidel, VUT Brno, 1966 Smejkal, M.: Jezdíme úsporně v silniční nákladní a autobusové dopravě, NADAS, Praha, 1982 Ptáček,P.:, Komenium, Praha,

Více

1.5. DYNAMIKA OTÁČIVÉHO A SLOŽENÉHO POHYBU TĚLESA

1.5. DYNAMIKA OTÁČIVÉHO A SLOŽENÉHO POHYBU TĚLESA .5. OTÁČIVÉHO A SLOŽENÉHO POHYBU TĚLESA.5. ZÁKLADNÍ ROVNICE DYNAMIKY PRO ROTAČNÍ POHYB Fz F Z výsednce zrychujících s F m.a n m a t a n r z F Zrychující moment M F. r F. r z z z m.a t r6,5cm ρ r ω,ε r

Více

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N?

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? MECHANICKÁ PRÁCE 1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? l = s = 6 cm = 6 10 2 m F = 120 N W =? (J) W = F. s W = 6 10 2 120 = 7,2 W = 7,2 J

Více

Obsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL:

Obsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL: Obsah 11_Síla... 2 12_Znázornění síly... 5 13_Gravitační síla... 5 14_Gravitační síla - příklady... 6 15_Skládání sil... 7 16_PL: SKLÁDÁNÍ SIL... 8 17_Skládání různoběžných sil působících v jednom bodě...

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

BIOMECHANIKA. 7, Disipativní síly I. (Statické veličiny, smyková třecí síla, nakloněná rovina, odporová síla)

BIOMECHANIKA. 7, Disipativní síly I. (Statické veličiny, smyková třecí síla, nakloněná rovina, odporová síla) BIOMECHANIKA 7, Disipativní síly I. (Statické veličiny, smyková třecí síla, nakloněná rovina, odporová síla) Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D. SÍLY BRZDÍCÍ

Více

Základy fyziky + opakovaná výuka Fyziky I

Základy fyziky + opakovaná výuka Fyziky I Ústav fyziky a měřicí techniky Pohodlně se usaďte Přednáška co nevidět začne! Základy fyziky + opakovaná výuka Fyziky I Web ústavu: ufmt.vscht.cz : @ufmt444 1 Otázka 8 Rovinná rotace, valení válce po nakloněné

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_6_Mechanika tuhého tělesa Ing. Jakub Ulmann 6 Mechanika tuhého tělesa 6.1 Pohyb tuhého tělesa 6.2 Moment

Více

PRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika

PRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika PRÁCE, VÝKON, ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Mechanická práce Závisí na velikosti síly, kterou působíme na těleso, a na dráze, po které těleso posuneme Pokud má síla stejný

Více

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace.

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace. STUDUM OTÁčENÍ TUHÉHO TěLESA TEREZA ZÁBOJNÍKOVÁ 1. Pracovní úkol (1) Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti. (2) Určete složky jednotkového vektoru ve směru zadané obecné

Více

5. Mechanika tuhého tělesa

5. Mechanika tuhého tělesa 5. Mechanika tuhého tělesa Rozměry a tvar tělesa jsou často při řešení mechanických problémů rozhodující a podstatně ovlivňují pohybové účinky sil, které na ně působí. Taková tělesa samozřejmě nelze nahradit

Více

Testovací příklady MEC2

Testovací příklady MEC2 Testovací příklady MEC2 1. Určete, jak velká práce se vykoná při stlačení pružiny nárazníku železničního vagónu o w = 5 mm, když na její stlačení o w =15 mm 1 je zapotřebí síla F = 3 kn. 2. Jaké musí být

Více

Příklady z hydrostatiky

Příklady z hydrostatiky Příklady z hydrostatiky Poznámka: Při řešení příkladů jsou zaokrouhlovány pouze dílčí a celkové výsledky úloh. Celý vlastní výpočet všech úloh je řešen bez zaokrouhlování dílčích výsledků. Za gravitační

Více

FYZIKA I. Gravitační pole. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

FYZIKA I. Gravitační pole. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERITA OSTRAVA FAKULTA STROJNÍ FYIKA I Gravitační pole Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar Mádrová

Více

Příklady z teoretické mechaniky pro domácí počítání

Příklady z teoretické mechaniky pro domácí počítání Příklady z teoretické mechaniky pro domácí počítání Doporučujeme spočítat příklady za nejméně 30 bodů. http://www.physics.muni.cz/~tomtyc/mech-prik.ps http://www.physics.muni.cz/~tomtyc/mech-prik.pdf 1.

Více

6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ

6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ 6 6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Pohyblivost mechanické soustavy charakterizujeme počtem stupňů volnosti. Je to číslo, které udává, kolika nezávislými parametry je určena poloha jednotlivých členů soustavy

Více

Rotační pohyb kinematika a dynamika

Rotační pohyb kinematika a dynamika Rotační pohyb kinematika a dynamika Výkon pro rotaci P = M k. ω úhlová rychlost ω = π. n / 30 [ s -1 ] frekvence otáčení n [ min -1 ] výkon P [ W ] pro stanovení krouticího momentu M k = 9550. P / n P

Více

V roce 1687 vydal Newton knihu Philosophiae Naturalis Principia Mathematica, ve které zformuloval tři Newtonovy pohybové zákony.

V roce 1687 vydal Newton knihu Philosophiae Naturalis Principia Mathematica, ve které zformuloval tři Newtonovy pohybové zákony. Dynamika I Kinematika se zabývala popisem pohybu, ale ne jeho příčinou. Například o vrzích jsme řekli, že zrychlení je konstantní a směřuje svisle dolů, ale neřekli jsme proč. Dynamika se zabývá příčinami

Více

Veličiny charakterizující geometrii ploch

Veličiny charakterizující geometrii ploch Veličiny charakterizující geometrii ploch Jedná se o veličiny charakterizující geometrii průřezu tělesa. Obrázek 1: Těleso v rovině. Těžiště plochy Souřadnice těžiště plochy, na které je hmota rovnoměrně

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

Moment síly Statická rovnováha

Moment síly Statická rovnováha Moment síly Statická rovnováha Kopírování a šíření tohoto materiálu lze pouze se souhlasem autorky PhDr. Evy Tlapákové, CSc. Jedná se o zatím pracovní verzi, rok 2009 ZKRÁCENÁ VERZE Síla může mít rozdílný

Více

KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník KINEMATIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Kinematika hmotného bodu Kinematika = obor fyziky zabývající se pohybem bez ohledu na jeho příčiny Hmotný bod - zastupuje

Více

Steinerova věta a průřezové moduly. Znění a použití Steinerovy věty. Určeno pro druhý ročník strojírenství M/01. Vytvořeno červen 2013

Steinerova věta a průřezové moduly. Znění a použití Steinerovy věty. Určeno pro druhý ročník strojírenství M/01. Vytvořeno červen 2013 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Steinerova

Více

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování

Více

Momenty setrvačnosti a deviační momenty

Momenty setrvačnosti a deviační momenty Momenty setrvačnosti a deviační momenty Momenty setrvačnosti a deviační momenty charakterizují spolu shmotností a statickými momenty hmoty rozložení hmotnosti tělesa vprostoru. Jako takové se proto vyskytují

Více

Koncept tryskového odstředivého hydromotoru

Koncept tryskového odstředivého hydromotoru 1 Koncept tryskového odstředivého hydromotoru Ing. Ladislav Kopecký, květen 2017 Obr. 1 Návrh hydromotoru provedeme pro konkrétní typ čerpadla a to Čerpadlo SIGMA 32-CVX-100-6- 6-LC-000-9 komplet s motorem

Více

1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti.

1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti. 1 Pracovní úkoly 1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti.. Určete složky jednotkového vektoru ve směru zadané obecné osy rotace kvádru v souřadné soustavě dané hlavními

Více

5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole

5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5.1. Zadání úlohy 1. Určete velikost tíhového zrychlení pro Prahu reverzním kyvadlem.. Stanovte chybu měření tíhového zrychlení.

Více

13 otázek za 1 bod = 13 bodů Jméno a příjmení:

13 otázek za 1 bod = 13 bodů Jméno a příjmení: 13 otázek za 1 bod = 13 bodů Jméno a příjmení: 4 otázky za 2 body = 8 bodů Datum: 1 příklad za 3 body = 3 body Body: 1 příklad za 6 bodů = 6 bodů Celkem: 30 bodů příklady: 1) Sportovní vůz je schopný zrychlit

Více

2. Dynamika hmotného bodu

2. Dynamika hmotného bodu . Dynamika hmotného bodu Syllabus:. Dynamika hmotného bodu. Newtonovy zákony. Síly působící při známém druhu pohybu. Pohybová rovnice hmotného bodu, vrhy, harmonický pohyb. Inerciální a neinerciální soustavy

Více

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz,

Více

E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO

E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO Seznam výukových materiálů III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast: Předmět: Vytvořil: MECHANIKA FYZIKA JANA SUCHOMELOVÁ 01 - Soustava SI notebook VY_32_INOVACE_01.pdf Datum

Více

Kinematika hmotného bodu

Kinematika hmotného bodu KINEMATIKA Obsah Kinematika hmotného bodu... 3 Mechanický pohyb... 3 Poloha hmotného bodu... 4 Trajektorie a dráha polohového vektoru... 5 Rychlost hmotného bodu... 6 Okamžitá rychlost... 7 Průměrná rychlost...

Více

SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda SÍLY A JEJICH VLASTNOSTI Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vzájemné působení těles Silové působení je vždy vzájemné! 1.Působení při dotyku 2.Působení na dálku prostřednictvím polí gravitační pole

Více

1. Pro rovnoměrný přímočarý pohyb platí: A) t=s/v B) v=st C) s=v/t D) t=v/s 2. Při pohybu rovnoměrném přímočarém je velikost rychlosti:

1. Pro rovnoměrný přímočarý pohyb platí: A) t=s/v B) v=st C) s=v/t D) t=v/s 2. Při pohybu rovnoměrném přímočarém je velikost rychlosti: 1. Pro rovnoměrný přímočarý pohyb platí: A) t=s/v B) v=st C) s=v/t D) t=v/s 2. Při pohybu rovnoměrném přímočarém je velikost rychlosti: 3. V pravoúhlých souřadnicích je rychlost rovnoměrného přímočarého

Více

Obr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9.

Obr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9. 9. Tření a stabilita 9.1 Tření smykové v obecné kinematické dvojici Doposud jsme předpokládali dokonale hladké povrchy stýkajících se těles, kdy se silové působení přenášelo podle principu akce a reakce

Více

3. Vypočítejte chybu, které se dopouštíte idealizací reálného kyvadla v rámci modelu kyvadla matematického.

3. Vypočítejte chybu, které se dopouštíte idealizací reálného kyvadla v rámci modelu kyvadla matematického. Pracovní úkoly. Změřte místní tíhové zrychlení g metodou reverzního kyvadla. 2. Změřte místní tíhové zrychlení g metodou matematického kyvadla. 3. Vypočítejte chybu, které se dopouštíte idealizací reálného

Více

4. Práce, výkon, energie a vrhy

4. Práce, výkon, energie a vrhy 4. Práce, výkon, energie a vrhy 4. Práce Těleso koná práci, jestliže působí silou na jiné těleso a posune jej po určité dráze ve směru síly. Příklad: traktor táhne přívěs, jeřáb zvedá panel Kdy se práce

Více

Proč funguje Clemův motor

Proč funguje Clemův motor - 1 - Proč funguje Clemův motor Princip - výpočet - konstrukce (c) Ing. Ladislav Kopecký, 2004 Tento článek si klade za cíl odhalit podstatu funkce Clemova motoru, provést základní výpočty a navrhnout

Více

MOMENT SETRVAČNOSTI 2009 Tomáš BOROVIČKA B.11

MOMENT SETRVAČNOSTI 2009 Tomáš BOROVIČKA B.11 ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta biomedicínského inženýrství LABORATORNÍ PRÁCE MOMENT SETRVAČNOSTI 2009 Tomáš BOROVIČKA B.11 Obsah ZADÁNÍ... 4 TEORIE... 4 Metoda torzních kmitů... 4 Steinerova

Více