VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení) SPOJKA

Rozměr: px
Začít zobrazení ze stránky:

Download "VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení) SPOJKA"

Transkript

1 VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení) Autoři: Martin Fusek, Radim Halama, Jaroslav Rojíček Verze: 1 Ostrava 2006

2 1 Zadání úlohy Proveďte pevnostní kontrolu zadané spojky, která má přenášet maximální kroutící moment 300Nm, jestliže dovolené napětí použitého materiálu je 150MPa. Spojka je z materiálu , její modul pružnosti je E = MPa, a Poissonovo číslo μ = 0.3. Výkres viz Obr. 2. Obr. 1 - Řešená součást U tvarově složitějších úloh se obvykle kvůli zjednodušení výpočtu (počet elementů) zanedbávají malé hrany a zaoblení, otvory pro šrouby, závity atd. U každé úlohy je nutné rozhodnout co je možné zanedbat zejména z hlediska požadovaných výsledků a přesnosti řešení. 2/19

3 Obr. 2 - Výkres součásti 3/19

4 2 Tvorba modelu Název souborů do kterých budeme ukládat úlohu bude Spojka a titulek také. Utility Menu > File > Change Title /FILNAME,,1 /TITLE, Volba typu elementu Pro tuto úlohu vybereme 10-ti uzlový objemový element solid92. Main Menu > Preprocessor > Element Type > Add/Edit/Delete /PREP7 ET,1,SOLID92 Zadání materiálových vlastností Materiál spojky je ocel viz zadání. Main Menu > Preprocesor > Material Props > Material Models Objeví se okno. Material Model Number 1 (referenční číslo materiálu), kliknout Structural, kliknout Linear, kliknout Elastic, kliknout Isotropic. Objeví se okno, zadat EX = 2.1E5, PRXY =.3 (E= MPa, μ =0.3), OK. MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,EX,1,, MPDATA,PRXY,1,,.3 Tvorba geometrie modelu Z důvodu symetrie lze vytvořit pouze polovinu modelu a později jej zrcadlit. Vytvoříme keypointy. ANSYS Main Menu > Preprocesor > Modeling > Create > Keypoints > In Active CS K,1,15,0,, K,2,30.5,0,, K,3,32.5,2,, K,4,32.5,73,, K,5,30.5,75,, K,6,15,75,, Vytvoření plochy z keypointů (zanedbáme sražení hrany 15º na průměru 30 mm). ANSYS Main Menu > Preprocesor > Modeling > Create > Areas > Arbitrary > Through Kps + Objeví se okno, kliknout na keypointy v pořadí 1, 2, 3, 4, 5 a 6. Pak OK. Vytvoří se plocha A1. A,1,2,3,4,5,6 Pomocné keypointy pro definici osy rotace ANSYS Main Menu > Preprocesor > Modeling > Create > Keypoints > In Active CS K,7,0,0,, K,8,0,75,, Orotujeme vzniklou plochu A1. 4/19

5 Main Menu > Preprocesor > Modeling > Operate > Extrude > Areas > About Axis VROTAT,1,,,,,,7,8,180,1, Iso pohled na vzniklý objem viz Obr. 3. Utility Menu > PlotCtrls > Pan Zoom Rotate Vybrat pohled ISO v dialogovém okně. /VIEW,1,1,1,1 VPLOT Obr. 3 Pohled na vzniklý objem Abychom se mohli lépe orientovat odvybereme objem V1. Utility Menu > Select > Entities V dialogovém okně nastavíme potřebné parametry viz Obr. 4. Potvrdíme OK a v dalším okně vybereme Pick All. VSEL,U,,,1 5/19

6 Obr. 4 - Odselekování objemu Vytvoříme válec φ10 délky 28,5 mm. Blíže viz Obr. 5. Main Menu > Preprocesor > Modeling > Create > Volumes > Cylinder > Solid Cylinder CYL4,,53,5,,,,-28.5 Obr. 5 - Tvorba objemu 6/19

7 Zobrazíme a posuneme Working Plane posuneme o -28,5 mm v ose z. Utility Menu > WorkPlane > Display Working Plane Utility Menu > WorkPlane > Offset WP by Increments WPOFF,0,0,-28.5 Vytvoříme válec φ30 mm a délky 4 mm. Main Menu > Preprocesor > Modeling > Create > Volumes > Cylinder > Solid Cylinder CYL4,,53,15,,,,-4 Vytvoříme válec φ4 mm a délky 4 mm. Main Menu > Preprocesor > Modeling > Create > Volumes > Cylinder > Solid Cylinder CYL4,,61.5,2,,,,4 Pro lepší orientaci můžeme jednotlivé objemy odlišit barevně viz Obr. 6. Utility Menu > PlotCtrls > Numbering... V dialogovém okně zapnout zobrazení objemů. /PNUM,VOLUME,ON /REP Obr. 6 - Tyto vytvořené objemy definují díry Vyberme všechny objemy. Utility Menu > Select > Everything ALLSEL 7/19

8 Odečteme válcový objem a právě vytvořené objemy definující díry. Preprocessor > Modeling > Operate > Booleans > Subtract > Volumes... VSBV,1,all Přečíslujeme všechny entity, tak aby číslování začínalo od 1. Prohlédneme výsledek předchozích operací viz Obr. 7. Máme znovu pouze jeden objem. Main Menu > Preprocessor > Numbering Ctrls > Compress Numbers NUMCMP,ALL Obr. 7 - Výsledný objem po prvním odečtení Vymodelujeme zářez (kóta 55,5mm). Abychom se mohli lépe orientovat odvybereme objem - V1. Utility Menu > Select > Entities VSEL,U,,,1 Přesuneme WP zpět do globálního souřadného systému (původní poloha). Utility Menu > WorkPlane > Align WP with > Global Cartesian WPCSYS,-1 Modelování hranolu s rozměry 60 x 40 x 11 mm. Preprocessor > Modeling > Create >Volumes > Block > By dimensons... BLOCK,-23,33,-0.5,10.5,-35,5, Vytvoříme 3 díry pro šrouby M8. Přesuneme a natočíme WP. Utility Menu > WorkPlane > Offset WP by Increments WPOFF,0,10.5 WPRO,, , WPOFF,22.5 8/19

9 Vytvoříme díru pro šroub M8 (část se závitem - průměr 8mm bez modelování závitu). Main Menu > Preprocesor > Modeling > Create > Volumes > Cylinder > Solid Cylinder CYL4,,,4,,,,14 Přesuneme WP. Utility Menu > WorkPlane > Offset WP by Increments WPOFF,0,0,14 Vytvoříme díru pro šroub M8 (část bez závitu dle Strojnických tabulek průměr 6,647mm). Main Menu > Preprocesor > Modeling > Create > Volumes > Cylinder > Solid Cylinder CYL4,,,6.647/2,,,,4 Přesuneme WP pro vytvoření kuželu. Utility Menu > WorkPlane > Offset WP by Increments WPOFF,0,0,4 Vytvoříme kužel s výškou=0.5*6.647*tg30º=1,92 mm. Preprocessor > Modeling > Create >Volumes > Cone > By dimensons... CONE,6.647/2,,1.92,,0,360, Zkopírujeme objemy (díry pro šroub M8). Přesuneme WP do počátku globálního souřadného systému, natočíme a změníme pak na polární souřadný systém. Utility Menu > WorkPlane > Align WP with > Global Cartesian Utility Menu > WorkPlane > Offset WP by Increments WPCSYS,-1,0 WPRO,, , Změníme jednotky úhlů na stupně. Utility Menu > Parameters > Angular Units *AFUN,DEG Aktivujeme G.S.S. totožný s WP. Utility Menu > WorkPlane > Change Active CS to > Working Plane CSYS,4 Zkopírujeme 2x objem díry pro šroub M8. Preprocessor > Modeling > Copy > Volumes... VGEN,2,3,5,1,,120 Aktivujeme kartézský G.S.S., přesuneme WP do počátku G.S.S., a natočíme stejně podle G.S.S. CSYS,0 WPCSYS,-1 Výsledek našeho snažení je vidět na následujícím obrázku - Obr. 8. 9/19

10 Obr. 8 - Zářez otvory před odečtením. Vyberme všechny objemy. Odečteme válcový objem a právě vytvořené objemy definující zářez a díry. Utility Menu > Select > Everything ALLSEL Preprocessor > Modeling > Operate > Booleans > Subtract > Volumes... VSBV,1,ALL Přečíslujeme všechny entity, tak aby číslování začínalo od 1. Prohlédneme výsledek předchozích operací viz Obr. 9. Máme znovu pouze jeden objem. Main Menu > Preprocessor > Numbering Ctrls > Compress Numbers NUMCMP,ALL Obr. 9 - Pohled na polotovar spojky. 10/19

11 Abychom se mohli lépe orientovat znovu odvybereme objem V1. Utility Menu > Select > Entities VSEL,U,,,1 Přesuneme WP tak, abychom mohli vytvořit drážku pro pero. Utility Menu > WorkPlane > Offset WP by Increments WPRO,,, WPOFF,0,0,-32.5 WPOFF,0,11 Vytvoříme dvakrát válec φ18 hloubky 6,8mm (zaoblení v drážce pro pero). Main Menu > Preprocesor > Modeling > Create > Volumes > Cylinder > Solid Cylinder CYL4,,,9,,,,6.8 CYL4,,32,9,,,,6.8 Hranol s rozměry 32 x 18 x 6,8 mm. Main Menu > Preprocessor > Modeling > Create > Volumes > Block > By Dimensions BLOCK,-9,9,0,32,0,6.8, Vytvoříme díru pro šroub M6. Main Menu > Preprocesor > Modeling > Create > Volumes > Cylinder > Solid Cylinder CYL4,,16,3,,,,20 Výsledek vidíme na Obr. 10. Obr Objem definující drážku pro péro a díru. 11/19

12 Vyberme všechny objemy. Odečteme válcový polotovar a právě vytvořené objemy definující drážku a díru. Utility Menu > Select > Everything ALLSEL Odečteme všechny vytvořené objemy definující díry Preprocessor > Modeling > Operate > Booleans > Subtract > Volumes... VSBV,1,ALL NUMCMP,ALL Výsledek vidíme na Obr. 11. Pro lepší orientaci můžeme jednotlivé plochy Areas odlišit barevně viz Obr. 11. Utility Menu > PlotCtrls >Numbering /PNUM,VOLUME,OFF /PNUM,VOLUME,ON Utility Menu > Plot > Areas APLOT Obr Polovina spojky pohled na spojované plochy. Sečteme plochy na dně drážky pro pero (bude se lépe vytvářet síť prvků). Main Menu > Preprocessor > Modeling > Operate > Booleans > Add > Areas AADD,29,30,36,27,28 Výsledný geometrický model je na Obr /19

13 Obr Geometrický model spojky Tvorba sítě Vzhledem k poměrně komplikovanému tvaru součásti použijeme tvz. free mesh. Budeme chtít, aby velikost elemetu byla (pokud možno) 5 mm. (Velikost elementu závisí na velikosti nejmenších tvarových změn, které chceme výpočtem zachytit. Pro korektní výpočet zejména v oblasti otvorů by bylo vhodné síť okolo otvorů více zhustit. Zhuštění sítě může vést ke značnému prodloužení výpočtového času vlastní řešení soustavy rovnic). Main Menu > Preprocessor > Meshing > Size Cntrls > ManualSize > Global > Size ESIZE,5,0, Main Menu > Preprocessor > Meshing > Mesh > Volumes > Free VMESH,1 Vysíťujeme součást viz Obr. 13. Pozn.: Pro nastavení parametrů a pro vlastní vysíťování je možno použít tzv. MeshTool. K nalezení je v Main Menu > Preprocessor > Meshing > MeshTool. 13/19

14 Obr Síť Nakonec ozrcadlíme objem i elementy a sečteme všechny duplicitní entity. Main Menu > Preprocessor > Modeling > Reflexy > Volumes VSYMM,Z,1,,,,0,0 Main Menu > Preprocessor > Numbering Ctrls > Merge Items NUMMRG,ALL Okrajové podmínky Základní hodnoty potřebné pro výpočet. R= 65/2-3,4 = 29,1 mm Mk/R = /29,1 = 10309,3N p=f/s=58,28 N/mm 2 Silové okrajové podmínky. Zadáme tlak p od péra. Nejprve zapneme číslování ploch a vykreslíme výsledek. Utility Menu > PlotCtrls > Numbering /PNUM,AREA,ON Utility Menu > Plot > Areas APLOT Péro působí na plochu 66, na ni zadáme tlak p. A zapneme zobrazování tlaku. Main Menu > Solution > Define Loads > Apply > Structural > Pressure > On Areas SFA,66,1,PRES,58.28 Utility Menu > PlotCtrls > Symbols /PSF,PRES,NORM,1,0,1 Aktivujeme kartézský G.S.S., přesuneme WP do počátku G.S.S., a natočíme stejně podle G.S.S. 14/19

15 Utility Menu > WorkPlane > Change Active CS to > Global Cartesian CSYS,0 Utility Menu > WorkPlane > Align WP with > Active Coord Sys WPCSYS,-1 Deformační okrajové podmínky. Vybereme vnitřní plochy, a uzly k nim přiřazené. Utility Menu > Select > Entities ASEL,S,AREA,,59 ASEL,A,AREA,,39 NSLA,R,1 Změníme souřadný systém na 5 (cylindrický rotace kolem y), a všem vybraným uzlům změníme souřadný systém na cylindrický. (souřadnice x odpovídá r). Souřadnici r přiřadíme nulový posuv. Vybereme vše. viz Obr. 14. Utility Menu > WorkPlane > Change Active CS to > Global Cylindrical Y CSYS,5 Main Menu > Preprocessor > Modeling>Move / Modify > RotateNode > To Active CS NROTAT,ALL Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural > Displacement > On Nodes D,ALL,,,,,,UX Utility Menu > Select > Everything ALLSEL Utility Menu > Plot > Nodes NPLOT Obr Okrajové podmínky na vnitřní uzly. 15/19

16 Změníme souřadný systém na 0 (kartézský) a podobně jako v předchozím případě vybereme čepy (plochy uzly) a to plochu o kterou se čepy opřou. Změníme souřadný systém vybraných uzlů na 5 a ve všech vybraných uzlech zadáme nulové posuvy ve směru rostoucího úhlu (cylindrický souřadný systém) (souřadnice ϕ odpovídá y). Vybereme vše viz Obr. 15. Utility Menu > WorkPlane > Change Active CS to > Global Cartesian CSYS,0 Utility Menu > Select > Entities ASEL,S,AREA,,58 ASEL,A,AREA,,57 NSLA,R,1 NSEL,R,LOC,X,-2,-100 Utility Menu > WorkPlane > Change Active CS to > Global Cylindrical Y CSYS,5 Main Menu > Preprocessor > Modeling>Move / Modify > RotateNode > To Active CS NROTAT,ALL Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural > Displacement > On Nodes D,ALL,,,,,,UY Utility Menu > Select > Everything ALLSEL Obr Okajové podmínky na čep 1 16/19

17 Stejný postup aplikujeme i u druhého čepu - Obr. 16. Utility Menu > WorkPlane > Change Active CS to > Global Cartesian CSYS,0 Utility Menu > Select > Entities ASEL,S,AREA,,6 ASEL,A,AREA,,7 NSLA,R,1 NSEL,R,LOC,X,100,2 Utility Menu > WorkPlane > Change Active CS to > Global Cylindrical Y CSYS,5 Main Menu > Preprocessor > Modeling>Move / Modify > RotateNode > To Active CS NROTAT,ALL Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural > Displacement > On Nodes D,ALL,,,,,,UY Utility Menu > Select > Everything ALLSEL Obr Okajové podmínky na druhý čep. Musíme uchytit ještě směr osy y. 17/19

18 Utility Menu > WorkPlane > Change Active CS to > Global Cartesian CSYS,0 D,1,,,,,,UY Přejdeme do řešiče a vyřešíme soustavu rovnic. Main Menu > Finish FINISH Main Menu > Solution /SOLU Main Menu > Solution > Solve > Current LS SOLVE 3 Získání výsledků Přejdeme do postprocesoru a prohlédneme získané výsledky. Na Obr. 17 je znázorněn průběh redukovaného napětí dle HMH. Main Menu > Finish FINISH Main Menu > General Postproc /POST1 Main Menu > General Postproc > Read Results > First Set SET,FIRST Main Menu > General Postproc > Plot Results > Contour Plot > Nodal Solu PLNSOL, S,EQV, 0,1.0 18/19

19 Obr Průběh redukovaného napětí dle HMH na spojce (MPa) Další zpracování výsledků zkouší studenti samostatně (posunutí, hlavní napětí atd ) Ukončíme Ansys. Main Menu > Finish FINISH Utility Menu > File > Exit /EXIT,NOSAVE 19/19

TAH/TLAK URČENÍ REAKCÍ

TAH/TLAK URČENÍ REAKCÍ VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení) Autoři: Martin Fusek, Radim Halama, Jaroslav Rojíček Verze: 0 Ostrava

Více

VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení)

VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení) VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení) Autoři: Martin Fusek, Radim Halama, Jaroslav Rojíček Verze: 0 Ostrava

Více

PŮLKULOVÁ TENKOSTTĚNNÁ NÁDOBA 3D MODEL

PŮLKULOVÁ TENKOSTTĚNNÁ NÁDOBA 3D MODEL VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků (Návody do cvičení) PŮLKULOVÁ TENKOSTTĚNNÁ NÁDOBA 3D MODEL Autoři: Martin Fusek, Radim Halama,

Více

PŮLKULOVÁ TENKOSTĚNNÁ NÁDOBA - AXISYMETRIE

PŮLKULOVÁ TENKOSTĚNNÁ NÁDOBA - AXISYMETRIE VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení) PŮLKULOVÁ TENKOSTĚNNÁ NÁDOBA - AXISYMETRIE Autoři: Martin Fusek, Radim

Více

VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení) MATICOVÝ KLÍČ

VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení) MATICOVÝ KLÍČ VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení) MATICOVÝ KLÍČ Autoři: Martin Fusek, Radim Halama, Jaroslav Rojíček Verze:

Více

STATICKY NEURČITÝ NOSNÍK

STATICKY NEURČITÝ NOSNÍK VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení) STATICKY NEURČITÝ NOSNÍK Autoři: Martin Fusek, Radim Halama, Jaroslav

Více

Simulace ustáleného stavu při válcování hliníku

Simulace ustáleného stavu při válcování hliníku VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) MKP a MHP (Úlohy pro samostatnou práci studentů) Autoři: Martin Fusek, Radim Halama, Jaroslav Rojíček Verze: 0 Ostrava

Více

Cvičení 9 (Výpočet teplotního pole a teplotních napětí - Workbench)

Cvičení 9 (Výpočet teplotního pole a teplotních napětí - Workbench) VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návody do cvičení) Cvičení 9 (Výpočet teplotního pole a teplotních napětí - Workbench)

Více

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza maticového klíče

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza maticového klíče VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti Úvod do MKP Napěťová analýza maticového klíče Autor: Michal Šofer Verze 0 Ostrava 2011 Zadání: Proveďte napěťovou analýzu

Více

ÚLOHA VEDENÍ TEPLA ŘEŠENÁ POMOCÍ MKP A MHP

ÚLOHA VEDENÍ TEPLA ŘEŠENÁ POMOCÍ MKP A MHP VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) MKP a MHP (Úlohy pro samostatnou práci studentů) ÚLOHA VEDENÍ TEPLA ŘEŠENÁ POMOCÍ MKP A MHP Autoři: Martin Fusek, Radim

Více

NOSNÍK ŘEŠENÝ JAKO ROVINNÁ ÚLOHA POMOCÍ MKP A MHP

NOSNÍK ŘEŠENÝ JAKO ROVINNÁ ÚLOHA POMOCÍ MKP A MHP VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) MKP a MHP (Úlohy pro samostatnou práci studentů) NOSNÍK ŘEŠENÝ JAKO ROVINNÁ ÚLOHA POMOCÍ MKP A MHP Autoři: Martin Fusek,

Více

URČENÍ NAPĚTÍ V KRUHOVÉM DISKU POMOCÍ MKP A MHP

URČENÍ NAPĚTÍ V KRUHOVÉM DISKU POMOCÍ MKP A MHP VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) MKP a MHP (Úlohy pro samostatnou práci studentů) URČENÍ NAPĚTÍ V KRUHOVÉM DISKU POMOCÍ MKP A MHP Autoři: Martin Fusek,

Více

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza modelu s vrubem

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza modelu s vrubem VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti Úvod do MKP Autor: Michal Šofer Verze 0 Ostrava 2011 Zadání: Proveďte napěťovou analýzu součásti s kruhovým vrubem v místě

Více

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Deformační analýza stojanu na kuželky

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Deformační analýza stojanu na kuželky VŠB- Technická univerzita Ostrava akulta strojní Katedra pružnosti a pevnosti Úvod do KP Autor: ichal Šofer Verze Ostrava Úvod do KP Zadání: Určete horizontální a vertikální posun volného konce stojanu

Více

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza tenzometrického snímače ve tvaru háku

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza tenzometrického snímače ve tvaru háku VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti Úvod do MKP Napěťová analýza tenzometrického snímače ve tvaru háku Autor: Michal Šofer Verze 0 Ostrava 20 Zadání: Proveďte

Více

MSC.Marc 2005r3 Tutorial 1. Autor: Robert Zemčík

MSC.Marc 2005r3 Tutorial 1. Autor: Robert Zemčík MSC.Marc 2005r3 Tutorial Autor: Robert Zemčík ZČU Plzeň Březen 2008 Tento dokument obsahuje návod na MKP výpočet jednoduchého rovinného tělesa pomocí verze programu MSC.Marc 2005r3. Zadání úlohy Tenké

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV STAVEBNÍ MECHANIKY FACULTY OF CIVIL ENGINEERING INSTITUTE OF STRUCTURAL MECHANICS VÝPOČET ÚNOSNOSTI STROPNÍ KONSTRUKCE

Více

Cvičení 7 (Matematická teorie pružnosti)

Cvičení 7 (Matematická teorie pružnosti) VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návo do cvičení) Cvičení 7 (Matematická teorie pružnosti) Autor: Jaroslav Rojíček Verze:

Více

Parametrizovaná geometrie v COMSOL Multiphysics, verze 3.5a

Parametrizovaná geometrie v COMSOL Multiphysics, verze 3.5a Parametrizovaná geometrie v COMSOL Multiphysics, verze 3.5a Parametrizovanou 3D geometrii lze v COMSOL Multiphysics používat díky aplikačnímu módu pro pohyblivou síť: COMSOL Multiphysics > Deformed Mesh

Více

Generování sítě konečných prvků

Generování sítě konečných prvků Generování sítě konečných prvků Jaroslav Beran Modelování a simulace Tvorba výpočtového modelu s využitím MKP zahrnuje: Tvorbu (import) geometrického modelu Generování sítě konečných prvků Definování vlastností

Více

4. bodový ohyb - řešení pomocí elementu typu PIPE

4. bodový ohyb - řešení pomocí elementu typu PIPE VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) (Úlohy pro samostatnou práci studentů) 4. bodový ohyb - řešení pomocí elementu typu PIPE Autoři: Martin Fusek, Radim

Více

Posouzení stability svahu

Posouzení stability svahu Inženýrský manuál č. 25 Aktualizace 07/2016 Posouzení stability svahu Program: MKP Soubor: Demo_manual_25.gmk Cílem tohoto manuálu je vypočítat stupeň stability svahu pomocí metody konečných prvků. Zadání

Více

ANALÝZA NAPĚTÍ A DEFORMACÍ PRŮTOČNÉ ČOČKY KLAPKOVÉHO RYCHLOUZÁVĚRU DN5400 A POROVNÁNÍ HODNOCENÍ ÚNAVOVÉ ŽIVOTNOSTI DLE NOREM ČSN EN 13445-3 A ASME

ANALÝZA NAPĚTÍ A DEFORMACÍ PRŮTOČNÉ ČOČKY KLAPKOVÉHO RYCHLOUZÁVĚRU DN5400 A POROVNÁNÍ HODNOCENÍ ÚNAVOVÉ ŽIVOTNOSTI DLE NOREM ČSN EN 13445-3 A ASME 1. Úvod ANALÝZA NAPĚTÍ A DEFORMACÍ PRŮTOČNÉ ČOČKY KLAPKOVÉHO RYCHLOUZÁVĚRU DN5400 A POROVNÁNÍ HODNOCENÍ ÚNAVOVÉ ŽIVOTNOSTI DLE NOREM ČSN EN 13445-3 A ASME Michal Feilhauer, Miroslav Varner V článku se

Více

Tvorba výpočtového modelu MKP

Tvorba výpočtového modelu MKP Tvorba výpočtového modelu MKP Jaroslav Beran (KTS) Modelování a simulace Tvorba výpočtového modelu s využitím MKP zahrnuje: Tvorbu (import) geometrického modelu Generování sítě konečných prvků Definování

Více

Cvičení 6 - Nádoby a potrubí (Základní postup řešení - Workbench)

Cvičení 6 - Nádoby a potrubí (Základní postup řešení - Workbench) VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návody do cvičení) Cvičení 6 - Nádoby a potrubí (Základní postup řešení - Workbench)

Více

MIDAS GTS. gram_txt=gts

MIDAS GTS. gram_txt=gts K135YGSM Příklady (MIDAS GTS): - Plošný základ lineární výpočet a nelineární výpočet ve 2D MKP - Stabilita svahu ve 2D a 3D MKP - Pažící konstrukce ve 2D a 3D MKP MIDAS GTS http://en.midasuser.com http://departments.fsv.cvut.cz/k135/cms/?pa

Více

Analýza modelu kelímku

Analýza modelu kelímku Zpracoval: Ing. Martin KONEČNÝ, Ph.D. Pracoviště: Katedra textilních a jednoúčelových strojů Tento materiál vznikl jako součást projektu In-TECH 2, který je spolufinancován Evropským sociálním fondem a

Více

Vetknutý nosník zatížený momentem. Robert Zemčík

Vetknutý nosník zatížený momentem. Robert Zemčík Vetknutý nosník zatížený momentem Robert Zemčík Západočeská univerzita v Plzni 2014 1 Vetknutý nosník zatížený momentem (s uvažováním velkých posuvů a rotací) Úkol: Určit velikost momentu, který zdeformuje

Více

Mechanika s Inventorem

Mechanika s Inventorem Mechanika s Inventorem 2. Základní pojmy CAD data FEM výpočty Petr SCHILLING, autor přednášky Ing. Kateřina VLČKOVÁ, obsahová korekce Optimalizace Tomáš MATOVIČ, publikace 1 Obsah přednášky: Lagrangeův

Více

Postup zadávání základové desky a její interakce s podložím v programu SCIA

Postup zadávání základové desky a její interakce s podložím v programu SCIA Postup zadávání základové desky a její interakce s podložím v programu SCIA Tloušťka desky h s = 0,4 m. Sloupy 0,6 x 0,6m. Zatížení: rohové sloupy N 1 = 800 kn krajní sloupy N 2 = 1200 kn střední sloupy

Více

MSC.Marc 2005r3 Tutorial 2. Robert Zemčík

MSC.Marc 2005r3 Tutorial 2. Robert Zemčík MSC.Marc 2005r3 Tutorial 2 Robert Zemčík Západočeská univerzita v Plzni 204 Tento dokument obsahuje návod na modální analýzu tenkostěnné laminátové nádoby pomocí MKP v programu MSC.Marc 2005r3. Zadání

Více

Cvičení 3 (Základní postup řešení Workbench 12.0)

Cvičení 3 (Základní postup řešení Workbench 12.0) VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návody do cvičení) Cvičení 3 (Základní postup řešení Workbench 12.0) Autor: Jaroslav

Více

Začínáme s PowerShape Milan Brouček 2007

Začínáme s PowerShape Milan Brouček 2007 Začínáme s PowerShape Milan Brouček 2007 Otevřeme program Delcam PowerShape. Pro seznámení s ovládáním PowerShape, postačí nápověda, kterou najdete pod tlačítkem Help Getting started. Najdete zde vysvětlivky

Více

Cvičení 3 (Základní postup řešení - Workbench)

Cvičení 3 (Základní postup řešení - Workbench) VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Úvod do MKP (Návody do cvičení) Cvičení 3 (Základní postup řešení - Workbench) Autor: Jaroslav Rojíček Verze: 0 Ostrava

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV STAVEBNÍ MECHANIKY FACULTY OF CIVIL ENGINEERING INSTITUTE OF STRUCTURAL MECHANICS MODELOVÁNÍ A STATICKÁ ANALÝZA STROPNÍ

Více

Tutoriál programu ADINA

Tutoriál programu ADINA Nelineární analýza materiálů a konstrukcí (V-132YNAK) Tutoriál programu ADINA Petr Kabele petr.kabele@fsv.cvut.cz people.fsv.cvut.cz/~pkabele Petr Kabele, 2007-2010 1 Výstupy programu ADINA: Preprocesor

Více

CAD_Inventor -cvičení k modelování a tvorbě technické obrazové dokumentace Spirála

CAD_Inventor -cvičení k modelování a tvorbě technické obrazové dokumentace Spirála Předmět: Ročník: Vytvořil: Datum: CAD druhý, třetí Petr Machanec 25.5.2013 Název zpracovaného celku: CAD_Inventor -cvičení k modelování a tvorbě technické obrazové dokumentace Spirála Spirála vrták s válcovou

Více

Rešerše: Kreslení hřídele. v programu CATIA V5

Rešerše: Kreslení hřídele. v programu CATIA V5 Rešerše: Kreslení hřídele v programu CATIA V5 CATIA V5 Tento software je určen pro konstruování objemů a ploch. Je hojně využíván v automobilovém a leteckém průmyslu. Je to ideální nástroj nejen pro konstruktéry.

Více

FRVŠ 2829/2011/G1. Tvorba výpočtového modelu

FRVŠ 2829/2011/G1. Tvorba výpočtového modelu FOND ROZVOJE VYSOKÝCH ŠKOL 2011 FRVŠ 2829/2011/G1 Tvorba výpočtového modelu v programu ANSYS Řešitel: Ing. Jiří Valášek Vysoké učení technické v Brně Fakulta strojního inţenýrství Spoluřešitel 1: Ing.

Více

MANUÁL PRO VÝPOČET ZBYTKOVÉHO

MANUÁL PRO VÝPOČET ZBYTKOVÉHO MANUÁL PRO VÝPOČET ZBYTKOVÉHO PRODLOUŽENÍ VE ŠROUBECH 0 25.05.2016 Doporučení pro výpočet potřebného prodloužení šroubu, aby bylo dosaženo požadovaného předpětí ve šroubech předepínaných hydraulickým napínákem

Více

Cvičení 2 PARAMETRICKÉ 3D MODELOVÁNÍ ROTAČNÍ SOUČÁST HŘÍDEL Inventor Professional 2012

Cvičení 2 PARAMETRICKÉ 3D MODELOVÁNÍ ROTAČNÍ SOUČÁST HŘÍDEL Inventor Professional 2012 Cvičení 2 PARAMETRICKÉ 3D MODELOVÁNÍ ROTAČNÍ SOUČÁST HŘÍDEL Inventor Professional 2012 Cílem druhého cvičení je osvojení postupů tvorby rotační součástky na jednoduchém modelu hřídele. Především používání

Více

Konstrukce součástky

Konstrukce součástky Konstrukce součástky 1. Sestrojení dvou válců, které od sebe odečteme. Vnější válec má střed podstavy v bodě [0,0], poloměr podstavy 100 mm, výška válce je 100 mm. Vnitřní válec má střed podstavy v bodě

Více

FRVŠ 1460/2010. Nekotvená podzemní stěna

FRVŠ 1460/2010. Nekotvená podzemní stěna Projekt vznikl za podpory FRVŠ 1460/2010 Multimediální učebnice předmětu "Výpočty podzemních konstrukcí na počítači"" Příklad č. 1 Nekotvená podzemní stěna Na tomto příkladu je ukázáno základní seznámení

Více

PARAMETRICKÉ 3D MODELOVÁNÍ ODLITKU CATIA V5 R14 VÝKRES

PARAMETRICKÉ 3D MODELOVÁNÍ ODLITKU CATIA V5 R14 VÝKRES Cvičení 5 z předmětu CAD I. PARAMETRICKÉ 3D MODELOVÁNÍ ODLITKU CATIA V5 R14 VÝKRES Cílem pátého cvičení je osvojit si na jednoduchém modelu hřídele základní postupy při tvorbě výkresu rotační součástky.

Více

Příprava 3D tisku tvorba výkresu z modelu v SolidWorks 3D tisk výkres SolidWorks. Ing. Richard Němec, 2012

Příprava 3D tisku tvorba výkresu z modelu v SolidWorks 3D tisk výkres SolidWorks. Ing. Richard Němec, 2012 Příprava 3D tisku tvorba výkresu z modelu v SolidWorks 3D tisk výkres SolidWorks Ing. Richard Němec, 2012 Zadání úlohy Součást Rohatka_100 byla namodelována v SolidWorks podle skicy (rukou kresleného náčrtku).

Více

Postup při hrubování 3D ploch v systému AlphaCAM

Postup při hrubování 3D ploch v systému AlphaCAM Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: AlphaCAM - frézování Hrubování 3D

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Radek Havlík [ÚLOHA 08 ZÁVITOVÁ DÍRA A ZÁVIT]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Radek Havlík [ÚLOHA 08 ZÁVITOVÁ DÍRA A ZÁVIT] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Radek Havlík [ÚLOHA 08 ZÁVITOVÁ DÍRA A ZÁVIT] 1 CÍL KAPITOLY Cílem této kapitoly je naučit se efektivní práci ve 3D modelování, s použitím funkcí tvorby

Více

Násep vývoj sedání v čase (konsolidace) Program: MKP Konsolidace

Násep vývoj sedání v čase (konsolidace) Program: MKP Konsolidace Inženýrský manuál č. 37 Aktualizace: 9/2017 Násep vývoj sedání v čase (konsolidace) Program: MKP Konsolidace Soubor: Demo_manual_37.gmk Úvod Tento příklad ilustruje použití modulu GEO5 MKP Konsolidace

Více

Výpočet přetvoření a dimenzování pilotové skupiny

Výpočet přetvoření a dimenzování pilotové skupiny Inženýrský manuál č. 18 Aktualizace: 08/2018 Výpočet přetvoření a dimenzování pilotové skupiny Program: Soubor: Skupina pilot Demo_manual_18.gsp Cílem tohoto inženýrského manuálu je vysvětlit použití programu

Více

Pevnostní analýza plastového držáku

Pevnostní analýza plastového držáku Pevnostní analýza plastového držáku Zpracoval: Petr Žabka Jaroslav Beran Pracoviště: Katedra textilních a jednoúčelových strojů TUL In-TECH 2, označuje společný projekt Technické univerzity v Liberci a

Více

Namáhání ostění kolektoru

Namáhání ostění kolektoru Inženýrský manuál č. 23 Aktualizace 06/2016 Namáhání ostění kolektoru Program: MKP Soubor: Demo_manual_23.gmk Cílem tohoto manuálu je vypočítat namáhání ostění raženého kolektoru pomocí metody konečných

Více

Metodický postup konstrukce válcové frézy. Vlastní konstrukce válcové frézy

Metodický postup konstrukce válcové frézy. Vlastní konstrukce válcové frézy Metodický postup konstrukce válcové frézy Tento postup slouží studentům třetího ročníku studujících předmět. Jsou zde stanovena konstrukční pravidla, která by měli studenti aplikovat při správné konstrukci

Více

HNACÍ ÚSTROJÍ TŘÍVÁLCOVÉHO ŘADOVÉHO VZNĚTOVÉHO MOTORU

HNACÍ ÚSTROJÍ TŘÍVÁLCOVÉHO ŘADOVÉHO VZNĚTOVÉHO MOTORU VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Více

CAD_Inventor -cvičení k modelování a tvorbě technické obrazové dokumentace Vytváření výrobního výkresu rotační součásti - hřídele

CAD_Inventor -cvičení k modelování a tvorbě technické obrazové dokumentace Vytváření výrobního výkresu rotační součásti - hřídele Předmět: Ročník: Vytvořil: Datum: CAD druhý, třetí Petr Machanec 24.8.2012 Název zpracovaného celku: CAD_Inventor -cvičení k modelování a tvorbě technické obrazové dokumentace Vytváření výrobního výkresu

Více

10.1. Spoje pomocí pera, klínu. hranolového tvaru (u klínů se skosením na jedné z ploch) kombinaci s jinými druhy spojů a uložení tak, aby

10.1. Spoje pomocí pera, klínu. hranolového tvaru (u klínů se skosením na jedné z ploch) kombinaci s jinými druhy spojů a uložení tak, aby Cvičení 10. - Spoje pro přenos kroutícího momentu z hřídele na náboj 1 Spoje pro přenos kroutícího momentu z hřídele na náboj Zahrnuje širokou škálu typů a konstrukcí. Slouží k přenosu kroutícího momentu

Více

Analýza prutové konstrukce

Analýza prutové konstrukce Zpracoval: Ing. Martin KONEČNÝ, Ph.D. Pracoviště: Katedra textilních a jednoúčelových strojů Tento materiál vznikl jako součást projektu In-TECH 2, který je spolufinancován Evropským sociálním fondem a

Více

OBTÉKÁNÍ AUTA S PŘÍTLAČNÝM KŘÍDLEM VE 2D

OBTÉKÁNÍ AUTA S PŘÍTLAČNÝM KŘÍDLEM VE 2D INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 OBTÉKÁNÍ AUTA S PŘÍTLAČNÝM KŘÍDLEM

Více

Úlohy na měřicím přístroji TESA 3D MICRO HITE

Úlohy na měřicím přístroji TESA 3D MICRO HITE Úlohy na měřicím přístroji TESA 3D MICRO HITE Ing. Zdeněk Ondříšek 1 Obsah: 1. 0. 0 Cíle... 3 1. 1. 0 Než začneme... 3 1. 2. 0 Příprava součásti pro měření... 8 2. 0. 0 Úloha č. 1 Měření délky... 14 2.

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY Komentovaný metodický list č. 09 Vytvořil: Ing. Petr Marcián, Ing. Zdeněk Florian, CSc., Ing.

Více

WDLS (BUILDINGDESIGN)

WDLS (BUILDINGDESIGN) Vysoká škola báňská Technická univerzita Ostrava Fakulta stavební METODICKÝ POSTUP PRO PRÁCI S PROGRAMEM WDLS (BUILDINGDESIGN) Vypracoval: doc. Ing. Iveta Skotnicová, Ph.D. Ing. Marcela Černíková Ing.

Více

Copyright 2013 Martin Kaňka;

Copyright 2013 Martin Kaňka; Copyright 2013 Martin Kaňka; http://dalest.kenynet.cz Popis aplikace Aplikace Bottle design, jak je již z názvu patrné, je aplikace, která umožňuje vytvářet tělesa tvaru lahve. To znamená, že můžeme vytvořit

Více

Mechanika s Inventorem

Mechanika s Inventorem CAD data Mechanika s Inventorem Optimalizace FEM výpočty 4. Prostředí aplikace Petr SCHILLING, autor přednášky Ing. Kateřina VLČKOVÁ, obsahová korekce Tomáš MATOVIČ, publikace 1 Obsah cvičení: Prostředí

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 31 - KÓTOVÁNÍ]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 31 - KÓTOVÁNÍ] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jan Boháček [ÚLOHA 31 - KÓTOVÁNÍ] 1 CÍL KAPITOLY V této kapitole se zaměříme na kótování výkresů. Naším cílem bude naučit se používat správné příkazy

Více

Obr.1: Modelované těleso

Obr.1: Modelované těleso Postup modelování 3D tělesa: Vypracoval: Jaroslav Šabek Obr.1: Modelované těleso Než začneme modelovat, tak si vytvoříme hladiny a to (teleso= žlutá, pomoc=růžová). Zároveň si připravíme pracovní plochu,

Více

CAD_Inventor -cvičení k modelování a tvorbě technické obrazové dokumentace Vytváření sestavy

CAD_Inventor -cvičení k modelování a tvorbě technické obrazové dokumentace Vytváření sestavy Předmět: Ročník: Vytvořil: Datum: CAD druhý, třetí Petr Machanec 26.9.2012 Název zpracovaného celku: CAD_Inventor -cvičení k modelování a tvorbě technické obrazové dokumentace Vytváření sestavy Vytváření

Více

AutoCAD 3D NÁVOD NA VYMODELOVÁNÍ PRACOVNÍHO STOLU

AutoCAD 3D NÁVOD NA VYMODELOVÁNÍ PRACOVNÍHO STOLU AutoCAD 3D NÁVOD NA VYMODELOVÁNÍ PRACOVNÍHO STOLU Vypracoval Roman Drnec Datum vypracování 17. 8. 2009... Obsah Předmluva... 3 1. Příprava pracovní plochy... 4 1.1 Rozdělení obrazovky 1.2 Pohled na model

Více

Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w

Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w Rovinná úloha v MKP Hledané deformační veličiny viz klasická teorie pružnosti (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v desky: w, ϕ x, ϕ y prostorové úlohy: u,

Více

Počítačová grafika RHINOCEROS

Počítačová grafika RHINOCEROS Počítačová grafika RHINOCEROS Ing. Zuzana Benáková Základní otázkou grafických programů je způsob zobrazení určitého tvaru. Existují dva základní způsoby prezentace 3D modelů v počítači. První využívá

Více

Postup při gravírování na obecnou plochu ve t3 a 5 ti osách.

Postup při gravírování na obecnou plochu ve t3 a 5 ti osách. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: AlphaCAM - frézování Gravírování na

Více

ŘEŠENÍ POHONU VAČKOVÉHO HŘÍDELE POMOCÍ OZUBENÝCH KOL

ŘEŠENÍ POHONU VAČKOVÉHO HŘÍDELE POMOCÍ OZUBENÝCH KOL VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Více

4 POČÍTAČOVÉ MODELY DETERMINISTICKÉ. VYUŽITÍ SLOŽITÉ OKRAJOVÉ PODMÍNKY V SIMULAČNÍM MODELU

4 POČÍTAČOVÉ MODELY DETERMINISTICKÉ. VYUŽITÍ SLOŽITÉ OKRAJOVÉ PODMÍNKY V SIMULAČNÍM MODELU 4 POČÍTAČOVÉ MODELY DETERMINISTICKÉ. VYUŽITÍ SLOŽITÉ OKRAJOVÉ PODMÍNKY V SIMULAČNÍM MODELU Počítačové modely deterministické využívající numerickou metodu konečných prvků (MKP). Tvorba simulačního modelu

Více

Šíření rovinné vlny Cvičení č. 1

Šíření rovinné vlny Cvičení č. 1 Šíření rovinné vlny Cvičení č. 1 Cílem dnešního cvičení je seznámit se s modelováním rovinné vlny v programu ANSYS HFSS. Splnit bychom měli následující úkoly: 1. Vytvořme model rovinné vlny, která se šíří

Více

Volba již definovaných nástrojů:

Volba již definovaných nástrojů: Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: AlphaCAM - soustružení Definice a volba nástrojů

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ] 1 CÍL KAPITOLY V této kapitole si představíme Nástroje kreslení pro tvorbu 2D skic v modulu Objemová součást

Více

Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace

Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace Rovinný problém Řešíme plošné konstrukce zatížené a uložené v jejich střednicové rovině. Dvě varianty rovinného problému: rovinná napjatost rovinná deformace 17 Rovinná deformace 1 Obsahuje složky deformace

Více

NAMÁHÁNÍ NA KRUT NAMÁHÁNÍ NA KRUT

NAMÁHÁNÍ NA KRUT NAMÁHÁNÍ NA KRUT Φd Předmět: Ročník: Vytvořil: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 8. KVĚTNA 2013 Název zpracovaného celku: NAMÁHÁNÍ NA KRUT NAMÁHÁNÍ NA KRUT KRUT KRUHOVÝCH PRŮŘEZŮ Součást je namáhána na krut

Více

VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) MKP a MHP (Úlohy pro samostatnou práci studentů) Tažení prosté

VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) MKP a MHP (Úlohy pro samostatnou práci studentů) Tažení prosté VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) MKP a MHP (Úlohy pro samostatnou práci studentů) Autoři: Martin Fusek, Radim Halama, Jaroslav Rojíček Verze: 0 Ostrava

Více

Vytvoření a úpravy geologického modelu

Vytvoření a úpravy geologického modelu Inženýrský manuál č. 39 Aktualizace 11/2018 Vytvoření a úpravy geologického modelu Program: Stratigrafie Soubor: Demo_manual_39.gsg Úvod Cílem tohoto inženýrského manuálu je vysvětlit základní práci s

Více

NEXIS 32 rel. 3.50. Generátor fází výstavby TDA mikro

NEXIS 32 rel. 3.50. Generátor fází výstavby TDA mikro SCIA CZ, s. r. o. Slavíčkova 1a 638 00 Brno tel. 545 193 526 545 193 535 fax 545 193 533 E-mail info.brno@scia.cz www.scia.cz Systém programů pro projektování prutových a stěnodeskových konstrukcí NEXIS

Více

BPC2E_C08 Parametrické 3D grafy v Matlabu

BPC2E_C08 Parametrické 3D grafy v Matlabu BPC2E_C08 Parametrické 3D grafy v Matlabu Cílem cvičení je procvičit si práci se soubory a parametrickými 3D grafy v Matlabu. Úloha A. Protože budete řešit transformaci z kartézských do sférických souřadnic,

Více

Nastavení výpočtu a Správce nastavení

Nastavení výpočtu a Správce nastavení Inženýrský manuál č. 1 Aktualizace: 02/2018 Nastavení výpočtu a Správce nastavení Program: Tížná zeď Soubor: Demo_manual_01.gtz Tento inženýrský manuál popisuje využití funkce Správce nastavení, pomocí

Více

Libor Kasl 1, Alois Materna 2

Libor Kasl 1, Alois Materna 2 SROVNÁNÍ VÝPOČETNÍCH MODELŮ DESKY VYZTUŽENÉ TRÁMEM Libor Kasl 1, Alois Materna 2 Abstrakt Příspěvek se zabývá modelováním desky vyztužené trámem. Jsou zde srovnány různé výpočetní modely model s prostorovými

Více

MKP v Inženýrských výpočtech

MKP v Inženýrských výpočtech Vysoké učení technické v Brně Fakulta strojního inženýrství ÚMTMB MKP v Inženýrských výpočtech Semestrální projekt (PMM II č. 25) Řešitel: Franta Vomáčka 2011/2012 1. Zadání Analyzujte a případně modifikujte

Více

Cvičení 2 z předmětu CAD I. TVORBA ROTAČNÍ SOUČÁSTKY - HŘÍDELE Pro/ENGINEER Wildfire 4.0

Cvičení 2 z předmětu CAD I. TVORBA ROTAČNÍ SOUČÁSTKY - HŘÍDELE Pro/ENGINEER Wildfire 4.0 Cvičení 2 z předmětu CAD I. TVORBA ROTAČNÍ SOUČÁSTKY - HŘÍDELE Pro/ENGINEER Wildfire 4.0 Cílem druhého cvičení je osvojení základních postupů tvorby rotační součástky na jednoduchém modelu hřídele. Především

Více

Příprava 3D tisku tvorba modelu v SolidWors 3D tisk model SolidWorks. Ing. Richard Němec, 2012

Příprava 3D tisku tvorba modelu v SolidWors 3D tisk model SolidWorks. Ing. Richard Němec, 2012 Příprava 3D tisku tvorba modelu v SolidWors 3D tisk model SolidWorks Ing. Richard Němec, 2012 Zadání úlohy Vymodelujte součást Rohatka_100 v SolidWorks, model uložte jako soubor součásti SolidWorks (Rohatka_100.SLDPRT)

Více

Autodesk Inventor 8 - výkresová dokumentace, nastavení

Autodesk Inventor 8 - výkresová dokumentace, nastavení Autodesk Inventor 8 - výkresová dokumentace, nastavení Obrázek 1: Náčrt čepu Doporučuji založit si vlastní kótovací styl pomocí tlačítka Nový. Nový styl vznikne na základě předchozího aktivního stylu.

Více

Nelineární úlohy při výpočtu konstrukcí s využitím MKP

Nelineární úlohy při výpočtu konstrukcí s využitím MKP Nelineární úlohy při výpočtu konstrukcí s využitím MKP Obsah přednášky Lineární a nelineární úlohy Typy nelinearit (geometrická, materiálová, kontakt,..) Příklady nelineárních problémů Teorie kontaktu,

Více

Využití programu AutoCAD při vytváření geometrie konstrukce v prostředí programu ANSYS

Využití programu AutoCAD při vytváření geometrie konstrukce v prostředí programu ANSYS Využití programu AutoCAD při vytváření geometrie konstrukce v prostředí programu ANSYS Abstrakt Jan Pěnčík 1 Článek popisuje a porovnává způsoby možného vytváření geometrie konstrukce v prostředí programu

Více

písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky.

písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky. POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)

Více

TVORBA MODELU A VÝKRESU SESTAVY CATIA V5 R14

TVORBA MODELU A VÝKRESU SESTAVY CATIA V5 R14 Cvičení 7 z předmětu CAD I. TVORBA MODELU A VÝKRESU SESTAVY CATIA V5 R14 Cílem sedmého cvičení je vytvoření jednoduché sestavy vstupního hřídele převodovky viz. obr.1, osvojení základních typů 3D vazeb

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jiří Haňáček [ÚLOHA 07 VYŘÍZNUTÍ PO ŠROUBOVICI A KOLMO K PLOŠE.]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jiří Haňáček [ÚLOHA 07 VYŘÍZNUTÍ PO ŠROUBOVICI A KOLMO K PLOŠE.] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jiří Haňáček [ÚLOHA 07 VYŘÍZNUTÍ PO ŠROUBOVICI A KOLMO K PLOŠE.] 1 CÍL KAPITOLY Cílem této kapitoly je v první části dokumentu poskytnout uživateli

Více

Kladnice jeřábu MB

Kladnice jeřábu MB Západočeská univerzita v Plzni Fakulta strojní Katedra konstruování strojů Semestrální práce z předmětu ICB Návrh designu / konstrukce zařízení s kontrolou dílů Kladnice jeřábu MB 1030.1 Jindřich Toufar

Více

Výpočet sedání kruhového základu sila

Výpočet sedání kruhového základu sila Inženýrský manuál č. 22 Aktualizace 06/2016 Výpočet sedání kruhového základu sila Program: MKP Soubor: Demo_manual_22.gmk Cílem tohoto manuálu je popsat řešení sedání kruhového základu sila pomocí metody

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor M/01 STROJÍRENSTVÍ

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor M/01 STROJÍRENSTVÍ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ KRESLENÍ SOUČÁSTÍ A SPOJŮ 1 Čepy,

Více

MATEMATICKÉ SIMULACE OBJEMOVÉHO TVÁŘENÍ V PROGRAMU SIMUFACT.FORMING 9.0

MATEMATICKÉ SIMULACE OBJEMOVÉHO TVÁŘENÍ V PROGRAMU SIMUFACT.FORMING 9.0 Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní MATEMATICKÉ SIMULACE OBJEMOVÉHO TVÁŘENÍ V PROGRAMU SIMUFACT.FORMING 9.0 Studijní opora Jan Kedroň Ostrava 2010 Tyto studijní materiály vznikly

Více

Řešení kontaktní úlohy v MKP s ohledem na efektivitu výpočtu

Řešení kontaktní úlohy v MKP s ohledem na efektivitu výpočtu Řešení kontaktní úlohy v MKP s ohledem na efektivitu výpočtu Jan Hynouš Abstrakt Tato práce se zabývá řešením kontaktní úlohy v MKP s ohledem na efektivitu výpočtu. Na její realizaci se spolupracovalo

Více

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Základy parametrického modelování Základní prvky modelování

Více

Kapitola 24. Numerické řešení pažící konstrukce

Kapitola 24. Numerické řešení pažící konstrukce Kapitola 24. Numerické řešení pažící konstrukce Cílem tohoto manuálu je vypočítat deformace kotvené stěny z ocelových štětovnic a dále zjistit průběhy vnitřních sil pomocí metody konečných prvků. Zadání

Více

UVOD DO PARAMETRICKÉHO 3D MODELOVÁNÍ CATIA V5 R14

UVOD DO PARAMETRICKÉHO 3D MODELOVÁNÍ CATIA V5 R14 Cvičení 1 z předmětu CAD I. UVOD DO PARAMETRICKÉHO 3D MODELOVÁNÍ CATIA V5 R14 Cílem prvního cvičení je na jednoduchém modelu svěrky (viz následující obr.) osvojit základní postupy při tvorbě parametrického

Více

CAD_Inventor -cvičení k modelování a tvorbě technické obrazové dokumentace

CAD_Inventor -cvičení k modelování a tvorbě technické obrazové dokumentace Předmět: Ročník: Vytvořil: Datum: CAD druhý, třetí Petr Machanec 27.10.2012 Název zpracovaného celku: CAD_Inventor -cvičení k modelování a tvorbě technické obrazové dokumentace Vytváření výkresu sestavy

Více