FRVŠ 1460/2010. Nekotvená podzemní stěna

Podobné dokumenty
MIDAS GTS. gram_txt=gts

FRVŠ 1460/2010. Dva souběžné tunely. kruhového profilu. ražené plným profilem

Posouzení mikropilotového základu

Matematické modelování v geotechnice - Plaxis 2D (ražený silniční/železniční tunel)

Parametrizovaná geometrie v COMSOL Multiphysics, verze 3.5a

Postup zadávání základové desky a její interakce s podložím v programu SCIA

Výpočet sedání kruhového základu sila

Návrh nekotvené pažící stěny

Násep vývoj sedání v čase (konsolidace) Program: MKP Konsolidace

Pilotové základy úvod

1 TECHNICKÁ ZPRÁVA KE STATICKÉMU VÝPOČTU

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza modelu s vrubem

Katedra geotechniky a podzemního stavitelství

Namáhání ostění kolektoru

Posouzení stability svahu

FRVŠ 1460/2010. Horizontálně členěný výrub s prvky primárního zajištění 3D

MSC.Marc 2005r3 Tutorial 1. Autor: Robert Zemčík

Stručný návod na program COMSOL, řešení příkladu 6 z Tepelných procesů.

ČVUT v Praze Fakulta stavební. Studentská vědecká a odborná činnost Akademický rok 2005/2006 STUDIE CHOVÁNÍ PILOT. Jméno a příjmení studenta :

Výpočet konsolidace pod silničním náspem

Výpočet přetvoření a dimenzování pilotové skupiny

Posouzení záporové stěny kotvené ve více úrovních

Cvičení 9 (Výpočet teplotního pole a teplotních napětí - Workbench)

VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení)

Demo_manual_02.guz V tomto inženýrském manuálu je popsán návrh a posouzení úhlové zdi.

Generování sítě konečných prvků

Kancelář stavebního inženýrství s.r.o. Statický výpočet

ef c ef su 1 Třída F5, konzistence tuhá Třída G1, ulehlá

Výpočet konsolidace pod silničním náspem

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Deformační analýza stojanu na kuželky

TAH/TLAK URČENÍ REAKCÍ

STATICKÝ VÝPOČET. Zpracování PD rekonstrukce opěrné zdi 2.úsek Starý Kopec. V&V stavební a statická kancelář, spol. s r. o.

Obecný princip 3D numerického modelování výrubu

Katedra geotechniky a podzemního stavitelství

ef c ef su 1 Třída F5, konzistence tuhá Třída G1, ulehlá

Návod na použití FEM programu RillFEM Jevy na chladiči

Kapitola 24. Numerické řešení pažící konstrukce

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza tenzometrického snímače ve tvaru háku

Numerické řešení pažící konstrukce

Výpočet prefabrikované zdi Vstupní data

Pro zpracování tohoto statického výpočtu jsme měli k dispozici následující podklady:

MSC.Marc 2005r3 Tutorial 2. Robert Zemčík

Betonové konstrukce II - BL09. Studijní podklady. Příručka na vytvoření matematického modelu lokálně podepřené desky pomocí programu Scia Engineer

Pružné oblasti (oblasti bez plasticity) Program: MKP

5. Cvičení. Napětí v základové půdě

Mechanika s Inventorem

Katedra geotechniky a podzemního stavitelství

Ing. Pavel Šípek RNDr. Eva Hrubešová, Ph.D., Prof. Ing. Josef Aldorf, DrSc.

Mezi jednotlivými rozhraními resp. na nosníkových prvcích lze definovat kontakty

Katedra geotechniky a podzemního stavitelství

Posouzení piloty Vstupní data

TECHNICKÁ ZPRÁVA + STATICKÝ VÝPOČET

ÚNOSNOST A SEDÁNÍ MIKROPILOT TITAN STANOVENÉ 3D MODELEM MKP

PŘEHRÁŽKY. Příčné objekty s nádržným prostorem k zachycování splavenin. RETENČNÍ PŘEHRÁŽKY: Účel: Zastavit enormní přínos splavenin níže.

1 Švédská proužková metoda (Pettersonova / Felleniova metoda; 1927)

Katedra geotechniky a podzemního stavitelství

Nastavení výpočtu a Správce nastavení

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 09 PŘIDAT ÚKOS]

Rozlítávací voliéra. Statická část. Technická zpráva + Statický výpočet

V tomto inženýrském manuálu je popsán návrh a posouzení úhlové zdi.

PLASTOVÁ AKUMULAČNÍ, SEDIMENTAČNÍ A RETENČNÍ NÁDRŽ HN A VN POSOUZENÍ PLASTOVÉ NÁDRŽE VN-2 STATICKÝ POSUDEK

Numerické modelování tunelu metodou NRTM

NUMERICKÉ MODELOVÁNÍ A SKUTEČNOST. Alexandr Butovič Tomáš Louženský SATRA, spol. s r. o.

VÝPOČET ZATÍŽENÍ SNĚHEM DLE ČSN EN :2005/Z1:2006

STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák

Vetknutý nosník zatížený momentem. Robert Zemčík

Příloha B: Návrh založení objektu na základové desce Administrativní budova

Návrh rozměrů plošného základu

NÁVRH A OVĚŘENÍ BETONOVÉ OPŘENÉ PILOTY ZATÍŽENÉ V HLAVĚ KOMBINACÍ SIL

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY ODSTRANĚNÍ PILÍŘE V NOSNÉ STĚNĚ REMOVING OF MASONRY PILLAR FROM LOAD BEARING WALL

Katedra geotechniky a podzemního stavitelství

Interakce ocelové konstrukce s podložím

SLOUPEK PROTIHLUKOVÝCH STĚN Z UHPC

Sedání piloty. Cvičení č. 5

Deformace nosníků při ohybu.

Výpočtová únosnost pilot. Cvičení 8

Výpočtová únosnost U vd. Cvičení 4

list číslo Číslo přílohy: číslo zakázky: stavba: Víceúčelová hala Březová DPS SO01 Objekt haly objekt: revize: 1 OBSAH

1/7. Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012

Výukový manuál Tutoriál volné plošné zatížení pro verze a nížší

Skalní svah - stabilita horninového klínu

Akce: Modřice, Poděbradova 413 přístavba a stavební úpravy budovy. Náměstí Svobody Modřice STATICKÉ POSOUZENÍ

Simulace ustáleného stavu při válcování hliníku

Výpočet gabionu Vstupní data

Mechanika s Inventorem

Posouzení skupiny pilot Vstupní data

ENÁ ŽELEZOBETONOVÁ DESKA S OTVOREM VE SLOUPOVÉM PRUHU

ČVUT v Praze, fakulta stavební Katedra betonových a zděných konstrukcí Zadání předmětu RBZS obor L - zimní semestr 2015/16

Sypaná hráz výpočet neustáleného proudění

Primární a sekundární napjatost

Kancelář stavebního inženýrství s.r.o. Statický výpočet

Návrh kotvené pažící stěny

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c )

Tvorba výpočtového modelu MKP

Velké deformace nosníku

Průvodní zpráva ke statickému výpočtu

Náhradní ohybová tuhost nosníku

Výpočet sedání osamělé piloty

Co je nového 2017 R2

OBSAH: A4 1/ TECHNICKÁ ZPRÁVA 4 2/ STATICKÝ VÝPOČET 7 3/ VÝKRESOVÁ ČÁST S1-TVAR A VÝZTUŽ OPĚRNÉ STĚNY 2

Transkript:

Projekt vznikl za podpory FRVŠ 1460/2010 Multimediální učebnice předmětu "Výpočty podzemních konstrukcí na počítači"" Příklad č. 1 Nekotvená podzemní stěna

Na tomto příkladu je ukázáno základní seznámení s programem Midas GTS. Úloha je zvolena záměrně jako elementární, aby všechny kroky byly pochopitelné a s jasnou logickou návazností. Úlohou je nekotvená podzemní stěna, která paží stavební jámu hlubokou 3m. Vytěžení stavební jámy probíhá ve dvou krocích po 1,5m. Podzemní stěna je uvažována jako betonová tl. 300 mm. 1. založení nové úlohy 1.1. file new obr. č.1 název projektu a volba jednotek 2. tvorba geometrie

2.1. geometry curve create on WP 2.1.1. polyline (wire) vytvoření oblasti viz tab č.1, body 1-13 2.1.2. line obr. č.2 příkaz polyline vytvoření geologie viz tab. č.1 body 8 a 5 dále 9,17 a 4 a 10, 16 a 3 obr.č.3 příkaz line 2.1.3. polyline - podzemní stěna body 14-18 viz tabulka č.1 2.1.4. line stavební jáma hloubení stavební jámy po 1,5 m body 12, 14, 13 a bod 1 viz tabulka č.1

bod x y bod x y 1 0 0 10-13 -5 2 20 0 11-13 -3 3 20-3 12-13 -1,5 4 20-5 13-13 0 5 20-9 14 0-1,5 6 20-22 15 0-3 7-13 -22 16 0-4,2 8-13 -11 17 0-6,2 9-13 -7 18 0 6,5 tabulka č.1 obr. č. 4 vytvořená zájmová oblasti, geologie, stavební jáma a stěna Dále je vytvořen geometrický model konstrukce a zájmové oblasti. V dalších krocích dojde k definici materiálových vlastností a jejich přiřazení k příslušným prvkům použitým pro tvorbu sítě MKP. 3. zadání material 3.1. model property material 3.1.1. ground zeminy viz tab. č. 2 materiály č. 1-4 (zeminy)

3.1.2. structure obr č. 5, 6 a 7 zadání zemin parametry betonu viz tabulka č.2 obr č. 8 a 9 zadání materiálu stěny

geologický profil h (m) tíha úhel E (kpa) c (kpa) model 1 písek 2,3 18 27 10000 0,1 M-C 2 štěrk 4 19,5 32 25000 0,1 M-C 3 břidlice 1 2 22 19 25000 20 M-C 4 břidlice 2 2 20 28 400000 60 M-C beton lineární materiálový model E = 27000 MPa poiss. 0,15 γ = 24 knm -3 tabulka č. 2 vlastnosti materiálů 4. zadání vlastností prvků 4.1. model property attribute obr č. 10 - zadané materiály 4.1.1. plane zeminy obr. č. 11 příkaz attribute

4.1.2. line stěna obr. č. 12 a 13

obr. č. 14, 15 a 16 postup při zadávání vlastností prvků betonové stěny K již vytvořeným materiálům a prvkům bude nyní vytvořena síť MKP. V prvním kroku dojde k definici pravidel na vytvoření sítě MKP. Vytvoření sítě MKP je v krocích následujících. 5. vytvoření sítě konečných prvků 5.1. mesh size control along edges (F4) obr. č. 17 příkaz size control along edges 5.1.1. interval length volí pevnou vzdálenost mezi body sítě hodnota vzdálenosti 1.8

obr. č. 18, 19 a 20 postup zadávání velikosti sítě MKP hodnota 0,3 5.1.2. linear fading (lenght) volí proměnnou (lineárně) vzdálenost bodů sítě MKP je potřeba si všimnout orientace šipky, aby by dobře zadán počátečný a konečný bod v tomto případě jsou hodnoty zvoleny tak, aby na okrajích sítě byla hodnota 1,8 a u stěny 0,3

obr. č.21, 22 a 23 zadávání velikosti sítě MKP 5.1.3. select all edges pravé kliknutí display mesh seed obr. č 24 vytvořené body pro hustotu sítě MKP 5.2. vytvoření vlastní sítě konečných prvků 5.2.1. mesh automesh planar area (F7)

pro každou zeminu je potřeba provést tento příkaz samostatně!! algoritnus pro generaci sítě zvolit - delanay mesher typ triangle velikost sítě (mesh size) 1,8 vlastnosti (attribute) podle zeminy kde je potřeba zakliknout vytvořit každou síť zvlášť (register each area independently) deaktivace mid-size nodes to je důležité, protože pokud by byla tato možnost označená, program by nemohl připojit k takto vytvořené síti síť stěny, která je typu beam, tedy 1D.

obr. č. 25 a 26 vytvoření sítě MKP 5.3. mesh automesh edge V případě prvku beam, je také nutné vytvořit síť MKP, i když se jedná o 1D prvek. K tomuto úkolu je přiřazen příkaz auto mest edge.

obr. č. 27 a 28 vytvoření sítě MKP podél stěny 6. okrajové podmínky K vytvoření okrajových podmínek může dojít dvěma způsoby. Oba dávají stejné výstupy. První (přes příkaz support) dovoluje uživateli plnou podporu nad tvorbou okrajových podmínek. 6.1. model boundary supports, popřípadě ground supports obr. č. 29 příkaz ground supports

obr. č. 30 příkaz supports je potřeba každou hranu oblasti nadefinovat zvlášť obr. č. 31 správně zadané okrajové podmínky 7. zatížení V tomto příkladu působí pouze jediné zatížení. Vlastní tíha zeminy. Na rozdíl od jiných programů (např. Plaxis) není vkládána automaticky. 7.1. model load self weight

obr. č. 31 a 32 zadání vlastní tíhy 8. výpočet Nejprve je potřeba definovat všechny stavy, které můžou v průběhu životnosti konstrukce nastat. Výchozí stav je bez jakéhokoliv zásahu. V následujícím kroku dojde k vybudování (aktivaci) podzemní stěny. Dalším krokem dojde k vytěžení prostoru stavení jámy na první etáž. V poslední fázi je stavební jámy prohloubena až na dno. Tento postup je ukázán na obrázcích umístěných níže. 8.1. model - construction stage define construction wizard obr. č. 33 příkaz define construction stage

obr. č. 34 první krok výpočtu počáteční stav obr. č. 35 aktivace stěny

obr. č. 36 první etáž obr. č. 37 vytěžení až na dno 9. výpočet 9.1. analysis analysis case přidej (add) obr. č. 38 analysis case

typ výpočtu (analysis type) construction stage nastavení výpočtu (analysis control) obr. č. 38 nastavení výpočtu obr. č. 39 nastavení možností výpočtu zaškrtnout initial stage for stress analysis a K 0 condition. Toto nastavení říká programu odkud má začít počítat a jaké hodnoty má použít.

9.2. analysis solve obr. č. 41 solver manager Výpočet bude trvat kolem 20 s. 10. výsledky 10.1. svislá deformace max. deformace 22,05 mm obr. č. 42 svislá deformace

10.2. obybový moment podzemní stěny max. velikost 45,04 knm obr. č. 43 ohybový moment