Deskriptivní geometrie

Rozměr: px
Začít zobrazení ze stránky:

Download "Deskriptivní geometrie"

Transkript

1 Deskriptivní geometrie Stavebnictví RNDr. Milan Vacka 2013 České Budějovice 1

2 Tento učební materiál vznikl v rámci projektu "Integrace a podpora studentů se specifickými vzdělávacími potřebami na Vysoké škole technické a ekonomické v Českých Budějovicích" s registračním číslem CZ.1.07/2.2.00/ Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. 1. vydání ISBN Vysoká škola technická a ekonomická v Českých Budějovicích, 2013 Vydala: Vysoká škola technická a ekonomická v Českých Budějovicích, Okružní 10, České Budějovice Za obsahovou a jazykovou správnost odpovídají autoři a garanti příslušných předmětů. 2

3 Obsah Kapitola Průměty bodů V Mongeově projekci V kosoúhlém promítání V pravoúhlé axonometrii Kapitola Stopník přímky Úsečka v Mongeově projekci, skutečná velikost úsečky Vzájemná poloha přímek Kapitola Rovina zadaná pomocí úseků na osách Určenost roviny Hlavní přímky roviny v Mongeově projekci Vzájemná poloha rovin Kapitola Průsečík přímky s rovinou Přímka kolmá k rovině v Mongeově projekci Vzdálenost bodu od roviny v Mongeově projekci Kapitola Elipsa Hyperbola Parabola

4 Kapitola Průměty n-úhelníků v Mongeově projekci Obrazce ležící v některé z průměten Obrazce ležící v rovině kolmé k některé z průměten Otáčení roviny v obecné poloze Osová afinita Průměty obrazců ležících v rovině v obecné poloze Průměty kružnicev Mongeově projekci Kružnice ležící v některé z průměten Kružnice ležící v rovině kolmé k některé z průměten Kružnice ležící v rovině v obecné poloze Kapitola n-úhelníky ležící v půdorysně Kružnice ležící v půdorysně Kapitola Analytické plochy Tečná rovina Plochy rotační Plochy nerotační Přímkové plochy Kapitola Nerozvinutelné přímkové plochy Nerozvinutelné přímkové plochy rotační

5 9.1.2 Nerozvinutelné přímkové plochy nerotační Kapitola Skutečná velikost úsečky Stupňování přímky, stopník přímky Stopa roviny, vrstevnice, spádová přímka, spádové měřítko Průsečnice různoběžných rovin Spád přímky, spád roviny, interval roviny Řešení násypů a výkopů v rovinném terénu Kapitola Interkalární vrstevnice Rovinný řez topografickou plochou Řešení výkopů a násypů vodorovné komunikace Řešení výkopů a násypů stoupající komunikace Kapitola Typy střech Střechy s volnými okapy (bez zastavěných částí) Řešení střech se dvory Kapitola Střechy s rovnými zastavěnými částmi Střechy se zastavěnými rohy Použitá literatura

6 Kapitola 1 KLÍČOVÉ POJMY promítání, středové promítání, rovnoběžné promítání, kosoúhlé promítání, šikmé promítání, Mongeovo promítání, půdorysna, nárysna, půdorys bodu, nárys bodu, bokorysna, pravoúhlá axonometrie, izometrie CÍLE KAPITOLY Získat úvodní informace o promítání. Seznámit se s druhy rovnoběžného promítání. Seznámit se s průměty bodů v Mongeově promítání. Seznámit se s průměty bodů v kosoúhlém promítání. Seznámit se s průměty bodů v pravoúhlé axonometrii. ČAS POTŘEBNÝ KE STUDIU U KAPITOLY 8 hodin VÝKLAD Deskriptivní geometrie zobrazuje prostorové předměty útvary rovinnými. Pomocí těchto rovinných útvarů pak řeší úlohy prostorové. Zmíněné zobrazení prostorových útvarů do roviny provádí pomocí promítání.. Princip promítání třech různých bodů A,B a C je znázorněn na následujícím obrázku č. 1. 6

7 Obrázek č. 1 π - průmětna S ( S π ) střed promítání A 1 - průmět bodua SA - promítací paprsek V obrázku č. 1 je střed promítání vlastní (v konečnu), hovoříme o středovém promítání. Je-li střed promítání nevlastní (bod v nekonečnu v následujících obrázcích č. 2 a 3 je jeho poloha naznačena šipkou), jsou promítací paprsky jednotlivých bodů rovnoběžné a hovoříme o promítání rovnoběžném. 7

8 Obrázek č. 2 Obrázek č. 3 Je-li směr promítacích paprsků rovnoběžného promítání kosý k průmětně π, potom hovoříme o kosoúhlém nebo šikmém promítání, je-li tento směr kolmý k průmětně π, jedná se o pravoúhlé nebo kolmé promítání. Promítání středové není náplní tohoto textu. Nejznámějšími druhy rovnoběžných promítání jsou: - Mongeovo promítání - kosoúhlé promítání - pravoúhlá axonometrie - kótované promítání. 1.1 Průměty bodů V Mongeově projekci Mongeovo promítání je pravoúhlé promítání na dvě k sobě kolmé průmětny vodorovnou, kterou značíme π a nazýváme půdorysna a svislou, značenou ν s názvem 8

9 nárysna. Kolmý průmět bodua do půdorysny značíme A 1 a nazýváme jej půdorys bodu A, kolmý průmět bodu A do nárysnya 2 nazýváme nárys bodu A. Obrázek č. 4 Soustava třírozměrných Kartézských souřadnic je zvolena tak, že průsečnice průměten π a ν tvoří osu x, počátkem O na této ose jsou pak proloženy kolmo osa yležící v půdorysně a osa z ležící v nárysně. V obrázku č. 4 je zobrazena i orientace os kladné části jsou označeny x +,y + a z +, záporné x -,y - a z -. Z obrázku č. 4 je také patrné, že zobrazenýboda má souřadnice x, y azkladné. Zobrazený bodb má záporné souřadnice x a z, kladnou souřadnici y. BodC ležící v π má zápornou souřadnici x, kladnou y a souřadnici z=0. Nárysna nechť nyní tvoří naši nákresnu, půdorysnu otočme tak, že její přední část se otočí podle osy x do spodní části nárysny a zadní část do horní části nárysny (otočení je v obrázku č. 4 naznačeno šipkami). Po tomto otočení zřejmě splynou osy y a z, jejich 9

10 orientace ale bude opačná. Situaci z obrázku pak představuje následný obrázek č. 5, půdorys a nárys konkrétního bodu se nazývají sdružené průměty. Obrázek č. 5 Příklad č. 1: Sestrojte sdružené průměty bodů: A=[2;3;4], B =[-5;2;-3], C=[-2;5;0], D =[0;-3;2], E =[4;0;3]. Řešení: V Mongeově promítání nebývá zvykem zakreslovat osy y a z ani orientaci osy x. 10

11 Obrázek č V kosoúhlém promítání Kosoúhlé promítání je kosé (šikmé) rovnoběžné promítání na některou průmětnu. V tomto textu bude touto průmětnou výhradně průmětna určená osami y a z, kterou značíme µ a nazýváme ji bokorysna - viz obrázek č

12 Obrázek č. 7 Průměty útvarů ležících v bokorysně budou tedy při tomto promítání totožné samy se sebou. Podle směru promítacích paprsků rozlišujeme 4 základní druhy kosoúhlého promítání viz následné čtyři obrázky č. 8. Obrázek č. 8 nadhled zprava nadhled zleva podhled zleva podhled zprava 12

13 Obrázek č. 9 nadhled zprava nadhled zleva podhled zleva podhled zprava Ve směru osy x se délky mohou zkracovat, zachovávat případně prodlužovat. Kosoúhlé promítání je tedy zadáváno dvěma prvky: úhlem ω a koeficientem q,který je poměrem délky průmětu a skutečné délky úsečky ve směru osy x(koeficient zkrácení prodloužení). Zobrazení bodu je dáno průmětem bodu a jeho půdorysu. Příklad č. 2: V kosoúhlém promítání ω =135 0, q=2/3 zobrazte průměty bodůa=[3;0;4], B=[6;5;4], C =[5;8;0], D=[-5;-2;2]. Řešení: Jak již bylo řečeno, souřadnice y a z se zobrazují nezkrácené, x-ové souřadnice je nutno zkracovat poměrem 2/3. V obrázku č. 10 byl na prodlouženou osu z vynesen trojnásobek jmenovatele koeficientu q a na průmět osy x trojnásobek čitatele koeficientu q (q= = koeficient zkrácení byl pro přesnější konstrukci rozšířen číslem 3). Spojnice takto získaných bodů určuje směr zkrácení. Nezkrácené souřadnice jsou v obrázku č. 10 naznačeny pouze u bodů A ab (A=[x A A;y A ;z A ], B=[ =[x B ; y B ;z B ]). 13

14 Obrázek č V pravoúhlé axonometrii Pravoúhlá neboli kolmá axonometrie je pravoúhlé promítání do axonometrické průmětny θ, která je v obecné poloze vzhledem k půdorysně, nárysně i bokorysně viz obrázek č. 11. Obrázek č. 11 Axonometrická průmětna protíná půdorysnu, nárysnu a bokorysnu v axonometrickém trojúhelníkuxyz.. Pravoúhlé průměty os x, y a z do axonometrické průmětny pak leží ve výškách tohoto trojúhelníku. Chceme-li získat velikost jednotek na osách, provedeme otočení podle následujícího obrázku č. 12. ÚhlyXOY, YOZa ZOX jsou ve skutečnosti pravé. 14

15 Obrázek č. 12 Pokud je axonometrický trojúhelník XYZrovnostranný, tento druh nazýváme izometrie, je zkrácení na všech osách stejné a jednotky 0, Ve většině příkladů tohoto textu budu používat jednotky zaokrouhlené, což na obecnosti nijak neubere. Příklad č. 3: Zobrazte v izomerii (j x =j y =j z =0,8)průměty bodů a určete polohu těchto bodů vzhledem k průmětnám: A = [ 5 ;4;3], B = [ 6;1;5 ], C = [ 3; 4;1 ], D = [ 4;2; 2 ], E = [ 0;5;2 ], F = [ 2;4;0], G = [ 6;0;3]. Řešení: 15

16 Obrázek č. 13 STUDIJNÍ MATERIÁLY ČERNÝ, J. a M. KOČANDRLOVÁ, Konstruktivní geometrie.. Praha: Česká technika nakladatelství ČVUT, 161 s. ISBN KORCH, J. a K. MÉSZÁROSOVÁ, Deskriptivní geometrie pro 1. ročník středních průmyslových škol stavebních.. Praha: SNTL, 228 s. SETZER, O. a K. KŮLA, Deskriptivní geometrie pro 1. a 2. ročník středních průmyslových škol stavebních. Praha: SNTL, 327 s. VACKA, M., Deskriptivní geometrie: Mongeova projekce, kosoúhlé promítání a pravoúhlá axonometrie: studijní skripta.. 1. vyd. České Budějovice: Vysoká škola technická a ekonomická omická v Českých Budějovicích, 70 s. ISBN

17 OTÁZKY A ÚKOLY 1. Co znamená středové promítání, rovnoběžné promítání, kosoúhlé promítání. 2. Jaký je rozdíl mezi půdorysem bodu a nárysem bodu? 3. Co označujeme pravoúhlou axonomitrií? 4. Co je to izometrie? KLÍČ K ŘEŠENÍ OTÁZEK 1. viz. výklad 2. viz. výklad 3. viz. výklad 4. viz. Výklad Kapitola 2 KLÍČOVÉ POJMY stopník přímky, půdorysný stopník přímky, nárysný stopník přímky, bokorysný stopník přímky, sklopené body, přímky rovnoběžné, přímky různoběžné, přímky mimoběžné CÍLE KAPITOLY Získat informace o průmětech přímek a úseček. Znát pojem stopník přímky. Seznámit se s průmětem úseček v Mongeově projekci. Seznámit se se vzájemnými polohami přímek. 17

18 ČAS POTŘEBNÝ KE STUDIU U KAPITOLY 8 hodin VÝKLAD Průmětem přímky je přímka, ve zvláštním případě (je-li tato přímka rovnoběžná se směrem promítání) je jím bod. Pro všechna rovnoběžná promítání dále platí: Průmětem dvou různých rovnoběžných přímek jsou dvě rovnoběžky (různé nebo totožné) nebo dva body. Vzhledem k průmětnám může být přímka pvv obecné poloze, rovnoběžná s některou průmětnou nebo kolmá k některé z průměten. V axonometrickém promítání je zobrazena přímka v obecné poloze. p = AB,která je vůči průmětnám 18

19 Obrázek č. 14 V dalším obrázku č. 15 jsou zakresleny v kosoúhlém promítání průměty přímek a //π, b // µ a c //ν. 19

20 Obrázek č. 15 V Mongeově projekci jsou zobrazeny sdružené průměty přímky p =AB, A = Obrázek č. 16 [ 0;3;5], B = [ 5;7; 4] ;. Na obrázku č. 17 jsou v Mongeově projekci zobrazeny průměty přímek a// π, c//ν, q π. 20

21 Obrázek č Stopník přímky Stopníkem přímky nazýváme průsečík této přímky s průmětnou. Průsečík přímky s půdorysnou nazýváme půdorysný stopník přímky a obvykle jej značíme P, průsečík přímky s nárysnou nazýváme nárysný stopník přímky a obvykle jej značíme N,případně průsečík přímky s bokorysnou nazýváme bokorysný stopník přímky, který obvykle značíme M. Pokud se v daném příkladu vyskytuje více půdorysných nebo nárysných případně bokorysných stopníků, přidáváme na rozlišení k jejich označení jméno přímky např. P a,p b,n p,.. stopníky stopníky V obrázku č. 18 v izomerii, který obsahuje přímky p a q, jsou vyznačeny půdorysné p P a p M a q P, nárysný stopník q M. q N (nárysný stopník přímky pneexistuje) a bokorysné 21

22 Obrázek č. 18 Obdobně v Mongeově projekci, která zobrazuje přímky p a q, jsou vyznačeny půdorysné stopníky p P a Obrázek č. 19 q P a nárysný stopník q N. 22

23 Příklad č. 4: V izomerii (j x =j y =j z =0,8) sestrojte průměty přímek [ 1;4;2 ], B = [ 5;4;6 ], [ 5;0;2] p = AB, q = AC, A = C = k průmětnám a určete jejich stopníky.. Určete jejich polohu vzhledem Řešení: Obrázek č Úsečka v Mongeově projekci, skutečná velikost úsečky Průmětem úsečky v Mongeově projekci je buď úsečka s délkou kratší (viz obr.). 23

24 Obrázek č. 21 Průmětem úsečky v Mongeově projekci může také být úsečka s délkou stejnou (viz obr.) v uvedeném případě je úsečka rovnoběžná s průmětnou π. Obrázek č. 22 Nebo je jejím průmětem bod (viz obr.) v uvedeném případě je úsečka kolmá k průmětně π. Obrázek č

25 Skutečnou velikost úsečky ABv prvém případě můžeme určovat sklápěním do půdorysny viz obr., body (A) a (B) nazýváme sklopené bodya a B. Obrázek č. 24 Pokud jsou z-ové souřadnice bodů A a B rozdílného znaménka, sklopení bodů se provádí na opačné strany viz obr. 25

26 Obrázek č Vzájemná poloha přímek Rozeznáváme tři vzájemné polohy přímek. 1) Přímky rovnoběžné Obrázek č

27 Obrázek č. 27 2) Přímky různoběžné Obrázek č

28 Obrázek č. 29 3)Přímky mimoběžné Obrázek č

29 Obrázek č. 31 STUDIJNÍ MATERIÁLY ČERNÝ, J. a M. KOČANDRLOVÁ, Konstruktivní geometrie.. Praha: Česká technika nakladatelství ČVUT, 161 s. ISBN KORCH, J. a K. MÉSZÁROSOVÁ, Deskriptivní geometrie pro 1. ročník středních průmyslových škol stavebních.. Praha: SNTL, 228 s. SETZER, O. a K. KŮLA, Deskriptivní geometrie pro 1. a 2. ročník středních průmyslových škol stavebních.. Praha: SNTL, 327 s. VACKA, M., Deskriptivní geometrie: Mongeova projekce, kosoúhlé promítání a pravoúhlá axonometrie: studijní skripta.. 1. vyd. České Budějovice: Vysoká škola technická a ekonomická v Českých Budějovicích, 70 s. ISBN

30 OTÁZKY A ÚKOLY 1. Co je to stopník přímky? 2. Co může být průmětem úsečky v Mongeově projekci? 3. Jak určit skutečnou velikost úsečky? 4. V jaké vzájemné poloze mohou být přímky? KLÍČ K ŘEŠENÍ OTÁZEK 1. viz. výklad 2. viz. výklad 3. viz. výklad 4. viz. výklad 30

31 Kapitola 3 KLÍČOVÉ POJMY průmětna, stopy roviny, průsečnice CÍLE KAPITOLY Seznámit se s rovinou zadanou pomocí úseků na osách. Získat informace o tom, jak se určuje rovina. Seznámit se se vzájemnými polohami rovin. ČAS POTŘEBNÝ KE STUDIU U KAPITOLY 8 hodin VÝKLAD Průmětem roviny je celá průmětna,, ve zvláštním případě (je-li rovina rovnoběžná se směrem promítacích paprsků) pak je jím přímka. Stopami roviny nazýváme průsečnice roviny s průmětnami. Průsečnici roviny s půdorysnou nazýváme půdorysná stopa roviny a obvykle ji značíme ρ p, kde, kde ρ je označení dané roviny. Průsečnici ρ s nárysnou nazýváme nárysná stopa roviny a značíme ji n případně průsečnici roviny ρ ρ s bokorysnou nazýváme bokorysná stopa a značíme ji m. ρ, 31

32 Obrázek č Rovina zadaná pomocí úseků na osách označeny V předchozím obrázku č 32 jsou úseky, které daná rovina vytíná na osách x y, z ρ ρ ρ x, y, z,. Tyto úseky pak jsou jedním ze způsobů zadání roviny - ρ [ x ; y ; z ] =. ρ ρ ρ Příklad č. 5: Sestrojte stopy rovin α = [ 3;3;2 ] a β = [ 4; 3;2] a) v kosoúhlém promítání 135, Obrázek č

33 Je zřejmé, že roviny α a β mají vzhledem k průmětnám obecnou polohu. Příklad č. 6: Sestrojte stopy rovin γ = [ 3;4; ], δ = [ ;2;3 ], ε = [ ; ;1] a) v kosoúhlém promítání 135, Obrázek č. 35 b) v Mongeově projekci Obrázek č

34 Polohy rovin γ, δ, ε jsou γ π, δ µ, ε // π. 3.2 Určenost roviny Rovina je obvykle určena jedním ze čtyř následujících způsobů: a) Třemi body, které neleží v přímce b) Přímkou a bodem, který na ní neleží c) Dvěma různoběžkami d) Dvěma různými rovnoběžkami. Pro práci s rovinou používáme velmi důležitou následující větu: Leží-li přímka v rovině, potom její půdorysný stopník leží na půdorysné stopě roviny, nárysný stopník leží na nárysné stopě roviny, případně bokorysný stopník leží na bokorysné stopě roviny. Obrázek č

35 Příklad č. 7: Sestrojte stopy roviny ρ = a) v kosoúhlém promítání ABC. A = [ 1 ; 2;4], B = [ 2 ;4;1], C = [ 4;5;3] Řešení: Byly zvoleny přímky Obrázek č. 38 c = AB a a = CB a určeny stopníky. b) v Mongeově projekci Obrázek č

36 3.3 Hlavní přímky roviny v Mongeově projekci Úkol, kdy k danému půdorysu bodu máme určit jeho nárys, obvykle řešíme pomocí zvláštních přímek roviny, tzv. hlavních přímek 1. případně 2. osnovy. Hlavní přímky 1. osnovy jsou rovnoběžné s půdorysnou, hlavní přímky 2. osnovy jsou rovnoběžné s nárysnou. Obrázek č osnovy 2. osnovy Příklad č. 8: V Mongeově projekci sestrojte chybějící průměty bodů A [ 1;2; z ], B = [ 1; 0,8; ] hlavních přímek 1. osnovy tak, aby, B ρ = [ 4;3;5] A. = pomocí A z B Řešení: 36

37 Obrázek č Vzájemná poloha rovin Dvě různé roviny v prostoru mohou být rovnoběžné nebo různoběžné. Rovnoběžné roviny nemají žádný společný bod, různoběžné roviny mají společnou přímku průsečnici. Rovnoběžné roviny Vzhledem k tomu, že nemají žádný společný bod, jsou jejich odpovídající stopy, které existují, rovnoběžné. 37

38 Obrázek č. 42 Různoběžné roviny Vzhledem k tomu, že tyto roviny mají společnou přímku, hledáme při řešení průsečnice q dva různé společné body těchto rovin. V obrázku č. 43je v Mongeově projekci užito průsečíku Ppůdorysných stop rovin a průsečíku N nárysných stop rovin. Obrázek č. 43 V obrázku č. 44 v kosoúhlém promítání užito průsečíku P půdorysných stop rovin a průsečíku M bokorysných stop rovin. 38

39 Obrázek č. 44 STUDIJNÍ MATERIÁLY ČERNÝ, J. a M. KOČANDRLOVÁ, Konstruktivní geometrie.. Praha: Česká technika nakladatelství ČVUT, 161 s. ISBN KORCH, J. a K. MÉSZÁROSOVÁ, Deskriptivní geometrie pro 1. ročník středních průmyslových škol stavebních.. Praha: SNTL, 228 s. SETZER, O. a K. KŮLA, Deskriptivní geometrie pro 1. a 2. ročník středních průmyslových škol stavebních.. Praha: SNTL, 327 s. VACKA, M., Deskriptivní geometrie: Mongeova projekce, kosoúhlé promítání a pravoúhlá axonometrie: studijní skripta.. 1. vyd. České Budějovice: Vysoká škola technická a ekonomická v Českých Budějovicích, 70 s. ISBN

40 OTÁZKY A ÚKOLY 1. Co je průmětna? 2. Co nazýváme stopami roviny a jaké známe stopy roviny? 3. Jakými způsoby může být určena rovina? 4. V jaké vzájemné poloze mohou být roviny? KLÍČ K ŘEŠENÍ OTÁZEK 1. viz. výklad 2. viz. výklad 3. viz. výklad 4. viz. výklad Kapitola 4 KLÍČOVÉ POJMY průsečík CÍLE KAPITOLY Seznámit se s průsečíkem přímky s rovinou. Seznámit se s průmětem přímky k rovině. Určit vzdálenost bodu k rovině. ČAS POTŘEBNÝ KE STUDIU U KAPITOLY 8 hodin 40

41 VÝKLAD Přímka, která v rovině neleží, může být s rovinou rovnoběžná nebo různoběžná. Přímka rovnoběžná s rovinou s ní nemá žádný společný bod, přímka různoběžná má s rovinou jeden společný bod průsečík.. Určení, kdy přímka je s rovinou rovnoběžná bez společného bodu, je složitější. Proto budeme řešit případ hledání průsečíku přímky s rovinou, pokud pak zjistíme, že žádný neexistuje, jedná se o přímku s rovinou rovnoběžnou. 4.1 Průsečík přímky s rovinou Při určování průsečíku přímky p s rovinou ρ volíme následující postup znázorněný v obrázku č. 45 v Mongeově projekci. Danou přímkou p proložíme libovolnou rovinu δ (její půdorysná stopa musí procházet půdorysným stopníkem p P a nárysná stopa nárysným p stopníkem N ), sestrojíme průsečnici qrovin ρ, přímka q pak na přímce pvytíná hledaný bod Q.. Obrázek č

42 Pro jednodušší řešení tohoto problému bývá ve většině případů vhodné volit rovinu δ kolmou k některé průmětně. V obrázku č. 46 je se stejným zadáním předchozího příkladu volena rovina δ kolmá k půdorysně. Obrázek č. 46 V obrázku č. 47 je řešen v kosoúhlém promítání průsečík přímky p s rovinou ρ. Rovina δ je opět volena kolmá k půdorysně. 42

43 Obrázek č Přímka kolmá k rovině v Mongeově projekci Průmětem přímky kolmé k rovině ρ v Mongeově projekci je v půdoryse přímka k 1 kolmá k půdorysné stopě roviny ρ a v nárysně přímka k 2 kolmá k nárysné stopě roviny ρ. V obrázku č. 48jsou průměty přímky k kolmé k rovině ρ proloženy daným bodem A. Obrázek č

44 4.3Vzdálenost bodu od roviny v Mongeově projekci Při určování vzdálenosti bodu A od roviny ρ postupujeme následovně: 1. Bodem A proložíme přímku k kolmou k rovině ρ. 2. Sestrojíme průsečík přímky k s rovinou ρ - Q. 3. Určíme skutečnou velikost úsečky AQ. STUDIJNÍ MATERIÁLY ČERNÝ, J. a M. KOČANDRLOVÁ, Konstruktivní geometrie.. Praha: Česká technika nakladatelství ČVUT, 161 s. ISBN KORCH, J. a K. MÉSZÁROSOVÁ, Deskriptivní geometrie pro 1. ročník středních průmyslových škol stavebních.. Praha: SNTL, 228 s. SETZER, O. a K. KŮLA, Deskriptivní geometrie pro 1. a 2. ročník středních průmyslových škol stavebních.. Praha: SNTL, 327 s. VACKA, M., Deskriptivní geometrie: Mongeova projekce, kosoúhlé promítání a pravoúhlá axonometrie: studijní skripta.. 1. vyd. České Budějovice: Vysoká škola technická a ekonomická v Českých Budějovicích, 70 s. ISBN OTÁZKY A ÚKOLY 1. Co je to průsečík? 2. Jak postupujeme při určování vzdálenosti bodu od roviny? KLÍČ K ŘEŠENÍ OTÁZEK 1. viz. výklad 2. viz. Výklad 44

45 Kapitola 5 KLÍČOVÉ POJMY elipsa, ohnisko, oskulační kružnice elipsy, tečna elipsy, vrcholová kružnice, řídící kružnice, hyperbola, asymptoty, oskulační kružnice, parabola CÍLE KAPITOLY Seznámit se s elipsou. Seznámit se s hyperbolou. Seznámit se s parabolou. ČAS POTŘEBNÝ KE STUDIU U KAPITOLY 8 hodin VÝKLAD Jednoduché kuželosečky jsou rovinné křivky vzniklé řezem na kuželové ploše, přičemž rovina řezu neprochází vrcholem kuželové plochy. Pokud rovina řezu protíná všechny povrchové přímky kuželové plochy, získáme elipsu, je-li rovina řezu rovnoběžná s jednou povrchovou přímkou, získáme parabolu. Je-li rovina řezu rovnoběžná se dvěma povrchovými přímkami, jedná se o hyperbolu. 5.1 Elipsa Elipsa je množina bodů v rovině, které mají od dvou pevných bodů, zvaných ohniska, stálý součet vzdáleností. 45

46 Obrázek č. 49 A, B hlavní vrcholy elipsy C, D vedlejší vrcholy elipsy - hlavní osa elipsy - vedlejší osa elipsy S střed elipsy, - ohniska elipsy - hlavní poloosy elipsy - vedlejší poloosy elipsy =e excentricita (výstřednost) elipsy, - průvodiče bodu M =2a 46

47 Bodová konstrukce elipsy Obrázek č. 50 Body 1, 2, 3 jsou libovolně zvoleny na hlavní ose mezi středem a ohniskem, bod má od vzdálenost 1 a od vzdálenost 1. Další body jsou souměrné k sestrojeným podle hlavní případně vedlejší osy. Oskulační kružnice elipsy Oskulační kružnice přibližně nahrazují křivost v určitém bodě. V následujícím obrázku č. 51 je znázorněna konstrukce těchto kružnic pro hlavní a vedlejší vrcholy. 47

48 Obrázek č. 51 Tečna elipsy Obrázek č. 52 Tečna elipsy půlí úhel průvodičů bodu dotyku. V předchozím obrázku č. 52 jsou zakresleny i dvě další vlastnosti: 48

49 1. Množina pat kolmic spuštěných z ohnisek na tečnu elipsy leží na kružnici se středem S a poloměrem a - vrcholová kružnice. 2. Množina bodů osově souměrných k ohnisku podle tečen elipsy leží na kružnici se středem v druhém ohnisku a poloměrem 2a - řídící kružnice. Proužková konstrukce elipsy Obrázek č Hyperbola Hyperbola je množina bodů v rovině, které mají od dvou pevných bodů, zvaných ohniska, stálý rozdíl vzdáleností. 49

50 Obrázek č. 54 A, B hlavní vrcholy hyperboly C, D vedlejší vrcholy hyperboly - hlavní osa hyperboly - vedlejší osa hyperboly S střed hyperboly, - ohniska hyperboly - hlavní poloosyhyperboly - vedlejší poloosyhyperboly =e excentricita (výstřednost) hyperboly, - průvodiče bodu M =2a Bodová konstrukce, asymptoty, oskulační kružnice a tečna hyperboly Bodová konstrukce bod 1libovolně zvoleným prodloužení hlavní osy ve vzdálenosti větší než e od bodu S, bod M má od vzdálenost 1 a od vzdálenost 1. Další body jsou souměrné k sestrojeným podle hlavní případně vedlejší osy. 50

51 Asymptoty tečny, ke kterým se hyperbola nekonečně přibližuje. V obrázku č. 55 jsou označeny a a sestrojíme je jako úhlopříčky obdélníka, jehož strany procházejí hlavními a vedlejšími vrcholy rovnoběžně s osami. Oskulační kružnice v obrázku č. 55 je zobrazena konstrukce oskulační kružnice pro vrchol B. Její střed vytíná na hlavní ose kolmice k asymptotě sestrojené ve vrcholu výše zmíněného obdélníka. Oskulační kružnice v A má stejný poloměr. Obrázek č. 55 Tečna hyperboly půlí úhel průvodičů bodu dotyku. V předchozím obrázku č. 55 jsou zakresleny i dvě další vlastnosti: 1. Množina pat kolmic spuštěných z ohnisek na tečnu hyperboly leží na kružnici se středem S a poloměrem a vrcholová kružnice. 51

52 2. Množina bodů osově souměrných k ohnisku podle tečen hyperboly leží na kružnici se středem v druhém ohnisku a poloměrem 2a - řídící kružnice. 5.3 Parabola Parabola je množina bodů v rovině, které mají od přímky zvané řídící přímka a od pevného bodu- ohniska, stejnou vzdálenost. d - řídící přímka paraboly F ohnisko paraboly - parametr paraboly, - průvodiče bodu M o- osa paraboly V vrchol paraboly Bodová konstrukce, oskulační kružnice a tečna paraboly Bodová konstrukce - bod1 libovolně zvolený na polopřímce, bodem1sestrojíme přímku rovnoběžnou s řídící přímkou a její průsečík s kružnicí se středem v bodě F a poloměrem 1 je bodem paraboly. Další body sestrojíme podobně užitím bodů2.3,... Oskulační kružnice - v bodě V má poloměr p. Tečna paraboly - půlí úhel průvodičů bodu dotyku. 52

53 Obrázek č. 56 V předchozím obrázku č. 56 jsou zakresleny i dvě další vlastnosti: 1. Množina pat kolmic spuštěných z ohniska na tečnu paraboly leží na tečně sestrojené ve vrcholu V - vrcholová tečna. 2. Množina bodů osově souměrných k ohnisku podle tečen paraboly leží na řídící přímce. STUDIJNÍ MATERIÁLY ČERNÝ, J. a M. KOČANDRLOVÁ, Konstruktivní geometrie.. Praha: Česká technika nakladatelství ČVUT, 161 s. ISBN KORCH, J. a K. MÉSZÁROSOVÁ, Deskriptivní geometrie pro 1. ročník středních průmyslových škol stavebních.. Praha: SNTL, 228 s. 53

54 SETZER, O. a K. KŮLA, Deskriptivní geometrie pro 1. a 2. ročník středních průmyslových škol stavebních.. Praha: SNTL, 327 s. VACKA, M., Deskriptivní geometrie: Mongeova projekce, kosoúhlé promítání a pravoúhlá axonometrie: studijní skripta.. 1. vyd. České Budějovice: Vysoká škola technická a ekonomická v Českých Budějovicích, 70 s. ISBN OTÁZKY A ÚKOLY 1. Jaké jednoduché kuželosečky (rovinné křivky) vzniknou řezem na kuželové ploše, přičemž rovina řezu neprochází vrcholem kuželové plochy? 2. Co to je ohnisko? 3. Charakterizujte elipsu. 4. Charakterizujte hyperbolu. 5. Co představují asymptoty? 6. Charakterizujte parabolu. KLÍČ K ŘEŠENÍ OTÁZEK 1. viz. výklad 2. viz. výklad 3. viz. výklad 4. viz. výklad 5. viz. výklad 6. viz. výklad 54

55 Kapitola 6 KLÍČOVÉ POJMY osová afinita CÍLE KAPITOLY Seznámit se s průměty n-úhelníků v Mongeově projekci. Znát pojem osová afinita. Seznámit se s průměty kružnic v Mongeově projekci. ČAS POTŘEBNÝ KE STUDIU U KAPITOLY 8 hodin VÝKLAD 6.1 Průměty n-úhelníků v Mongeově projekci Obrazce ležící v některé z průměten Obrázek č. 57 znázorňuje průmět čtverce ležícího v půdorysněπ. Jeho půdorys vidíme ve skutečné podobě, nárysem je úsečka. 55

56 Obrázek č. 57 Čtenář jistě usoudí na průměty obrazce ležícího v nárysně υ Obrazce ležící v rovině kolmé k některé z průměten V obrázku č. 58je řešen následující Příklad č. 9. Příklad č. 9: Sestrojte průměty čtverce ABCD ležícího v rovině ρ = [ 2; ;1 ], A = [ 1;1,3; z ], C = [ 1;5 ; ] A z C Řešení: Byly sestrojeny nárysy bodů A a C, které v této rovině leží. Protože se jedná o rovinu ρ 2 ρ kolmou k nárysně, leží A 2 a C 2 na n = 2. Rovina ρ byla otočena podle půdorysné stopy do půdorysny. Při otáčení se body A a C pohybují po kružnici, roviny těchto kružnic jsou kolmé ke stopě ρ p. V půdoryse jsou otočené body A 0 a C 0 na přímkách procházejících body A 1 a C 1, kolmých k p 1. Nárysem kružnic otáčení jsou kružnice (v obrázku č. 58 zakresleny čárkovanou čarou). V otočení je čtverec ve skutečné velikosti, A 0 a C0bylo doplněno na čtverec A 0B0C0D0 a provedeno zpětné otočení do nárysu a půdorysu. ρ 56

57 Obrázek č. 58 Student jistě sám objeví princip otáčení roviny kolmé k půdorysně podle nárysné stopy do nárysny Otáčení roviny v obecné poloze V obrázku č. 59 je znázorněno otáčení roviny ρ v obecné poloze podle půdorysné stopy do půdorysny. Poloměr otáčení bodu A lze získat z pravoúhlého trojúhelníka, jehož odvěsny tvoří vzdálenost půdorysu A 1 od ρ p a z-ová souřadnice z A bodu A. 57

58 Obrázek č. 59 Příklad č. 10: Je dána rovina = [ 7;7,8;6,5] ρ a body S ρ A,, A [ 5 ;9; z ], S = [ 2,5;4,5; ] A z S otočení těchto bodů podle půdorysné stopy roviny ρ do půdorysny. =. Proveďte Řešení: Viz obrázek č. 60. K půdorysům bodů A, S byly pomocí hlavních přímek určeny jejich nárysy A 2 a S 2. Roviny otáčení bodů A, S jsou kolmé k bodů A, S. ρ p, poloměr otáčení byl určen sklopením 58

59 Obrázek č. 60 Opět vyzývám studenta, aby si promyslel případné otáčení roviny podle nárysné stopy do nárysny Osová afinita Osová afinita je geometrická příbuznost mezi dvěma obrazci v rovině, pro kterou platí: a) Spojnice odpovídajících bodů jsou rovnoběžné se směrem afinity. b) Přímky, které si odpovídají, se protínají na ose afinity. Na obrázku č. 61 byla zadána osa afinity o a dvojice odpovídajících bodů A a Úkolem je k daným bodům B a že dvojice A a / A zadává směr afinity, pro body Přímce AB v afinitě odpovídá přímka / A. / C nalézt jejich odpovídající obrazy. Z vlastnosti a) vyplývá, / B a C tedy musí platit / / / BB // CC // AA. A / B / a tyto se podle b) musí protínat na ose afinity o 59

60 . Obdobně přímce odpovídá přímka BC. A / C / odpovídá AC. Na obrázku č. 61 je znázorněna i přímka B / C /, jíž Obrázek č Průměty obrazců ležících v rovině v obecné poloze Uveďme si velmi důležitou vlastnost platící pro průmět rovinného obrazce a jeho otočenou polohu do průmětny: Pro půdorys (nárys) rovinného obrazce a jeho otočenou polohu podle půdorysné (nárysné) stopy do půdorysny (nárysny) platí vztah osové afinity. Osou afinity je stopa, podle které je rovina otáčena. Příklad č. 11: Sestrojte průměty pravidelného šestiúhelníku ABCDEF se středem v bodě S, ležícího v rovině ρ ( ρ = [ 7;7,8;6,5], A [ 5 ;9; z ], S = [ 2,5;4,5; ] = ) A z S Řešení: 60

61 Viz obrázek č. 62. Zadání roviny ρ a bodů A, S je shodné se zadáním předchozího příkladu. 1. K bodům A, S byly určeny nárysy A2 a S 2 hlavními přímkami. 2. Otočen bod S. 3. Otočený bod A0 sestrojen pomocí osové afinity. Osou afinity je p 1, dvojici odpovídajících bodů tvoří S 1 a S V otočení sestrojen pravidelný šestiúhelník A 0B0C0D0E0F0. 5. Pomocí osové afinity sestrojeny body B 1, C1, D1, E1, F1. 6. Pomocí hlavních přímek sestrojeny body B 2, C 2, D2, E2, F2 ρ 61

62 Obrázek č Průměty kružnicev Mongeově projekci úsečka. V rovnoběžném promítání je průmětem kružnice elipsa (sem patří i kružnice) nebo 62

63 6.2.1 Kružnice ležící v některé z průměten V následujícím obrázku č. 63 je znázorněn průmět kružnice k ležící v půdorysně π. Obrázek č Kružnice ležící v rovině kolmé k některé z průměten Využijeme znalostí o skutečné velikosti úsečky v Mongeově projekci. Průmětem úsečky je úsečka (ve zvláštním případě bod). Délka průmětu je menší nebo rovná skutečné délce úsečky. K rovnosti dochází v případě, že úsečka je rovnoběžná s průmětnou. Ze všech průměrů kružnice se tedy promítá jako nejdelší ten, který je rovnoběžný s průmětnou. Je-li tedy průmětem kružnice elipsa, potom její hlavní osa v půdoryse leží na hlavní přímce 1. osnovy procházející středem kružnice a má délku rovnou průměru kružnice, v náryse leží na hlavní přímce 2. osnovy procházející středem kružnice a má opět délku rovnou průměru kružnice. Příklad č. 12: Sestrojte průměty kružnice k = ( S; 3 ), S = [ 0;5; ] ležící v rovině = [ 3; ;4] z S ρ. 63

64 Řešení: Sestrojeno zadání příkladu. Vzhledem k tomu, že se jedná o rovinu kolmou k nárysně, je nárysem roviny přímka totožná s nárysnou stopou a nárys bodu S tedy na ní leží. ρ 1. V půdoryse sestrojena hlavní přímka 1. osnovy rovnoběžně se stopou p 1 a na ní od bodu S 1 nanesen na obě strany poloměr r = 3(hlavní osa elipsy v půdorysu). 2. Nárysem je úsečka 2. r = 6, která v půdoryse vymezuje vedlejší osu elipsy. Obrázek č Kružnice ležící v rovině v obecné poloze Půdorysem i nárysem je elipsa. 64

65 Příklad. 13: Sestrojte průměty kružnice k = ( S; 3 ), S = [ 3;2; ] ležící v rovině = [ 2;3;4] z S ρ. Řešení: Viz obrázek č Sestrojeno zadání příkladu. Pomocí hlavní přímky 1. osnovy sestrojen nárys bodu S. ρ 2. V půdoryse sestrojena hlavní přímka 1. osnovy rovnoběžně se stopou p 1 a na ní od bodu S 1 nanesen na obě strany poloměr r = 3(hlavní osa elipsy v půdorysu). 3. Na rovnoběžce s nárysnou stopou v bodě S 2 nanesen na obě strany poloměr r = 3 (hlavní osa elipsy v nárysu). 4. Jeden z hlavních vrcholů elipsy v půdorysu označen jako G a určen jeho nárys. Tento bod je obecným bodem nárysné elipsy a tuto je možno dodělat pomocí proužkové konstrukce. 5. Jeden z hlavních vrcholů elipsy v nárysu označen jako H a určen jeho půdorys. Tento bod je obecným bodem půdorysné elipsy a tuto je stejně možno dodělat pomocí proužkové konstrukce. 65

66 Obrázek č. 65 STUDIJNÍ MATERIÁLY ČERNÝ, J. a M. KOČANDRLOVÁ, Konstruktivní geometrie.. Praha: Česká technika nakladatelství ČVUT, 161 s. ISBN KORCH, J. a K. MÉSZÁROSOVÁ, Deskriptivní geometrie pro 1. ročník středních průmyslových škol stavebních.. Praha: SNTL, 228 s. SETZER, O. a K. KŮLA, Deskriptivní geometrie pro 1. a 2. ročník středních průmyslových škol stavebních.. Praha: SNTL, 327 s. 66

67 VACKA, M., Deskriptivní geometrie: Mongeova projekce, kosoúhlé promítání a pravoúhlá axonometrie: studijní skripta.. 1. vyd. České Budějovice: Vysoká škola technická a ekonomická v Českých Budějovicích, 70 s. ISBN OTÁZKY A ÚKOLY 1. Co je to osová afinita? 2. Definujte vlastnost platící pro průmět rovinného obrazce a jeho otočenou polohu do průmětny. 3. Co může být průmětem m kružnice? KLÍČ K ŘEŠENÍ OTÁZEK 1. viz. výklad 2. viz. výklad 3. viz. výklad 67

68 Kapitola 7 KLÍČOVÉ POJMY CÍLE KAPITOLY Seznámit se s n-úhelníky ležícími v půdorysně. Seznámit se s kružnicemi ležícími v půdorysně. ČAS POTŘEBNÝ KE STUDIU U KAPITOLY 8 hodin VÝKLAD 7.1 n-úhelníky ležící v půdorysně Provedeme otočení půdorysny π podle strany XY axonometrického trojúhelníka tak, jak bylo popsáno v 1. kapitole. Pro otočené body a jejich průměty opět platí vztah osové afinity, přičemž osou afinity je strana XY axonometrického trojúhelníka, směr afinity je kolmý k ose afinity (dvojicí odpovídajících si bodů je např. O). O 0 Příklad č. 14: Sestrojte průměty čtverce ABCD se středem S ležícího v půdorysně π, A = [ 2; 1 ;0, S = ] [ 4; 4 4 ;0] v pravoúhlé axonometrii, XY = XZ = 10 a YZ = 12. Řešení: 68

69 1. Sestrojen axonometrický trojúhelník XYZpodle zadání a průměty os xyz ležící ve výškách tohoto trojúhelníku. 2. Otočen trojúhelník XYO, sestrojeny osy x0a y Byly sestrojeny body A0 a S 0 vynesením skutečných souřadnic v osách x0 a y V otočení sestrojen čtverec A 0B0C0D0. 5. Afinitou, jejíž osou je přímka XY, dvojicí odpovídajících bodů O 0, O byly sestrojeny body A = A B = B, C = C, D = D, S =. 1, S1 69

70 Obrázek č. 66 Příklad č. 15: V izometrii sestrojte průmět pravidelného čtyřbokého jehlanu s podstavou v π. [ 2 ;6;0], C = [ 5;1;0 ], = 8. A = v Řešení: 1. Jako axonometrický trojúhelník XYZ zvolíme libovolný rovnostranný trojúhelník a sestrojíme podstavu podle předchozího. 2. Ve středu podstavy vztyčíme kolmici k podstavě (rovnoběžka s osou z) a vyneseme zkrácenou výšku (protože zkrácení na všech osách je stejné, můžeme ji zkrátit např. na ose x). 70

71 Obrázek č Kružnice ležící v půdorysně Průmětem kružnice ležící v půdorysně je elipsa. Její hlavní osa leží na rovnoběžce se stranou XY axonometrického trojúhelníku a má délku rovnou průměru kružnice. Vedeme-li takto sestrojenými hlavními vrcholy elipsy rovnoběžky s osami x a y, protnou se (podle Thaletovy věty) v bodě, náležejícímu průmětu bodu na kružnici. Příklad č. 16: V pravoúhlé axonometrii XY = 12, XZ = 11, YZ = 10 sestrojte průměty kružnice ( S; 5), = [ 6;5;0] k = S. 71

72 Řešení: Viz obrázek č Sestrojen průmět bodu S. 2. Bodem S sestrojena hlavní osa označená 1, 2, rovnoběžná se stranou XY délky 2 *5 = Body 1, 2 vedeny rovnoběžky s osami x a y s průsečíkem Proužkovou konstrukcí bylaurčena velikost vedlejší osy elipsy a následně celá elipsa. Obrázek č

73 V následujícím učivu se u příkladů řešených v axonometrii omezím na izometrii. Jednotku na všech osách pak zaokrouhlíme na 0,8j (správná hodnota je 0,81649 j). Příklad č. 17: V izometrii (j x =j y =j z =0,8) sestrojte průmět rotačního válce s podstavou v π o středu S [ 6 ;7;0], r = 5, = 8. = v Řešení: 1. Postupem předchozího příkladu sestrojíme podstavu rotačního válce (vzhledem k tomu, že se jedná o izometrii, je bod 3 vedlejším vrcholem elipsy). 2. Ve středu podstavy vztyčíme kolmici k podstavě (rovnoběžka s osou z) a vyneseme zkrácenou výšku. Získáme střed horní podstavy. 3. Do získaného středu horní podstavy posuneme elipsu shodnou s dolní podstavou. 73

74 Obrázek č. 69 STUDIJNÍ MATERIÁLY ČERNÝ, J. a M. KOČANDRLOVÁ, Konstruktivní geometrie.. Praha: Česká technika nakladatelství ČVUT, 161 s. ISBN KORCH, J. a K. MÉSZÁROSOVÁ, Deskriptivní geometrie pro 1. ročník středních průmyslových škol stavebních.. Praha: SNTL, 228 s. SETZER, O. a K. KŮLA, Deskriptivní geometrie pro 1. a 2. ročník středních průmyslových škol stavebních.. Praha: SNTL, 327 s. 74

75 VACKA, M., Deskriptivní geometrie: Mongeova projekce, kosoúhlé promítání a pravoúhlá axonometrie: studijní skripta.. 1. vyd. České Budějovice: Vysoká škola technická a ekonomická v Českých Budějovicích, 70 s. ISBN OTÁZKY A ÚKOLY 1. Co je průmětem kružnice ležící v půdorysně? 2. V jakém případě platí vztah osové afinity? KLÍČ K ŘEŠENÍ OTÁZEK 1. viz. výklad 2. viz. výklad 75

76 Kapitola 8 KLÍČOVÉ POJMY analytická plocha, empirická plocha, stupeň plochy, tečná rovina, osa rotace,rotační plocha, meridián, nerotační plochy CÍLE KAPITOLY Znát rozdělení ploch. Seznámit se s tečnou rovinou. ČAS POTŘEBNÝ KE STUDIU U KAPITOLY 8 hodin VÝKLAD Rozlišujeme plochy: Analytické vytvořené podle určitého zákona (rovina, kulová plocha,.) Empirické žádná zákonitost (topografická plocha) 8.1 Analytické plochy Stupeň plochy maximální počet průsečíků obecné přímky s plochou (rovina stupeň 1, válcová plocha stupeň 2). Plochy přímkové na jejich povrchu leží nekonečně přímek (rovina, válcová plocha, ). Plochy nepřímkové na jejich povrchu leží konečně přímek nebo žádná (kulová plocha, ). 76

77 8.2 Tečná rovina Vedeme-li určitým bodem T na ploše různé roviny, v bodě T ke vzniklým řezům, v tečné rovině této plochy. Obrázek č. 70,,. tečny,,,,. a sestrojíme-li,., pak všechny tyto tečny leží 8.3 Plochy rotační Rotační plochy vznikají rotací křivky podél osy o (válcová plocha, kulová plocha,.). 77

78 Obrázek č. 71 Pojmy: o osa rotace rovnoběžka kružnice, vzniklá rotací konkrétního bodu rotující křivky rovník rovnoběžka, jejíž poloměr je v blízkém okolí největší hrdlo rovnoběžka, jejíž poloměr je v blízkém okolí nejmenší k meridián (poledník), rotující křivka v jednotlivých fázích rotace hlavní meridián meridián, rovnoběžný s průmětnou, která je rovnoběžná s osou o 8.3 Plochy nerotační Přímkové plochy Rozvinutelné lze je bez deformace rozvinout do roviny (válcová plocha, kuželová plocha). Pro všechny body povrchové přímky plochy jsou tečné roviny totožné. Nerozvinutelné neboli zborcené nelze je bez deformace rozvinout do roviny (plochy, které budou náplní následného učiva hyperbolický paraboloid, jednodílný 78

79 hyperboloid, konoid, šroubová plocha). Tečné roviny se podél povrchové přímky plochy mění. STUDIJNÍ MATERIÁLY ČERNÝ, J. a M. KOČANDRLOVÁ, Konstruktivní geometrie.. Praha: Česká technika nakladatelství ČVUT, 161 s. ISBN KORCH, J. a K. MÉSZÁROSOVÁ, Deskriptivní geometrie pro 1. ročník středních průmyslových škol stavebních.. Praha: SNTL, 228 s. SETZER, O. a K. KŮLA, Deskriptivní geometrie pro 1. a 2. ročník středních průmyslových škol stavebních.. Praha: SNTL, 327 s. VACKA, M., Deskriptivní geometrie: Mongeova projekce, kosoúhlé promítání a pravoúhlá axonometrie: studijní skripta.. 1. vyd. České Budějovice: Vysoká škola technická a ekonomická v Českých Budějovicích, 70 s. ISBN OTÁZKY A ÚKOLY 1. Jaké rozlišujeme plochy? 2. Jak rozdělujeme analytické plochy? 3. Co znamená stupeň plochy? 4. Co je tečná rovina? 5. Pojmenujte rotační a nerotační plochy. KLÍČ K ŘEŠENÍ OTÁZEK 1. viz. výklad 2. viz. výklad 3. viz. výklad 79

80 4. viz. výklad 5. viz. výklad 80

81 Kapitola 9 KLÍČOVÉ POJMY jednodílný hyperboloid, hyperbolický paraboloid, šroubová plocha, konoid CÍLE KAPITOLY Seznámit se s plochami přímkovými nerozvinutelnými. ČAS POTŘEBNÝ KE STUDIU U KAPITOLY 8 hodin VÝKLAD 9.1 Nerozvinutelné přímkové plochy Nerozvinutelné přímkové plochy můžeme definovat pomocí 3 prostorových křivek (řídící křivky plochy), které každá tvořící přímka plochy tyto tři křivky protíná Nerozvinutelné přímkové plochy rotační Rotační jednodílný hyperboloid U této plochy máme několik způsobů vzniku: 1. Pomocí výše zmíněných 3 křivek. Pro jednoznačné určení zborceného hyperboloidu postačují 3 kružnice s různými poloměry, ležící ve vzájemně různých rovnoběžných rovinách, jejichž středy leží na téže přímce, která je kolmá k těmto rovinám. Podmínkou je, aby tyto kružnice neležely na jedné kuželové ploše. 2. Vyplývá z názvu. Tato plocha vzniká rotací hyperboly kolem své vedlejší osy. 81

82 3. Další možností je rotací přímky kolem osy s ní mimoběžné. Příklad č. 18: V Mongeově projekci sestrojte obrys jednodílného hyperboloidu vytvořeného rotací přímky [ 4;2;0 ], [ 4;2;8] p = PQ, P = Q = kolem osy o π ( o 1 = [ 0;5;0]). Plochu omezte rovinami π a / / π - π, je souměrná k π podle středu plochy S. Řešení: Zadání plochy je třetí z výše uvedených možností, tj. roací přímky kolem osy s ní mimoběžné. 1. Vzhledem k tomu, že rotující přímka je rovnoběžná s nárysnou, je její nejbližší bod k ose o(střed hrdla S) průsečíkem nárysu p a o. 2. Půdorys hrdla je kružnice dotýkající se. Nárysem hrdla je úsečka rovnoběžná s x délky průměru hrdla. 3. / je souměrná k podle S. 4. Půdorysem průsečnice plochy s a / je kružnice procházející stopníkem P přímky p. Nárysem jsou úsečky rovnoběžné s x. 5. Necháme-li bodem S rotovat přímku rovnoběžnou s p, obdržíme tzv. asymptotický kužel plochy. Jeho obrys tvoří v náryse přímky (a) a /, které jsou současně asymptotami nárysného obrysu plochy. 6. Pro nakreslení nárysu už byly sestrojeny pouze oskulační kružnice ve vrcholech hyperboly. 82

83 Obrázek č

84 9.1.2 Nerozvinutelné přímkové plochy nerotační Hyperbolický paraboloid Řídícími křivkami, které definují tuto plochu, budou v tomto případě dvě vlastní mimoběžky a jedna nevlastní přímka. Touto nevlastní přímkou rozumíme rovinu, v níž tato přímka v pomyslném nekonečnu leží. Plochu tvoří přímky, které protínají dané mimoběžky a jsou rovnoběžné s danou rovinou. Nejjednodušší zadání bývá pomocí tzv. zborceného čtyřúhelníku. Na ploše existují dva systémy přímek reguly, kdy každá přímka jednoho regulu je různoběžná se všemi přímkami druhého regulu. Příklad č. 19: V izomerii (jx=jy=jz=0,8) je dán hyperbolický paraboloid zborceným čtyřúhelníkem [ 3;9;5 ], B = [ 0;1;1 ], C = [ 5; 2;7], [ 8;6;2] ABCD, A = D =. Sestrojte po třech přímkách 1. a 2. regulu. Řešení: 1. Sestrojen zborcený čtyřúhelník ABCD, jehož půdorysem je rovnoběžník. 2. K průsečíkům rovnoběžek s se stranami a jsou nalezeny jim odpovídající průměty na stranách BC a AD. Tímto způsobem získáváme tvořící přímky jednoho regulu. 3. Přímky druhého regulu se získávají obdobným způsobem. 84

85 Obrázek č. 73 Konoid Konoidy jsou určené jednou vlastní přímkou, jednou nevlastní přímkou (rovinou) a vlastní křivkou. Podlé této křivky získávají jednotlivé konoidy svůj název. Body křivky spojujeme s body vlastní přímky přímkami rovnoběžnými s řídící rovinou. Příklad č. 20: V izomerii (jx=jy=jz=0,8) zobrazte kruhový konoid a 4 jeho tvořící přímky s řídící půlkružnicí ležící v µ se středem S = O, r = 5. Řídící rovinou je nárysna, řídící přímkou [ 8;0;0] / / y // y, M y, M =. Řešení: 85

86 1. Sestrojen průmět půlkružnice ležící v µ nad půdorysnou. Tato konstrukce je obdobou konstrukce kružnice ležící v půdorysně viz kapitola 7. tohoto textu.její hlavní osa je kolmá k ose x a má délku 2r, rovnoběžkami s osou y případně z je získán bod elipsy. 2. Tvořící přímky mají být rovnoběžné s nárysnou, tzn. dvě tvoří přímo rovnoběžky s osou x krajními body půlkružnice. 3. Další obdržíme sestrojením libovolné rovnoběžky s osou x, přičemž tvořící přímku sestrojíme jako spojnici průsečíku této přímky s průsečíku zmíněné rovnoběžky s osou x. / y a bodu na kružnici, který odpovídá Obrázek č

87 Šroubová plocha Řídícími křivkamijsou jedna vlastní přímka, jedna nevlastní přímka a šroubovice, kde vlastní přímka je osou šroubovice a rovina nevlastní přímky je kolmá na tuto osu. Poté spojujeme body osy s body šroubovice a to rovnoběžně s rovinou nevlastní přímky. Pod pojmem šroubovice si představujeme prostorovou křivku obdobnou konci závitu šroubu. Rozlišujeme pravotočivé a levotočivé šroubovice. Pravotočivá šroubovice je ta, u které při pohybu shora dolů zatáčíme vůči ose doprava viz obrázek č. 75. Obrázek č. 75 Příklad č. 21: V Mongeově projekci zobrazte průmět jednoho závitu pravotočivé šroubové plochy s osou [ ] o π, o1 = 1;3;0, výška závitu v = 12, počáteční bod je A = [ 1;5;0 ]. Řešení: 1. Nejprve je sestrojována šroubovice. Jejím půdorysem je kružnice se středem v, procházející bodem. Kružnice je rozdělena na 12 dílů, body 1,2,.12 jako půdorysy dvanácti bodů šroubovice. Při pootočení šroubovice z bodu n do bodu n+1 87

88 vystoupá šroubovice o jednu dvanáctinu výšky závitu, tj. o jednu jednotku. Takto sestrojíme nárysy 1,2,.12 a jejich spojením s bodem A získáme nárys šroubovice. 2. Půdorysem šroubové plochy pak jsou spojnice bodů,1,2,.12 s bodem. 3. Nárysem šroubové plochy jsou rovnoběžky s osou x body,1,2,.12. Obrázek č

89 STUDIJNÍ MATERIÁLY ČERNÝ, J. a M. KOČANDRLOVÁ, Konstruktivní geometrie.. Praha: Česká technika nakladatelství ČVUT, 161 s. ISBN KORCH, J. a K. MÉSZÁROSOVÁ, Deskriptivní geometrie pro 1. ročník středních průmyslových škol stavebních.. Praha: SNTL, 228 s. SETZER, O. a K. KŮLA, Deskriptivní geometrie pro 1. a 2. ročník středních průmyslových škol stavebních.. Praha: SNTL, 327 s. VACKA, M., Deskriptivní geometrie: Mongeova projekce, kosoúhlé promítání a pravoúhlá axonometrie: studijní skripta.. 1. vyd. České Budějovice: Vysoká škola technická a ekonomická v Českých Budějovicích, 70 s. ISBN OTÁZKY A ÚKOLY 1. Pomocí čeho definujeme nerozvinuté přímkové plochy? 2. Jak rozdělujeme nerozvinuté přímkové plochy? 3. Charakterizujte šroubovou plochu. 4. Co je to konoid? 5. Co znamená slovo regul? KLÍČ K ŘEŠENÍ OTÁZEK 1. viz. výklad 2. viz. výklad 3. viz. výklad 4. viz. výklad 5. viz. výklad 89

90 Kapitola 10 KLÍČOVÉ POJMY kótované promítání, kóta, stopník přímky, stupňovaní přímky, interval přímky, vrstevnice, spádová přímka, spádové měřítko, průsečnice, spád přímky, spád roviny, interval roviny CÍLE KAPITOLY Seznámit se s kótovaným promítáním. Seznámit se se stupňováním přímky. Znát pojmy vrstevnice, spádová přímka, spádové měřítko Seznámit s řešením výkopů a násypů v rovinném terénu. ČAS POTŘEBNÝ KE STUDIU U KAPITOLY 8 hodin VÝKLAD Kótované promítání je pravoúhlé promítání na jednu průmětnu. Tuto průmětnu si představujeme jako vodorovnou obdoba půdorysny z Mongeovy projekce. Pro jednoznačné určení bodu je k jeho průmětu přidávána vzdálenost od průmětny kóta, přičemž body nad průmětnou mají kótu kladnou, pod průmětnou mají kótu zápornou. 90

91 Obrázek č. 77 Příklad č. 22: Zobrazte průměty bodů 3,5;1;4, 2; 3,5;0, 1; 2;5, 5;3; 4, 5;0;6. Řešení: Sestrojení průmětů stejné jako sestrojení půdorysů v Mongeově projekci, z-ová souřadnice je kótou bodu. 91

92 Obrázek č Skutečná velikost úsečky Podobně jako v Mongeově projekci se provádí sklápěním. Obrázek č

93 10.2 Stupňování přímky, stopník přímky Stupňovat přímku znamená nalézt na této přímce body, jejichž kóty jsou celá čísla. Takto nalezené body neznačíme písmeny, ale připisujeme k nim jejich kótu. V následujícím obrázku č. 80 je zadána přímka a body A a B a ze sklopení je zřejmé, že vzdálenosti 2 23 jsou stejné a nazýváme je interval přímky a. Bod 0 je zřejmě nám už známý stopník. Obrázek č. 80 Rychlejším řešením stupňování je tedy obvykle rozdělení úsečky na požadovaný počet dílů. V následujícím obrázku č. 81 je tímto způsobem vystupňována přímka k=kl. 93

94 Obrázek č Stopa roviny, vrstevnice, spádová přímka, spádové měřítko Stopa roviny průsečnice roviny s průmětnou (již dříve zavedený pojem). Vrstevnice přímka roviny, která je rovnoběžná s průmětnou (obdoba hlavní přímky roviny). Spádová přímka přímka roviny s největší odchylkou od průmětny. Je kolmá k vrstevnicím a i její průmět je kolmý k průmětům vrstevnic. Spádové měřítko vystupňovaná spádová přímka. Příklad č. 23: Je dána rovina, 6;3;4, 4; 10;5, 7; 1; 1. Sestrojte stopu a spádové měřítko roviny ρ. Řešení: 1. Sestrojena přímka p roviny ρ a vystupňována. 94

95 2. Vrstevnice v s kótou 4 je určena bodem A a bodem s kótou 4 na přímce p. 3. Stopa je rovnoběžná s vrstevnicí v a prochází bodem s kótou 0 na přímce p. 4. Spádová přímka je kolmá k stopě. V kótovaném promítání se značí zdvojenou čarou, jedna slabší a jedna silnější. 5. Spádová přímka byla vystupňována pomocí bodů na přímce p. 6. Ke spádovému měřítku se přidává šipka, která značí směr stoupání roviny Obrázek č Průsečnice různoběžných rovin V obrázku č. 83 je sestrojena průsečnice rovin ρa, které jsou zadány spádovými měřítky a. 95

96 Obrázek č Spád přímky, spád roviny, interval roviny Spád přímky je definován jako tangens odchylky přímky od průmětny. Spád roviny je definován jako spád spádové přímky roviny. Interval roviny je definován jako interval spádové přímky roviny. Z následujícího obrázku č. 84, který je pohledem rovnoběžným se stopou roviny ρ vyplývá vztah: případně 96

97 Obrázek č Řešení násypů a výkopů v rovinném terénu Příklad č. 24: Vdaném vrstevnicovém plánunavrhněte násypy a zářezy vodorovné cesty v úrovni 204dané osou o=ab, šířky 2 m, spád zářezů je tan α = 1, spád násypů je 5 tan β = 6. Měřítko M=1:

Deskriptivní geometrie

Deskriptivní geometrie Deskriptivní geometrie Stavebnictví RNDr. Milan Vacka 2013 České Budějovice 1 Tento učební materiál vznikl v rámci projektu "Integrace a podpora studentů se specifickými vzdělávacími potřebami na Vysoké

Více

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím část 1. MONGEOVO PROMÍTÁNÍ kolmé promítání na dvě průmětny (půdorysna, nárysna), někdy se používá i třetí pomocná průmětna bokorysna bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po

Více

Zadání domácích úkolů a zápočtových písemek

Zadání domácích úkolů a zápočtových písemek Konstruktivní geometrie (KG-L) Zadání domácích úkolů a zápočtových písemek Sestrojte elipsu, je-li dáno a = 5cm a b = 3cm. V libovolném bodě sestrojte její tečnu. Tento úkol je na krásu, tj. udělejte oskulační

Více

DESKRIPTIVNÍ GEOMETRIE PRO STUDENTY GYMNÁZIA CH. DOPPLERA. Mgr. Ondřej Machů. --- Pracovní verze:

DESKRIPTIVNÍ GEOMETRIE PRO STUDENTY GYMNÁZIA CH. DOPPLERA. Mgr. Ondřej Machů. --- Pracovní verze: DESKRIPTIVNÍ GEOMETRIE PRO STUDENTY GYMNÁZIA CH. DOPPLERA Mgr. Ondřej Machů --- Pracovní verze: 6. 10. 2014 --- Obsah Úvodní slovo... - 3-1 Základy promítacích metod... - 4-1.1 Rovnoběžné promítání...

Více

MONGEOVO PROMÍTÁNÍ - 2. část

MONGEOVO PROMÍTÁNÍ - 2. část MONGEOVO PROMÍTÁNÍ - 2. část ZOBRAZENÍ KRUŽNICE Příklad: V rovině ρ zobrazte kružnici o středu S a poloměru r. kružnice ležící v obecné rovině se v obou průmětech zobrazuje jako elipsa poloměr kružnice

Více

Pravoúhlá axonometrie

Pravoúhlá axonometrie Pravoúhlá axonometrie bod, přímka, rovina, bod v rovině, trojúhelník v rovině, průsečnice rovin, průsečík přímky s rovinou, čtverec v půdorysně, kružnice v půdorysně V Rhinu vypneme osy mřížky (tj. červenou

Více

Deskriptivní geometrie 2

Deskriptivní geometrie 2 Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 2 Pomocný učební text - díl II Světlana Tomiczková Plzeň 4. května 2011 verze 1.0 Obsah 1 Středové promítání

Více

Šroubovice... 5 Šroubové plochy Stanovte paprsek tak, aby procházel bodem A a po odrazu na rovině ρ procházel bodem

Šroubovice... 5 Šroubové plochy Stanovte paprsek tak, aby procházel bodem A a po odrazu na rovině ρ procházel bodem Geometrie Mongeovo promítání................................ 1 Řezy těles a jejich průniky s přímkou v pravoúhlé axonometrii......... 3 Kuželosečky..................................... 4 Šroubovice......................................

Více

KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI

KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI Šroubový pohyb vzniká složením otáčení kolem osy o a posunutí ve směru osy o, přičemž oba pohyby jsou spojité a rovnoměrné. Jestliže při pohybu po ose "dolů" je otáčení

Více

MONGEOVO PROMÍTÁNÍ. ZOBRAZENÍ BODU - sdružení průměten. ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2]

MONGEOVO PROMÍTÁNÍ. ZOBRAZENÍ BODU - sdružení průměten. ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2] ZOBRAZENÍ BODU - sdružení průměten MONGEOVO PROMÍTÁNÍ π 1... půdorysna π 2... nárysna x... osa x (průsečnice průměten) sdružení průměten A 1... první průmět bodu A A 2... druhý průmět bodu A ZOBRAZENÍ

Více

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol. ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní

Více

Cyklografie. Cyklický průmět bodu

Cyklografie. Cyklický průmět bodu Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme

Více

Analytická geometrie přímky, roviny (opakování středoškolské látky) = 0. Napište obecnou rovnici. 8. Jsou dány body A [ 2,3,

Analytická geometrie přímky, roviny (opakování středoškolské látky) = 0. Napište obecnou rovnici. 8. Jsou dány body A [ 2,3, Analytická geometrie přímky roviny opakování středoškolské látk Jsou dány body A [ ] B [ 5] a C [ 6] a) přímky AB b) osy úsečky AB c) přímky na které leží výška vc trojúhelníka ABC d) přímky na které leží

Více

Základní úlohy v Mongeově promítání. n 2 A 1 A 1 A 1. p 1 N 2 A 2. x 1,2 N 1 x 1,2. x 1,2 N 1

Základní úlohy v Mongeově promítání. n 2 A 1 A 1 A 1. p 1 N 2 A 2. x 1,2 N 1 x 1,2. x 1,2 N 1 Základní úlohy v Mongeově promítání Předpokladem ke zvládnutí zobrazení v Mongeově promítání je znalost základních úloh. Ale k porozumění následujícího textu je třeba umět zobrazit bod, přímku a rovinu

Více

Konstruktivní geometrie

Konstruktivní geometrie Mgr. Miroslava Tihlaříková, Ph.D. Konstruktivní geometrie & technické kreslení Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny

Více

3.MONGEOVO PROMÍTÁNÍ. Rovnoběžný průmět 3D těles na rovinu není vzájemně jednoznačné zobrazení, k obrazu neumíme jednoznačně určit objekt v prostoru

3.MONGEOVO PROMÍTÁNÍ. Rovnoběžný průmět 3D těles na rovinu není vzájemně jednoznačné zobrazení, k obrazu neumíme jednoznačně určit objekt v prostoru 3.MONGEOVO PROMÍTÁNÍ A B E 3 E 2 Rovnoběžný průmět 3D těles na rovinu není vzájemně jednoznačné zobrazení, k obrazu neumíme jednoznačně určit objekt v prostoru 3.1.Kartézský souřadnicový systém O počátek

Více

Deskriptivní geometrie pro střední školy

Deskriptivní geometrie pro střední školy Deskriptivní geometrie pro střední školy Mongeovo promítání 1. díl Ivona Spurná Nakladatelství a vydavatelství R www.computermedia.cz Obsah TEMATICKÉ ROZDĚLENÍ DÍLŮ KNIHY DESKRIPTIVNÍ GEOMETRIE 1. díl

Více

Klíčová slova Mongeovo promítání, kuželosečka, rotační plocha.

Klíčová slova Mongeovo promítání, kuželosečka, rotační plocha. Abstrakt Tento text je určen všem zájemcům z řad široké veřejnosti, především jako studijní materiál pro studenty Konstruktivní a počítačové geometrie. Práce pojednává o rotačních kvadratických plochách,

Více

Konstruktivní geometrie

Konstruktivní geometrie Konstruktivní geometrie Elipsa Úloha 1: Najděte bod M takový, aby součet jeho vzdáleností od bodů F 1 a F 2 byl 12cm; tj. F 1 M+F 2 M=12. Najděte více takových bodů. Konstruktivní geometrie Elipsa Oskulační

Více

Konstruktivní geometrie Bod Axonometrie. Úloha: V pravoúhlé axonometrii (XY = 10; XZ = 12; YZ = 11) zobrazte bod A[2; 3; 5] a bod V[9; 7.5; 11].

Konstruktivní geometrie Bod Axonometrie. Úloha: V pravoúhlé axonometrii (XY = 10; XZ = 12; YZ = 11) zobrazte bod A[2; 3; 5] a bod V[9; 7.5; 11]. Konstruktivní geometrie Bod Axonometrie Úloha: V pravoúhlé axonometrii (XY = 10; XZ = 12; YZ = 11) zobrazte bod A[2; 3; 5] a bod V[9; 7.5; 11]. VŠB-TU Ostrava 1 Jana Bělohlávková Konstruktivní geometrie

Více

KONSTRUKTIVNÍ GEOMETRIE

KONSTRUKTIVNÍ GEOMETRIE KONSTRUKTIVNÍ GEOMETRIE Přednáška Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura:

8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura: 8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura: (1)Poláček, J., Doležal, M.: Základy deskriptivní a konstruktivní geometrie, díl 5, Křivky a plochy

Více

Je-li dána hranolová nebo jehlanová plocha s podstavou v rovině σ a rovina řezu ρ:

Je-li dána hranolová nebo jehlanová plocha s podstavou v rovině σ a rovina řezu ρ: Kapitola 1 Elementární plochy 1.1 Základní pojmy Elementární plochou budeme rozumět hranolovou, jehlanovou, válcovou, kuželovou a kulovou plochu. Pokud tyto plochy omezíme, popř. přidáme podstavy, můžeme

Více

P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r,

P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r, P R O M Í T Á N Í Promítání je zobrazení prostorového útvaru do roviny. Je určeno průmětnou a směrem (rovnoběžné) nebo středem (středové) promítání. Princip rovnoběžného promítání rovina π - průmětna vektor

Více

UNIVERZITA PALACKÉHO V OLOMOUCI

UNIVERZITA PALACKÉHO V OLOMOUCI UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDĚCKÁ FAKULTA KATEDRA ALGEBRY A GEOMETRIE PLOCHY A OBLÁ TĚLESA V KOSOÚHLÉM PROMÍTÁNÍ DO PŮDORYSNY DIPLOMOVÁ PRÁCE Vedoucí práce: Mgr. Marie Chodorová, Ph.D. Rok

Více

Zobrazení a řezy těles v Mongeově promítání

Zobrazení a řezy těles v Mongeově promítání UNIVERZITA PALACKÉHO V OLOMOUCI Pedagogická fakulta Katedra matematiky Michaela Sukupová 3. ročník prezenční studium Obor: Matematika se zaměřením na vzdělávání a český jazyk se zaměřením na vzdělávání

Více

AXONOMETRIE. Rozměry ve směru os (souřadnice bodů) jsou násobkem příslušné jednotky.

AXONOMETRIE. Rozměry ve směru os (souřadnice bodů) jsou násobkem příslušné jednotky. AXONOMETRIE 1) Princip, základní pojmy Axonometrie je rovnoběžné promítání do průmětny různoběžné se souřadnicovými rovinami. Kvádr v axonometrii : {O,x,y,z} souřadnicový systém XYZ - axonometrická průmětna

Více

UNIVERZITA PALACKÉHO V OLOMOUCI

UNIVERZITA PALACKÉHO V OLOMOUCI UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDĚCKÁ FAKULTA KATEDRA ALGEBRY A GEOMETRIE KOSOÚHLÉ PROMÍTÁNÍ DO PŮDORYSNY BAKALÁŘSKÁ PRÁCE Vedoucí práce: Mgr. Marie Chodorová, Ph.D. Rok odevzdání: 2012 Vypracovala:

Více

ROTAČNÍ PLOCHY. 1) Základní pojmy

ROTAČNÍ PLOCHY. 1) Základní pojmy ROTAČNÍ PLOCHY 1) Základní pojmy Rotační plocha vznikne rotací tvořicí křivky k kolem osy o. Pro zobrazení a konstrukce bude výhodnější nechat rotovat jednotlivé body tvořicí křivky. Trajektorii rotujícího

Více

Využití Rhinoceros ve výuce předmětu Počítačová geometrie a grafika. Bítov Blok 1: Kinematika

Využití Rhinoceros ve výuce předmětu Počítačová geometrie a grafika. Bítov Blok 1: Kinematika Využití Rhinoceros ve výuce předmětu Počítačová geometrie a grafika Bítov 13.-17.8.2012 Blok 1: Kinematika Pro lepší orientaci v obrázku je vhodné umísťovat. Nabízí se dvě rychlé varianty. Buď pomocí příkazu

Více

BAKALÁŘSKÁ PRÁCE. Řešené úlohy v axonometrii. UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra algebry a geometrie

BAKALÁŘSKÁ PRÁCE. Řešené úlohy v axonometrii. UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra algebry a geometrie UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra algebry a geometrie BAKALÁŘSKÁ PRÁCE Řešené úlohy v axonometrii Vypracovala: Barbora Bartošová M-DG, III. ročník Vedoucí práce: RNDr. Miloslava

Více

Mongeova projekce - úlohy polohy

Mongeova projekce - úlohy polohy Mongeova projekce - úlohy polohy Mgr. František Červenka VŠB-Technická univerzita Ostrava 16. 2. 2010 Mgr. František Červenka (VŠB-TUO) Mongeova projekce - úlohy polohy 16. 2. 2010 1 / 14 osnova 1 Mongeova

Více

DESKRIPTIVNÍ GEOMETRIE - elektronická skripta. ŘEZY HRANOLŮ A JEHLANŮ V MONGEOVĚ PROMÍTÁNÍ (sada řešených příkladů) ---

DESKRIPTIVNÍ GEOMETRIE - elektronická skripta. ŘEZY HRANOLŮ A JEHLANŮ V MONGEOVĚ PROMÍTÁNÍ (sada řešených příkladů) --- DESKRIPTIVNÍ GEOMETRIE - elektronická skripta ŘEZY HRANOLŮ A JEHLANŮ V MONGEOVĚ PROMÍTÁNÍ (sada řešených příkladů) --- PŘÍKLA: A4 na výšku, O [10,5; 9,5] Pravidelný šestiboký hranol má podstavu v půdorysně

Více

KÓTOVANÉ PROMÍTÁNÍ KÓTOVANÉ PROMÍTÁNÍ

KÓTOVANÉ PROMÍTÁNÍ KÓTOVANÉ PROMÍTÁNÍ KÓTOVANÉ PROMÍTÁNÍ 2.KÓTOVANÉ PROMÍTÁNÍ Označíme: s...směr promítání, s p k c...kóta bodu C C 1 (k c )...kótovaný průmět bodu C. pokud k c 0 (k c 0), potom bod C leží nad (pod) průmětnou p. jednotka j=1cm

Více

UNIVERZITA PALACKÉHO V OLOMOUCI

UNIVERZITA PALACKÉHO V OLOMOUCI UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA ALGEBRY A GEOMETRIE Diplomová práce Řezy rotačních těles v projekcích Vedoucí diplomové práce: Mgr. Marie Chodorová, Ph.D. Rok odevzdání:

Více

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem Analytická geometrie - kružnice Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A = ; 5 [ ] Napište středový i obecný tvar rovnice kružnice, která má střed

Více

Konstruktivní geometrie - LI. Konstruktivní geometrie - LI () Kótované promítání 1 / 44

Konstruktivní geometrie - LI. Konstruktivní geometrie - LI () Kótované promítání 1 / 44 Kótované promítání Konstruktivní geometrie - LI Konstruktivní geometrie - LI () Kótované promítání 1 / 44 Obsah 1 Polohové úlohy 2 Spád přímky a roviny Konstruktivní geometrie - LI () Kótované promítání

Více

Deskriptivní geometrie 0A5

Deskriptivní geometrie 0A5 Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Deskriptivní geometrie 0A5 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Veronika Roušarová Brno c 2003 Obsah

Více

ROTAČNÍ KVADRIKY. Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou

ROTAČNÍ KVADRIKY. Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou ROTAČNÍ KVADRIKY Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou Rotační kvadriky jsou rotační plochy, které vzniknou rotací kuželosečky kolem některé její osy.

Více

1 Rovnoběžné promítání a promítací metody. Nevlastní útvary. Osová afinita v rovině.

1 Rovnoběžné promítání a promítací metody. Nevlastní útvary. Osová afinita v rovině. Přednáška 1 Mgr.Güttnerová FAST Dg - bakaláři VŠB-TU Ostrava 1 Rovnoběžné promítání a promítací metody. Nevlastní útvary. Osová afinita v rovině. Literatura: (1)Černý, J. - Kočandrlová, M.: Konstruktivní

Více

Deskriptivní geometrie pro střední školy

Deskriptivní geometrie pro střední školy Deskriptivní geometrie pro střední školy. díl Ivona Spurná Nakladatelství a vydavatelství R www.computermedia.cz Deskriptivní geometrie Díl Deskriptivní geometrie,. díl Mgr. Ivona Spurná Jazyková úprava:

Více

Pravoúhlá axonometrie. tělesa

Pravoúhlá axonometrie. tělesa Pravoúhlá axonometrie tělesa V Rhinu vypneme osy mřížky (tj. červenou vodorovnou a zelenou svislou čáru). Tyto osy v axonometrii vůbec nevyužijeme a zbytečně by se nám zde pletly. Stejně tak můžeme vypnout

Více

Deskriptivní geometrie II.

Deskriptivní geometrie II. Střední průmyslová škola elektrotechnická a Vyšší odborná škola Pardubice, Karla IV. 13 Deskriptivní geometrie II. Ing. Rudolf Rožec Pardubice 2001 Skripta jsou určena pro předmět deskriptivní geometrie

Více

Konstruktivní geometrie PODKLADY PRO PŘEDNÁŠKU

Konstruktivní geometrie PODKLADY PRO PŘEDNÁŠKU Konstruktivní geometrie & technické kreslení PODKLADY PRO PŘEDNÁŠKU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného

Více

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1) .6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí

Více

ZÁKLADNÍ ZOBRAZOVACÍ METODY

ZÁKLADNÍ ZOBRAZOVACÍ METODY ZÁKLADNÍ ZOBRAZOVACÍ METODY Prostorové útvary zobrazujeme do roviny pomocí promítání, což je jisté zobrazení trojrozměrného prostoru (uvažujme rozšířený Eukleidovský prostor) do roviny, které je zadáno

Více

Deskriptivní geometrie 1

Deskriptivní geometrie 1 Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 1 Pomocný učební text 1. část Světlana Tomiczková Plzeň 2. října 2006 verze 2.0 Předmluva Tento pomocný

Více

STEREOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

STEREOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky STEREOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia utoři projektu Student na prahu 21. století - využití IT ve vyučování matematiky na gymnáziu INVESTIE

Více

Důkazy vybraných geometrických konstrukcí

Důkazy vybraných geometrických konstrukcí Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 Ročníková práce Důkazy vybraných geometrických konstrukcí Vypracovala: Ester Sgallová Třída: 8.M Školní rok: 015/016 Seminář : Deskriptivní geometrie

Více

II. TOPOGRAFICKÉ PLOCHY

II. TOPOGRAFICKÉ PLOCHY II. TOPOGRAFICKÉ PLOCHY 1. Základní úlohy 1.1 Základní pojmy Topografická plocha je omezující plocha části zjednodušeného zemského povrchu. Při jejím zobrazování se obvykle používá kótované promítání.

Více

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie. Pomocný učební text. František Ježek, Světlana Tomiczková

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie. Pomocný učební text. František Ježek, Světlana Tomiczková Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Geometrie Pomocný učební text František Ježek, Světlana Tomiczková Plzeň 20. září 2004 verze 2.0 Předmluva Tento pomocný text

Více

Deskriptivní geometrie I Prezentace a podklady k pr edna s ka m

Deskriptivní geometrie I Prezentace a podklady k pr edna s ka m Deskriptivní geometrie I Prezentace a podklady k pr edna s ka m Geometrická zobrazení v rovině Shodná zobrazení v rovině: identita, posunutí, rotace, středová souměrnost osová souměrnost posunutá souměrnost

Více

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Technické Osvětlení

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Technické Osvětlení Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Technické Osvětlení Vypracoval: Zbyšek Sedláček Třída: 8.M Školní rok: 2013/2014 Seminář: Deskriptivní geometrie Prohlašuji, že jsem

Více

Další servery s elektronickým obsahem

Další servery s elektronickým obsahem Právní upozornění Všechna práva vyhrazena. Žádná část této tištěné či elektronické knihy nesmí být reprodukována a šířena v papírové, elektronické či jiné podobě bez předchozího písemného souhlasu nakladatele.

Více

Zářezová metoda Kosoúhlé promítání

Zářezová metoda Kosoúhlé promítání Zářezová metoda Kosoúhlé promítání Mgr. Jan Šafařík Přednáška č. 6 přednášková skupina P-B1VS2 učebna Z240 Základní literatura Jan Šafařík: příprava na přednášku Autorský kolektiv Ústavu matematiky a deskriptivní

Více

Sedlová plocha (hyperbolický paraboloid)

Sedlová plocha (hyperbolický paraboloid) Sedlová plocha (hyperbolický paraboloid) v kosoúhlém promítání do nárysny Řešené úlohy Příklad: osoúhlém promítání do nárysny ν (ω =, q = /2) sestrojte vrchol V, osu o a tečnou rovinu τ v bodě T hyperbolického

Více

Deskriptivní geometrie BA03

Deskriptivní geometrie BA03 Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Deskriptivní geometrie BA03 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2014 Určeno pro studenty studijních

Více

s touto válcovou plochou. Tento případ nebudeme dále uvažovat.

s touto válcovou plochou. Tento případ nebudeme dále uvažovat. Šroubové plochy Šroubová plocha Φ(k) vzniká šroubovým pohybem křivky k, která není trajektorií daného šroubového pohybu. Je-li pohyb levotočivý, resp. pravotočivý je i plocha Φ levotočivá, resp. pravotočivá.

Více

prostorová definice (viz obrázek vlevo nahoře): elipsa je průsečnou křivkou rovinného

prostorová definice (viz obrázek vlevo nahoře): elipsa je průsečnou křivkou rovinného Elipsa Výklad efinice a ohniskové vlastnosti prostorová definice (viz obrázek vlevo nahoře): elipsa je průsečnou křivkou rovinného řezu na rotační kuželové ploše, jestliže řezná rovina není kolmá k ose

Více

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ 5) Průnik rotačních ploch Bod R průniku ploch κ, κ : 1) Pomocná plocha κ ) Průniky : l κ κ, l κ κ 3) R l l Volba pomocné plochy pro průnik rotačních ploch závisí na poloze os ploch. Omezíme se pouze na

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Konstruktivní geometrie BA008

Konstruktivní geometrie BA008 Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Konstruktivní geometrie BA008 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2017 Určeno pro studenty studijních

Více

Mendelova univerzita. Konstruktivní geometrie

Mendelova univerzita. Konstruktivní geometrie Mendelova univerzita Petr Liška Konstruktivní geometrie rno 2014 Tato publikace vznikla za přispění Evropského sociálního fondu a státního rozpočtu ČR prostřednictvím Operačního programu Vzdělávání pro

Více

Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem

Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem Shodná zobrazení Otočení Příklad 1. Jsou dány tři různé soustředné kružnice a, b a c. Sestrojte rovnostranný trojúhelník ABC tak, aby A ležel na a, B ležel na b a C ležel na c. Řešení. Zvolíme vrchol A

Více

Mongeovo zobrazení. Osová afinita

Mongeovo zobrazení. Osová afinita Mongeovo zobrazení Osová afinita nechť je v prostoru dána průmětna π, obecná rovina ρ a v této rovině libovolný trojúhelník ABC, promítneme-li trojúhelník kolmo do průmětny π, dostaneme trojúhelník A

Více

Deskriptivní geometrie 2

Deskriptivní geometrie 2 Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 2 Pomocný učební text - díl I Světlana Tomiczková Plzeň 12. února 2016 verze 2.0 2 Autoři Obsah 1 Elementární

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

[obr. 1] Rozbor S 3 S 2 S 1. o 1. o 2 [obr. 2]

[obr. 1] Rozbor S 3 S 2 S 1. o 1. o 2 [obr. 2] Příklad Do dané kruhové výseče s ostrým středovým úhlem vepište kružnici (obr. ). M k l V N [obr. ] Rozbor Oblouk l a hledaná kružnice k se dotýkají v bodě T, mají proto v tomto bodě společnou tečnu t.

Více

Axiomy: Jsou to tvrzení o těchto pojmech a vztazích, která jsou přijata bez důkazů. Například:

Axiomy: Jsou to tvrzení o těchto pojmech a vztazích, která jsou přijata bez důkazů. Například: 1.Euklidovský prostor 1.1) Základními geomterickými útvary jsou bod přímka a rovina. Základním geometrickým vztahem je vztah incidence, který se většinou opisuje spojeními bod leží na přímce, přímka prochází

Více

Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod,

Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod, 5.4 Parabola Parabola je křivka, která vznikne řezem rotační kuželové plochy rovinou, jestliže odchylka roviny řezu od osy kuželové plochy je stejná jako odchylka povrchových přímek plochy a rovina řezu

Více

Katedra matematiky. Geometrie pro FST 1. Plzeň 1. února 2009 verze 6.0

Katedra matematiky. Geometrie pro FST 1. Plzeň 1. února 2009 verze 6.0 Katedra matematiky Geometrie pro FST 1 Pomocný učební text František Ježek, Marta Míková, Světlana Tomiczková Plzeň 1. února 2009 verze 6.0 Předmluva Tento pomocný text vznikl pro potřeby předmětu Geometrie

Více

tečen a osu o π, V o; plochu omezte hranou vratu a půdorysnou a proved te rozvinutí

tečen a osu o π, V o; plochu omezte hranou vratu a půdorysnou a proved te rozvinutí Řešené úlohy Rozvinutelná šroubová plocha v Mongeově promítání Příklad: V Mongeově promítání zobrazte půl závitu rozvinutelné šroubové plochy, jejíž hranou vratu je pravotočivá šroubovice, která prochází

Více

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. ROČNÍKOVÁ PRÁCE Technické osvětlení

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. ROČNÍKOVÁ PRÁCE Technické osvětlení Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Technické osvětlení Vypracoval: Martin Hanuš Třída: 8.M Školní rok: 2015/2016 Seminář: Deskriptivní geometrie Prohlašuji, že jsem ročníkovou

Více

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ ÚVOD A DESKRIPTIVNÍ GEOMETRIE

Více

MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA. DIPLOMOVÁ PRÁCE Úlohy s prostorovými tělesy v Mongeově zobrazovací metodě

MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA. DIPLOMOVÁ PRÁCE Úlohy s prostorovými tělesy v Mongeově zobrazovací metodě MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA DIPLOMOVÁ PRÁCE Úlohy s prostorovými tělesy v Mongeově zobrazovací metodě BRNO 2006 BLANKA MORÁVKOVÁ Prohlášení: Prohlašuji, že jsem diplomovou práci vypracovala

Více

obecná rovnice kružnice a x 2 b y 2 c x d y e=0 1. Napište rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A[-3;2].

obecná rovnice kružnice a x 2 b y 2 c x d y e=0 1. Napište rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A[-3;2]. Kružnice množina bodů, které mají od středu stejnou vzdálenost pojmy: bod na kružnici X [x, y]; poloměr kružnice r pro střed S[0; 0]: SX =r x 0 2 y 0 2 =r x 2 y 2 =r 2 pro střed S[m; n]: SX =r x m 2 y

Více

- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU:

- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU: 1/12 PLANIMETRIE Základní pojmy: Shodnost, podobnost trojúhelníků Středová souměrnost, osová souměrnost, posunutí, otočení shodná zobrazení Středový a obvodový úhel Obsahy a obvody rovinných obrazců 1.

Více

Deskriptivní geometrie BA03

Deskriptivní geometrie BA03 Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Deskriptivní geometrie BA03 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2006 Obsah 1. Kuželosečky 2 2.

Více

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Geometrie pro FST 1 Pomocný učební text František Ježek, Marta Míková, Světlana Tomiczková Plzeň 11. září 2006 verze 4.0 Předmluva

Více

Zborcené plochy. Mgr. Jan Šafařík. Konzultace č. 3. učebna Z240. přednášková skupina P-BK1VS1

Zborcené plochy. Mgr. Jan Šafařík. Konzultace č. 3. učebna Z240. přednášková skupina P-BK1VS1 Zborcené plochy Mgr. Jan Šafařík Konzultace č. 3 přednášková skupina P-BK1VS1 učebna Z240 Literatura Základní literatura: Autorský kolektiv Ústavu matematiky a deskriptivní geometrie FaSt VUT v Brně: Deskriptivní

Více

11. Rotační a šroubové plochy

11. Rotační a šroubové plochy Rotační a šroubové plochy ÚM FSI VU v Brně Studijní text. Rotační a šroubové plochy. Rotační plochy Rotační plochy jsou plochy, které lze získat rotačním šablonováním křivky. Jejich rovnice je tedy tvaru

Více

2 OSOVÁ AFINITA V ROVINĚ 37

2 OSOVÁ AFINITA V ROVINĚ 37 Kuželosečky Obsah 1 OHNISKOVÉ VLASTNOSTI KUŽELOSEČEK 5 1.1 Úvod..................................... 5 1.2 Elipsa.................................... 9 1.2.1 Ohniskové vlastnosti elipsy.....................

Více

Zborcené plochy. Přímkové plochy lze vytvořit i jiným způsobem než jsme je dosud konstruovali. V o- tzv. Chaslesova věta:

Zborcené plochy. Přímkové plochy lze vytvořit i jiným způsobem než jsme je dosud konstruovali. V o- tzv. Chaslesova věta: Zborcené plochy Přímkové plochy lze vytvořit i jiným způsobem než jsme je dosud konstruovali. V o- becném případě lze přímku zadat jako průsečnici dvou rovin, každá přímka v prostoru tak je zadána čtyřmi

Více

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz 1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině

Více

REKONSTRUKCE ASTROLÁBU POMOCÍ STEREOGRAFICKÉ PROJEKCE

REKONSTRUKCE ASTROLÁBU POMOCÍ STEREOGRAFICKÉ PROJEKCE REKONTRUKCE ATROLÁBU POMOCÍ TEREOGRAFICKÉ PROJEKCE Václav Jára 1 1 tereografická projekce a její vlastnosti tereografická projekce kulové plochy je středové promítání z bodu této kulové plochy do tečné

Více

Pravoúhlá axonometrie - osvětlení těles

Pravoúhlá axonometrie - osvětlení těles Pravoúhlá axonometrie - osvětlení těles KG - L MZLU v Brně ZS 2008 KG - L (MZLU v Brně) Pravoúhlá axonometrie - osvětlení těles ZS 2008 1 / 39 KG - L (MZLU v Brně) Pravoúhlá axonometrie - osvětlení těles

Více

SHODNÁ ZOBRAZENÍ V ROVINĚ GEOMETRICKÁ ZOBRAZENÍ V ROVINĚ SHODNÁ ZOBRAZENÍ

SHODNÁ ZOBRAZENÍ V ROVINĚ GEOMETRICKÁ ZOBRAZENÍ V ROVINĚ SHODNÁ ZOBRAZENÍ Předmět: Ročník: Vytvořil: Datum: MTEMTIK DRUHÝ Mgr. Tomáš MŇÁK 21. června 2012 Název zpracovaného celku: SHODNÁ ZORZENÍ V ROVINĚ Teoretická část GEOMETRICKÁ ZORZENÍ V ROVINĚ Zobrazení Z v rovině je předpis,

Více

Prùniky tìles v rùzných projekcích

Prùniky tìles v rùzných projekcích UNIVERZITA PALACKÉHO V OLOMOUCI PØÍRODOVÌDECKÁ FAKULTA Katedra algebry a geometrie Prùniky tìles v rùzných projekcích Bakalářská práce Vedoucí práce: RNDr. Lenka Juklová, Ph.D. Rok odevzdání: 2010 Vypracoval:

Více

Poznámka 1: Každý příklad začneme pro přehlednost do nového souboru tímto krokem:

Poznámka 1: Každý příklad začneme pro přehlednost do nového souboru tímto krokem: Mongeovo promítání základní úlohy polohové (bod, přímka, rovina, bod v rovině, hlavní přímky roviny, rovina daná různoběžkami, průsečnice rovin, průsečík přímky s rovinou) Budeme pracovat v rovině nejlépe

Více

Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů

Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů 1/13 Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů STEREOMETRIE Stereometrie - geometrie v prostoru - zabývá se vzájemnou polohou

Více

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b 008 verze 0A. Řešeními nerovnice x + 4 0 jsou právě všechna x R, pro která je x ( 4, 4) b) x = 4 c) x R x < 4 e) nerovnice nemá řešení b. Rovnice x + y x = je rovnicí přímky b) dvojice přímek c) paraboly

Více

Kartografické projekce

Kartografické projekce GYMNÁZIUM CHRISTIANA DOPPLERA Zborovská 45, Praha 5 Ročníková práce z deskriptivní geometrie Kartografické projekce Vypracoval: Nguyen, Viet Bach, 4.C Školní rok: 2011/2012 Zadavatel: Mgr. Ondřej Machů

Více

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Geometrie pro FST 1 Pomocný učební text František Ježek, Marta Míková, Světlana Tomiczková Plzeň 29. srpna 2005 verze 1.0 Předmluva

Více

ŠROUBOVÉ PLOCHY. 1. Základní úlohy na šroubových plochách.

ŠROUBOVÉ PLOCHY. 1. Základní úlohy na šroubových plochách. ŠROUBOVÉ PLOCHY 1. Základní úlohy na šroubových plochách. Šroubová plocha Φ vzniká šroubovým pohybem křivky k, která není trajektorií daného šroubového pohybu. Je-li pohyb levotočivý (pravotočivý je i

Více

KMA/G2 Geometrie 2 9. až 11. cvičení

KMA/G2 Geometrie 2 9. až 11. cvičení KMA/G2 Geometrie 2 9. až 11. cvičení 1. Rozhodněte, zda kuželosečka k je regulární nebo singulární: a) k : x 2 0 + 2x 0x 1 x 0 x 2 + x 2 1 2x 1x 2 + x 2 2 = 0; b) k : x 2 0 + x2 1 + x2 2 + 2x 0x 1 = 0;

Více

ZÁKLADNÍ PLANIMETRICKÉ POJMY

ZÁKLADNÍ PLANIMETRICKÉ POJMY ZÁKLADNÍ PLANIMETRICKÉ POJMY Základní geometrické pojmy jsou bod, přímka a rovina. Geometrie je chápána jako část matematiky, která se zabývá studiem geometrických útvarů v rovině. Body určujeme jako průsečíky

Více

Princip a vlastnosti promítání. Konstruktivní geometrie a technické kresleni - L

Princip a vlastnosti promítání. Konstruktivní geometrie a technické kresleni - L Vlastnosti promítání Úkolem konstruktivní geometrie je zobrazení trojrozměrných předmětů ve dvojrozměrné rovině. Vlastnosti promítání Úkolem konstruktivní geometrie je zobrazení trojrozměrných předmětů

Více

P L A N I M E T R I E

P L A N I M E T R I E M T E M T I K P L N I M E T R I E rovinná geometrie Základní planimetrické pojmy od - značí se velkými tiskacími písmeny, např.,,. P, Q. Přímka - značí se malými písmeny, např. a, b, p, q nebo pomocí bodů

Více