4. bodový ohyb - řešení pomocí elementu typu PIPE

Rozměr: px
Začít zobrazení ze stránky:

Download "4. bodový ohyb - řešení pomocí elementu typu PIPE"

Transkript

1 VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) (Úlohy pro samostatnou práci studentů) 4. bodový ohyb - řešení pomocí elementu typu PIPE Autoři: Martin Fusek, Radim Halama, Jaroslav Rojíček Verze: 0 Ostrava 2007

2 1 Zadání úlohy Obr. 1 Únavové zatížení potrubí zatíženého konstantním vnitřním přelakem p a periodickou silou F. Zkušební vzorek válcového tvaru (trubka) je zatížen konstantním vnitřním přetlakem p=18mpa (po celou dobu testu má přetlak stejnou hodnotu) a zároveň periodickou silou F. Síla F má pro prvních 50 cyklů hodnotu F1=±240kN a pro dalších 40 cyklů hodnotu F2=±260kN. Základní tvar je na Obr. 1, kde jsou naznačeny také deformační a silové okrajové podmínky (jedná se o tzv. 4. bodový ohyb). Trubka je dlouhá 3m, vnitřní průměr d=203,2mm a tloušťka stěny tl=12.65mm. Trubka je vyrobena z materiálu SA333 gr.6 popsaného parametry uvedenými v Tab. 1 (Chabocheův model). k µ [1] E [MPa] σ y [MPa ] C1 [MPa ] C2 [MPa ] C3 [ MPa] γ1 [1 ] γ2 [1] γ3 [1] Tab. 1 Materiálové parametry pro Chabocheův model. Uvažujte konstituční rovnici ve tvaru: C1 C2 σ = σ y + ( 1 exp( γ1 ε p )) + ( 1 exp( γ 2 ε p )) + C3 ε p, γ1 γ 2 kde ε p je plastická deformace, potřebné konstanty jsou uvedeny v Tab. 1. Vypočtěte prvních 90 cyklů ( ) a výsledky porovnejte s řešením příkladu 4. 2 Popis řešení Nejprve vytvoříme geometrický model. U tohoto příkladu lze využít symetrie (tvaru i zatížení) a model zjednodušit (v tomto příkladu využijeme pouze SYM2). Po zadání materiálu a vytvoření sítě přidáme silové a deformační okrajové podmínky (s ohledem na symetrii) a vypočteme úlohu. Výsledky řešení zpracujeme do grafů a porovnáme s výsledky u přikladu 4.. Část příkladu úvodní příkazy, zadání konstant, zadání sil atd. jsou shodné jako u příkladu 4 (tyto části můžete využít a zkopírovat je z již vytvořeného makra). Liší se zadání materiálu a vytváření modelu (geometrického i MKP). Příprava Úlohu budeme ukládat do souboru makra. Pomocí tohoto souboru můžete kdykoli spustit celý příklad, případně modifikovat rozměry, zadání sil apod. Soubor nazveme např. A_4b_ohyb.mac a vytvoříme ho textovém editoru (např. Poznámkový blok ve Windows). 2/11

3 První příkaz v souboru ukončí předchozí úlohu a vyčistí databázi (help,/clear). Tyto příkazy jsou důležité v případě, že spouštíme úlohu opakovaně např. z důvodu ladění makra, nebo změny rozměrů, sítě apod. FINISH /clear,start V případě, že máte v počítači vícejádrový procesor (dvoujádrový 2) můžeme jej zapnout (help,/config), jinak tento příkaz vynecháme (nebo zadáme jeden procesor - 1). /config,nproc,2 Zadáme název úlohy (řešení v ANSYSu) do proměnné nazev a její titulek. nazev='ohyb_4b' /FILNAME,%nazev%,1 /TITLE,4 bodovy ohyb PIPE Nyní bude následovat vlastní řešení, které budeme postupně v dalších kapitolách doplňovat.!reseni Základní makro A_4b_ohyb.mac je hotovo, nyní se budeme věnovat vlastnímu řešení úlohy (geometrický model, MKP model atd.). Výsledné makro můžeme spouštět z příkazového řádku nebo pomocí menu. Další příkazy postupně doplňujeme do základního makra zároveň s vhodným popisem, který usnadní pozdější orientaci v příkazech. Popis začíná vždy vykřičníkem!, příkazy a text za vykřičníkem v daném řádku se nevykonává. Polohu příkazu v menu nalezneme pomocí helpu. Např. help,/title ukáže popis příkazu. Ve spodní části popisu příkazu nalezneme Menu Paths, kde jsou uvedeny možnosti umístění uvedeného příkazu v menu. V tomto případě Utility Menu>File>Change Title Základní rozměry a nastavení Počet ukládaných kroků může být u výpočtů únavy značný, proto rozšíříme přednastavenou hodnotu (default) ukládaných řešení. /config,nres,4000 Z Obr. 1 je patrné, že základní rozměry vzorku trubky můžeme popsat pomocí několika málo parametrů.!zakladni rozmery trubky Delkac=3000 Delkaz=500 Prumer= Tl= /11

4 Zadáme také parametry reprezentující zatěžující síly, počty cyklů, materiálové vlastnosti atd. Zadání parametrů bude na začátku programu a v případě potřeby je později snadno nalezneme.!hodnoty zatizeni F1min= /4 F1max=240000/4 p=18 pocet_cyklu1=50 F2min= /4 F2max=260000/4 p=18 pocet_cyklu2=40 Zadání materiálu!material E= Mi=0.3 Další postup se již od makra vytořeného u příkladu 2 bude lišit. K výpočtu použijeme Besselingův model materiálu zahrnující i Bauschingerův effect (podrobněji viz help). Model používá multilineární kinematické zpevnění materiálu (MKIN). Materiálové parametry vycházejí ze Chaboche kinematics hardening model, který byl použit v příkladu 4. E= Mi=0.3 C1=260 C2= C3= C4=50500 C5=950 C6=5900 C7=8 Model MKIN nahrazuje nelineární křivku (konstituční rovnice) křivkou po částech lineární. Zadáme počet lineárních úseků v této verzi maximálně 5 a vytvoříme pole pro uložení hodnot uzlových bodů (intenzity napětí a intenzity deformace). Pocet_hodnot=5 *DIM,inapeti,,Pocet_hodnot *DIM,ideformace,,Pocet_hodnot Směrnice prvního úseku musí odpovídat modulu pružnosti v tahu E. Proto nejprve zadáme první úsek. ideformace(1)=0.001 inapeti(1)=ideformace(1)*e Další úseky již odpovídají konstituční rovnici uvedené v zadání. Hodnoty v jednotlivých bodech dopočítáme pomocí cyklu. *do,kk,2,5 4/11

5 Při výpočtu vycházíme z plastické deformace, kterou vypočteme pomocí vhodné funkce např. takto: defomace_p=0.0008*kk**2.5 Při použití funkce EXP() v ANSYSu dochází u příliš velkých záporných čísel k chybě. Proto budeme předpokládat, že EXP(x)=0 pro x<-50. K vytvoření této podmínky použijeme funkci *if. pom1=c3*defomace_p *if,pom1,gt,50,then pom1=0 *elseif pom1=exp(-c3*defomace_p) *endif pom2=c5*defomace_p *if,pom2,gt,50,then pom2=0 *elseif pom2=exp(-c5*defomace_p) *endif Nyní spočteme výsledné napětí z plastické deformace (deformace_p). inapeti(kk)=c1+c2*(1-pom1)/c3+c4*(1-pom2)/c5+c6*defomace_p A posledním příkazem cyklu je dopočtení celkové deformace (elastická + plastická). ideformace(kk)=defomace_p+inapeti(kk)/e Ukončíme cyklus a vymažeme pomocné proměnné. *enddo pom1= pom2= deformace_p= Nyní definujeme materiál v ANSYSU. Spustíme preprocessor. /PREP7 Nejprve zadáme teploty, ačkoliv s teplotou nepočítáme musíme tyto příkazy zadat. MPTEMP,,,,,,,, MPTEMP,1,0 Zadáme základní materiálové vlastnosti modul pružnosti v tahu E a Poissonovo číslo mi. MPDATA,EX,1,,E MPDATA,PRXY,1,,mi Definujeme materiálový model MKIN (Multilinear Kinematic Hardening) polem o daném počtu hodnot (Pocet_hodnot) při teplotě 0. TB,MKIN,1,1,Pocet_hodnot TBMODIF,1,1, 5/11

6 TBMODIF,2,1,0 V cyklu zadáme sobě odpovídající hodnoty napětí a deformace (výše vytvořené). *do,kk,2,pocet_hodnot+1 TBMODIF,1,kk,ideformace(kk-1) TBMODIF,2,kk,inapeti(kk-1) *enddo Graf si můžeme prohlédnout v ANSYSu viz Obr. 2. Obr. 2 Křivka definující chování MKIN modelu pro jednu teplotu. Nyní máme definován materiál 1 můžeme ukončit preprocessor a vymazat zbytné parametry. Finish Kk= Geometrický a MKP model tělesa V preprocesoru vytvoříme polovinu tělesa (využijeme sym2) pomocí tří kypointů, které spojíme čárou. /prep7 K K,,,,delkaz K,,,,delkac/2 L,1,2 L,2,3 Tímto jsme vytvořili geometrický model. Síť vytvoříme pomocí prvků typu PIPE20 (viz help,pipe20) který definujeme a zadáme vhodná nastavení a real konstanty.!definice elementu ET,1,PIPE20 6/11

7 KEYOPT,1,2,0 KEYOPT,1,6,1 KEYOPT,1,8,1 R,1,Prumer,Tl, Velikost sítě je dána velikostí elementu (esize) a vymeshujeme těleso. esize,100 lmesh,all Tímto jsme vytvořili geometrický a MKP model. FINISH Deformační okrajové podmínky Nyní zadáme okrajové podmínky do sym2 a vazby. Všechny příkazy patří do preprocessoru. /prep7 Vybereme uzel v rovině sym2 (např. dle polohy) a zadáme okrajové podmínky reprezentující symetrii. nsel,s,loc,z,-0.01,0.01 d,all,uz,0 d,all,rotx,0 d,all,roty,0 allsel Vybereme uzel v místě posuvné vazby a vybranému uzlu odejmeme příslušné stupně volnosti. nsel,s,loc,z,delkac/2-0.01,delkac/ d,all,ux,0 d,all,uy,0 allsel Tímto jsme zadali potřebné deformační okrajové podmínky. Finish Silové okrajové podmínky Silové okrajové podmínky zadáme v solutionu. /SOL Tlak potrubí je konstantní po celou dobu výpočtu (viz Obr. 1). V prvním cyklu se tedy zvýší z nuly na požadovanou hodnotu. Tento zatěžovací stav (Loadstep) uložíme. SFE,all,1,pres,,p,,, lswrite Periodické zatížení F budeme zadávat v cyklu. Prvních 50 cyklů (Load steps - LS) má zatěžovací síla F hodnotu F1. Obr. 3 ukazuje několik prvních zatěžujících cyklů souřadnice bodů jsou [0; 0], [0; 1], [60000; 2], [0; 3], [-60000; 4], [0; 5], [60000; 6] atd., první hodnota odpovídá zatěžující síle F [N] a druhá hodnota aktuálnímu zatěžovacímu kroku (load step) LS [1]. Sílu zadáme do zátěžného (pilotního) uzlu 2 (viz Chyba! Nenalezen zdroj odkazů.). 7/11

8 Obr. 3 Několik prvních zatěžovacích cyklů. *do,i,1,pocet_cyklu1 F,2,FX,F1max F,2,FX,0 F,2,FX,F1min F,2,FX,0 *enddo Dalších 40 cyklů (Load steps - LS) má zatěžovací síla F hodnotu F2. Sílu zadáme stejným způsobem (v cyklu) jako v předchozím případu. *do,i,1,pocet_cyklu2 F,2,FX,F2max F,2,FX,0 F,2,FX,F2min F,2,FX,0 *enddo Tímto jsme zadali veškerá zatížení. Finis 8/11

9 Nastavení řešiče a vlastní řešení Tuto část budeme zadávat v solution. /SOL Tuto úlohu budeme řešit jako statickou s uvažováním velkých deformací. ANTYPE,STATIC NLGEOM,on Zatížení mezi jednotlivými kroky řešení (LS) je aproximováno lineárně. KBC,0 Budeme ukládat všechny základní výsledky řešení, ale každý 10 podkrok (substep) řešení. OUTRES,all,10 Každý krok řešení LS je rozdělen na 50 podkroků. NSUBST,50,50,50 Vyřešíme všechny připravené kroky (při ladění postupu (makra) nebo změnách je vhodné začít s malým počtem kroků např. pocet_cyklu1=5, pocet_cyklu2=3 z důvodu časové náročnosti řešení). lssolve,1,(pocet_cyklu1+pocet_cyklu2)*4+1,1 Tímto jsme vyřešili úlohu. FINISH Vyhodnocení řešení Nejprve vyzkoušíme jednoduchou animaci výsledků. Spustíme postprocesor, nastavíme vhodný pohled a měřídko zobrazovaných deformací. /POST1 /PSYMB,ESYS,1 /VIEW,1,,1 Eplot /DSCALE,ALL,10 V cyklu pak vytvoříme animaci průhybů z průběhu řešení. SET,FIRST PLDISP,0 *do,i,1,200 SET,NEXT PLDISP,0 /WAIT,0.2 *enddo V tomto příkladu chceme pouze porovnat výsledky řešení (pro řešení jsme zvolili jiný materiálový model) s výsledky u příkladu 4 viz Obr. 4. 9/11

10 Obr. 4 Graf závislosti získaný u příkladu 2. V případě elementu typu PIPE musíme nejdříve vytvořit požadované výsledkové soubory pomocí příkazu ETABLE (/POST1), nebo příkazu ESOL (/POST26). FINISH /POST26 Načteme tedy výsledky řešení plastické deformace v osovém (axi), radiálním (rad) a obvodovém (obv) směru v elementu 1 a uzlu 1 (viz help,pipe20) v požadovaném místě. ESOL,2,1,1,LEPPL,9,EPPL_axi_1 ESOL,3,1,1,LEPPL,10,EPPL_rad_1 ESOL,4,1,1,LEPPL,11,EPPL_obv_1 Nyní vykreslíme průběhy plastické deformace v osovém a obvodovém směru (viz Obr. 4 - ratcheting). 10/11

11 Obr. 5 Výsledky řešení s elementem typu PIPE20. Po několika prvních cyklech (ustálení) se již hodnoty plastické deformace nemění (nenastává ratcheting). 11/11

VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení)

VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení) VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení) Autoři: Martin Fusek, Radim Halama, Jaroslav Rojíček Verze: 0 Ostrava

Více

TAH/TLAK URČENÍ REAKCÍ

TAH/TLAK URČENÍ REAKCÍ VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení) Autoři: Martin Fusek, Radim Halama, Jaroslav Rojíček Verze: 0 Ostrava

Více

VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) MKP a MHP (Úlohy pro samostatnou práci studentů) Tažení prosté

VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) MKP a MHP (Úlohy pro samostatnou práci studentů) Tažení prosté VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) MKP a MHP (Úlohy pro samostatnou práci studentů) Autoři: Martin Fusek, Radim Halama, Jaroslav Rojíček Verze: 0 Ostrava

Více

Simulace ustáleného stavu při válcování hliníku

Simulace ustáleného stavu při válcování hliníku VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) MKP a MHP (Úlohy pro samostatnou práci studentů) Autoři: Martin Fusek, Radim Halama, Jaroslav Rojíček Verze: 0 Ostrava

Více

Nízkocyklová únava Chabocheův materiálový model.

Nízkocyklová únava Chabocheův materiálový model. VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) MKP a MHP (Úlohy pro samostatnou práci studentů) Nízkocyklová únava Chabocheův materiálový model. Autoři: Martin Fusek,

Více

Cvičení 9 (Výpočet teplotního pole a teplotních napětí - Workbench)

Cvičení 9 (Výpočet teplotního pole a teplotních napětí - Workbench) VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návody do cvičení) Cvičení 9 (Výpočet teplotního pole a teplotních napětí - Workbench)

Více

Tutoriál programu ADINA

Tutoriál programu ADINA Nelineární analýza materiálů a konstrukcí (V-132YNAK) Tutoriál programu ADINA Petr Kabele petr.kabele@fsv.cvut.cz people.fsv.cvut.cz/~pkabele Petr Kabele, 2007-2010 1 Výstupy programu ADINA: Preprocesor

Více

PŮLKULOVÁ TENKOSTTĚNNÁ NÁDOBA 3D MODEL

PŮLKULOVÁ TENKOSTTĚNNÁ NÁDOBA 3D MODEL VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků (Návody do cvičení) PŮLKULOVÁ TENKOSTTĚNNÁ NÁDOBA 3D MODEL Autoři: Martin Fusek, Radim Halama,

Více

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza modelu s vrubem

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza modelu s vrubem VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti Úvod do MKP Autor: Michal Šofer Verze 0 Ostrava 2011 Zadání: Proveďte napěťovou analýzu součásti s kruhovým vrubem v místě

Více

PŮLKULOVÁ TENKOSTĚNNÁ NÁDOBA - AXISYMETRIE

PŮLKULOVÁ TENKOSTĚNNÁ NÁDOBA - AXISYMETRIE VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení) PŮLKULOVÁ TENKOSTĚNNÁ NÁDOBA - AXISYMETRIE Autoři: Martin Fusek, Radim

Více

Inkrementální teorie plasticity - shrnutí

Inkrementální teorie plasticity - shrnutí Inkrementální teorie plasticity - shrnutí Aditivní zákon = e p. Hookeův zákon pro elastickou složku deformace =C: e. Podmínka plasticity f = f Y =0. Pravidlo zpevnění p e d =g, p,,d, d p,..., dy =h, p,y,

Více

Přehled modelů cyklické plasticity v MKP programech

Přehled modelů cyklické plasticity v MKP programech Přehled modelů cyklické plasticity v MKP programech Teorie plasticity Ing Josef Sedlák doc Ing Radim Halama, PhD 1 Shrnutí Aditivní pravidlo a Hookeův zákon, Podmínka plasticity Pravidlo zpevnění Pravidlo

Více

Nelineární problémy a MKP

Nelineární problémy a MKP Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)

Více

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza tenzometrického snímače ve tvaru háku

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza tenzometrického snímače ve tvaru háku VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti Úvod do MKP Napěťová analýza tenzometrického snímače ve tvaru háku Autor: Michal Šofer Verze 0 Ostrava 20 Zadání: Proveďte

Více

Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w

Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w Rovinná úloha v MKP Hledané deformační veličiny viz klasická teorie pružnosti (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v desky: w, ϕ x, ϕ y prostorové úlohy: u,

Více

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Deformační analýza stojanu na kuželky

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Deformační analýza stojanu na kuželky VŠB- Technická univerzita Ostrava akulta strojní Katedra pružnosti a pevnosti Úvod do KP Autor: ichal Šofer Verze Ostrava Úvod do KP Zadání: Určete horizontální a vertikální posun volného konce stojanu

Více

Postup zadávání základové desky a její interakce s podložím v programu SCIA

Postup zadávání základové desky a její interakce s podložím v programu SCIA Postup zadávání základové desky a její interakce s podložím v programu SCIA Tloušťka desky h s = 0,4 m. Sloupy 0,6 x 0,6m. Zatížení: rohové sloupy N 1 = 800 kn krajní sloupy N 2 = 1200 kn střední sloupy

Více

Identifikace materiálových parametrů Vybraných modelů plasticity

Identifikace materiálových parametrů Vybraných modelů plasticity Teorie plasticity 1. VŠB TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ KATEDRA PRUŽNOSTI A PEVNOSTI 17.listopadu 15, 708 33 Ostrava - Poruba Identifikace materiálových parametrů Vybraných modelů plasticity

Více

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška 1. Tahová zkouška Tahová zkouška se provádí dle ČSN EN ISO 6892-1 (aktualizována v roce 2010) Je nejčastější mechanickou zkouškou kovových materiálů. Zkoušky se realizují na trhacích strojích, kde se zkušební

Více

Výpočet sedání kruhového základu sila

Výpočet sedání kruhového základu sila Inženýrský manuál č. 22 Aktualizace 06/2016 Výpočet sedání kruhového základu sila Program: MKP Soubor: Demo_manual_22.gmk Cílem tohoto manuálu je popsat řešení sedání kruhového základu sila pomocí metody

Více

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -

Více

STATICKY NEURČITÝ NOSNÍK

STATICKY NEURČITÝ NOSNÍK VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení) STATICKY NEURČITÝ NOSNÍK Autoři: Martin Fusek, Radim Halama, Jaroslav

Více

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza maticového klíče

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza maticového klíče VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti Úvod do MKP Napěťová analýza maticového klíče Autor: Michal Šofer Verze 0 Ostrava 2011 Zadání: Proveďte napěťovou analýzu

Více

Výpočet přetvoření a dimenzování pilotové skupiny

Výpočet přetvoření a dimenzování pilotové skupiny Inženýrský manuál č. 18 Aktualizace: 08/2018 Výpočet přetvoření a dimenzování pilotové skupiny Program: Soubor: Skupina pilot Demo_manual_18.gsp Cílem tohoto inženýrského manuálu je vysvětlit použití programu

Více

VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení) SPOJKA

VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení) SPOJKA VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení) Autoři: Martin Fusek, Radim Halama, Jaroslav Rojíček Verze: 1 Ostrava

Více

Libor Kasl 1, Alois Materna 2

Libor Kasl 1, Alois Materna 2 SROVNÁNÍ VÝPOČETNÍCH MODELŮ DESKY VYZTUŽENÉ TRÁMEM Libor Kasl 1, Alois Materna 2 Abstrakt Příspěvek se zabývá modelováním desky vyztužené trámem. Jsou zde srovnány různé výpočetní modely model s prostorovými

Více

1/7. Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012

1/7. Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012 Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012 Úkol řešte ve skupince 2-3 studentů. Den narození zvolte dle jednoho člena skupiny. Řešení odevzdejte svému cvičícímu. Na symetrické prosté krokevní

Více

ANALÝZA NAPĚTÍ A DEFORMACÍ PRŮTOČNÉ ČOČKY KLAPKOVÉHO RYCHLOUZÁVĚRU DN5400 A POROVNÁNÍ HODNOCENÍ ÚNAVOVÉ ŽIVOTNOSTI DLE NOREM ČSN EN 13445-3 A ASME

ANALÝZA NAPĚTÍ A DEFORMACÍ PRŮTOČNÉ ČOČKY KLAPKOVÉHO RYCHLOUZÁVĚRU DN5400 A POROVNÁNÍ HODNOCENÍ ÚNAVOVÉ ŽIVOTNOSTI DLE NOREM ČSN EN 13445-3 A ASME 1. Úvod ANALÝZA NAPĚTÍ A DEFORMACÍ PRŮTOČNÉ ČOČKY KLAPKOVÉHO RYCHLOUZÁVĚRU DN5400 A POROVNÁNÍ HODNOCENÍ ÚNAVOVÉ ŽIVOTNOSTI DLE NOREM ČSN EN 13445-3 A ASME Michal Feilhauer, Miroslav Varner V článku se

Více

Náhradní ohybová tuhost nosníku

Náhradní ohybová tuhost nosníku Náhradní ohybová tuhost nosníku Autoři: Doc. Ing. Jiří PODEŠVA, Ph.D., Katedra mechaniky, Fakulta strojní, VŠB - Technická univerzita Ostrava, e-mail: jiri.podesva@vsb.cz Anotace: Výpočty ocelových výztuží

Více

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011 OTÁZKY VSTUPNÍHO TESTU PP I LS 010/011 Pomocí Thumovy definice, s využitím vrubové citlivosti q je definován vztah mezi součiniteli vrubu a tvaru jako: Součinitel tvaru α je podle obrázku definován jako:

Více

Kontraktantní/dilatantní

Kontraktantní/dilatantní Kontraktantní/dilatantní plasticita - úhel dilatance směr přírůstku plastické deformace Na základě experimentálního měření dospěl St. Venant k závěru, že směry hlavních napětí jsou totožné se směry přírůstku

Více

Zadání vzorové úlohy výpočet stability integrálního duralového panelu křídla

Zadání vzorové úlohy výpočet stability integrálního duralového panelu křídla Příloha č. 3 Zadání vzorové úlohy výpočet stability integrálního duralového panelu křídla Podklady SIGMA.1000.07.A.S.TR Date Revision Author 24.5.2013 IR Jakub Fišer 29.10.2013 1 Jakub Fišer 2 1 Obsah

Více

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování

Více

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov 3.2 Základy pevnosti materiálu Ing. Pavel Bělov 23.5.2018 Normálové napětí představuje vazbu, která brání částicím tělesa k sobě přiblížit nebo se od sebe oddálit je kolmé na rovinu řezu v případě že je

Více

Obecný Hookeův zákon a rovinná napjatost

Obecný Hookeův zákon a rovinná napjatost Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou

Více

1.1 Shrnutí základních poznatků

1.1 Shrnutí základních poznatků 1.1 Shrnutí základních poznatků Pojmem nádoba obvykle označujeme součásti strojů a zařízení, které jsou svým tvarem a charakterem namáhání shodné s dutými tělesy zatíženými vnitřním, popř. i vnějším tlakem.sohledemnatopovažujemezanádobyrůznápotrubíakotlovátělesa,alenapř.i

Více

Tvorba výpočtového modelu MKP

Tvorba výpočtového modelu MKP Tvorba výpočtového modelu MKP Jaroslav Beran (KTS) Modelování a simulace Tvorba výpočtového modelu s využitím MKP zahrnuje: Tvorbu (import) geometrického modelu Generování sítě konečných prvků Definování

Více

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti

Více

FIN3D Výukovápříručka

FIN3D Výukovápříručka www.fine.cz FIN3D Výukovápříručka Zadání Tento příklad ukáže výpočet a posouzení konstrukce zobrazené na obrázku. Sloupy jsou z trubek, trámy profil I. Materiál ocel Fe 360. Zatížení na trámy je svislé

Více

písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky.

písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky. POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)

Více

POČÍTAČOVÉ MODELOVÁNÍ NELINEÁRNÍCH PROBLÉMŮ ANSYS WORKBENCH

POČÍTAČOVÉ MODELOVÁNÍ NELINEÁRNÍCH PROBLÉMŮ ANSYS WORKBENCH Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní POČÍTAČOVÉ MODELOVÁNÍ NELINEÁRNÍCH PROBLÉMŮ ANSYS WORKBENCH Návody do cvičení předmětu Výpočty v mechanice s použitím MKP Jiří Podešva Ostrava

Více

NAUKA O MATERIÁLU I. Zkoušky mechanické. Přednáška č. 04: Zkoušení materiálových vlastností I

NAUKA O MATERIÁLU I. Zkoušky mechanické. Přednáška č. 04: Zkoušení materiálových vlastností I NAUKA O MATERIÁLU I Přednáška č. 04: Zkoušení materiálových vlastností I Zkoušky mechanické Autor přednášky: Ing. Daniela ODEHNALOVÁ Pracoviště: TUL FS, Katedra materiálu ZKOUŠENÍ mechanických vlastností

Více

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti Vlastnosti a zkoušení materiálů Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze

Více

NOSNÍK ŘEŠENÝ JAKO ROVINNÁ ÚLOHA POMOCÍ MKP A MHP

NOSNÍK ŘEŠENÝ JAKO ROVINNÁ ÚLOHA POMOCÍ MKP A MHP VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) MKP a MHP (Úlohy pro samostatnou práci studentů) NOSNÍK ŘEŠENÝ JAKO ROVINNÁ ÚLOHA POMOCÍ MKP A MHP Autoři: Martin Fusek,

Více

Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace

Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace Rovinný problém Řešíme plošné konstrukce zatížené a uložené v jejich střednicové rovině. Dvě varianty rovinného problému: rovinná napjatost rovinná deformace 17 Rovinná deformace 1 Obsahuje složky deformace

Více

Posouzení mikropilotového základu

Posouzení mikropilotového základu Inženýrský manuál č. 36 Aktualizace 06/2017 Posouzení mikropilotového základu Program: Soubor: Skupina pilot Demo_manual_36.gsp Cílem tohoto inženýrského manuálu je vysvětlit použití programu GEO5 SKUPINA

Více

Betonové konstrukce II - BL09. Studijní podklady. Příručka na vytvoření matematického modelu lokálně podepřené desky pomocí programu Scia Engineer

Betonové konstrukce II - BL09. Studijní podklady. Příručka na vytvoření matematického modelu lokálně podepřené desky pomocí programu Scia Engineer CZ.1.07/2.2.00/15.0426 Posílení kvality bakalářského studijního programu Stavební Inženýrství Betonové konstrukce II - BL09 Studijní podklady Příručka na vytvoření matematického modelu lokálně podepřené

Více

Cvičení 3 (Základní postup řešení - Workbench)

Cvičení 3 (Základní postup řešení - Workbench) VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Úvod do MKP (Návody do cvičení) Cvičení 3 (Základní postup řešení - Workbench) Autor: Jaroslav Rojíček Verze: 0 Ostrava

Více

Matematické modelování v geotechnice - Plaxis 2D (ražený silniční/železniční tunel)

Matematické modelování v geotechnice - Plaxis 2D (ražený silniční/železniční tunel) Matematické modelování v geotechnice - Plaxis 2D (ražený silniční/železniční tunel) Plaxis 2D Program Plaxis 2D je program vhodný pro deformační a stabilitní analýzu geotechnických úloh. a je založen na

Více

Test A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná.

Test A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná. Test A 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná. 2. Co je to µ? - Poissonův poměr µ poměr poměrného příčného zkrácení k poměrnému podélnému prodloužení v oblasti pružných

Více

Násep vývoj sedání v čase (konsolidace) Program: MKP Konsolidace

Násep vývoj sedání v čase (konsolidace) Program: MKP Konsolidace Inženýrský manuál č. 37 Aktualizace: 9/2017 Násep vývoj sedání v čase (konsolidace) Program: MKP Konsolidace Soubor: Demo_manual_37.gmk Úvod Tento příklad ilustruje použití modulu GEO5 MKP Konsolidace

Více

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky

Více

Téma 2 Napětí a přetvoření

Téma 2 Napětí a přetvoření Pružnost a plasticita, 2.ročník bakalářského studia Téma 2 Napětí a přetvoření Deformace a posun v tělese Fzikální vztah mezi napětími a deformacemi, Hookeův zákon, fzikální konstant a pracovní diagram

Více

Analýza chladnutí formy pro

Analýza chladnutí formy pro Analýza chladnutí formy pro lisování plastů Zpracoval: Ing. Martin KONEČNÝ, Ph.D. Pracoviště: Katedra textilních a jednoúčelových strojů Tento materiál vznikl jako součást projektu In-TECH 2, který je

Více

Tvorba digitálního modelu terénu

Tvorba digitálního modelu terénu Tvorba digitálního modelu terénu V závěrečné fázi našeho projektu využijeme programu k vizualizaci těchto dat DMT a také k jejich porovnání Spojení druhu bodů Z důvodu exportu bodů je nutné spojit druhy

Více

Nelineární úlohy při výpočtu konstrukcí s využitím MKP

Nelineární úlohy při výpočtu konstrukcí s využitím MKP Nelineární úlohy při výpočtu konstrukcí s využitím MKP Obsah přednášky Lineární a nelineární úlohy Typy nelinearit (geometrická, materiálová, kontakt,..) Příklady nelineárních problémů Teorie kontaktu,

Více

VYHODNOCENÍ LABORATORNÍCH ZKOUŠEK

VYHODNOCENÍ LABORATORNÍCH ZKOUŠEK VYHODNOCENÍ LABORATORNÍCH ZKOUŠEK Deformace elastomerových ložisek při zatížení Z hodnot naměřených deformací elastomerových ložisek v jednotlivých měřících místech (jednotlivé snímače deformace) byly

Více

MSC.Marc 2005r3 Tutorial 1. Autor: Robert Zemčík

MSC.Marc 2005r3 Tutorial 1. Autor: Robert Zemčík MSC.Marc 2005r3 Tutorial Autor: Robert Zemčík ZČU Plzeň Březen 2008 Tento dokument obsahuje návod na MKP výpočet jednoduchého rovinného tělesa pomocí verze programu MSC.Marc 2005r3. Zadání úlohy Tenké

Více

Cvičení 7 (Matematická teorie pružnosti)

Cvičení 7 (Matematická teorie pružnosti) VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návo do cvičení) Cvičení 7 (Matematická teorie pružnosti) Autor: Jaroslav Rojíček Verze:

Více

Cvičení 3 (Základní postup řešení Workbench 12.0)

Cvičení 3 (Základní postup řešení Workbench 12.0) VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návody do cvičení) Cvičení 3 (Základní postup řešení Workbench 12.0) Autor: Jaroslav

Více

Posouzení stability svahu

Posouzení stability svahu Inženýrský manuál č. 25 Aktualizace 07/2016 Posouzení stability svahu Program: MKP Soubor: Demo_manual_25.gmk Cílem tohoto manuálu je vypočítat stupeň stability svahu pomocí metody konečných prvků. Zadání

Více

10. Elasto-plastická lomová mechanika

10. Elasto-plastická lomová mechanika (J-integrál) Únava a lomová mechanika J-integrál je zobecněním hnací síly trhliny a umožňuje použití i v případech plastické deformace většího rozsahu: d J = A U da ( ) A práce vnějších sil působících

Více

Cvičení 6 - Nádoby a potrubí (Základní postup řešení - Workbench)

Cvičení 6 - Nádoby a potrubí (Základní postup řešení - Workbench) VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návody do cvičení) Cvičení 6 - Nádoby a potrubí (Základní postup řešení - Workbench)

Více

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled

Více

Příloha č. 1. Pevnostní výpočty

Příloha č. 1. Pevnostní výpočty Příloha č. 1 Pevnostní výpočty Pevnostní výpočty navrhovaného CKT byly provedeny podle normy ČSN 69 0010 Tlakové nádoby stabilní. Technická pravidla. Vzorce a texty v této příloze jsou převzaty z této

Více

Betonové konstrukce (S) Přednáška 3

Betonové konstrukce (S) Přednáška 3 Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární

Více

Beton 3D Výuková příručka Fine s. r. o. 2010

Beton 3D Výuková příručka Fine s. r. o. 2010 Zadání Cílem tohoto příkladu je navrhnout a posoudit výztuž šestiúhelníkového železobetonového sloupu (výška průřezu 20 cm) o výšce 2 m namáhaného normálovou silou 400 kn, momentem My=2,33 knm a momentem

Více

ÚLOHA VEDENÍ TEPLA ŘEŠENÁ POMOCÍ MKP A MHP

ÚLOHA VEDENÍ TEPLA ŘEŠENÁ POMOCÍ MKP A MHP VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) MKP a MHP (Úlohy pro samostatnou práci studentů) ÚLOHA VEDENÍ TEPLA ŘEŠENÁ POMOCÍ MKP A MHP Autoři: Martin Fusek, Radim

Více

URČENÍ NAPĚTÍ V KRUHOVÉM DISKU POMOCÍ MKP A MHP

URČENÍ NAPĚTÍ V KRUHOVÉM DISKU POMOCÍ MKP A MHP VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) MKP a MHP (Úlohy pro samostatnou práci studentů) URČENÍ NAPĚTÍ V KRUHOVÉM DISKU POMOCÍ MKP A MHP Autoři: Martin Fusek,

Více

Definujte poměrné protažení (schematicky nakreslete a uved te jednotky) Napište hlavní kroky postupu při posouzení prutu na vzpěrný tlak.

Definujte poměrné protažení (schematicky nakreslete a uved te jednotky) Napište hlavní kroky postupu při posouzení prutu na vzpěrný tlak. 00001 Definujte mechanické napětí a uved te jednotky. 00002 Definujte normálové napětí a uved te jednotky. 00003 Definujte tečné (tangenciální, smykové) napětí a uved te jednotky. 00004 Definujte absolutní

Více

Mechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1

Mechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1 Mechanické vlastnosti technických materiálů a jejich měření Metody charakterizace nanomateriálů 1 Základní rozdělení vlastností ZMV Přednáška č. 1 Nejobvyklejší dělení vlastností materiálů v technické

Více

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady. Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových

Více

Namáhání ostění kolektoru

Namáhání ostění kolektoru Inženýrský manuál č. 23 Aktualizace 06/2016 Namáhání ostění kolektoru Program: MKP Soubor: Demo_manual_23.gmk Cílem tohoto manuálu je vypočítat namáhání ostění raženého kolektoru pomocí metody konečných

Více

Výpočtové nadstavby pro CAD

Výpočtové nadstavby pro CAD Výpočtové nadstavby pro CAD 4. přednáška eplotní úlohy v MKP Michal Vaverka, Martin Vrbka Přenos tepla Př: Uvažujme pro jednoduchost spalovací motor chlazený vzduchem. Spalováním vzniká teplo, které se

Více

Výpočet konsolidace pod silničním náspem

Výpočet konsolidace pod silničním náspem Inženýrský manuál č. 11 Aktualizace: 06/2018 Výpočet konsolidace pod silničním náspem Program: Soubor: Sedání Demo_manual_11.gpo V tomto inženýrském manuálu je vysvětlen výpočet časového průběhu sedání

Více

PRUŽNOST A PLASTICITA I

PRUŽNOST A PLASTICITA I Otázky k procvičování PRUŽNOST A PLASTICITA I 1. Kdy je materiál homogenní? 2. Kdy je materiál izotropní? 3. Za jakých podmínek můžeme použít princip superpozice účinků? 4. Vysvětlete princip superpozice

Více

Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti

Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti Nauka o materiálu Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze kluzu R e, odpovídající

Více

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu index 1 Rejstřík Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu Pružnost a pevnost. U každého termínu je uvedeno označení kapitoly a čísla obrazovek, na nichž lze pojem nalézt.

Více

Sendvičové panely únosnost v osovém tlaku

Sendvičové panely únosnost v osovém tlaku Sendvičové panely únosnost v osovém tlaku Protokol o zkoušce Výrobce a dodavatel: ISMAT solution, s.r.o. Dolení 184, 411 85 Horní Beřkovice Obchodní rejstřík vedený u Krajského soudu v Ústí nad Labem,

Více

Geometricky válcová momentová skořepina

Geometricky válcová momentová skořepina Geometricky válcová momentová skořepina Dalším typem tenkostěnnéo rotačně souměrnéo tělesa je geometricky válcová momentová skořepina. Typický souřadnicový systém je opět systém s osami z, r, a t. Geometricky

Více

Únosnost kompozitních konstrukcí

Únosnost kompozitních konstrukcí ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní Ústav letadlové techniky Únosnost kompozitních konstrukcí Optimalizační výpočet kompozitních táhel konstantního průřezu Technická zpráva Pořadové číslo:

Více

Pevnostní výpočet tlakové nádoby podle ČSN

Pevnostní výpočet tlakové nádoby podle ČSN evnostní výpočet tlakové nádoby podle ČSN 69000 SV K kontrolní výpočet podle nové ČSN (původní výpočet byl proveden v /987 podle staré ČSN) říklad na ZSVZ. Hoffman; /000 Náčrt stavebnicového trubkového

Více

TLUSTOSTĚNNÉ ROTAČNĚ SYMETRICKÉ VÁLCOVÉ NÁDOBY. Autoři: M. Zajíček, V. Adámek

TLUSTOSTĚNNÉ ROTAČNĚ SYMETRICKÉ VÁLCOVÉ NÁDOBY. Autoři: M. Zajíček, V. Adámek 1.3 Řešené příklady Příklad 1: Vyšetřete a v měřítku zakreslete napjatost v silnostěnné otevřené válcové nádobě zatížené vnitřním a vnějším přetlakem, viz obr. 1. Na nebezpečném poloměru, z hlediska pevnosti

Více

Skořepinové konstrukce. tloušťka stěny h a, b, c

Skořepinové konstrukce. tloušťka stěny h a, b, c Skořepinové konstrukce skořepina střední plocha a b tloušťka stěny h a, b, c c Různorodé technické aplikace skořepinových konstrukcí Mezní stavy skořepinových konstrukcí Ztráta stability zhroucení konstrukce

Více

Šíření rovinné vlny Cvičení č. 1

Šíření rovinné vlny Cvičení č. 1 Šíření rovinné vlny Cvičení č. 1 Cílem dnešního cvičení je seznámit se s modelováním rovinné vlny v programu ANSYS HFSS. Splnit bychom měli následující úkoly: 1. Vytvořme model rovinné vlny, která se šíří

Více

Sedání piloty. Cvičení č. 5

Sedání piloty. Cvičení č. 5 Sedání piloty Cvičení č. 5 Nelineární teorie (Masopust) Nelineární teorie sestrojuje zatěžovací křivku piloty za předpokladu, že mezi nulovým zatížením piloty a zatížením, kdy je plně mobilizováno plášťové

Více

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c )

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c ) 3.3 Řešené příklady Příklad 1: Pro nosník na obrázku vyšetřete a zakreslete reakce, T (x) a M(x). Dále určete M max a proveďte dimenzování pro zadaný průřez. Dáno: a = 0.5 m, b = 0.3 m, c = 0.4 m, d =

Více

Pilotové základy úvod

Pilotové základy úvod Inženýrský manuál č. 12 Aktualizace: 04/2016 Pilotové základy úvod Program: Pilota, Pilota CPT, Skupina pilot Cílem tohoto inženýrského manuálu je vysvětlit praktické použití programů GEO 5 pro výpočet

Více

Lineární regrese. Komentované řešení pomocí MS Excel

Lineární regrese. Komentované řešení pomocí MS Excel Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních

Více

MIDAS GTS. gram_txt=gts

MIDAS GTS. gram_txt=gts K135YGSM Příklady (MIDAS GTS): - Plošný základ lineární výpočet a nelineární výpočet ve 2D MKP - Stabilita svahu ve 2D a 3D MKP - Pažící konstrukce ve 2D a 3D MKP MIDAS GTS http://en.midasuser.com http://departments.fsv.cvut.cz/k135/cms/?pa

Více

AdvAnch 2015 1g Uživatelský manuál v. 1.0

AdvAnch 2015 1g Uživatelský manuál v. 1.0 AdvAnch 2015 1g Uživatelský manuál v. 1.0 Obsah 1. POPIS APLIKACE... 3 1.1. Pracovní prostředí programu... 3 1.2. Práce se soubory... 4 1.3. Základní nástrojová lišta... 4 2. ZADÁVANÍ HODNOT VSTUPNÍCH

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STROJNÍ

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STROJNÍ ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STROJNÍ Ústav mechaniky, biomechaniky a mechatroniky Odbor pružnosti a pevnosti Program pro analýzu napjatosti a deformaci hřídelů Studentská práce Jan Pecháček

Více

Výpočet svislé únosnosti a sedání skupiny pilot

Výpočet svislé únosnosti a sedání skupiny pilot Inženýrský manuál č. 17 Aktualizace: 04/2016 Výpočet svislé únosnosti a sedání skupiny pilot Proram: Soubor: Skupina pilot Demo_manual_17.sp Úvod Cílem tohoto inženýrského manuálu je vysvětlit použití

Více

OVMT Mechanické zkoušky

OVMT Mechanické zkoušky Mechanické zkoušky Mechanickými zkouškami zjišťujeme chování materiálu za působení vnějších sil, tzn., že zkoumáme jeho mechanické vlastnosti. Některé mechanické vlastnosti materiálu vyjadřují jeho odpor

Více

Příklad oboustranně vetknutý nosník

Příklad oboustranně vetknutý nosník Příklad oboustranně vetknutý nosník výpočet podle viskoelasticity: 4 L fˆ L w, t J t, t 384I 0 průhyb uprostřed co se změní v případě, fˆ že se zatížení M mění x t v čase? x Lx L H t t0 1 fl ˆ M fˆ 0,

Více

Zadání vzorové úlohy výpočet stability integrálního duralového panelu křídla

Zadání vzorové úlohy výpočet stability integrálního duralového panelu křídla Příloha č. 3 Zadání vzorové úlohy výpočet stability integrálního duralového panelu křídla Podklady SIGMA.1000.07.A.S.TR Date Revision Author 24.5.2013 IR Jakub Fišer 1 2 1 Obsah Abstrakt... 3 1 Úvod...

Více

Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků

Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků Petr Kabele petr.kabele@fsv.cvut.cz people.fsv.cvut.cz/~pkabele Petr Kabele, 2007-2014 Obsah Variační principy

Více

5. Únava Zatížení při únavě, Wöhlerův přístup a lomová mechanika, únosnost, vliv vrubů, kumulace poškození, přístup podle Eurokódu.

5. Únava Zatížení při únavě, Wöhlerův přístup a lomová mechanika, únosnost, vliv vrubů, kumulace poškození, přístup podle Eurokódu. 5. Únava Zatížení při únavě, Wöhlerův přístup a lomová mechanika, únosnost, vliv vrubů, kumulace poškození, přístup podle Eurokódu. K poškození únavou dochází při zatížení výrazně proměnném s časem. spolehlivost

Více

Výpočet sedání terénu od pásového přitížení

Výpočet sedání terénu od pásového přitížení Inženýrský manuál č. 21 Aktualizace 06/2016 Výpočet sedání terénu od pásového přitížení Program: Soubor: MKP Demo_manual_21.gmk V tomto příkladu je řešeno sednutí terénu pod přitížením pomocí metody konečných

Více

Vlastnosti a zkoušení materiálů. Přednáška č.9 Plasticita a creep

Vlastnosti a zkoušení materiálů. Přednáška č.9 Plasticita a creep Vlastnosti a zkoušení materiálů Přednáška č.9 Plasticita a creep Vliv teploty na chování materiálu 1. Teplotní roztažnost L = L α T ( x) dl 2. Závislost modulu pružnosti na teplotě: Modul pružnosti při

Více