Seriál TeoriečíselI. Jak seriál číst? Dohoda. Úvod



Podobné dokumenty
Kongruence na množině celých čísel

Diskrétní matematika 1. týden

Univerzita Karlova v Praze Pedagogická fakulta

1. série. Různá čísla < 1 44.

Historie matematiky a informatiky Cvičení 2

Důkazové metody v teorii čísel

Pomocný text. Polynomy

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p

1. podzimní série. KdyžseLenkatuhleozkouškovémnudila,přišlanato,žepokudproreálnáčísla a, b, cplatí nerovnosti

Lenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012

Jak funguje asymetrické šifrování?

Cvičení z termomechaniky Cvičení 5.

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar

Úvod do informatiky. Miroslav Kolařík

Polynomy nad Z p Konstrukce faktorových okruhů modulo polynom. Alena Gollová, TIK Počítání modulo polynom 1/30

Věta o dělení polynomů se zbytkem

Analytická metoda aneb Využití vektorů v geometrii

Operace s maticemi

Charaktery v teorii čísel, kubický a bikvadratický

)(x 2 + 3x + 4),

Učební texty k státní bakalářské zkoušce Matematika Posloupnosti a řady funkcí. študenti MFF 15. augusta 2008

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti

O dělitelnosti čísel celých

Zbytky a nezbytky Vazební věznice Orličky Kondr (Brkos 2010) Zbytky a nezbytky / 22

4 Počítání modulo polynom

O dělitelnosti čísel celých

Operace s maticemi. 19. února 2018

Kritéria dělitelnosti Divisibility Criterions

GONIOMETRICKÉ ROVNICE -

Historie matematiky a informatiky Cvičení 1

Návody k domácí části I. kola kategorie C

Úlohy krajského kola kategorie A

15. KubickÈ rovnice a rovnice vyööìho stupnï

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Základy elementární teorie čísel

64. ročník matematické olympiády Řešení úloh krajského kola kategorie A

Jihomoravske centrum mezina rodnı mobility. T-exkurze. Teorie c ı sel, aneb elektronicky podpis a s ifrova nı

3.1.1 Přímka a její části

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Úlohy klauzurní části školního kola kategorie A

Y36BEZ Bezpečnost přenosu a zpracování dat. Úvod. Róbert Lórencz. lorencz@fel.cvut.cz

Lineární algebra Kapitola 1 - Základní matematické pojmy

1 Linearní prostory nad komplexními čísly

Moravské gymnázium Brno s.r.o.

MATEMATIKA. Diofantovské rovnice 2. stupně

Laplaceova transformace.

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.

S funkcemi můžeme počítat podobně jako s čísly, sčítat je, odečítat, násobit a dělit případně i umocňovat.

Racionální čísla. teorie řešené úlohy cvičení tipy k maturitě výsledky. Víš, že. Naučíš se

Návody k domácí části I. kola kategorie A

1 Mnohočleny a algebraické rovnice

Základy elementární teorie čísel

Aritmetické funkce. Pepa Svoboda

Trocha teorie Ošklivé lemátko První generace Druhá generace Třetí generace Čtvrtá generace O OŠKLIVÉM LEMÁTKU PAVEL JAHODA

Úlohy domácí části I. kola kategorie C

Historie matematiky a informatiky 2 7. přednáška

Úlohy klauzurní části školního kola kategorie A

Charakteristika tělesa

Termodynamika ideálního plynu

Generující kořeny cyklických kódů. Generující kořeny. Alena Gollová, TIK Generující kořeny 1/30

Úlohy krajského kola kategorie A

1 Polynomiální interpolace

3. série. Nerovnosti. Téma: Termínodeslání:

1 Lineární prostory a podprostory

Lineární algebra : Polynomy

Úlohy krajského kola kategorie C

Polynomy. Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1.1 Teorie Zavedení polynomů Operace s polynomy...

Západočeská univerzita v Plzni FAKULTA PEDAGOGICKÁ KATEDRA MATEMATIKY, FYZIKY A TECHNICKÉ VÝCHOVY

Zavedení a vlastnosti reálných čísel

Úlohy domácí části I. kola kategorie C

a a

1 Mnohočleny a algebraické rovnice

Úlohy klauzurní části školního kola kategorie A

Návody k domácí části I. kola kategorie C

Algebraický úvod. Kapitola Pologrupa, monoid, neutrální prvek. 1.2 Grupa, inverzní prvek, krácení

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice

Těleso racionálních funkcí

B A B A B A B A A B A B B

Kongruence. 2. kapitola. Kongruence a jejich základní vlastnosti

Algebra 2 Teorie čísel. Michal Bulant

Cyklické kódy. Definujeme-li na F [x] n sčítání a násobení jako. a + b = π n (a + b) a b = π n (a b)

online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165.

NAIVNÍ TEORIE MNOŽIN, okruh č. 5

Moravské gymnázium Brno s.r.o.

PŘEDNÁŠKA 2 POSLOUPNOSTI

Algebraické výrazy-ii

6.1.2 Operace s komplexními čísly

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

67. ročník matematické olympiády III. kolo kategorie A. Přerov, března 2018

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel

Úlohy domácí části I. kola kategorie A

Základy aritmetiky a algebry I

MPI - 7. přednáška. Hledání inverzí v Z n. Rychlé mocnění modulo n. Lineární rovnice v Z + n. Soustavy lineárních rovnic v Z + n.

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. pochopení znaků vztahů mezi čísly

Přednáška 6, 7. listopadu 2014

Teoretická informatika Tomáš Foltýnek Algebra Struktury s jednou operací

55. ročník matematické olympiády

[1] x (y z) = (x y) z... (asociativní zákon), x y = y x... (komutativní zákon).

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

(Cramerovo pravidlo, determinanty, inverzní matice)

Transkript:

Seriál TeoriečíselI Počínaje 17. ročníkem robíhá každý rok v PraSátku seriál na okračování. Jde o výklad nějakého odvětví matematiky, se kterým se na střední škole s velkou ravděodobností setkáš jenvomezenémířečivůbecne,alekteréjeřestomožnévyložittak,abybylostředoškolákům řístuné. Cílem seriálu je tedy rozšířit Tvé matematické obzory o nějaký zajímavý kout matematiky. Letošní seriál na téma Teorie čísel ro Tebe íší Pea Svoboda a Štěán Šimsa. Vrvních,druhýchatřetíchkomentáříchvyjdevždyjedendílakněmutrojiceúloh,kjejichž vyřešení by Ti měly stačit znalosti nabyté řečtením a lným ochoením doosud vydaných dílů. Na rozdíl od ostatních sérií se Ti z této do výsledného bodového hodnocení zaočítají všechny(tři) říklady. Jak seriál číst? Letošnítémajenatolikzajímavé,obsáhléaužitečné,žejsmeserozhodliudělatseriálvydatnější 1 než obvykle. Proto Tě v rvním díle seznámíme s důležitými základy, bez kterých bychom se v dalších dílech neobešli. Budeš-li mít ocit, že některou část seriálu máš v malíčku, můžeš ji s klidem řeskočit. Jestliže naoak nějakou část naorvé neochoíš, nezoufej a zkus to ještě jednou. Pokud to neomůže, neboj se zetat se na chatu nebo rostřednictvím e-mailu některého zautorů. Dohoda Abychomsenezbláznili,budemeceláčísla(tj., 1,5,0aod.)označovatouzejako čísla, rotože s nimi budeme racovat rakticky ořád. Pokud v seriálu oužijeme neznámé a, b, c, d, myslíme tím vždy čísla(tedy celá!). Neznámé m, n máme vyhrazené ro čísla řirozená. Úvod Můžešsiblahořátkvýběrutohonejlešího 3 tématu,kterýmjeteoriečísel.jdeooborzabývající se ředevším vlastnostmi řirozených a celých čísel. Přestože mohou řirozená čísla ůsobit jednoduše, oak je ravdou. Skrývají mnoho tajemství a nevyřešených roblémů. Kde jinde se dají najít otevřené roblémy s tak řístuným zadáním? Příkladem mohou být takzvaná dokonalá čísla. Dokonalé je takové číslo, které je rovno součtu svýchdělitelůsvýjimkousebesama.naříkladčíslošestjedokonalé,rotože1++3=6. Dalšímidokonalýmičíslyjsou8,496,818,33660336.Dohromadyjichzatímznámejen48, řičemž největší z nich má řes 17 miliónů cifer. Cvičení. Dokaž, že součet řevrácených hodnot dělitelů dokonalého čísla n je.(naříklad 1 6 + 1 3 + 1 +1=.) Návod. Poděl definici číslem n. 1 Občassevoznámceodčarouvyskytnevti.Tenbudeoznačentakto. 1 E-mailynajdešnaříkladnastráncehtt://mks.mff.cuni.cz/organizatori.h. 3 Myvlastněanijinátématane(u)zná(vá)me. 1 1

Velkou záhadou zůstává, jestli existuje i nějaké liché dokonalé číslo. Víme, že okud by existovalo, takbymuseloslňovatmnohoodmínek. Naříkladbybylovětší než10 300,o děleníčíslem468bydávalozbytek117,mělobyřesstotisícdělitelůaodobně. Než si sami budeme moci dokázat něco ěkného o dokonalých číslech, musíme si vysvětlit základy,nakterýchjeceláteorieostavena.alenebojse,užvtomtodílesedozvíšsoustu zajímavých věcí, které Ti ve škole nejsíše nerozradí. Tak s chutí do toho! Dělitelnost Definice. Číslo bjedělitelnéčíslem a 0,rávěkdyžexistuječíslo ctakové,že ac=b.tento faktzaisujeme a b.číslo anazývámedělitelemčísla babnásobkemčísla a. 4 Dělitelnost je základní ojem teorie čísel. Budeme se s ní setkávat na každém kroku, roto se s ní seznam v následujících cvičeních. Cvičení. Dokažsinásledujícítvrzení. 5 Nechťlatí a,b 0. (i) Platí1 aaa 0. (ii) Pokud a c,takia cdaokud ab c,tak a c. (iii) Pokud a bab c,tak a c.(protosimůžemedovolitzkrácenýzáis a b c.) (iv) Pokud a cab d,tak ab cd. (v) Pokud a c,tak c=0nebo a c. (vi) Pokud a bab a,tak a = b. (vii) Pokud a caa d,tak a c+d. Všimnisi,ževoslednímříadělatíia c d,badokonce a kc+ldrolibovolná čísla k, l. Úloha. Určivšechnařirozenáčísla m, ntaková,že ndělím 1amdělín 1. (MO 59 A II 3) Návod. Uvědomsi,žeokudvčásti(v)je c 0a a c,takdokoncelatí a c. Cvičení. Rozmysli si, že obecně nelatí: (i) Pokud a cab d,tak a+b c+d. (ii) Pokud a cab c,tak ab c. (iii) Pokud a cd,tak a cnebo a d. Následuje jednoduché tvrzení, se kterým ses jistě již setkal a které často využíváme. Tvrzení.(dělení se zbytkem) Pro libovolná čísla a, b existuje jediná dvojice čísel q, r taková, že a=bq+ ra0 r < b.číslo qnazývámeceločíselnýodílčísel aab; rnazývámezbytek oděleníčísla ačíslem b. NSD největší solečný dělitel Nyní se seznámíme s největším solečným dělitelem, vyzkoušíme si, jak se s ním racuje, a ukážemesisnadnýarychlýzůsob,jakjejvyočítat.nejrvesiujasněme,coseodtímto ojmem skrývá. 4 Velmičastotakéříkáme,že adělí b,aleozor!toznamená,že adělí b,ane,že bdělí a. 1 5 x jeabsolutníhodnotačísla xdefinovanájako x =xro x 0a x = xro x <0.

Definice. Největšísolečnýdělitel (NSD)čísel a 1,a,...,a n (kteránejsouvšechnanulová) jenejvětšířirozenéčíslo,kterédělívšechnačísla a 1,a,...,a n.budemejejznačitkulatými závorkami,tedy(a 1,a,...,a n).podobněnejmenšísolečnýnásobek(nsn) 6 jenejmenšířirozenéčíslo,kteréjenásobkemvšechčísel a 1,a,...,a n.budemejejznačithranatýmizávorkami [a 1,a,...,a n]. Cvičení. Pro mírné seznámení si vyočítej hodnoty těchto NSD. (i) ( 15, 4) (ii) (n(n+1),) Řešení. Jediníděliteléčísla 15jsoučísla1,3,5,15(ačíslajimoačná).Číslo4mákladné dělitele1,,3,4,6,8,1,4.solečníděliteléjsoujen 3, 1,1,3,znichžnejvětšíječíslo3. Včásti(ii)jeurčitějednozčísel n, n+1sudé,tedyčíslo n(n+1)jedělitelnédvěma.tojeale největšídělitelčísla,takžeinejvětšísolečnýdělitelčísel n(n+1)a. PodívejmesenynínaNSDzjinéhohlediska.Ktomubudeotřebazačítněčímzdánlivě nesouvisejícím. Mějme daná čísla a, b, z nichž alesoň jedno je nenulové. Vezměme si množinu Mvšechčíseltvaru ka+lb,kde k, ljsoulibovolnáčísla(vmnožinějsoutedynaříkladčísla a, 5a 3b, 7baod.).Všimněmesi,žemnožina Mmázajímavouvlastnost kdykolivdoníatří čísla i, j,takdonítakéatříjejichsoučetirozdílatakélibovolnýnásobekjednohoznich. Nějakéčíslozmnožiny M musíbýtkladné(nař.ro k=aal=b).zevšechkladných číselzmvybermetonejmenšíaoznačmeho r.dokážeme,ževšechnaostatníčíslavmnožině M(i ta záorná) jsou jeho násobkem. Pro sor ředokládejme, že nějaké číslo s není dělitelné číslem r.nyníjejodělímesezbytkemčíslem r.jinýmislovynajdemetakováčísla u, v,ro která s=ru+vařitom0<v<r(vnemůžebýtnula,rotože r s).alečíslo ratřído našímnožiny.takžetamatříičíslo ruadokonceičíslo s ru=v.tímjsmealenašlimenší kladnéčíslozmnožiny M,cožjesorsředokladem,žetonejmenšíbylo r. JaktotedyalevšechnosouvisísNSD?Jakjižmožnátušíš,NSDčísel a, bnenínicjinéhonež r.vímetotiž,že ratřído M,stejnějakočísla a, b.takže r aazároveň r b.ještěotřebujeme dokázat, že r je největší číslo s touto vlastností. Pro sor ředokládejme, že existuje takové většíčíslo r.pak r ka+lbrovšechna k, l,tedydělíir,rotože r=xa+ybronějaká x, y (atřído M).Tojesorstím,žeje r větší. AdokázalijsmesihustouvěcoNSD!Alecovíc triviálněnámztohotodůkazulynevelice užitečná věta, jak v okamžení uvidíš. Věta.(Bézoutova 7 ) Prolibovolnáčísla a, b,znichžalesoňjednojenenulové,existujíčísla k, ltaková,že ka+lb=(a,b). Důkaz. Jakvímezředchozíchodstavců,tak(a,b)nenínicjinéhonež r,kterésedázasat jako xa+yb. Kdyžnastaneříad(a,b)=1,říkáme,žečísla aabjsounesoudělná.voačnémříadě se jedná o čísla soudělná. Příkladem oužití Bézoutovy věty je důkaz následujícího tvrzení. Tvrzení. Nechť a 0, bjsounesoudělnáčíslaalatí a bc.potomtaké a c. Důkaz. Z Bézoutovy věty lyne, že existují čísla k, l tak, že ak+bl = (a,b) = 1. Celou rovnicivynásobímečíslem cadostaneme ack+bcl=c.ale a ack,dále a bc bcl,takže a ack+bcl=c,cožjsmechtělidokázat. 6 Vangličtiněseoužívajízkratkygcd greatestcommondivisoralcm leastcommon multile. 7 ÉtienneBézout(1730 1783)bylfrancouzskýmatematik. 3

Cvičení. V následujících cvičeních latí(a, b) = 1. Dokaž: (i) Pokud a c,b c,ak ab c. (ii) [a,b]=ab. Úloha. Nechť a, bjsoudvěkladnánesoudělnáčísla, manřirozenáčíslaasoučet je celočíselný. Dokaž, že latí nerovnost ma 1 b + nb 1 a m b + n a >1. (zobecnění MO 61 A I 4) Řešení. Sečteme-lizlomky,vidíme,žemusílatit ab a(ma 1)+b(nb 1). Seciálnětedy b a(ma 1)+b(nb 1),ajelikož b b(nb 1),takib a(ma 1).Ale a,b jsounesoudělnáčísla,takže b ma 1.Analogicky a nb 1.Vynásobenímdostáváme: ab (ma 1)(nb 1)=mnab (ma+nb 1), ab ma+nb 1. Ztoholynebuď ma+nb 1=0(cožvšaknelatí,rotože m,a,n,b 1),nebo ab ma+nb 1.Toužjenjednodušeuravíme Přesně to jsme chtěli dokázat. ab < ma+nb, m b + n a >1. Abychom mohli využívat silných vlastností nesoudělnosti, můžeme často udělat jednoduchý, aleúčinnýtrik.označímesi(a,b)naříklad dařekneme a=du, b=dv.potomjsoučísla u, v nesoudělná, čehož rávě využijeme. Vyzkoušej si to na následujících cvičeních. Cvičení. (i) Nechť a c,b c.dokaž[a,b] c. (ii) (a,b)[a,b]=ab. NynísimůžešdokázatdalšíužitečnouvlastnostNSD. 8 Cvičení. Dokaž: (i) Pokud(a,b)=dad a, d b,tak d d. (ii) Pokud[a,b]=qaa q, b q,tak q q. Návod. Postuujsorem.Kdyby d d,uvažtečíslo[d,d].podobněv(ii). Cvičení. Dokaž: (i) Pokud(a,c)=1a(b,c)=1tak(ab,c)=1. (ii) (a,b)=1,rávěkdyž(a,b)=1. (iii) Pokud(b,c)=1,tak(a,bc)=(a,b)(a,c). (iv) (a,bc) (a,b)(a,c). 8 TaseněkdyoužívářímojakodefiniceNSD. 4

Eukleidův 9 algoritmus Jak jsme slíbili, ukážeme si raktický zůsob, jak NSD vyočítat. K tomu se využívá tzv. Eukleidůvalgoritmus.Nejrvesialedokažmejednoduchéomocnétvrzení,že(a,b)=(a b,b). Označme d=(a,b)ad =(a b,b).pak d a, d b,roto d a b,takžeid (a b,b)=d. Nadruhoustranu d a b, d b,roto d (a b)+b=a,takžeid (a,b)=d.vidíme, že d d d,tedy d=d.tímjedůkazomocnéhotvrzeníhotovamůžemesiukázatsamotný Eukleidův algoritmus. Když dostaneme zadaná dvě čísla a, b, odečteme menší od většího a dostaneme novou dvojici (která má stejný největší solečný dělitel jako ta ůvodní). Když takto budeme vždy odečítat menší číslo od většího, ostuně se budou čísla zmenšovat, až jedno bude nula a druhé nějaké c.pakalezřejmě(0,c)=c,takže cjetakénsdčísel a, b. Tento výočet se dá ještě urychlit, když čísla nebudeme odčítat, ale když je budeme dělit se zbytkem. Naříklad(7, 1). Podělíme-li číslo 7 číslem 1, dostaneme 3 a zbytek 9. Tedy (7,1)=(7 3 1,1)=(9,1).Taktomůžemeokračovat: (7,1)=(9,1)=(9,1 9)=(9,3)=(9 3 3,3)=(0,3)=3. Cvičení. Rozmysli si, roč funguje i tento urychlený zůsob. Tohoto algoritmu můžeme vhodně využít i v říadě, že neznáme konkrétní čísla. Naříklad (a,(a+1)(a+3))=(a,a +4a+3)=(a,a +4a+3 (a+4)a)=(a,3). Díkytomuvíme,žehledanýnejvětšísolečnýděliteljebuď3,nebo1(odletoho,jestli3 a, nebone).nynísivyzkoušejnásledujícícvičení,abysessnsdléeseznámilaumělhorychle očítat. Cvičení. Urči,čemusemohourovnattytoNSD.Předokládej(a,b)=1. (i) (a+b,a b) (ii) (a+b,ab) (iii) (a +ab,a+b) (iv) (a +a,a +3a+) Cvičení.(těžké) Nechť m=ax+by, n=cx+dyalatí ad bc=±1.ukaž,že(m,n)=(x,y). Celá část čísla Vtomtooddíletroškuodbočímeodcelýchčíselaseznámímesdolníahorníceloučástí.Coto tedy je? Definice. Dolní celá část reálného čísla x je největší celé číslo, které není větší než x. Značíme ji x.horníceláčást reálnéhočísla xjenejmenšíceléčíslo,kterénenímenšínež x.tase značí x. Jinak řečeno, dolní celá část zahazuje to, co je za desetinnou čárkou(ovšem ozor na záorná čísla).takženaříklad 7 3 =; 4=4; 5,35= 6; 5,8 =6.Ještěsehodíznátojem desetinná část čísla,který vyjadřujehodnotu x xaznačí se {x}.naříklad { } 7 3 = 1 3, 9 Eukleides(neboEukleidés)bylřeckýmatematik,kterýůsobilvEgytěvAlexandrii.Žil řibližněvletech35ř.n.l. 60ř.n.l.NasalvýznamnédíloZáklady(rvníoravdovou učebnici s axiomy a důkazy, rý druhou nejvydávanější knihu o Bibli). 5

{ 5,35}=0,648.Všimnisi,žeokudje xceléčíslo,tak x= x =xa{x}=0,jinak x = x+1a0 < {x} <1. To, jak se s celou částí racuje, si ukážeme na následujícím říkladě. Příklad. Pro reálné číslo r latí r+ 19 + r+ 0 + + r+ 91 =546. 100 100 100 Zjisti 100r. (AIME 1991) Řešení. Nalevéstraněje91 19+1=73členů.Všechnyznichmajíhodnotubuď r,nebo r+1.jelikož7 73 <546 <8 73,tak r=7.navíc546=7 73+35,takžervních38členů máhodnotu7azbyléčlenymajíhodnotu8.seciálně r+ 56 =7, 100 r+ 57 =8. 100 Proto r+ 56 57 <8, r+ 8aztoholyne743 100r <744,takže 100r=743. 100 100 Jako cvičení si zkus dokázat tyto vlastnosti celých částí: Cvičení. Nechťjsou x, yreálnáčíslaanechťje acelé. (i) x+a= x+aa x+a = x +a. (ii) Dolníceláčástjeneklesající,tedyro x ylatí x y. (iii) x+ 1 zaokrouhluje xknejbližšímucelémučíslu. (iv) x+ y x+y x+ y+1. (v) Početkladnýchnásobkůčísla nneřekračujícíchkladné xjeroven x n. (vi) Dokažsitvrzeníodělenísezbytkem. x (vii) = x n n. Návod. V(iv)rozeiš x= x+{x}.tatofintajevelicečastooužívaná.v(vi)uvažčíslo a b. Příklad. Dokaž,že n+1 + n+ 4 + n+4 8 + =n. (IMO 1968) Řešení. Nejrve si uvědomíme, že ro n = 1 tvrzení latí (rvní člen je 1 a ostatní jsou nulové). Pro sor ředokládejme, že tvrzení ro nějaké n nelatí, a vezměme nejmenší takové n. 10 Vyřešmeříad,kdy njesudé,tedy n=m.jelikož mjemenšínež n,takronějtvrzení zezadánílatí. m+1 m+ m+4 + 4 + Rozšíříme všechny zlomky na levé straně dvěma a dostaneme m+ 4 + m+4 8 8 + =m. + =m. Zbývánámřičíst m+1 = m,čímždostanemeodosazení n=možadovanýsor. Proliché njedůkazjenlehcetěžší,zkussijejdokončitsám. 10 To,žetakové nmůžemevybrat,jedůležitávlastnostřirozenýchčísel.využívámejiiři důkazu matematickou indukcí. 6

Prvočísla Nyní se dostáváme k asi nejdůležitějšímu ojmu teorie čísel. Prvočíslo. Pravděodobně víš ze školy, že rvočísla jsou taková čísla, která mají rávě dva kladné dělitele jedničku a sama sebe (takzvaní triviální dělitelé). Ostatní řirozená čísla nazýváme složená (ouze jedničku neovažujemeanizarvočíslo,anizačíslosložené 11 ).Začnemeklíčovýmtvrzenímorvočíslech, kterésetakéčastooužívájakodefinice. 1 Tvrzení.(klíčové) Přirozené číslo je rvočíslo rávě tehdy, když ro každá a, b latí, že okud a b,tak anebo b. Důkaz. Nejrve ředokládejme, že není rvočíslo. Pak odle naší definice existuje dělitel 1 < a <,tudíž jeceléčíslo.platí a a a,aleřitom aa a,rotože > aa > a. Druhou(obtížnější) imlikaci dokážeme sorem. Mějme tedy rvočíslo a nechť latí ab, ale řitom a, b. Z ab lyne (,ab) =. Ze cvičení (iv) na straně (?) víme, že (,ab) (,a)(,b).ale(,a)můžebýtjen1nebo (rotože nemájinédělitele). Jelikož ale a,takmusíbýt(,a)=1.analogickydostaneme(,b)=1.pakale 1 1,cožje ožadovaný sor. Cvičení. Nechť k, l, m jsou řirozená čísla. (i) Dokaž,žeokud k+l+m klm,takje k+l+msložené. (ii) Mějmervočíslo =k+3.dokaž k 3 +7k +3k. Návod. Rozlož na součin a využijte definici rvočísla. Nyní jsme řiravení vrhnout se na důkaz zásadního tvrzení, které nám říká, že veškerá informace o řirozeném čísle se ukrývá v rvočíslech, která jej dělí. Tvrzení. (Základní věta aritmetiky) Každé řirozené číslo n > 1 lze jednoznačně (až na ořadí)zasatjakosoučin n= α 1 1 α...α k k,kde 1,,..., k jsouodvourůznárvočísla a α 1,α,...,α k jsouřirozenáčísla. Důkaz. Pro sor si vezměme nejmenší řirozené n, které nemá rvočíselný rozklad. Nemůže tobýtrvočíslo,rotožetobyzřejměrozkladmělo.jelikožje nsložené,tak n=abronějaká a, b < n.čísla a, bmajírozkladnarvočinitele(njervníčíslo,kteréhonemá),takžemá rvočíselný rozklad i jejich součin, tj. n. Ještě ale nevíme, jestli je tento rozklad jednoznačný. Nyní si ro sor vezměme nejmenší n, jehož rvočíselný rozklad není jednoznačný, tedy n= 1... k = s 1 s...s l,kde 1 k (s 1 s s l )jsounenutněrůzná rvočísla.kdyby 1 s 1,takmůžemeBÚNO 13 ředokládat 1 < s 1.Jelikožje 1 rvočíslo, takmusídělitalesoňjednozčísel s 1,...,s l,tojsoualevšechnorvočíslavětšínež 1,cožje sor.proto 1 = s 1,atedyčíslo n 1 < nnemájednoznačnýrozklad,rotožemůžemesát n 1 = 3... k = s s 3...s l. Dosělijsmekesorustím,že njenejmenšíčíslo,kterémánejednoznačnýrozklad. Nabízí se otázka, kolik je vůbec rvočísel. Ukážeme si snadný, leč trikový důkaz, že jich je nekonečně mnoho. Tvrzení. Existuje nekonečně mnoho rvočísel. 11 Zléjazykyovšemtvrdí,žejedničkajejedinésloženérvočíslo. 1 1 Ktomumatematicimajíhlubšídůvody,kteréjsouovšemnadrámectohotoseriálu. 13 BÚNOjeoblíbenámatematickázkratkaznamenající bezújmynaobecnosti. 7

Důkaz. Předokládejme, že rvočíseljejenkonečně mnoho, aoznačme sije 1,,..., k. Uvažme číslo n = 1... k +1. Díky existenci rozkladu na rvočísla musí být toto číslo dělitelnénějakýmrvočíslem i,kde i {1,,...,k}.Pakale i nasoučasně i n 1,takže i i n (n 1)=1,cožjesor. Cvičení.(těžké) Ukaž, že existuje nekonečně mnoho rvočísel ve tvaru 4k + 3. Kongruence Nyní se naučíme jeden velice užitečný záis. Budeme ho oužívat, když nebudeme otřebovat racovat s čísly jako takovými, ale ouze s jejich zbytky o dělení nějakým číslem. Definice. Skutečnost m (b a)zaisujeme a b(mod m)ačteme ajekongruentnísb modulo m. Uvedenému výrazu se ak říká kongruence. Rozmysli si, že dvě čísla jsou kongruentní, rávě kdyždávajístejnýzbytekoděleníčíslem m.protonaříklad5 17(mod6)nebo 13 (mod 5). Kongruence jsou velice řirozené díky své odobnosti s obyčejnými rovnicemi. Počítá se s nimi skoro stejně, což ukazuje následující tvrzení. Tvrzení. Pokud a b(mod m)akjelibovolnéčíslo,taklatí: (i) a+k b+k (mod m). (ii) a k b k (mod m). Jinými slovy, k oběma stranám kongruence můžeme řičíst celé číslo a můžeme je také celým číslem vynásobit. Tvrzení. Pokud a b(mod m)ac d(mod m),taklatí: (iii) a+c b+d(mod m). (iv) ac bd(mod m). Důkaz. (iv)víme,že m b aam d c.proto b=a+kmad=c+lm.takže bd= ac+m(kc+la+klm).jinýmislovy bd ac=m(kc+la+klm),cožznamená m bd ac. Cvičení. Jako cvičení si dokaž(i),(ii),(iii). Vidíme, že kongruence můžeme navzájem sčítat(odčítat) a násobit. Nabízí se tedy otázka, jestlivnichlze odobnějakovrovnicích idělitcelýmčíslem.odověďje,žejenčástečně. Tvrzení. Pokud a c b c(mod m)a(m, c)=1,tak a b(mod m). Důkaz. Víme,že m c(b a).jelikož(m, c)=1,latíim (b a). V důkazu ěkně vidíme, roč je nesoudělnost otřeba. Oravdu, okud naříklad 8 (mod6),takztohonelyne4 1(mod6). Viděli jsme, že jsme s kongruencemi roti obyčejným rovnicím v něčem trochu omezeni(byť jen zdánlivě, rotože dělit soudělným číslem je odobné jako dělit nulou). Ale ještě nám zbývá zmínit vlastnosti, které zase mohou závidět rovnice. Tvrzení. Předokládáme a b(mod m), m jeřirozenéčíslo.paklatí: (i) a+k m b(mod m). (ii) m m,ak a b(mod m ). (iii) (vylešenédělení)pokud ca cb(mod m),tak a b(mod 8 m (m,c) ).

Cvičení. Zmíněná tvrzení si dokaž. Návod. V(iii)olož(m,c)=dam=du, c=dv. Úloha. Dokaž,ženeexistujeřirozenéčíslo ntakové,že89 n +n. (MKS30 6) Řešení. Pro sor ředokládejme, že jsme našli n, ro které je odmínka slněna. Pak ale musí latit, že n +n 0(mod89 ), 4(n +n ) 0(mod89 ), Nynímůžemeřejítkmodulu89 89 azjistíme (n+1) 89(mod89 ). (n+1) 89(mod89), (n+1) 0(mod89). Proto89 (n+1),ajelikožje89rvočíslo,taki89 n+1.pakale89 (n+1),takže cožjesor. 0 (n+1) 89 (mod89 ), Uvedené vlastnosti kongruencí můžeme dobře shrnout. Pokud máme nějaký výraz, kde se jen násobí a sčítá, můžeme do něj dosadit dvě kongruentní čísla a výsledky budou také kongruentní. To je formálněji vyjádřeno v následujícím cvičení. Cvičení. Mějme a b(mod m). (i) Pak a n b n (mod m). (ii) Nechť P jeolynom 14 sceločíselnýmikoeficienty. Paklatí P(a) P(b)(mod m). Jinými slovy oslounost zbytků, které dávají hodnoty olynomu v celých číslech, je eriodická. Návod. Polynom si rozeiš odle definice a ro každou mocninu oužij(i). Kvadratické zbytky Zajímavou artií teorie kongruencí jsou kvadratické zbytky. Definice. Číslo a nesoudělné s m je kvadratický zbytek modulo m, okud existuje číslo x takové,že x a(mod m).pokudtakové xneexistuje,říkáme,žečíslojenezbytekmodulo m. Přestože jsme si kvadratické zbytky zavedli ro libovolné řirozené modulo m, nejzajímavější a nejužitečnější říad nastává, když je m rvočíslo. Tomuto říadu se roto budeme věnovat více. Prorvočíselnémodulo můžemekvadratickézbytkydobřeoisovattzv.legendreovým 15 symbolem. Ten značíme ( a ). Definujeme ho následujícím zůsobem: ( ) a 0, okud a, = 1, okud ajezbytekmodulo, 1, okud a je nezbytek modulo. 14 Polynomneboli mnohočlen jefunkce tvaru P(x) = a nx n + a n 1 x n 1 + +a 0,kde a n 0.Čísla a n,a n 1,...,a 0 nazývámekoeficientyolynomu.jetořesnětenvýraz,kdese ouze sčítá a násobí. 15 Adrien-MarieLegendre[ležándr]bylfrancouzskýmatematikžijícívletech175 1833. 9

Která čísla jsou tedy kvadratickými zbytky? Všechna, nebo jen některá? Zkusíme-li to na malýchříadech,snadnozjistíme,ževšechnatonebudou.užromodulo m=3dávajíčísla 0,1, zbytky0,1,1(znichjekvadratickýzbytekouzečíslo1,rotože0nenínesoudělná s m). Můžeme tedy dostat zbytek? Odověď je, odle očekávání, ne. Kdybychom za x dosadili něco jiného, neomohlo by nám to, rotože (x+3a) = x +6a+9a = x +3(a+3a ) x (mod3). Všechnadalší x užtedybudoudávatstejnýzbytekjakojednozčísel0,1,,tj.ouze0 nebo 1(všimni si, že jsme jen dosadili dvě kongruentní čísla, museli jsme tedy dostat stejný zbytek). To už nám dává návod, jak zjistit, která čísla jsou kvadratické zbytky modulo nějaké m. Stačísiostuněsočítatzbytkyoděleníčísel0,1,...,(m 1).Taktonaříkladzjistíme, žemodulo4jekvadratickýzbytekouze1amodulo7ak1,,4. Příklad. Dokaž,želichéčíslo,kterésedánasatjakosoučetdvoučtverců 16,jenutnětvaru 4k+1ročíslo k. Důkaz. Nechť c=a +b.natutorovnicisemůžemeodívatmodulo4.víme,že x modulo4 můžedávatouzezbytky0a1,takžesoučet a +b můženabývatouzezbytků0,1,.jelikož sealemájednatolichéčíslo,takmusíjítozbytek1,tedy c=4k+1. Cvičení. Urči hodnoty těchto Legendreových symbolů za ředokladu, že je rvočíslo: Cvičení. Předokládej, že ( ) 1, ( 4 ), ( ) 3, 5 ( ). ( ) 1 = 1rorvočíslo.Dokaž ( ) 4 = 1. Návod. Vezmisi x 4azaměřsenačíslo x x+,říadně. Mohlobynászajímat,kolikvlastnějekvadratickýchzbytků(mezičísly1,..., 1).Pokud sitovyzkoušímenamalýchříadech, 17 lehkotineme,žeodověď je 1 ro rvočíselné modulo. Nejdříve si uvědomíme, že více jich nebude. Druhá mocnina má totiž užitečnou vlastnost x =( x).tohomůžemevyužítizde,neboť x =( x) ( x) (mod ). Toznamená,žečísla1, 1,dále,,atd.dávajíoumocněnínadruhoustejnýzbytek. Kvadratickýchzbytkůbudetedynejvýše 1. Zbývádokázat,žejichbudealesoňtolik.Tojeekvivalentnístím,žečísla1,..., ( 1) dávajíodvourůznézbytky.stačínámtedydokázat, žeroceláčísla a b,kteráslňují 0 < a,b 1,nelatí a b (mod ).Prosorředokládejme,žebytolatilo.Pak a b (mod ), a b 0(mod ), (a b)(a+b) 0(mod ). Mátedylatit (a b)(a+b).ale jervočíslo,takže (a b)nebo (a+b).víme, že a b,takže a b 0.Navíc 1 < a b < 1,takžeurčitě (a b).(tolyneztoho, 16 Čtvercemmyslímedruhoumocninuceléhočísla. 17 Doolymiádydooručujemesizaamatovatkvadratickézbytkyromaláčísla. 10

žemezi 1 a 1 jejenčíslo0dělitelné.)ale0<a+b ( 1),takžei (a+b).toje ožadovaný sor. MaláFermatova 18 věta Vtomtoodstavcisevíceodívámenato,jaksezbytkynásobíamocní.Vezměmelibovolnéčíslo anesoudělnésm,umocňujmehoaočítejmezbytkymod m.protožezbytkůjejenkonečně mnoho,najdemedvěčísla k > ltak,že a k a l (mod m).toznamená,že a (k l) 1(mod m), neboťkongruencimůžemevydělitčíslem a l nesoudělnýmsm.našlijsmetedyřirozenéčíslo r=k ltakové,že a r 1(mod m).nejmenšířirozenéčíslostoutovlastnostínazýváme řádrvku amodulo maznačímejejord m(a).(neboouze r,okudtojezkontextujasné.) Pokudčíslo ajesoudělnésm,řádneexistuje:okudumocňujemetřeba(mod4),dostáváme,0,0,0,... anikdežádnájednička. Cvičení. Proč čísla soudělná s modulem nemají řád? Návod. Pokud a r 1(mod m),aktaké a r 1(mod(a,m)). Cvičení. Jakýjeřádmod5? Tvrzení.( zbytkylzedělit ) Prokaždéčíslo anesoudělnésmexistujerávějednainverze modulo m,tj.rvek a takový,že aa 1(mod m).obvykleinverziznačíme 1 a nebo a 1. Důkaz. Nejrvesidokážeme,žetakovéčísloexistujealesoňjedno.Stačísizvolit a = a r 1. Pak a a a a r 1 a r 1(mod n),tedytoto a vyhovujezadanéodmínce. Nyní si dokážeme, že je takové číslo(modulo m) jen jedno. Kdyby existovaly dvě různé inverze a a a modulo n,tak a a 1 a a (mod m),ajelikožčísla aamjsounesoudělná, tak můžeme kongruenci a a a a (mod m) odělit číslem a. Tímdostaneme a a (mod m),cožjesorstím,že a bylorůznéod a. Cvičení. Dokažte ředchozí tvrzení omocí Bézoutovy věty. Toronásznamená,ževkongruencíchmůžemeoužívatizlomky.Zlomkem a b jednoduše myslíme a b 1.Vkongruencíchsetedyklidněmůževyskytnoutněcojako 1 3 + 1 4 0(mod7). Toroto,žeinverzekčíslu3modulo7je5(latí3 5 1(mod7))ainverzekčíslu4ječíslo.Takže 1 3 + 1 4 5+ 0(mod7).Naoaknemávkongruencíchmodulo6smyslvýraz 1, rotožečíslaa6jsousoudělná,atedyčíslonemáinverzimodulo6. Cvičení. Dokaž, že čísla, která jsou soudělná s m, inverzi modulo m nemají. Cvičení. Dokaž, že zlomky můžeme v kongruencích uravovat odobně jako v obyčejných rovnicích.tedy,žero b, dnesoudělnásmlatí: (i) a b c d ac (mod m). bd (ii) a b + c d ad+bc (mod m). bd Nynísiukážeme,kčemuseinverzenaříkladhodí,nadůkazuWilsonovy 19 věty. Věta.(Wilsonova) Nechť jervočíslo.pak( 1)! 1(mod ). 0 Důkaz. Podívejmesenačíslo amezi1a 1.Tojenesoudělnés,takžemáinverzi a 1. Pokud a a 1 (mod ),taklatí a 1(mod ),neboli(a+1)(a 1) 0(mod ).Takže 18 PierredeFermat(1601 1665)bylfrancouzskýmatematikamatér,ovolánímrávník. 19 WilsonovavětabylarýorvéuvedenaIbnal-Haythamem(cca1000n.l.)aotomWaringem, jehož žákem byl Wilson. Ani jeden ze jmenovaných ji nedokázal, to udělal až Lagrange. 0 Znakem n![nfaktoriál]myslímečíslo n (n 1) 1. 11

a+1nebo a 1.Toaleznamená,že aje 1nebo1.Vostatníchříadechtudíž latí a a 1 (mod ).Aleokud amáinverzi a 1,takzřejmě a 1 máinverzi a.pokudtedy vynásobímevšechnyzbytkyoddo,taksekaždýzbytekoárujesesvojíinverzíajejich součin bude 1. Proto ( 1)!=( 1) 1 ( 3 ( )) ( 1) 1 1 1 (mod ). Cvičení. Dokaž si ještě oačnou imlikaci. Tedy okud ( 1)! 1(mod ), tak je rvočíslo. Následující tvrzení oisuje důležitou vlastnost řádu. Tvrzení. Nechť a, njsounesoudělnáčísla.pak a n 1(mod )rávětehdy,když r n. Návod. Ujednéimlikacestačíkongruenciumocnit.Udruhéodělte nčíslem rsezbytkema ukažte, že r není řád, čímž dostanete sor. Věta.(MaláFermatova) Nechť jervočísloaaječíslosnímnesoudělné.potom a 1 1 (mod ). Důkaz. Postuovat můžeme mnoha zůsoby, naříklad indukcí. My však ředvedeme trochu jiný, oučný důkaz. Vezměme rjakořádčísla amodulo.prokaždé bod1do 1uvažujmemnožinu A b obsahujícízbytkyčísel b,ba,ba,...,ba r 1 odělení.dokažmesi,žetakovátomnožinamá r rvků.oravdu,kdyby ba k ba l (mod ),kde k > l,dostalibychom a k l 1(mod ).Ale k ljemenšínež r,cožjesorstím,že rjeřád,tedynejmenšířirozenéčíslo,rokterélatí a r 1(mod ). Pokuddvěztěchtomnožin A b a A c majísolečnýrvek ba k ca l (mod ),otomro libovolné ilatí ba i ca (l k)i ca x (mod ),kde xjezbytekčísla(l k)iodělení r.ale ca x ležíva c,tedy ba i ležíva crokaždé iod0do 1.Jinakřečeno,každýrvek A b je takérvkem A c.obdobnědostanemeito,žervky A c jsouvmnožině A b.toznamená,že A b = A c.každédvěmnožinyjsoutedybuďdisjunktní(nemajížádnýsolečnýrvek),nebose sobě rovnají. Pokud označíme očet různých množin A b (ro b od 1 do 1) jako s, dostáváme, že rs= 1,neboťsjednocenímvšechmnožin A b dostanemeceloumnožinuzbytků(ažna0), tedy 1čísel.Ztoholyne,že r 1,takže a 1 1(mod )odleředchozíhotvrzení. DíkyMFV 1 semůžemedozvědětvíceokvadratickýchzbytcích. Příklad. Nechť je liché rvočíslo. Ukaž, že okud je 1 kvadratický zbytek modulo, otom je tvaru4k+1ronějakéčíslo k. Řešení. Prosorředokládejme,že =4k+3.Protože x 1(mod )ronějaké x, máme x 1 x 4k+ (x ) k+1 1(mod ),cožjesorsmfv. Nyní si ukážeme užitečný zůsob, jak zjistit, jestli je číslo zbytek, nebo nezbytek. Tvrzení.(Eulerovo kritérium) Nechť jelichérvočísloaaječíslonesoudělnés,otom ( a ) a 1 (mod ). Důkaz. Předokládejme, že a není kvadratický zbytek modulo. Chceme dokázat, že otom a 1 dávázbytek 1odělení.Prosorředokládejme,žetonelatí.Mějmečíslo bmezi 1a 1.Pakmákongruence bx a(mod )rávějednořešenívxmodulo,ato b = ab 1. Kdyby b = b,takbylatilo b a(mod ),tedy abybylkvadratickýzbytekmodulo,což 1 TaktobudemeoznačovatMalouFermatovuvětu. LeonhardEuler(1707 1783)bylšvýcarskýmatematikůsobící(hlavně)vPetrohradu. 1

jesor.musítudížlatit b b.paksečísla1až 1ovynásobeníoárujídodvojicse zbytkem a,atedybudelatit ( 1)! a a a a 1 (mod ). ZWilsonovyvětylyne,že( 1)!dávázbytek 1odělení,takže a 1 1(mod ). Sám si jako cvičení dokaž oačnou imlikaci. Pomocí Eulerova kritéria si můžeš dokázat, že v ředešlém říkladu latí i oačná imlikace: Cvičení. Ukaž,žeokudjervočíslo tvaru4k+1,tak 1jekvadratickýzbytekmodulo. Cvičení.(těžké) Dokaž, že rvočísel tvaru 4k + 1 je nekonečně mnoho. Návod. Uvažčíslo(n!) +1aukaž,žemárvočíselnéhodělitele tak,že 1jekvadratický zbytek modulo. Nyní se seznámíme s důležitou funkcí, se kterou se budeme setkávat během celého seriálu. Definice. Eulerova funkce ϕ(n) je očet řirozených čísel nesoudělných s n a menších či rovných n. Podívejme se, jak se funkce chová na rvočíslech. Mějme rvočíslo. Potom každé řirozené číslomenšínež jesnesoudělné.proto ϕ()= 1. Promocninyrvočíseljesituaceodobnějednoduchá.Pokudmámečíslo k,kde jervočíslo,taknesoudělnáčíslajsourávěta,kteránejsoudělitelná.alečíseldělitelných od1do k je k = k 1.Protojenesoudělnýchčísel k k 1. Abychom mohli funkci sočítat ro libovolné n, musíme ještě dokázat zásadní vlastnost Eulerovy funkce, kterou nazýváme multilikativita. Tvrzení. Eulerova funkce je multilikativní, tedy ro nesoudělná čísla a, b latí ϕ(ab) = ϕ(a)ϕ(b). Důkaz. Naišmesivšechnačísla0,1,...,ab 1dotabulky jednodušeořádcíchzlevadorava. 0 1... a 1 a a+1 a+... a 1............... a(b 1) a(b 1)+1 a(b 1)+... ab 1 Koukněmesenačíslovřádku iaslouci j,řičemžřádkyaslouceznačímeodnuly.pakje natomtomístěnasanéčíslo ia+j.zajímánás,zdajesoudělnésab.jelikožjsoualečísla aab nesoudělná,takstačízjistit,jestlije ia+jnesoudělnéjaksa,taksb.abybyločíslonesoudělné s a,takmusíbýt(ia+j,a)=1,tedy(j,a)=1.toaleznamená,žečíslanesoudělnásabmohou být jen ve sloucích označených čísly, která jsou nesoudělná s a. Těchto slouců je ϕ(a). Podívejmesenačíslavjednomztěchtoslouců.Jsoutočísla j,a+j,a+j,...,(b 1)a+j. Tato čísla dávají navzájem různé zbytky modulo b.(rozmysli si, že to latí ředokládej, že by dvě čísla byla navzájem kongruentní modulo b, a dojdi ke soru.) Číslatedydávajívnějakémořadízbytky0,1,...,b 1modulo b.právě ϕ(b)znichjenesoudělnýchsb,atedyisab.vkaždémzuvažovaných ϕ(a)sloucůmáme ϕ(b)číselnesoudělných s ab, dohromady je tedy čísel nesoudělných s ab řesně ϕ(a)ϕ(b), což jsme chtěli dokázat. Díkymultilikativitědostávámero n= α 1 1 α α k k vztah ϕ(n)=ϕ ( α 1 1 ) ϕ ( α )...ϕ ( α k k ) = ( α 1 1 α 1 1 1 )( α α 1 ) ( α k k α k 1 k ). 13

Cvičení. Urav vzoreček do tvaru ( ϕ(n)=n 1 1 )( 1 1 ) (... 1 1 ). 1 k Seriál zakončíme kouzelnou formulí. Tvrzení. Platí ϕ(d)=n. d n PokudTězarážísymbol,rádiTihovysvětlíme.Říkásemusumaaznačísoučetněkolika členů.naříklad n k=1 a kznamená a 1 +a + +a n(tj.sečti a k ro kod1do n).kdyžod sumouíšeme d n,taktímmyslímesoučetřesvšechnykladnédělitele dčísla n.naříklad d 6 ϕ(d)=ϕ(1)+ϕ()+ϕ(3)+ϕ(6)=1+1++=6. Naše formule tedy říká, že okud sečteme ϕ(d) řes všechny dělitele d čísla n, tak dostaneme řesně n.aleještěsitomusímedokázat!držtesiklobouky. Důkaz. Budemeotřebovatrozkladčísla nnarvočísla n= α 1 1 α...α k k.nejrvesimusíme uvědomit, že součet všech dělitelů se dá zasat takto: d n d= ( 1+ 1 + 1+ + α 1 1 )( 1+ + + + α ) (... 1+k + ) k + +α k k. Pokud totiž roznásobíme všechny závorky na ravé straně, dostaneme každého dělitele čísla n rávě jednou. Ale s využitím toho, že funkce ϕ je multilikativní, můžeme sát i toto: d n ϕ(d)= ( ϕ(1)+ϕ( 1 )+ +ϕ( α 1 1 ))... ( ϕ(1)+ϕ( k )+ +ϕ( α k k )). Myalevíme,že ϕ( k )= k k 1,takže ϕ(1)+ϕ( i )+ +ϕ( α i i )=1+( i 1)+( i i)+ +( α i i α i 1 i )= α i i. To nám dohromady dává d n ϕ(d)= α 1 1 α...α k k = n. 14