Kalorimetry calorimeters

Rozměr: px
Začít zobrazení ze stránky:

Download "Kalorimetry calorimeters"

Transkript

1 Kalorimetry calorimeters Measurement of energies of particles at higher energies, when a cascade process (i.e. a shower) is initiated 1. Proces energetických ztrát je statistický DE/E ~ 1/ E process of energy losses is statistical ies 2. Rozměry kalorimetrů ~ ln (E 0 ) dimensions of calorimeters 3. Není třeba magnetického pole no magnetic field is needed 4. Lze je segmentovat, tj. lze měřit i směr pohybu částice they can be segmented i.e. the direction of particle motion can be measured 5. Lze je použít na spouštění trigrů they are used in triggers 6. Radiační poškození Radiation demage 1

2 2

3 3

4 sprška Kalorimetr obsahuje: -pasivní materiál (většinou) -aktivní materiál (vždy) v němž se detekuje deponovaná energie tzv. viditelná energie 4

5 5

6 [ 2γ (τ ) ] 6

7 7

8 A. Homogeneous calorimeters B. Sampling calorimeters B.1 electromagnetic - electromagnetic showers B.2 hadronic - hadronic showers B.3. calorimeter response B.4. calibration B.5. improvement of the resolution of hadron calorimeters C. Calorimeter with liquid Ar D. SPACAL calorimeter with scintillation fibres 8

9 A. Homogeneous calorimeters used for detection of particles which interact electromagnetically i. e. electrons, positrons, photons, (muons?) 9

10 10

11 11

12 Homogenní kalorimetr -olovnaté sklo Homogeneous calorimeter - lead glass 12

13 , OPAL experiment, CERN, collider LEP electrons (~50 GeV) vs positrons (~50 GeV) 13

14 14

15 B. Sampling kalorimetry sampling calorimeters Elektromagnetické : detekce fotonů, elektronů Jejich princip je založen na šíření elektromagnetických spršek Electromagnetic : detection of photons and electrons method : electromagnetic showers Hadronové: detekce hadronů (piony, protony, neutrony..) hadronové spršky Hadron calorimeters : hadron detection (pions, protons, neutrons..) hadronic showers 15

16 Absorbers shower development Active (detection) layer no shower development, ionization only 16

17 17

18 B.1 elektromagnetické sampling kalorimetry - elektromagnetické electromagnetic calorimeters electromagnetic showers spršky Jednoduchý model : a simplified model of shower developement in a medium 1) Každý e +, e - s E > E c urazí 1 radiační délku a vyzáří 1/2 své energie each e +, e - with E > E c transverses 1 radiation length end emits ½ of its energy 2) Každý foton s E > 2m e c 2 urazí 1 radiační délku s a vytvoří symetrický pár e +, e - each photon with E > 2m e c 2 transverses 1 radiation length and creates symmetric pair 3) Pro E<E c žádné brzdné záření, pouze ztráty ionizací for E<E c no bremstrahlung, ionization losses only 4) Pro E > E c zanedbáme ionizační ztráty for E > E c ionization losses are neglected 18

19 1) Počet částic v hloubce t N(t)=2 t number of particles at depth t 2) E(t) / částici = E 0 / 2 t, E/particle 3) Hloubka v níž částice mají energii E depth where partciles have energy E t(e ) = ln(e 0 / E ) / ln2 4) Maximální hloubka pro E(t)=E c maximum depth for t max = ln(e 0 / E c ) / ln2 5) Celková délka drah nabitých částic total length of charged particles Emission angles are neglected All tracks are parallel E 0 T --- X 0 E c 19

20 t max T = 2X 0 / 3 * Σ 2 j + S 0 * 2 / 3 * N max j=0 S 0 je průměrná dráha nabitých částic s energií menší než je kritická energie is average track length of charged particles with E<E c T = 2X 0 / 3 * ( 2 t max+1-1) + S 0 * 2 / 3 * N max 4/3 X 0 * E 0 / E c + S 0 * 2 / 3 * E 0 / E c T ~ E 0 / E c * X 0 20

21 Pokud detekujeme elektrony od nějaké energie E d je If electrons are detected from the energy E d T = X 0 * F(k) * E 0 /E c k je parametr, definovaný např. jako k is a parameter defined e.g. as k=2.29 * E d / E c F(k) je experimentálně nalezená formule is determined experimentally F(k) = e k ( 1 + k * ln ( k / 1.526)) Pro k 0 je F(k) 1 For is 21

22 Podélný profil spršek longitudinal shower profile Parametrizace deponované energie v závislosti na hloubce t (X 0 ) získaná ze simulací a z měření de dt b a = E 0 t a e -b t G(a) Deposited de/dt energy at the depth t a, b parametry, G - gama funkce parameters, gamma function t max = (a -1)/b 22

23 23

24 Deponovaná Energie (lib. jednotky) Deposited energy (arbtr. units) 24

25 E c ~1/Z 25

26 deposited energy/ total energy 26

27 Příčný profil elektromagnetických spršek Transverse (lateral) profile r Energie v příčném směru Energy in the transverse direction E(r) C * exp(-4r/r M ) R M t C konstanta, a constant Přesněji dvě komponenty In fact 2 components E(r) = A * exp(-br) + C *exp(-dr), A,b,C,d konstanty constants R M 27

28 ρ M R M 28

29 29

30 X o (photon) = 9/7 X o (electron) 30

31 31

32 e da Rozlišení resolution absorbátor absorber d s Active layer: Detekční médium s velkým X 0 Detection material with high X 0 n vrstev detekčního prostředí s, n detection (active) layers s Deponovaná energie, ( de/dx) s jsou ionizační ztráty v detekčním prostředí Deposited energy E S, ( de/dx) s ion. loss of e (e + ) in the detection material E s = ( de/dx) s * d s ( N 1 + N 2 + N 3 + N n ) N i počet nabitých částic ve vrstvě i number of charged particles in the layer ï E s = (de/dx) s * d s * N Assumption (de/dx) s constant N je celkový počet nabitých částic prošlých detekčním prostředím total number of charged particles traversing detection layers

33 Rozvoj spršky probíhá tak dlouho, až energie elektronů a pozitronů v absorbátoru poklesne na kritickou energii, tj pro Fe je cca 23 MeV, pro Pb je cca 8 MeV, X 0 ~ 0. 5 cm (kritická energie E c 660/ (Z ) MeV ) V detekčním prostředí elektrony a pozitrony pouze ionizují. Scintilátor X 0 ~ 40 cm, kritická energie velká scintilátor = sloučenina C, O, H 60 % deponované energie dodávají elektrony (pozitrony) s E< 4 MeV, e ± s velmi nízkou energií se většinou nedostanou z absorbátoru. Tudíž ionizační ztráty e ± jsou ~ na minimum a málo závisí na energii. Proto v E s je de/dx konstantní. Showers end if positron and electron energies < critical energy E c Fe ~ 23 MeV, E c Pb ~ 8 MeV In the active layer electron and positron ionize only. Their ionization losses are at minimum because their energies are sufficiently high. ( de/dx) s constant 33

34 Ionization losses electrons no brehmsstrahlung 34

35 Měď (ionizace) 35

36 Doběhy elektronů 36

37 Absorbátor: Celkový počet částic vytvořených v Absorber: absorbátoru a které projdou do detekčního prostředí total number of particles produced in the absorber and which enter detection medium N = T/d a = E 0 / E c * X 0 / d a Energetické rozlišení v deponované energii je určeno fluktuacemi v N, energy resolution of deposited energy correspond to the fluctuation of N tj. DN= N Resolution: DE s / E s = DN / N = 1 / N = 1/ E 0 * d a * E c / X 0 Výše uvedený vztah platí za předpokladu, že všechny dráhy částice ve spršce jsou paralelní se směrem dopadající částice a že detekujeme částice všech energiích. Jestliže úhel emise sekundárních částice je q a detekujeme částice od nějaké prahové energie dostaneme DE s / E s = 1 / E 0 * d a * E c / [X 0 * F(k) * < cos q >] Modification of the resolution if energies are detected from a threshould energy and the emission angle of secondary particles are taken into account 37

38 Celkové energetické rozlišení total energy resolution ( ΔE ) 2 = E A ( 0 ) ( A 1 ) E A 2 ln(e 0 ) E 0 ( ) 2 A 3 * s A 4 ( ) E 0 Fluktuace ve spršce Shower fluctuation Fluktuace v detekčním Systému fluctuation of the detection system Ztráty na podélný rozměr Losses due to longitudinal leakage Nehomogenita non-homogenuity Celkový elektronický šum, S- je šum v jednotkách energie Total electronic noise, S- noise in the unit of energy 38

39 ogenní kalorimetry mpling kalorimetry 39

40 B.2. Hadron sampling calorimeters - hadronic showers hadronové sampling kalorimetry hadronové spršky 40

41 Electromagnetic shower e Hadronic shower π + 41

42 42

43 43

44 Příspěvek k de/dx pro protony s energií 5 GeV v železe contribution to de/dx in iron for protons at 5 GeV viditelná energie visible energy neviditelná energie invisible energy Nabité piony, protony 40% vazbová energie 18 % charged pions, protons binding energy Neutrální piony π 0-2γ 17% neutrony +ostatní 17 % neutral pions neutrons + others Jaderné fragmenty 8 % nuclear frgments 44

45 e.m. složka 45

46 46

47 47

48 Podélný a příčný profil hadronových spršek longitudinal and lateral profile of hadron showers charakteristická veličina je interakční délka λ I = 0.35 A 1/3 g cm -2 characteristic quantity interaction lenght nebo absorbční délka nezahrnuje elastický rozpty absorption length Počet částic ve spršce <n> = A 0.1 ln(e 2 tot ) Number of particles in a shower Většinou piony cca 90%. Mostly pions ~90% Podélný profil longitudinal profile Energetické ztráty ve vzdálenosti l od počátku spršky na délce dl energy loss at the distance l from the start of shower in the lengh dl de(l) = E 0 { (1 c 0 ) H(x) dx + c 0 F(y) dy } x= a had * l / λ I, y= a el * l / X 0, c 0 frakce neutrálních pionů parameters fraction of neutral pions (platí pokud se neutr. piony produkují pouze v primárním vrcholu) 48

49 Transverse profile r direction of motion constants Valid for Hadron energy E Resolution of hadron calorimeters -- Sampling term constant term 49

50 Vliv různých procesů na rozlišení hadronových kalorimetrů Influence of various processes on the resolution of hadron cal. 50

51 Influence of various processes on the resolution of hadron cal. Process characteristic feature influence on resolution Hadron multiplicity of secondary Interactions particles fluctuation loss of neutrinos Nuclear evaporation energy ~10 % loss of binding de-excitation binding energy 10 % energy neutrons 40 % bad detection protons 40 % of slow protons and slow neutrons decays energy and muons 51

52 52

53 53

54 Elektromagnetická část 40 vrstev (Pb + scint.) Electromagnetic section Sampling kalorimetr Hadronová část 55 vrstev (Fe + scint.) Hadronic section 54

55 Profil spršky pro piony o energii 270 GeV v kalorimetru o 90 vrstvách olova o tlouštce ¾ inche, součet přes mnoho pionů Longitudinal shower profile for pions at 270 GeV in a calorimeter of 90 layers of Pb, thickness ¾ inch, sum over many pions Profil vzhledem k počátku spršky profile wrt. to the shower start energie/vrstvu Číslo vrstvy Layer number 55

56 Profil jednoho pionu o energii 270 GeV One pion energie/vrstvu číslo vrstvy 56

57 Profil dalších dvou pionů Other two pions 57

58 elektromagnetická sprška hadronová sprška Electromagnetic shower hadronic shower longitudinal profile Délka v podélném směru, kde je maximální deponovaná energie X 0 t max [ 0.2 lne (GeV)+ 0.7] λ I Délka v podélném směru, kde je deponováno 95 % energie t 95% = t max + ( 0.08Z + 9.6) X 0 t 95% a lne + b 95% energie je ve válci o poloměru energy in a cylinder of radius r=2 R M = 21 MeV/ E c X 0 Způsoben mnohonásobným rozptylem due to multiple scattering Příčný profil lateral profile 95% energie je ve válci o poloměru r ~ λ I Způsoben fixní hodnotou příčné hybnosti sekundárních částic 0.4 GeV Fixed transverse momentum of secondary particles ~ 0.4 GeV Železo, X 0 =1.76 cm, λ I = 16.8 cm, E c = 22.5 MeV, částice s E=100 GeV: a=9.4, b=39, t max = 21 cm, t 95% 42 cm r = 3.2 cm t max 27 cm, t 95% 80 cm r ~ 16.8 cm

59 Hadronové kalorimetry jsou: Hadron calorimeters are - nelineární non-linear - mají špatné rozlišení, kolem 0.9 / E, (E v GeV) - they have bad resolution. about - - mají jinou odezvu pro hadrony než elektrony při stejné primární energii - they have different response for hadrons and electrons at the same primary energy 59

60 B.3 Odezva kalorimetrů Calorimeter response 60

61 A) a) Calorimeter response homogeneous em. calorimeters 61

62 b) B) Calorimeter response sampling em. calorimeters t thickness of detection (active) material, of absorber (passive) Miony jsou většinou na minimu ionizace f R (e)/f R (µ) mips: minimum ioniz. particle 62

63 C) c) Calorimeter response hadron sampling calorimeters 63

64 Usually non compensating calorimeters, Hadronové kalorimetry jsou obvykle nekompenzační i.e. the response is different for electrons an hadrons tj. Odezva je různá pro elektrony a hadrony Calorimeter signal : T pion signal: T π Particle energy 21 GeV Calorimeter: Fe + scint. Normalized to the pion signal e/h ratio: T/ T π Kompenzační kalorimetr 64

65 E had celková energie hadr. kalorimetru E e E h E e electromag. energy, E h hadron energy f fractions E h E rel E p E n E inv rel energie deponovaná relativistickými částicemi p energie dep. pomalými protony n neutrony inv neviditelná energie (vazbová, eutrina f frakce mip: energy of a minimum ionizing particle usually muon, (rel, p, n corresponding energies e/mip E e E mip 65

66 (tj. většinou pomalé protony) ( velmi silný signál, obvykle dosahuje maximální hodnoty, tj nezávisí na energie protonů saturace) 66

67 67

68 Měření energií při velké multiplicitě sekundárních částic Je třeba odlišit částice vstupující do kalorimetru Vysoké primární energie hodně částic, měří se energie shluků částic tzv. jetů y Nutná příčná segmentace detekční části signál z tzv. buněk (cel) metoda: klastry Izolovaná buňka ignoruje se Klustr, sečte se energie ze všech buněk stanoví se centrum klustru, tj. jejich x,y buňka X

69 - Spojí se odpovídající klustry v jednotlivých vrstvách, sečte se energie - tj. dostaneme energii částice či jetu. tj. klustry které mají centrum s téměř stejnými hodnotami souřadnic 69

70 B.4 Calibration Determination of energy from measured signals i.e. E=a + b * S S měřený signál např. napěťový puls, nebo náboj, measured charge S- obvykle digitalizovaný analogový signál, (s pomocí amplitud-digital-convertor, ADC), což je číslo v jednotkách ADC, tj. udává např. celou plochu analogového signálu A, B, kalibrační parametry, které je třeba určit calibration parameters, have to be determined from experiments E je známá energie částice, použije se několik různých energií known particle energy, several energies are used kalibrace radioaktivními zdroji v jaderné fyzice calibration with radioactive sources in nuclear physics kalibrace svazky elektronů a hadronů, with electron and hadron beams kalibrace miony with muons a) Kalibrace svazky elektronů je jednodušší, z ní se stanový tzv. elektromagnetická škála tj. A a B. The calibration with electrons electromagnetic scale., i.e. parameters A and B. S těmito parametry se určí odezva na hadrony a tím se určí sampling poměr A response to hadrons is determined with these parameters e/h ratio b) Testování odezvy detekčního prostředí v různých jeho částech, např. v rozích scintilátorů, uprostřed atd. Testing of the response in various part of active 70 cells e.g. edges of scintillators etc.

71 Kalibrace s miony Muon calibration with muon beams at accelerators, muon energy is known 71

72 Energetické ztráty mionů 72

73 Muon energy cca 1 GeV to cca 100 GeV nearly at ionization minimum These muons are suitable for the calibration and testing of homogeneity of calorimeter cells. The energy losses are described by Landau formula. Měření těchto ztrát v kalorimetru v jedné buňce (absorbátor Fe- scintilátor) Energy loss measurement in a cell of a calorimeter (Fe + scint.) The measured signal A in ADC (amplitude to digital convertor) units. For each muon which penetrates the cell one ADC value Pozadí background nejpravd. hodnota A mip The most probable value 73

74 1. Cely mají různé hodnoty A mip. Tj. pro celu i A mip i Tyto hodnoty se překalibrují na nějakou střední hodnotu, tj každá hodnota se násobí konstantou C i tak, aby A mip i C i = < A mip > cells have various values of A mip. These values are recalibrated to some mean value by a constant C i, A mip i C i = < A mip > uniform cell response 2. Energetická kalibrace: Miony se obvykle plně neabsorbují. Proto se energetické ztráty přesně spočítají, tj v jedné cele je ΔE = C µ < A mip >, kde C µ je energetická kalibrační konstanta pro miony energy calibration: muons are not absorbed their energy losses are exactly calculated, for a cell ΔE = C en < A mip >, where C en is the calibration constant 74

75 Kalibrace s elektrony, primární energie elektronů E elektrony téměř plně absorbovány - Signál A el i A el i = C i A el i - Celkový signál ze všech n buněk A E = n i A el i - Různé energie E závíslost E = a el + b el A E - a el, b el kalibrační konstanty na elektromagnetické škále 75

76 Response of a calorimeter to electrons, pions and muons at primary energy 8 GeV Calibrated on em. scale. Odezva kalorimetru na elektrony, piony a miony o energii 8 GeV. Zkalibrováno na elektromagnetickou škálu 76

77 B.5 Zlepšení rozlišení hadronových kalorimetrů Improvement of the resolution of hadron calorimeters Metoda: KOMPENZACE ODEZVY kalorimetru na jednotlivé složky signálu (em, protony, neutrony..) Kompenzaci lze získat: redukcí elektromagnetické odezvy zvýšením hadronové odezvy e/h ~ 1 závisí: na energii, materiálu, vlastnostech samplingu Způsob realizace kompenzace: - Hardware - Software, tzv. metoda vážení, použitelná pro segmentované kalorimetry í

78 78

79 Hardware compensation reduction of the e-response and increase of the h-response 79

80 absorbátor Detekční část Resolutions hadronic ΔE/E 0.3/ E 80

81 Účinné průřezy interakce neutronů s uranem a vodíkem 81

82 Software compensation i.e. weighting method, suitable for segmented calorimeters oddělit elektromagnetické klastry v hadronové spršce, které se zkalibrují na elektromagnetické škále zbylé klastry se zkalibrují podle simulace E = Σ c i E i, c i is the weighting constants in the cell I with the energy E i sum over all cells for c, c i = 1, electromagnetic scale other constants are determined from the simulation to get the best resolution could be achieved hadronic resolution ΔE/E 0.5/ E 82

83 k ΔE E ~ k E iron sampling calorimeter (absorber Fe) software compensation 83

84 Příklady sampling kalorimetrů 84

85 Spršky ve vzduchu, tlak 1 atm Showers in air, pressure 1 atm X 0 = 304 m λ I = 745 m, t max = 1200 m r=745 m 85

86 C. Kalorimetr s kapalným argonem calorimeter with liquid Ar Kapalný Ar : liquid Ar hustota 1g/cm 3 density nezachycuje elektrony electronegative pohyblivost elektronů cm/s při napětí 1 kv/mm electron mobility at the voltage ionizační potenciál 26.5 ev ionization potential (de/dx) min = 2.11 MeV/cm nízká teplota 86 o K low temperature

87 Jaký je indukovaný náboj od ionizačních elektronů? What is the induced charge of ionization electrons? Calorimeter cell Absorbátor absorber x + d Q Ar - V 0 E = V 0 d Elektroda electrod Induced charge Δr Δx Δq = Q Δx/d Induced current in the external circuit : 87

88 Primární částice primary particle + V čase t=0 je celkový náboj ionizačních elektronů Q 0 At t = 0 total electron charge Q 0 ionizační elektrony ionization electrons Induced current at time t: - Počet elektronů se mění, neboť se pohybují ke kladné elektrodě, kde jsou neutralizovány v je rychlost elektronů v is electron velocity n 0 is initial number of electrons, počet is number of electrons at time t A decrease of electrons dn during dt passing an unit area is electron density between electrodes 88

89 Induced current at time t, (t max is time when the last electron is collected) Total induced charge d example = C total collection time of electrons d/v 89

90 SPACAL Hadronový Elektromagnetický kalorimetr kapalný Ar 90

91 91

92 Příklad struktury hadronového kalorimetru z kapalného Ar the structure of a hadronic calorimeter 92

93 D. SPACAL kalorimetr ze scintilačních vláken scintillating fibre calorimeter Olovo a scintilační vlákna, Pb + scintillating fibres, (vlákna průměr 0.5 mm, délka 30 cm, fibres: diameter 0.5 mm, length 30 cm Pb listy o tlouštce 0.8 mm, 40x40x200 mm) Pb sheets: thickness 0.8.mm, 50x40x200 mm) dobře měřený příčný profil lateral profile well measured neměřený podélný profil longitudinal profile not measured dobrá identifikace elektronů (p/e ~10-4 ) good electron identification nekompenzační, poměr signálu e/h=1.3, non-compenzating, e/h=1.3 dobré rozlišení pro elektrony ~ 7 % good resolution for electrons ~7% 93

94 94

95 2 fotonásobiče 4 cm 8 cm 95

96 Příčný řez kalorimetrem SPACAL Transverse cut of the calorimeter SPACAL Submodul 8x4 cm Urychlovací trubice Accelerator pipe Průměr 1.5 m, diameter 1.5. m 96

97 Spacal montáž do aparatury experimentu H1 Spacal installation into the detection system of the experiment H1 97

Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou?

Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou? Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou? 10/20/2004 1 Bethe Blochova formule (1) je maximální možná předaná energie elektronu N r e - vogadrovo čislo - klasický poloměr elektronu

Více

Kalorimetry 10/29/2004 1

Kalorimetry 10/29/2004 1 Kalorimetry měření energie s pomocí totální absorpce kombinované s prostorovou rekonstrukcí kalorimetrie je destruktivní metoda odezva detektoru E kalorimetrie funguje pro nabité částice (e+, e- a hadrony)

Více

Kalorimetr Tilecal a rekonstrukce signálu. Seminář FzÚ, 9.4.2010 Tomáš Davídek, ÚČJF MFF UK 1

Kalorimetr Tilecal a rekonstrukce signálu. Seminář FzÚ, 9.4.2010 Tomáš Davídek, ÚČJF MFF UK 1 Kalorimetr Tilecal a rekonstrukce signálu Seminář FzÚ, 9.4.2010 Tomáš Davídek, ÚČJF MFF UK 1 Kalorimetry (1) Základní úkoly: identifikace a měření směru a energie elektronů, pozitronů a fotonů (elektromagnetické

Více

Elektromagnetická kalorimetrie a rekonstrukce π0 na ALICI. Jiri Kral University of Jyväskylä

Elektromagnetická kalorimetrie a rekonstrukce π0 na ALICI. Jiri Kral University of Jyväskylä Elektromagnetická kalorimetrie a rekonstrukce π0 na ALICI Jiri Kral University of Jyväskylä Zimní škola EJF 2013 Kalorimetrie Hardware IJZ, věže detektoru Elektronizace a on-line kalibrace Digitalizace

Více

2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru

2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru 1 Pracovní úkol 1. Seznámit se s interaktivní verzí simulace 2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru 3. Kvantitativně srovnat energetické ztráty v kalorimetru pro různé

Více

Prověřování Standardního modelu

Prověřování Standardního modelu Prověřování Standardního modelu 1) QCD hluboce nepružný rozptyl, elektron (mion) proton, strukturní funkce fotoprodukce γ proton produkce gluonů v e + e produkce jetů, hadronů 2) Elektroslabá torie interference

Více

LEPTONY. Elektrony a pozitrony a elektronová neutrina. Miony a mionová neutrina. Lepton τ a neutrino τ

LEPTONY. Elektrony a pozitrony a elektronová neutrina. Miony a mionová neutrina. Lepton τ a neutrino τ LEPTONY Elektrony a pozitrony a elektronová neutrina Pozitronium, elektronové neutrino a antineutrino Beta rozpad nezachování parity, měření helicity neutrin Miony a mionová neutrina Lepton τ a neutrino

Více

Jak můžeme vidět částice?

Jak můžeme vidět částice? Jak můžeme vidět částice? J. Žáček Ústav částicové a jaderné fyziky, Matematicko-fyzikální fakulta Karlova Univerzita v Praze H1 po 20. rokoch, Prírodovedecká fakulta UPJŠ v Košiciach Proč chceme částice

Více

Detekce a spektrometrie neutronů

Detekce a spektrometrie neutronů Detekce a spektrometrie neutronů 1. Pomalé neutrony a) aktivní detektory, b) pasivní detektory, c) mechanické monochromátory 2. Rychlé neutrony a) detektory používající zpomalování neutronů b) přímá detekce

Více

2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru

2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru Pracovní úkol: 1. Seznámit se s interaktivní verzí simulace 2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru 3. Kvantitativně srovnat energetické ztráty v kalorimetru pro různé

Více

Semiconductor (solid state) detectors

Semiconductor (solid state) detectors 1. Introduction Semiconductor (solid state) 2. Principle of semiconductors detectors 3. Silicon detectors, p-n junction, depleted region, induced charge 4. energy measurement, germanium detectors 5. position

Více

Příklady Kosmické záření

Příklady Kosmické záření Příklady Kosmické záření Kosmické částice 1. Jakou kinetickou energii získá proton při pádu z nekonečné výšky na Zem? Poloměr Zeměje R Z =637810 3 maklidováenergieprotonuje m p c 2 =938.3MeV. 2. Kosmickékvantum

Více

Cherenkov counters. 1. Principle. 2. Radiators. 3. Threshold counters. 4. Differential counters. 5. RICH - Ring Image Cherenkov

Cherenkov counters. 1. Principle. 2. Radiators. 3. Threshold counters. 4. Differential counters. 5. RICH - Ring Image Cherenkov Cherenkov counters 1. Principle 2. Radiators 3. Threshold counters 4. Differential counters 5. RICH - Ring Image Cherenkov 6. Application of Cherenkov counters: experiments DIRAC, DELPHI, Super Kamiokande,

Více

Global Properties of A-A Collisions II

Global Properties of A-A Collisions II Satz Lecture Notes Global Properties of A-A Collisions II M. Kliemant, R. Sahoo, T. Schuster, R. Stock 18.10.2013 RQGP: Vojtěch Pacík & Olga Rusňáková Osnova Úvod Rozdělení příčné energie E T Prostorová

Více

Theory Česky (Czech Republic)

Theory Česky (Czech Republic) Q3-1 Velký hadronový urychlovač (10 bodů) Než se do toho pustíte, přečtěte si prosím obecné pokyny v oddělené obálce. V této úloze se budeme bavit o fyzice částicového urychlovače LHC (Large Hadron Collider

Více

Scintilace. Co zachytí oko? Pokud během 1/10 s nejméně 15 fotonů. Jedna z nejstarších detekčních metod (Rutherford a ZnS)

Scintilace. Co zachytí oko? Pokud během 1/10 s nejméně 15 fotonů. Jedna z nejstarších detekčních metod (Rutherford a ZnS) Scintilace Jedna z nejstarších detekčních metod (Rutherford a ZnS) scintilace -puls světla krátce po průchodu částice fluorescence světelný puls krátce (< 10 ns) po absorpci γ kvanta fosforescence emise

Více

Transformers. Produkt: Zavádění cizojazyčné terminologie do výuky odborných předmětů a do laboratorních cvičení

Transformers. Produkt: Zavádění cizojazyčné terminologie do výuky odborných předmětů a do laboratorních cvičení Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ..07/..30/0.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň, Klatovská 09 Tento projekt je

Více

Experimentální metody ve fyzice vysokých energií Alice Valkárová

Experimentální metody ve fyzice vysokých energií Alice Valkárová Experimentální metody ve fyzice vysokých energií Alice Valkárová alice@ipnp.troja.mff.cuni.cz 10/20/2004 1 Literatura o detektorech částic Knihy: C.Grupen, Particle detectors,cambridge University Press,1996

Více

piony miony neutrina Elektrony,

piony miony neutrina Elektrony, piony miony neutrina Elektrony, In the energy range of 1012-1015 ev (electron-volts*), cosmic rays arriving at the edge of the Earth's atmosphere have been measured to consist of: ~ 50% protons ~ 25% alpha

Více

Referát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace)

Referát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace) Referát z atomové a jaderné fyziky Detekce ionizujícího záření (principy, technická realizace) Měřicí a výpočetní technika Šimek Pavel 5.7. 2002 Při všech aplikacích ionizujícího záření je informace o

Více

Pozitron teoretická předpověď

Pozitron teoretická předpověď Pozitron teoretická předpověď Diracova rovnice: αp c mc x, t snaha popsat relativisticky pohyb elektronu x, t ˆ i t řešení s negativní energií vakuum je Diracovo moře elektronů pozitrony díry ve vaku Paul

Více

Gas detectors. 2. Single wire proportional counter jednodrátové proporcionální počítače

Gas detectors. 2. Single wire proportional counter jednodrátové proporcionální počítače Gas detectors 1. Ionization of gases 2. Single wire proportional counter jednodrátové proporcionální počítače 3. Multiwire proportional chambers mnohodrátové proporcionální komory 4. Drift chambers driftové

Více

CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA

CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA &KDSWHUSUHVHQWVWKHGHVLJQDQGIDEULFDW LRQRIPRGLILHG0LQNRZVNLIUDFWDODQWHQQD IRUZLUHOHVVFRPPXQLFDWLRQ7KHVLPXODWHG DQGPHDVXUHGUHVXOWVRIWKLVDQWHQQDDUH DOVRSUHVHQWHG

Více

Mezony π, mezony K, mezony η, η, bosony 1

Mezony π, mezony K, mezony η, η, bosony 1 Mezony π, mezony K, mezony η, η, bosony 1 Mezony π, (piony) a) Nabité piony hmotnost, rozpady, doba života, spin, parita, nezachování parity v jejich rozpadech b) Neutrální piony hmotnost, rozpady, doba

Více

Compression of a Dictionary

Compression of a Dictionary Compression of a Dictionary Jan Lánský, Michal Žemlička zizelevak@matfyz.cz michal.zemlicka@mff.cuni.cz Dept. of Software Engineering Faculty of Mathematics and Physics Charles University Synopsis Introduction

Více

Spectroscopy. Radiation and Matter Spectroscopic Methods. Luís Santos

Spectroscopy. Radiation and Matter Spectroscopic Methods. Luís Santos Spectroscopy Radiation and Matter Spectroscopic Methods Spectroscopy Spectroscopy studies the way electromagnetic radiation (light) interacts with matter as a function of frequency, thus, it studies the

Více

Princip metody Transport částic Monte Carlo v praxi. Metoda Monte Carlo. pro transport částic. Václav Hanus. Koncepce informatické fyziky, FJFI ČVUT

Princip metody Transport částic Monte Carlo v praxi. Metoda Monte Carlo. pro transport částic. Václav Hanus. Koncepce informatické fyziky, FJFI ČVUT pro transport částic Koncepce informatické fyziky, FJFI ČVUT Obsah Princip metody 1 Princip metody Náhodná procházka 2 3 Kódy pro MC Příklady použití Princip metody Náhodná procházka Příroda má náhodný

Více

Charakterizace koloidních disperzí. Pavel Matějka

Charakterizace koloidních disperzí. Pavel Matějka Charakterizace koloidních disperzí Pavel Matějka Charakterizace koloidních disperzí 1. Úvod koloidní disperze 2. Spektroskopie kvazielastického rozptylu 1. Princip metody 2. Instrumentace 3. Příklady použití

Více

Senzory ionizujícího záření

Senzory ionizujícího záření Senzory ionizujícího záření Senzory ionizujícího záření dozimetrie α = β = He e 2+, e + γ, n X... elmag aktivita [Bq] (Becquerel) A = A e 0 λt λ...rozpadová konstanta dávka [Gy] (Gray) = [J/kg] A = 0.5

Více

INTERAKCE IONTŮ S POVRCHY II.

INTERAKCE IONTŮ S POVRCHY II. Úvod do fyziky tenkých vrstev a povrchů INTERAKCE IONTŮ S POVRCHY II. Metody IBA (Ion Beam Analysis): pružný rozptyl nabitých částic (RBS), detekce odražených atomů (ERDA), metoda PIXE, Spektroskopie rozptýlených

Více

Anihilace pozitronů v letu

Anihilace pozitronů v letu Anihilace pozitronů v letu v pevné látce se e + termalizuje během několika ps termalizovaný pozitron anihilace v klidu dominantní proces v pevných látkách netermalizovaný pozitron anihilace v letu (AiF)

Více

Jana Nováková Proč jet do CERNu? MFF UK

Jana Nováková Proč jet do CERNu? MFF UK Jana Nováková MFF UK Proč jet do CERNu? Plán přednášky 4 krát částice kolem nás intermediální bosony mediální hvězdy hon na Higgsův boson - hit současné fyziky urychlovač není projímadlo detektor není

Více

Detektory. požadovaná informace o částici / záření. proudový puls p(t) energie. čas příletu. výstupní signál detektoru. poloha.

Detektory. požadovaná informace o částici / záření. proudový puls p(t) energie. čas příletu. výstupní signál detektoru. poloha. Detektory požadovaná informace o částici / záření energie čas příletu poloha typ citlivost detektoru výstupní signál detektoru proudový puls p(t) E Q p t dt účinný průřez objem vnitřní šum vstupní okno

Více

Klepnutím lze upravit styl předlohy. nadpisů. nadpisů.

Klepnutím lze upravit styl předlohy. nadpisů. nadpisů. 1/ 13 Klepnutím lze upravit styl předlohy Klepnutím lze upravit styl předlohy www.splab.cz Soft biometric traits in de identification process Hair Jiri Prinosil Jiri Mekyska Zdenek Smekal 2/ 13 Klepnutím

Více

zve studenty 1, 2, 3, 4, 5, 6, 7, (tedy všech) ročníků

zve studenty 1, 2, 3, 4, 5, 6, 7, (tedy všech) ročníků detektory statistické metody Skupina částicové fyziky SLO/UPOL zve studenty 1, 2, 3, 4, 5, 6, 7, (tedy všech) ročníků na stručnou prezentaci výsledků své práce a nabídku neuronové sítě statistické metody

Více

Gymnázium, Brno, Slovanské nám. 7 WORKBOOK. Mathematics. Teacher: Student:

Gymnázium, Brno, Slovanské nám. 7 WORKBOOK.   Mathematics. Teacher: Student: WORKBOOK Subject: Teacher: Student: Mathematics.... School year:../ Conic section The conic sections are the nondegenerate curves generated by the intersections of a plane with one or two nappes of a cone.

Více

Fotonásobič. fotokatoda. typicky: - koeficient sekundární emise = počet dynod N = zisk: G = fokusační elektrononová optika

Fotonásobič. fotokatoda. typicky: - koeficient sekundární emise = počet dynod N = zisk: G = fokusační elektrononová optika Fotonásobič vstupní okno fotokatoda E h fokusační elektrononová optika systém dynod anoda e zesílení G N typicky: - koeficient sekundární emise = 3 4 - počet dynod N = 10 12 - zisk: G = 10 5-10 7 Fotonásobič

Více

Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích z bublinové komory.

Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích z bublinové komory. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích

Více

Elementární částice. 1. Leptony 2. Baryony 3. Bosony. 4. Kvarkový model 5. Slabé interakce 6. Partonový model

Elementární částice. 1. Leptony 2. Baryony 3. Bosony. 4. Kvarkový model 5. Slabé interakce 6. Partonový model Elementární částice 1. Leptony 2. Baryony 3. Bosony 4. Kvarkový model 5. Slabé interakce 6. Partonový model I.S. Hughes: Elementary Particles M. Leon: Particle Physics W.S.C. Williams Nuclear and Particle

Více

Entrance test from mathematics for PhD (with answers)

Entrance test from mathematics for PhD (with answers) Entrance test from mathematics for PhD (with answers) 0 0 3 0 Problem 3x dx x + 5x +. 3 ln 3 ln 4. (4x + 9) dx x 5x 3. 3 ln 4 ln 3. (5 x) dx 3x + 5x. 7 ln. 3 (x 4) dx 6x + x. ln 4 ln 3 ln 5. 3 (x 3) dx

Více

Kosmické záření a jeho detekce stanicí CZELTA

Kosmické záření a jeho detekce stanicí CZELTA Kosmické záření a jeho detekce stanicí CZELTA Jiří Slabý slabyji2@fjfi.cvut.cz 30.10.2008, Fyzikální seminář, Fakulta jaderná a fyzikálně inženýrská Českého vysokého učení technického v Praze Co nás čeká

Více

2. Entity, Architecture, Process

2. Entity, Architecture, Process Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Praktika návrhu číslicových obvodů Dr.-Ing. Martin Novotný Katedra číslicového návrhu Fakulta informačních technologií ČVUT v Praze Miloš

Více

Efekty pozadí v měření oscilací neutrin Experiment Daya Bay. Viktor Pěč, ÚČJF MFF

Efekty pozadí v měření oscilací neutrin Experiment Daya Bay. Viktor Pěč, ÚČJF MFF Efekty pozadí v měření oscilací neutrin Experiment Daya Bay, ÚČJF MFF Oscilace neutrin Experiment Daya Bay Detekce neutrin Pozadí Simulace záchytu mionů Oscilace neutrin Bruno Pontecorvo Vlastní stav slabé

Více

Studium proton-protonových srážek na RHIC

Studium proton-protonových srážek na RHIC Studium proton-protonových srážek na RHIC diplomová práce Jan Kapitán vedoucí diplomové práce: Michal Šumbera, CSc. Ústav jaderné fyziky AVČR, & MFF UK 6.12.2006 / Řež J. Kapitán (ÚJF AVČR) PP collisions

Více

ALFA upgrade. Vít Vorobel

ALFA upgrade. Vít Vorobel ALFA upgrade Vít Vorobel Varianty ALFA upgrade Luminosita bez změny citlivé oblasti Výměna unaveného detektoru novým stejným Výměna scint. vlaken za radiačně stálejší zelená vlákna SiPM místo MAPMT (+

Více

ZÁPIS Z VĚDECKÉ RADY FEL ZČU V PLZNI konané dne 25. října 2017

ZÁPIS Z VĚDECKÉ RADY FEL ZČU V PLZNI konané dne 25. října 2017 ZÁPIS Z VĚDECKÉ RADY FEL ZČU V PLZNI konané dne 25. října 2017 Přítomni: dle prezenční listiny Omluveni: Ing. Borusík, Ing. Drábová, Ing. Kysela, prof. Maryška, prof. Valouch, Ing. Votruba Program Veřejná

Více

Rozměr a složení atomových jader

Rozměr a složení atomových jader Rozměr a složení atomových jader Poloměr atomového jádra: R=R 0 A1 /3 R0 = 1,2 x 10 15 m Cesta do hlubin hmoty Složení atomových jader: protony + neutrony = nukleony mp = 1,672622.10 27 kg mn = 1,6749272.10

Více

Transportation Problem

Transportation Problem Transportation Problem ١ C H A P T E R 7 Transportation Problem The transportation problem seeks to minimize the total shipping costs of transporting goods from m origins (each with a supply s i ) to n

Více

Czech Technical University in Prague DOCTORAL THESIS

Czech Technical University in Prague DOCTORAL THESIS Czech Technical University in Prague Faculty of Nuclear Sciences and Physical Engineering DOCTORAL THESIS CERN-THESIS-2015-137 15/10/2015 Search for B! µ + µ Decays with the Full Run I Data of The ATLAS

Více

CZECH TECHNICAL UNIVERSITY IN PRAGUE Faculty of Nuclear Sciences and Physical Engineering Department of Physics. Bachelor thesis

CZECH TECHNICAL UNIVERSITY IN PRAGUE Faculty of Nuclear Sciences and Physical Engineering Department of Physics. Bachelor thesis CZECH TECHNICAL UNIVERSITY IN PRAGUE Faculty of Nuclear Sciences and Physical Engineering Department of Physics Bachelor thesis Simulation and design of sampling electromagnetic calorimeter FOCAL Michal

Více

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno 1 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Struktura

Více

Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec

Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec Fotoelektronová spektroskopie Instrumentace RNDr. Věra V Vodičkov ková,, PhD. Katedra materiálů TU Liberec Obecné schéma metody Dopad rtg záření emitovaného ze zdroje na vzorek průnik fotonů několik µm

Více

Introduction to MS Dynamics NAV

Introduction to MS Dynamics NAV Introduction to MS Dynamics NAV (Item Charges) Ing.J.Skorkovský,CSc. MASARYK UNIVERSITY BRNO, Czech Republic Faculty of economics and business administration Department of corporate economy Item Charges

Více

Biofyzikální chemie radiometrické metody. Zita Purkrtová říjen - prosinec 2015

Biofyzikální chemie radiometrické metody. Zita Purkrtová říjen - prosinec 2015 Biofyzikální chemie radiometrické metody Zita Purkrtová říjen - prosinec 2015 Radioaktivita 1896 Antoine Henri Becquerel první pozorování při studiu fluorescence a fosforescence solí uranu 1903 Nobelova

Více

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD.

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. KAP FP TU Liberec pavel.pesat@tul.cz tel. 3293 Radioaktivita. Přímo a nepřímo ionizující záření. Interakce záření s látkou. Detekce záření, Dávka

Více

CARBONACEOUS PARTICLES IN THE AIR MORAVIAN-SILESIAN REGION

CARBONACEOUS PARTICLES IN THE AIR MORAVIAN-SILESIAN REGION UHLÍKATÉ ČÁSTICE V OVZDUŠÍ MORAVSKO- SLEZSKÉHO KRAJE CARBONACEOUS PARTICLES IN THE AIR MORAVIAN-SILESIAN REGION Ing. MAREK KUCBEL Ing. Barbora SÝKOROVÁ, prof. Ing. Helena RACLAVSKÁ, CSc. Aim of this work

Více

Air Quality Improvement Plans 2019 update Analytical part. Ondřej Vlček, Jana Ďoubalová, Zdeňka Chromcová, Hana Škáchová

Air Quality Improvement Plans 2019 update Analytical part. Ondřej Vlček, Jana Ďoubalová, Zdeňka Chromcová, Hana Škáchová Air Quality Improvement Plans 2019 update Analytical part Ondřej Vlček, Jana Ďoubalová, Zdeňka Chromcová, Hana Škáchová vlcek@chmi.cz Task specification by MoE: What were the reasons of limit exceedances

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í NUCLEAR PHYSICS I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í 1. Introduction 4 14 17 1 nucleus E. Rutherford, 1914 the first reaction: α N O H 2 7 8 1 nuclear forces = a new kind of very strong

Více

Radiova meteoricka detekc nı stanice RMDS01A

Radiova meteoricka detekc nı stanice RMDS01A Radiova meteoricka detekc nı stanice RMDS01A Jakub Ka kona, kaklik@mlab.cz 15. u nora 2014 Abstrakt Konstrukce za kladnı ho softwarove definovane ho pr ijı macı ho syste mu pro detekci meteoru. 1 Obsah

Více

Základy výpočetní tomografie

Základy výpočetní tomografie Základy výpočetní tomografie Doc.RNDr. Roman Kubínek, CSc. Předmět: lékařská přístrojová technika Základní principy výpočetní tomografie Výpočetní tomografie - CT (Computed Tomography) CT je obecné označení

Více

technický list TRANSIL TM 1.5KE6V8A/440A 1.5KE6V8CA/440CA www.gme.cz str 1

technický list TRANSIL TM 1.5KE6V8A/440A 1.5KE6V8CA/440CA www.gme.cz str 1 Dodavatel: GM electronic, spol. s r.o., Křižíkova 77, 186 00 Praha 8 zákaznická linka: 840 50 60 70 technický list 1.5KE6V8A/440A 1.5KE6V8CA/440CA TRANSIL TM FEATURES PEAK PULSE POWER : 1500 W (10/1000µs)

Více

Typy interakcí. Obsah přednášky

Typy interakcí. Obsah přednášky Co je to inteligentní a progresivní materiál - Jaderné analytické metody-využití iontových svazků v materiálové analýze Anna Macková Ústav jaderné fyziky AV ČR, Řež 250 68 Obsah přednášky fyzikální princip

Více

Uvádění pixelového detektoru experimentu ATLAS do provozu

Uvádění pixelového detektoru experimentu ATLAS do provozu Seminář ATLAS FZU AV ČR 28/3/2008 Uvádění pixelového detektoru experimentu ATLAS do provozu Pavel Jež FZU AVČR, v.v.i. FJFI ČVUT Pixelový detektor status Hlavní rozcestník: https://twiki.cern.ch/twiki/bin/

Více

Záchyt pozitronů v precipitátech

Záchyt pozitronů v precipitátech Záchyt pozitronů v precipitátech koherentní precipitát materiál ve vakuu E elektrony pozitrony vakuum E F E, valenční č pás vakuum výstupní práce: povrchový potenciál: chemický potenciál: Záchyt pozitronů

Více

Aplikace jaderné fyziky (několik příkladů)

Aplikace jaderné fyziky (několik příkladů) Aplikace jaderné fyziky (několik příkladů) Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK pavel.cejnar@mff.cuni.cz Příklad I Datování Galileiho rukopisů Galileo Galilei (1564 1642) Všechny vázané

Více

The Over-Head Cam (OHC) Valve Train Computer Model

The Over-Head Cam (OHC) Valve Train Computer Model The Over-Head Cam (OHC) Valve Train Computer Model Radek Tichanek, David Fremut Robert Cihak Josef Bozek Research Center of Engine and Content Introduction Work Objectives Model Description Cam Design

Více

Úvod do fyziky tenkých vrstev a povrchů. Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál

Úvod do fyziky tenkých vrstev a povrchů. Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál Úvod do fyziky tenkých vrstev a povrchů Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál ty i hlavní typy nepružných srážkových proces pr chodu energetických

Více

KBN1. KBN1- nerezová vlnovcová hadice, paralelní vlnění jednostěnná, střední tloušťka stěny, střední vlnění

KBN1. KBN1- nerezová vlnovcová hadice, paralelní vlnění jednostěnná, střední tloušťka stěny, střední vlnění KBN1 DN 8 - DN 300 DN 8 - DN 300 KBN1- nerezová vlnovcová hadice, paralelní vlnění jednostěnná, střední tloušťka stěny, střední vlnění KBN1 - stainless steel hose, parallel corrugations Single-wall, medium

Více

Charakteristika a mrtvá doba Geiger-Müllerova počítače

Charakteristika a mrtvá doba Geiger-Müllerova počítače Charakteristika a mrtvá doba Geiger-Müllerova počítače Úkol : 1. Proměřte charakteristiku Geiger-Müllerova počítače. K jednotlivým naměřeným hodnotám určete střední kvadratickou chybu a vyznačte ji do

Více

Urychlovače částic principy standardních urychlovačů částic

Urychlovače částic principy standardních urychlovačů částic Urychlovače částic principy standardních urychlovačů částic Základní info technické zařízení, které dodává kinetickou energii částicím, které je potřeba urychlit nabité částice jsou v urychlovači urychleny

Více

Dynamic Development of Vocabulary Richness of Text. Miroslav Kubát & Radek Čech University of Ostrava Czech Republic

Dynamic Development of Vocabulary Richness of Text. Miroslav Kubát & Radek Čech University of Ostrava Czech Republic Dynamic Development of Vocabulary Richness of Text Miroslav Kubát & Radek Čech University of Ostrava Czech Republic Aim To analyze a dynamic development of vocabulary richness from a methodological point

Více

Měření absorbce záření gama

Měření absorbce záření gama Měření absorbce záření gama Úkol : 1. Změřte záření gama přirozeného pozadí. 2. Změřte záření gama vyzářené gamazářičem. 3. Změřte záření gama vyzářené gamazářičem přes absorbátor. 4. Naměřené závislosti

Více

SPECIAL THEORY OF RELATIVITY

SPECIAL THEORY OF RELATIVITY SPECIAL THEORY OF RELATIVITY 1. Basi information author Albert Einstein phenomena obsered when TWO frames of referene moe relatie to eah other with speed lose to the speed of light 1905 - speial theory

Více

2. FYZIKÁLNÍ ZÁKLADY ANALYTICKÉ METODY RBS

2. FYZIKÁLNÍ ZÁKLADY ANALYTICKÉ METODY RBS RBS Jaroslav Král, katedra fyzikální elektroniky FJFI, ČVUT. ÚVOD Spektroskopie Rutherfordova zpětného rozptylu (RBS) umožňuje stanovení složení a hloubkové struktury tenkých vrstev. Na základě energetického

Více

Plazma. magnetosféra komety. zbytky po výbuchu supernovy. formování hvězdy. slunce

Plazma. magnetosféra komety. zbytky po výbuchu supernovy. formování hvězdy. slunce magnetosféra komety zbytky po výbuchu supernovy formování hvězdy slunce blesk polární záře sluneční vítr - plazma je označována jako čtvrté skupenství hmoty - plazma je plyn s významným množstvím iontů

Více

ATOMOVÁ SPEKTROMETRIE

ATOMOVÁ SPEKTROMETRIE ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.

Více

Litosil - application

Litosil - application Litosil - application The series of Litosil is primarily determined for cut polished floors. The cut polished floors are supplied by some specialized firms which are fitted with the appropriate technical

Více

Zhodnocení dozimetrických vlastností MicroDiamond PTW detektoru a jeho využití ve stereotaktických ozařovacích polích

Zhodnocení dozimetrických vlastností MicroDiamond PTW detektoru a jeho využití ve stereotaktických ozařovacích polích Zhodnocení dozimetrických vlastností MicroDiamond PTW 60019 detektoru a jeho využití ve stereotaktických ozařovacích polích T. Veselský 1,2,4, J. Novotný Jr. 1,2,4, V. Paštyková 1,3,4, B. Otáhal 5, L.

Více

Nová zařízení pro měření, kalibraci popř. řízení měření Zařízení konstruovaná pro fluorescenční detektory (FD) projektu PAO Fungující na principu detekce optického žáření Cloud camera (us University of

Více

Projekt SPOLEČNÉ VZDĚLÁVÁNÍ PRO SPOLEČNOU BUDOUCNOST. Současná kosmonautika a kosmické technologie 2014

Projekt SPOLEČNÉ VZDĚLÁVÁNÍ PRO SPOLEČNOU BUDOUCNOST. Současná kosmonautika a kosmické technologie 2014 Projekt SPOLEČNÉ VZDĚLÁVÁNÍ PRO SPOLEČNOU BUDOUCNOST Současná kosmonautika a kosmické technologie 214 Projekt přeshraniční spolupráce SPOLEČNÉ VZDĚLÁVÁNÍ PRO SPOLEČNOU BUDOUCNOST Carbon quantum dots as

Více

Energie, její formy a měření

Energie, její formy a měření Energie, její formy a měření aneb Od volného pádu k E=mc 2 Přednášející: Martin Zápotocký Seminář Aplikace lékařské biofyziky 2014/5 Definice energie Energos (ἐνεργός) = pracující, aktivní; ergon = práce

Více

EXACT DS OFFICE. The best lens for office work

EXACT DS OFFICE. The best lens for office work EXACT DS The best lens for office work EXACT DS When Your Glasses Are Not Enough Lenses with only a reading area provide clear vision of objects located close up, while progressive lenses only provide

Více

Zobrazovací systémy v transmisní radiografii a kvalita obrazu. Kateřina Boušková Nemocnice Na Františku

Zobrazovací systémy v transmisní radiografii a kvalita obrazu. Kateřina Boušková Nemocnice Na Františku Zobrazovací systémy v transmisní radiografii a kvalita obrazu Kateřina Boušková Nemocnice Na Františku Rentgenové záření Elektromagnetické záření o λ= 10-8 10-13 m V lékařství obvykle zdrojem rentgenová

Více

Statický kvarkový model

Statický kvarkový model Statický kvarkový model Supermulltiplet: charakterizován I a hypernábojem Y=B+S Skládání multipletů spinových či izotopických, např. dvě částice se spinem 1/2 Tři částice se spinem 1/2 Kvartet a dva dublety

Více

ACOUSTIC EMISSION SIGNAL USED FOR EVALUATION OF FAILURES FROM SCRATCH INDENTATION

ACOUSTIC EMISSION SIGNAL USED FOR EVALUATION OF FAILURES FROM SCRATCH INDENTATION AKUSTICKÁ EMISE VYUŽÍVANÁ PŘI HODNOCENÍ PORUŠENÍ Z VRYPOVÉ INDENTACE ACOUSTIC EMISSION SIGNAL USED FOR EVALUATION OF FAILURES FROM SCRATCH INDENTATION Petr Jiřík, Ivo Štěpánek Západočeská univerzita v

Více

A Large Ion Collider Experiment

A Large Ion Collider Experiment LHC není pouze Large Hadron Collider ATLAS ALICE CMS LHCb A Large Ion Collider Experiment Alenka v krajině ě velmi horké a husté éjaderné éhmoty a na počátku našeho vesmíru Díky posledním pokrokům se v

Více

ČÁSTICOVÁ ZLATÁ LÉTA SEDMDESÁTÁ

ČÁSTICOVÁ ZLATÁ LÉTA SEDMDESÁTÁ ČÁSTICOVÁ ZLATÁ LÉTA SEDMDESÁTÁ (aneb NAŠE ZAČÁTKY IV.) elektronické experimenty v CERN a ÚFVE Serpuchov (via LVE SÚJV Dubna.) Jan Hladký, FZÚ AV ČR v. v. i. Erice, Sicilie CERN experiment 1974 návrh laboratoří

Více

Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika

Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika Jaderná fyzika Vlastnosti atomových jader Radioaktivita Jaderné reakce Jaderná energetika Vlastnosti atomových jader tomové jádro rozměry jsou řádově 1-15 m - složeno z protonů a neutronů Platí: X - soustředí

Více

KULOVÝ STEREOTEPLOMĚR NOVÝ přístroj pro měření a hodnocení NEROVNOMĚRNÉ TEPELNÉ ZÁTĚŽE

KULOVÝ STEREOTEPLOMĚR NOVÝ přístroj pro měření a hodnocení NEROVNOMĚRNÉ TEPELNÉ ZÁTĚŽE české pracovní lékařství číslo 1 28 Původní práce SUMMARy KULOVÝ STEREOTEPLOMĚR NOVÝ přístroj pro měření a hodnocení NEROVNOMĚRNÉ TEPELNÉ ZÁTĚŽE globe STEREOTHERMOMETER A NEW DEVICE FOR measurement and

Více

Urychlení KZ. Obecné principy, Fermiho urychlení, druhý řád, první řád, spektrum

Urychlení KZ. Obecné principy, Fermiho urychlení, druhý řád, první řád, spektrum Urychlení KZ Obecné principy, Fermiho urychlení, druhý řád, první řád, spektrum Obecné principy Netermální vznik nekompatibilní se spektrem KZ nerealistické teploty E k =3/2 k B T, Univerzalita tvaru spektra

Více

Pokroky matematiky, fyziky a astronomie

Pokroky matematiky, fyziky a astronomie Pokroky matematiky, fyziky a astronomie Rupert Leitner; Michal Suk Velké detekční systémy ve fyzice částic Pokroky matematiky, fyziky a astronomie, Vol. 42 (1997), No. 6, 313--324 Persistent URL: http://dml.cz/dmlcz/138098

Více

Pravděpodobnostní charakter jaderných procesů

Pravděpodobnostní charakter jaderných procesů Pravděpodobnostní charakter jaderných procesů Při převážné většině jaderných pokusů je jaderné záření registrováno jako proud nabitých částic respektive kvant γ, které vznikají v důsledku rozpadu atomových

Více

Hmotnostní spektrometrie Mass spectrometry - MS

Hmotnostní spektrometrie Mass spectrometry - MS Hmotnostní spektrometrie Mass spectrometry - MS Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 Hmotnostní spektrometrie Mass spectrometry - MS hmotnostní spektroskopie versus hmotnostní

Více

SPECIFICATION FOR ALDER LED

SPECIFICATION FOR ALDER LED SPECIFICATION FOR ALDER LED MODEL:AS-D75xxyy-C2LZ-H1-E 1 / 13 Absolute Maximum Ratings (Ta = 25 C) Parameter Symbol Absolute maximum Rating Unit Peak Forward Current I FP 500 ma Forward Current(DC) IF

Více

Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie

Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. rentgenová spektroskopická metoda k určen

Více

Metody povrchové analýzy založené na detekci iontů. Pavel Matějka

Metody povrchové analýzy založené na detekci iontů. Pavel Matějka Metody povrchové analýzy založené na detekci iontů Pavel Matějka Metody povrchové analýzy založené na detekci iontů 1. sekundárních iontů - SIMS 1. Princip metody 2. Typy bombardování 3. Analyzátory iontů

Více

LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií)

LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií) LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií) RHEED (Reflection High-Energy Electron Diffraction difrakce elektronů s vysokou energií na odraz) Úvod Zkoumání povrchů pevných

Více

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146

Více

Přednáška 4. Úvod do fyziky plazmatu : základní charakteristiky plazmatu, plazma v elektrickém vf plazma. Doutnavý výboj : oblasti výboje

Přednáška 4. Úvod do fyziky plazmatu : základní charakteristiky plazmatu, plazma v elektrickém vf plazma. Doutnavý výboj : oblasti výboje Přednáška 4 Úvod do fyziky plazmatu : základní charakteristiky plazmatu, plazma v elektrickém vf plazma. Doutnavý výboj : oblasti výboje Jak nahradit ohřev při vypařování Co třeba bombardovat ve vakuu

Více

FUNKČNÍ VZOREK FUNKČNÍ VZOREK ZAŘÍZENÍ HTPL-A PRO MĚŘENÍ RELATIVNÍ TOTÁLNÍ EMISIVITY POVLAKŮ

FUNKČNÍ VZOREK FUNKČNÍ VZOREK ZAŘÍZENÍ HTPL-A PRO MĚŘENÍ RELATIVNÍ TOTÁLNÍ EMISIVITY POVLAKŮ ODBOR TERMOMECHANIKA TECHNOLOGICKÝCH PROCESŮ FUNKČNÍ VZOREK FUNKČNÍ VZOREK ZAŘÍZENÍ HTPL-A PRO MĚŘENÍ RELATIVNÍ TOTÁLNÍ EMISIVITY POVLAKŮ Autor: Ing. Zdeněk Veselý, Ph.D. Doc. Ing. Milan Honner, Ph.D.

Více