2. FYZIKÁLNÍ ZÁKLADY ANALYTICKÉ METODY RBS
|
|
- Miroslav Macháček
- před 8 lety
- Počet zobrazení:
Transkript
1 RBS Jaroslav Král, katedra fyzikální elektroniky FJFI, ČVUT. ÚVOD Spektroskopie Rutherfordova zpětného rozptylu (RBS) umožňuje stanovení složení a hloubkové struktury tenkých vrstev. Na základě energetického spectra zpětně rozptýlených iontů umožňuje tato metoda kvalitativní a kvantitativní stanovení prvků na povrchu pevné látky. Při znalosti složení povrchové vrstvy je touto metodou možno stanovit tlouštky a hloubkové uspořádání tenkovrstvé struktury. Je to významná diagnostická metoda pro technologii tenkých vrstev a tenkovrstvých struktur. Používají se lehké ionty, převážně ionty helia, o energii řádu MeV. Svazek energetických iontů se získává z urychlovače typu Van de Graaff.. FYZIKÁLNÍ ZÁKLADY ANALYTICKÉ METODY RBS Kinematika binární pružné srážky. Spektroskopie Rutherfordova zpětného rozptylu je založena na kinematice binární srážky při pružném rozptylu a při stanovení hloubkových profilů využívá znalosti energetických ztrát iontů, pohybujících se v pevné látce. Při pružném rozptylu iontu, dopadajícího s energií E 0 na terčový atom, jsou výsledné energie obou částic vystupujících ze srážky úměrné počáteční energii E 0 a dále závisí jen na úhlu rozptylu θ, příp. úhlu odrazu Ψ, a na poměru hmotností obou částic. E =E 0 { cosθ ±[(M/m) -sin θ] 0.5 } /(+M/m) = K.E 0, () E =E 0 -E = E 0 4Mm/(m+M) cos ψ = γ E 0 cos ψ. () K je tzv. kinematický faktor. Schema pružného rozptylu je na Obr.. E a E jsou energie rozptýleného iontu resp odraženého atomu. Obr.
2 Tak při dané geometrii srážky můžeme z poměru energií E /E 0 rozptýleného iontu o hmotnosti m určit hmotnost M terčového atomu. Volíme-li zpětný rozptyl, tj. rozptyl s úhlem rozptylu θ > 90, nebudou při detekci interferovat odražené atomy, protože vždy je Ψ 90. Energetické spektrum rozptýlených iontů můžeme převést na hmotnostní spektrum terčových atomů. Závislost energie rozptýleného iontu na poměru hmotností terčového atomu a iontu je zachycena na Obr.. Kinematický faktor K M / m Obr. Tenký vzorek. Pokud je terčových atomů jen tenká vrstva, tj. nestíní-li si atomy a ztráta energie iontů při průletu vrstvou je zanedbatelně malá, je možno přímo z počtu iontů rozptýlených pod úhlem θ v porovnání s tokem dopadajících iontů určit plošnou hustotu atomů terče. Je-li σ s (θ) diferenciální účinný průřez pro pružný rozptyl pod úhlem θ a dopadá-li svazek primárních iontů na uvažovanou tenkou vrstvu kolmo, potom platí N s (θ) = N t σ(θ) N 0, (3) kde N s (θ) je počet iontů, rozptýlených do jednotkového prostorového úhlu kolem úhlu θ, N t je plošná hustota atomů ve vrstvě a N 0 je počet primárních iontů, které dopadly na terč. Je-li Ω je prostorový úhel, pod kterým je vidět detektor z terče, pak celkový počet detekovaných iontů je N s Ω. Tak v hmotnostním spektru je velikost signálu rozptýlených iontů určité hmotnosti přímo úměrná plošné hustotě N t atomů dané hmotnosti v tenkém terči. Pro ionty o energii MeV stínící vliv elektronového obalu má zanedbatelný vliv na dráhy rozptylovaných iontů a ty se rozptylují jako v čistě coulombovském poli. V takovém případě je účinný průřez pro pružný rozptyl dán Rutherfordovým vzorcem, který v laboratrní soustavě je
3 dσ dω ( ) ZZe = ( 6πε E) 4 4 sin θ { ( ) } m M ( m ) sin θ M sin θ + cosθ (4) Hmotnostní rozlišení. Vzhledem k tomu, že detekční systém má konečné energetické rozlišení, místo monoenergetických čar ve spektru se zaznamenají píky o konečné pološířce E (pološířka = FWHM, tj. full width at half maximum). Jestliže vzdálenost dvou hodnot energií rozptýlených iontů je menší než FWHM, oba píky splynou a nelze je jednoduše rozlišit. Odtud a ze vztahu () plyne i omezení hmotnostního rozlišení R M R M = M/ M = µ (E/ E) (dk/dµ), (4) kde µ = (M/m). Závislost derivace (dk/dµ) na µ je zachycena na Obr. 3. Při určitém Hmotnostní rozlišení M / M pro E / E = 00 u.dk/du dk/du M/m = u Obr. 3 rozlišení detekčního systému (šířce E) se zvětšuje hmotnostní rozlišení s rostoucí energií E. Pro dané (E/ E) je hmotnostní rozlišení úměrno µ (dk/dµ). Hodnota tohoto součinu v závislosti na µ je zachycena na Obr. 3, stejně jako hodnota hmotnostního rozlišení pro případ E/ E = 00 (např. E = MeV a E = 0 kev). Vidíme, že hmotnostní rozlišení se zhoršuje směrem k těžším prvkům. Tlustý vzorek. Je-li ionty bombardovaný jednoprvkový terč tlustý, tj. nejsou-li ztráty energie iontu při jeho průchodu terčem zanedbatelné, je energie detekovaného rozptýleného iontu menší
4 než K E 0, a to tím menší, v čím větší hloubce došlo k jeho rozptylu. Ztráty energie energetického iontu (o energii řádu MeV) jsou téměř celé dány ztrátami na ionizaci, tzv. elektronovým brzděním, a závisí na energii iontu a složení terče (viz Obr. 4). Hodnoty těchto ztrát je možno získat např. pomocí programu SRIM []. V energetickém spektru iontů rozptýlených v takovém tlustém terči se objeví schod nalevo od hrany při K E 0. Výška hrany schodu odpovídá koncentraci daného prvku při samém povrchu. V případě víceprvkového homogenního terče se každý prvek p projeví schodem při odpovídající energii K p E 0, jehož výška u hrany odpovídá koncentraci c p toho prvku. Schody od jednotlivých prvků se na sebe nakládají. E+03 Ztráty energie ion He v Si Ztráty kev/um E+0 E+0 E+00 elektronové de/dx jaderné de/dx celkové de/dx E-0 E0 E E E3 E4 Energie iontu kev Obr. 4 Hloubkové měřítko v energetickém spektru RBS. U tlustého terče o konečné, nepříliš velké tlouštce je signál rozptýlených iontů (šířka schodu v energetickém spektru) omezen na interval nalevo od hrany K E 0, jehož šířka je dána součtem energetických ztrát při průletu iontu terčem (E 0 -E ), úbytku energie při rozptylu E (-K), a ztrát při zpětném průchodu rozptýleného iontu terčem [E (-K) - E Det ]. Zde E byla označena energie se kterou by ion vyletěl z terče na druhé straně a E Det energie s níž vyletuje rozptýlený ion na vstupní straně směrem k detektoru, je-li rozptýlený zpět až u druhé strany terče. Je-li terč tlustší (např.než asi µ), projevují se již výrazně vícenásobné srážky. Naše úvahy nelze
5 Obr. 5 uplatnit na nízkoenergetickou část spektra. Souvislost mezi detekovanou energií E Det a hloubkou t v níž se detekovaný ion rozptýlil zpět vyplývá ze vztahu: t t cos θ cos θ K E0 EDet = E = K de dx + de dx, (5) dx dx kde E je rozdíl energie (oproti hraně spectra), odpovídající hloubce t v terči. 0 do 0 ven Výška spektra a koncentrace atomů v hloubce terče. Představíme si tlustý terč jako soubor tenkých terčů o tlouštkách δt, odpovídajících ve spektru šířce δe Det jednoho kanálu analyzátoru. Potom vztah mezi koncentrací atomů N v hloubce t, v níž se ionty o energii E rozptýlí zpět s energií K E, a výškou H(E Det ) spektra při energii E Det je ( de ) δedet dx KE H( EDet ) = NP σ( E ) Ω N [ S( E )] de, (6) dx E ( ) Det kde K [ ( E )] = ( de ) + ( de ) S E KE dx. (7) cos θ dx cos θ E musí být stanovena nezávislým výpočtem z E 0 a E Det. 3. VYHODNOCENÍ SPEKTRA RBS Při vyhodnocování energetického spektra RBS se vytváří počítačový model terče, v němž se snažíme co nejlépe přiblížit modelové parametry skutečným parametrům povrchové vrstvy terče tak, aby modelové spektrum RBS se co nejlépe krylo se změřeným
6 spektrem. K těmto účelům byly vyvinuty různé programy. U nás užíváme program IBA, vyvinutý J. F. Zieglerem []. Případ vrstvy s nehomogenním hloubkovým profilem je možno řešit jako model většího počtu navazujících tenčích vrstev. Obr. 6 Změřené a modelové spectrum struktury Cu/Ti/Si. 4. ÚLOHY - Určit plošnou hustotu vybraného kovu, napařeného na tenké plastové folii. - Určit stechiometrický poměr prvků v tlustém vzorku binární slitiny Literatura [] Ziegler, J.F., Biersack, J.P., Littmark, U. The stopping and Range of Ions in Solids, org. by J.F. Ziegler Vol.. of The Stopping and Ranges of Ions in Matter, Pergamon Press, New York 985. program viz. [] Ziegler, J.F. -
7 [3] Chu, W-K., Mayer, J.W., Nicolet, M.A. Backscatteering Spectrometry, Academic Press, New York 978. [4] Hnatowicz, V. Analýzy povrchů pružným rozptylem nabitých částic metoda RBS, v knize Metody analýzy povrchů: iontové, sondové a speciální metody, editoři L. Frank a J. Král, Academia, Praha 00.
INTERAKCE IONTŮ S POVRCHY II.
Úvod do fyziky tenkých vrstev a povrchů INTERAKCE IONTŮ S POVRCHY II. Metody IBA (Ion Beam Analysis): pružný rozptyl nabitých částic (RBS), detekce odražených atomů (ERDA), metoda PIXE, Spektroskopie rozptýlených
RBS (Rutherford Backscattering Spectrometry) + ERDA (Elastic Recoil Detection) PIXE (Particle Induced X-ray Emission)
RBS (Rutherford Backscattering Spectrometry) + ERDA (Elastic Recoil Detection) PIXE (Particle Induced X-ray Emission) V ČR lze tyto a další metody používat na AV v Řeži u Prahy odkud je také většina v
Využití iontových svazků pro analýzu materiálů
Využití iontových svazků pro analýzu materiálů A. Macková, J. Bočan, P. Malinský Skupina jaderných analytických metod, Ústav jaderné fyziky AV ČR, Řež u Prahy, 250 68 Mackova@ujf.cas.cz. Úvod Počátek rozvoje
Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou?
Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou? 10/20/2004 1 Bethe Blochova formule (1) je maximální možná předaná energie elektronu N r e - vogadrovo čislo - klasický poloměr elektronu
Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec
Fotoelektronová spektroskopie Instrumentace RNDr. Věra V Vodičkov ková,, PhD. Katedra materiálů TU Liberec Obecné schéma metody Dopad rtg záření emitovaného ze zdroje na vzorek průnik fotonů několik µm
Hmotnostní spektrometrie
Hmotnostní spektrometrie Princip: 1. Ze vzorku jsou tvořeny ionty na úrovni molekul, nebo jejich zlomků (fragmentů), nebo až volných atomů dodáváním energie, např. uvolnění atomů ze vzorku nebo přímo rozštěpení
13. Spektroskopie základní pojmy
základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Detekce a spektrometrie neutronů
Detekce a spektrometrie neutronů 1. Pomalé neutrony a) aktivní detektory, b) pasivní detektory, c) mechanické monochromátory 2. Rychlé neutrony a) detektory používající zpomalování neutronů b) přímá detekce
Princip metody Transport částic Monte Carlo v praxi. Metoda Monte Carlo. pro transport částic. Václav Hanus. Koncepce informatické fyziky, FJFI ČVUT
pro transport částic Koncepce informatické fyziky, FJFI ČVUT Obsah Princip metody 1 Princip metody Náhodná procházka 2 3 Kódy pro MC Příklady použití Princip metody Náhodná procházka Příroda má náhodný
Úvod do fyziky tenkých vrstev a povrchů. Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál
Úvod do fyziky tenkých vrstev a povrchů Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál ty i hlavní typy nepružných srážkových proces pr chodu energetických
Základy Mössbauerovy spektroskopie. Libor Machala
Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických
Příklady Kosmické záření
Příklady Kosmické záření Kosmické částice 1. Jakou kinetickou energii získá proton při pádu z nekonečné výšky na Zem? Poloměr Zeměje R Z =637810 3 maklidováenergieprotonuje m p c 2 =938.3MeV. 2. Kosmickékvantum
Úvod do spektrálních metod pro analýzu léčiv
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz
Typy interakcí. Obsah přednášky
Co je to inteligentní a progresivní materiál - Jaderné analytické metody-využití iontových svazků v materiálové analýze Anna Macková Ústav jaderné fyziky AV ČR, Řež 250 68 Obsah přednášky fyzikální princip
Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm
Rtg. záření: Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Vznik rtg. záření: 1. Rtg. záření se spojitým spektrem vzniká při prudkém zabrzdění urychlených elektronů.
Měření absorbce záření gama
Měření absorbce záření gama Úkol : 1. Změřte záření gama přirozeného pozadí. 2. Změřte záření gama vyzářené gamazářičem. 3. Změřte záření gama vyzářené gamazářičem přes absorbátor. 4. Naměřené závislosti
Úloha 5: Spektrometrie záření α
Petra Suková, 3.ročník 1 Úloha 5: Spektrometrie záření α 1 Zadání 1. Proveďte energetickou kalibraci α-spektrometru a určete jeho rozlišení. 2. Určeteabsolutníaktivitukalibračníhoradioizotopu 241 Am. 3.
2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru
Pracovní úkol: 1. Seznámit se s interaktivní verzí simulace 2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru 3. Kvantitativně srovnat energetické ztráty v kalorimetru pro různé
Metody analýzy povrchu
Metody analýzy povrchu Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Povrch pevné látky: Poslední monoatomární vrstva + absorbovaná monovrstva Ovlivňuje fyzikální vlastnosti (ukončení
Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu.
Úloha : Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu. Všechny zadané prvky mají krystalovou strukturu kub. diamantu. (http://en.wikipedia.org/wiki/diamond_cubic),
Vnitřní magnetosféra
Vnitřní magnetosféra Plazmasféra Elektrické pole díky konvenkci (1) (Convection Electric Field) Vodivost σ, tj. ve vztažné soustavě pohybující se s plazmatem rychlostí v je elektrické pole rovno nule (
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY 1 Fyzikální základy spektrálních metod Monochromatický zářivý tok 0 (W, rozměr m 2.kg.s -3 ): Absorbován ABS Propuštěn Odražen zpět r Rozptýlen s Bilance toků 0 = +
Auger Electron Spectroscopy (AES)
Auger Electron Spectroscopy (AES) Přehledná tabulka a. tech. Princip Obvyklý popis hladin viz diagram čísla komponent KLM.. např. L23 representuje L2 i L3 spin. štěpení Nelze pro H a He, ale lze hydridy
Metody povrchové analýzy založené na detekci iontů. Pavel Matějka
Metody povrchové analýzy založené na detekci iontů Pavel Matějka Metody povrchové analýzy založené na detekci iontů 1. sekundárních iontů - SIMS 1. Princip metody 2. Typy bombardování 3. Analyzátory iontů
1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin.
1 Pracovní úkoly 1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin. 2. Proměřte úhlovou závislost intenzity difraktovaného rentgenového záření při pevné orientaci
Řešení úloh krajského kola 60. ročníku fyzikální olympiády Kategorie A Autoři úloh: J. Thomas (1, 2, 3), V. Vícha (4)
Řešení úloh krajského kola 60. ročníku fyzikální olympiády Kategorie A Autoři úloh: J. Thomas 1,, ), V. Vícha 4) 1.a) Mezi spodní destičkou a podložkou působí proti vzájemnému pohybu síla tření o velikosti
Metody analýzy povrchu
Metody analýzy povrchu Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. 2 Povrch pevné látky: Poslední monoatomární vrstva + absorbovaná monovrstva Ovlivňuje fyzikální vlastnosti (ukončení
ATOMOVÁ SPEKTROMETRIE
ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.
METODY ANALÝZY POVRCHŮ
METODY ANALÝZY POVRCHŮ (c) - 2017 Povrch vzorku 3 definice IUPAC: Povrch: vnější část vzorku o nedefinované hloubce (Užívaný při diskuzích o vnějších oblastech vzorku). Fyzikální povrch: nejsvrchnější
Svazek pomalých pozitronů
Svazek pomalých pozitronů pozitrony emitované + zářičem moderované pozitrony střední hloubka průniku Příklad: 0 z P z dz 1 Mg: -1 =154 m Al: -1 = 99 m Cu: -1 = 30 m z pravděpodobnost, p že pozitron pronikne
V001 Dokončení a kalibrace experimentálních zařízení v laboratoři urychlovače Tandetron
V001 Dokončení a kalibrace experimentálních zařízení v laboratoři urychlovače Tandetron Údaje o provozu urychlovačů v ÚJF AV ČR ( hodiny 2009/hodiny 2008) Urychlovač Celkový počet hodin Analýzy Implantace
PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009.
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úloha č. XXVI Název: Vláknová optika Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009 Odevzdal dne: Možný počet bodů
Úloha 21: Studium rentgenových spekter
Petra Suková, 3.ročník 1 Úloha 21: Studium rentgenových spekter 1 Zadání 1. S využitím krystalu LiF jako analyzátoru proveďte měření následujících rentgenových spekter: a) Rentgenka s Cu anodou. proměřte
Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e =
Atom vodíku Nejjednodušší soustava: p + e Řešitelná exaktně Kulová symetrie Potenciální energie mezi p + e V 2 e = 4πε r 0 1 Polární souřadnice využití kulové symetrie atomu Ψ(x,y,z) Ψ(r,θ, φ) x =? y=?
Pozitron teoretická předpověď
Pozitron teoretická předpověď Diracova rovnice: αp c mc x, t snaha popsat relativisticky pohyb elektronu x, t ˆ i t řešení s negativní energií vakuum je Diracovo moře elektronů pozitrony díry ve vaku Paul
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil Peter Dourmashkin MIT 006, překlad: Jan Pacák (007) Obsah 6. MAGNETICKÁ SÍLA A MOMENT SIL 3 6.1 ÚKOLY 3 ÚLOHA 1: HMOTNOSTNÍ
Prověřování Standardního modelu
Prověřování Standardního modelu 1) QCD hluboce nepružný rozptyl, elektron (mion) proton, strukturní funkce fotoprodukce γ proton produkce gluonů v e + e produkce jetů, hadronů 2) Elektroslabá torie interference
Úloha 8: Absorpce beta záření. Určení energie betarozpadu měřením absorpce emitovaného záření.
Petra Suková, 3.ročník 1 Úloha 8: Absorpce beta záření. Určení energie betarozpadu měřením absorpce emitovaného záření. 1 Zadání Vtétoúlozesepoužívázářič 90 Sr,kterýserozpadápodleschematunaobr.1.Spektrumemitovaných
Ultrazvuková defektoskopie. Vypracoval Jan Janský
Ultrazvuková defektoskopie Vypracoval Jan Janský Základní principy použití vysokých akustických frekvencí pro zjištění vlastností máteriálu a vad typické zařízení: generátor/přijímač pulsů snímač zobrazovací
HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním
HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním prostředí - farmakokinetické studie - kvantifikace proteinů
Neutronové záření ve výzkumných reaktorech. Tereza Lehečková
Neutronové záření ve výzkumných reaktorech Tereza Lehečková Výzkumné reaktory ve světě a v ČR Okolo 25, nepřibývají Nulového výkonu či nízkovýkonové Nejčastěji PWR, VVER Obr.1 LR-, [2] Základní a aplikovaný
Konfokální XRF. Ing. Radek Prokeš Katedra dozimetrie a aplikace ionizujícího záření Fakulta jaderná a fyzikálně inženýrská ČVUT v Praze
Konfokální XRF Ing. Radek Prokeš Katedra dozimetrie a aplikace ionizujícího záření Fakulta jaderná a fyzikálně inženýrská ČVUT v Praze Obsah Od klasické ke konfokální XRF Princip konfokální XRF Polykapilární
Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie
Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. rentgenová spektroskopická metoda k určen
LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií)
LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií) RHEED (Reflection High-Energy Electron Diffraction difrakce elektronů s vysokou energií na odraz) Úvod Zkoumání povrchů pevných
Počítačový model plazmatu. Vojtěch Hrubý listopad 2007
Počítačový model plazmatu Vojtěch Hrubý listopad 2007 Situace Zajímá nás, co se děje v okolí kovové sondy ponořené do plazmatu. Na válcovou sondu přivedeme napětí U Očekáváme, že se okolo sondy vytvoří
VYBRANÉ DOSIMETRICKÉ VELIČINY A VZTAHY MEZI NIMI
VYBRANÉ DOSIMETRICKÉ VELIČINY A VZTAHY MEZI NIMI Přehled dosimrických veličin: Daniel KULA (verze 1.0), 1. Aktivita: Definice veličiny: Poč radioaktivních přeměn v radioaktivním materiálu, vztažený na
INTERPRETACE HMOTNOSTNÍCH SPEKTER
INTERPRETACE HMOTNOSTNÍCH SPEKTER Hmotnostní spektrometrie hmotnostní spektrometrie = fyzikálně chemická metoda založená na rozdělení hmotnosti iontů v plynné fázi podle jejich poměru hmotnosti a náboje
Optické spektroskopie 1 LS 2014/15
Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)
Vybrané spektroskopické metody
Vybrané spektroskopické metody a jejich porovnání s Ramanovou spektroskopií Předmět: Kapitoly o nanostrukturách (2012/2013) Autor: Bc. Michal Martinek Školitel: Ing. Ivan Gregora, CSc. Obsah přednášky
Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích z bublinové komory.
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích
Matematicko-fyzikální fakulta Univerzity Karlovy. Habilita ní práce Modikace a charakterizace materiál energetickými ionty
Matematicko-fyzikální fakulta Univerzity Karlovy Habilita ní práce Modikace a charakterizace materiál energetickými ionty RNDr. Anna Macková, Ph.D. Ústav jaderné fyziky AV ƒr Odd lení neutronové fyziky
Theory Česky (Czech Republic)
Q3-1 Velký hadronový urychlovač (10 bodů) Než se do toho pustíte, přečtěte si prosím obecné pokyny v oddělené obálce. V této úloze se budeme bavit o fyzice částicového urychlovače LHC (Large Hadron Collider
Elektronová Mikroskopie SEM
Elektronová Mikroskopie SEM 26. listopadu 2012 Historie elektronové mikroskopie První TEM Ernst Ruska (1931) Nobelova cena za fyziku 1986 Historie elektronové mikroskopie První SEM Manfred von Ardenne
Spektrometrie záření gama
Spektrometrie záření gama M. Kroupa, Gymnázium Děčín, trellac@centrum.cz B. Dvorský, Gymnázium Šternberk, bohuslav.dvorsky@seznam.cz Abstrakt Tento článek pojednává o spektroskopii záření gama. Bylo měřeno
Interakce laserového impulsu s plazmatem v souvislosti s inerciální fúzí zapálenou rázovou vlnou
Interakce laserového impulsu s plazmatem v souvislosti s inerciální fúzí zapálenou rázovou vlnou Autor práce: Petr Valenta Vedoucí práce: Ing. Ondřej Klimo, Ph.D. Konzultanti: prof. Ing. Jiří Limpouch,
Záření KZ. Význam. Typy netermálního záření. studium zdrojů a vlastností KZ. energetické ztráty KZ. synchrotronní. brzdné.
Zářivé procesy Podmínky vyzařování, Larmorův vzorec, Thomsonův rozptyl, synchrotronní záření, brzdné záření, Comptonův rozptyl, čerenkovské záření, spektum zdroje KZ Záření KZ Význam studium zdrojů a vlastností
Emise vyvolaná působením fotonů nebo částic
Emise vyvolaná působením fotonů nebo částic PES (fotoelektronová spektroskopie) XPS (rentgenová fotoelektronová spektroskopie), ESCA (elektronová spektroskopie pro chemickou analýzu) UPS (ultrafialová
Přijímací zkouška na navazující magisterské studium 2015
Přijímací zkouška na navazující magisterské studium 205 Studijní program: Studijní obory: Fyzika FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Pro funkci f(x) := e x 2. Určete definiční
POPIS VYNALEZU K AUTORSKÉMU OSVĚDČENÍ. obr Z ČESKOSLOVENSKA SOCIALISTICKÁ ( 19 ) G 01 F 23/28. (22) Přihlášeno 18 09 84 (21) PV 6988-84
ČESKOSLOVENSKA SOCIALISTICKÁ R E P U B L I K A ( 19 ) POPIS VYNALEZU K AUTORSKÉMU OSVĚDČENÍ 250928 (И) (BI) (22) Přihlášeno 18 09 84 (21) PV 6988-84 (51) Int. Cl. 4 G 01 F 23/28 ÚftAD PRO VYNÁLEZY A OBJEVY
Analýza vrstev pomocí elektronové spektroskopie a podobných metod
1/23 Analýza vrstev pomocí elektronové a podobných metod 1. 4. 2010 2/23 Obsah 3/23 Scanning Electron Microscopy metoda analýzy textury povrchu, chemického složení a krystalové struktury[1] využívá svazek
Studium elektronové struktury povrchu elektronovými spektroskopiemi
Studium elektronové struktury povrchu elektronovými spektroskopiemi Autor: Petr Blumentrit Ve své disertační práci se zabývám Augerovou elektronovou spektroskopií ve speciálním uspořádání, ve kterém jsou
Ionizační manometry. Při ionizaci plynu o koncentraci n nejsou ionizovány všechny molekuly, ale jenom část z nich n i = γn ; γ < 1.
Ionizační manometry Princip: ionizace molekul a měření počtu nabitých částic Rozdělení podle způsobu ionizace: Manometry se žhavenou katodou Manometry se studenou katodou Manometry s radioaktivním zářičem
b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0
Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:
Fyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha 7: Gama spektrometr Datum měření: 15. 4. 2016 Doba vypracovávání: 15 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: Pomocí
Hmotnostní spektrometrie. Historie MS. Schéma MS
Hmotnostní spektrometrie MS mass spectrometry MS je analytická technika, která se používá k měření poměru hmotnosti ku náboji (m/z) u iontů původně studium izotopového složení dnes dynamicky se vyvíjející
Hmotnostní spektrometrie
Hmotnostní spektrometrie Podstatou hmotnostní spektrometrie je studium iontů v plynném stavu. Tato metoda v sobě zahrnuje tři hlavní části:! generování iontů sledovaných atomů nebo molekul! separace iontů
Úloha 4: Totální účinný průřez interakce γ záření absorpční koeficient záření gama pro některé elementy
Petra Suková, 3.ročník 1 Úloha 4: Totální účinný průřez interakce γ záření absorpční koeficient záření gama pro některé elementy 1 Zadání 1. UrčeteabsorpčníkoeficientzářenígamaproelementyFe,CdaPbvzávislostinaenergii
Praktikum III - Optika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 13 Název: Vlastnosti rentgenového záření Pracoval: Matyáš Řehák stud.sk.: 13 dne: 3. 4. 2008 Odevzdal
Co všechno umí urychlovač TANDETRON a jak vlastně funguje?
Co všechno umí urychlovač TANDETRON a jak vlastně funguje? AnnaMacková** 24. listopadu 2006 1 Úvod Cílem přednášky bylo představit nové unikátní zařízení, které přitáhlo i zájem médií. Myslím,žejevelmipotřebnéstudentůmukazovat,jaksevědavnašemstátěrozvíjíaje
SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ; (c) David MILDE,
SEKTRÁLNÍ METODY Ing. David MILDE, h.d. Katedra analytické chemie Tel.: 585634443; E-mail: david.milde@upol.cz (c) -2008 oužitá a doporučená literatura Němcová I., Čermáková L., Rychlovský.: Spektrometrické
Světlo jako elektromagnetické záření
Světlo jako elektromagnetické záření Základní pojmy: Homogenní prostředí prostředí, jehož dané vlastnosti jsou ve všech místech v prostředí stejné. Izotropní prostředí prostředí, jehož dané vlastnosti
Opakování: shrnutí základních poznatků o struktuře atomu
11. Polovodiče Polovodiče jsou krystalické nebo amorfní látky, jejichž elektrická vodivost leží mezi elektrickou vodivostí kovů a izolantů a závisí na teplotě nebo dopadajícím optickém záření. Elektrické
Akustooptický modulátor s postupnou a stojatou akustickou vlnou
Úloha č. 8 pro laserová praktika KFE, FJFI, ČVUT v Praze, verze 2010/1 Akustooptický modulátor s postupnou a stojatou akustickou vlnou Akustooptické modulátory (AOM), někdy též nazývané Braggovské cely,
Techniky prvkové povrchové analýzy elemental analysis
Techniky prvkové povrchové analýzy elemental analysis (Foto)elektronová spektroskopie (pro chemickou analýzu) ESCA, XPS X-ray photoelectron spectroscopy (XPS) Any technique in which the sample is bombarded
ATOMOVÁ SPEKTROMETRIE
ATOMOVÁ SPEKTROMETRIE doc. Ing. David MILDE, Ph.D. tel.: 585634443 E-mail: david.milde@upol.cz (c) -017 Doporučená literatura Černohorský T., Jandera P.: Atomová spektrometrie. Univerzita Pardubice 1997.
Systémy pro využití sluneční energie
Systémy pro využití sluneční energie Slunce vyzáří na Zemi celosvětovou roční potřebu energie přibližně během tří hodin Se slunečním zářením jsou spojeny biomasa pohyb vzduchu koloběh vody Energie
2. FYZIKÁLNÍ ZÁKLADY ANALYTICKÉ METODY PIXE
PIXE Jaroslav rál, katedra fyzikální elektroniky FJFI, ČVU 1. ÚVOD Při bombardování látky energetickými ionty vzniká rentgenové záření. Do konce šedesátých let byla excitace rentgenového záření iontovým
Přednáška IX: Elektronová spektroskopie II.
Přednáška IX: Elektronová spektroskopie II. 1 Försterův resonanční přenos energie Pravděpodobnost (rychlost) přenosu je určená jako: k ret 1 = τ 0 D R r 0 6 0 τ D R 0 r Doba života donoru v excitovaném
Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Fyzika atomu - model atomu struktura elektronového obalu atomu z hlediska energie atomu - stavba atomového jádra; základní nukleony
Základy výpočetní tomografie
Základy výpočetní tomografie Doc.RNDr. Roman Kubínek, CSc. Předmět: lékařská přístrojová technika Základní principy výpočetní tomografie Výpočetní tomografie - CT (Computed Tomography) CT je obecné označení
DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj
DOUTNAVÝ VÝBOJ Další technologie využívající doutnavý výboj Plazma doutnavého výboje je využíváno v technologiích depozice povlaků nebo modifikace povrchů. Jedná se zejména o : - depozici povlaků magnetronovým
Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je:
Přijímací zkouška na navazující magisterské studium - 16 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Jak dlouho bude padat
Senzory ionizujícího záření
Senzory ionizujícího záření Senzory ionizujícího záření dozimetrie α = β = He e 2+, e + γ, n X... elmag aktivita [Bq] (Becquerel) A = A e 0 λt λ...rozpadová konstanta dávka [Gy] (Gray) = [J/kg] A = 0.5
LEPTONY. Elektrony a pozitrony a elektronová neutrina. Miony a mionová neutrina. Lepton τ a neutrino τ
LEPTONY Elektrony a pozitrony a elektronová neutrina Pozitronium, elektronové neutrino a antineutrino Beta rozpad nezachování parity, měření helicity neutrin Miony a mionová neutrina Lepton τ a neutrino
SPEKTROMETRIE. aneb co jsem se dozvěděla. autor: Zdeňka Baxová
SPEKTROMETRIE aneb co jsem se dozvěděla autor: Zdeňka Baxová FTIR spektrometrie analytická metoda identifikace látek (organických i anorganických) všech skupenství měříme pohlcení IČ záření (o různé vlnové
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNíHO INŽENÝRSTVí ÚSTAV FYZIKÁLNíHO INŽENÝRSTVí FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF PHYSICAL ENGINEERING ANALÝZA ULTRATENKÝCH
Absorpční polovrstva pro záření γ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství VUT FSI ÚFI 1ZM-10-ZS Ústav fyzikálního inženýrství Technická 2, Brno 616 69 Laboratoř A2-128 Absorpční polovrstva pro záření γ 12.10.2010 Měření
Složení hvězdy. Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ
Hvězdy zblízka Složení hvězdy Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ Plazma zcela nebo částečně ionizovaný plyn,
Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku V tomto článku uvádíme shrnutí poznatků učiva II. ročníku
Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s.
Řešení úloh. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů.a) Doba jízdy na prvním úseku (v 5 m s ): t v a 30 s. Konečná rychlost jízdy druhého úseku je v v + a t 3 m s. Pro rovnoměrně
OPVK CZ.1.07/2.2.00/
18.2.2013 OPVK CZ.1.07/2.2.00/28.0184 Cvičení z NMR OCH/NMR Mgr. Tomáš Pospíšil, Ph.D. LS 2012/2013 18.2.2013 NMR základní principy NMR Nukleární Magnetická Resonance N - nukleární (studujeme vlastnosti
Akustooptický modulátor s postupnou a stojatou akustickou vlnou
Úloha č. 8 pro laserová praktika (ZPLT) KFE, FJFI, ČVUT, Praha v. 2017/2018 Akustooptický modulátor s postupnou a stojatou akustickou vlnou Akustooptické modulátory (AOM), někdy též nazývané Braggovské
Základní experiment fyziky plazmatu
Základní experiment fyziky plazmatu D. Vašíček 1, R. Skoupý 2, J. Šupík 3, M. Kubič 4 1 Gymnázium Velké Meziříčí, david.vasicek@centrum.cz 2 Gymnázium Ostrava-Hrabůvka příspěvková organizace, jansupik@gmail.com
Elektronová mikroskopie SEM, TEM, AFM
Elektronová mikroskopie SEM, TEM, AFM Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první
Plazmové metody. Základní vlastnosti a parametry plazmatu
Plazmové metody Základní vlastnosti a parametry plazmatu Atom je základní částice běžné hmoty. Částice, kterou již chemickými prostředky dále nelze dělit a která definuje vlastnosti daného chemického prvku.
Základním praktikum z laserové techniky
Úloha: Základním praktikum z laserové techniky FJFI ČVUT v Praze #6 Nelineární transmise saturovatelných absorbérů Jméno: Ondřej Finke Datum měření: 30.3.016 Spolupracoval: Obor / Skupina: 1. Úvod Alexandr
Hmotnostní spektrometrie Mass spectrometry - MS
Hmotnostní spektrometrie Mass spectrometry - MS Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 Hmotnostní spektrometrie Mass spectrometry - MS hmotnostní spektroskopie versus hmotnostní
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Praktikum z pevných látek (F6390)
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Praktikum z pevných látek (F6390) Zpracoval: Michal Truhlář Naměřeno: 6. března 2007 Obor: Fyzika Ročník: III Semestr:
zbytkové plyny (ve velmi vysokém vakuu: plyny vzniklé rozkladem těchto látek, nebo jejich syntézou Vakuová fyzika 1 1 / 43
Měření parciálních tlaků V měřeném prostoru se zpravidla nachází: zbytkové plyny (ve velmi vysokém vakuu: H 2, CO, Ar, N 2, O 2, CO 2, uhlovodíky, He) vodní pára páry organických materiálů, nacházejících
Stabilizace Galerkin Least Squares pro
Fakulta strojní ČVUT Ústav technické matematiky Stabilizace Galerkin Least Squares pro MKP na řešení proudění o vyšších Reynoldsových číslech Ing. Jakub Šístek Doc. RNDr. Pavel Burda, CSc. RNDr. Jaroslav