ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

Rozměr: px
Začít zobrazení ze stránky:

Download "ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE"

Transkript

1 ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

2 České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská Katedra jaderných reaktorů Praha 8, V Holešovičkách 2, 18, Česká republika Ing. Jitka Vrzalová Experimentální určení účinných průřezů prahových reakcí neutronů a studium neutronové produkce ve spalačních reakcích Doktorský studijní program: Aplikace přírodních věd Studijní obor: Jaderné inženýrství Studie k státní doktorské zkoušce Praha, leden 214

3 Školitel ČR: RNDr. Vladimír Wagner, CSc. Oddělení jaderné spektroskopie Ústav jaderné fyziky AV ČR, v.v.i Husinec-Řež, č.p. 13, Husinec Řež Školitel RF: prom.fyz. Jindřich Adam, CSc. Dželepovova laboratoř jaderných problémů Spojený ústav jaderných výzkumů Joliot-Curie 6, Dubna, Rusko Oponent: prof. Ing. Marcel Miglierini, DrSc. Katedra jaderných reaktorů Fakulta jaderná a fyzikálně inženýrská ČVUT Břehová 7, Praha 1 Tato studie byla vypracována v prezenční formě doktorského studia na katedře jaderných reaktorů Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze ve spolupráci s Ústavem jaderné fyziky AV ČR a Spojeným ústavem jaderných výzkumů Dubna. Část experimentů týkajících se měření účinných průřezů se uskutečnila v: The Svedberg Laboratory Thunbergsvägen 5A Box 533 SE Uppsala Švédsko

4 Obsah Hlavní cíle práce... 5 Úvod Urychlovačem řízené transmutační systémy Motivace ke studiu transmutačních systémů Spalační reakce Historie výzkumu ve světě Současný stav výzkumu ve světě Měření účinných průřezů prahových reakcí neutronů Analýza dat Vliv pozadí Srovnání různých nastavení kódu TALYS Experimentálně určené účinné průřezy prahových reakcí Reakce na přírodním indiu Reakce na bismutu Studium produkce neutronů ve spalačních reakcích Experiment na fázotronu Experiment na nuklotronu (GAMMA 3) Experiment na nuklotronu (KVINTA) Závěr: Příloha: A. Reakce na zinku B. Reakce na zlatě a hořčíku C. Reakce na niklu a železe D. Reakce na hliníku, jódu a tantalu E. Reakce na ytriu a mědi Použitá literatura:... 43

5 Hlavní cíle práce V předkládané studii shrnuji výsledky experimentů, zaměřených na získání nových dat v oblasti urychlovačem řízených transmutačních systémů, uskutečněných ve třech vědeckých institucích: v ÚJF Řež, TSL Uppsala a SÚJV Dubna, kterých jsem se účastnila. Díky možnosti pracovat v silném a zkušeném vědeckém kolektivu jak v ÚJF Řež, Oddělení jaderné spektroskopie (od roku 29), tak v SÚJV Dubna, Oddělení jaderné spektroskopie a radiochemie (od roku 212) jsem dostala příležitost osvojit si znalosti s přípravou experimentů na velkých zařízeních (urychlovače) a získat znalosti v oblastech aktivační analýzy a gama spektrometrie. Osobně jsem vyhodnocovala výsledky měření z těchto experimentů: experimenty v TSL Uppsala (21) s energiemi neutronového svazku 59,; 66,4; 72,8 a 89,3 MeV, experimenty v ÚJF Řež (29) s energiemi neutronového svazku 3,4 a 35,9 MeV a experimenty na spalačních soustavách v SÚJV Dubna (fázotron 211, GAMMA3 211 a KVINTA 213); výsledky experimentů v TSL Uppsala (28) s energiemi neutronového svazku 47, a 94, MeV a experimentu v ÚJF Řež (28) s energií protonového svazku 17,5 MeV, které jsou v této práci pro srovnání rovněž uvedeny, vyhodnocoval Ing. Ondřej Svoboda, PhD. (blíže, viz [1]). Konkrétní cíle studie lze specifikovat v těchto bodech: Shrnutí současného stavu výzkumu urychlovačem řízených transmutačních systémů ve světě Určení účinných průřezů prahových reakcí neutronů z experimentů uskutečněných v ÚJF Řež a v TSL Uppsala Srovnání experimentálně určených účinných průřezů s daty z databáze EXFOR, s knihovnami evaluovaných dat a s výpočty v kódu TALYS Studium vlivu různých verzí kódu TALYS na výpočet účinných průřezů Spoluúčast na experimentech se spalačními soustavami v SÚJV Dubna (fázotron, GAMMA3, KVINTA) Výpočet reakčních rychlostí reakcí na prahových detektorech Studium a určení produkovaných neutronových spekter na základě vypočítaných reakčních rychlostí

6 Úvod Tato práce mohla vzniknout díky mezinárodnímu výzkumnému programu Energy and Transmutation of Radioactive Waste project, který spojuje 15 zemí, podílejících se na výzkumu různých aspektů spalačních reakcí, neutronové produkce a transmutace vyhořelého jaderného paliva. V práci jsou popsány tři různé aktivační experimenty, které byly uskutečněny ve Spojeném ústavu jaderných výzkumů v Dubně. První proběhl na fázotronu s olověným terčem a protonovým svazkem o energii 66 MeV, druhý na nuklotronu s olověným terčem obklopeným velkým grafitovým moderátorem a deuteronovým svazkem o energii 2,33 GeV (GAMMA 3) a třetí na nuklotronu s velkým terčem z přírodního uranu a energiemi deuteronů,6; 1 a 2 GeV/n (KVINTA). Při experimentech byly zkoumány reakční rychlosti vznikajících produktů. Prahové aktivační detektory se s oblibou používají pro měření produkovaných neutronových polí ve spalačních reakcích. Při vyšších energiích (E > 3 MeV) je však k dispozici pouze velmi málo experimentálních hodnot účinných průřezů pro většinu pozorovaných (n,xn), (n,α) a (n,p) reakcí na těchto materiálech. Proto jsme s finanční podporou projektu EFNUDAT uskutečnili měření účinných průřezů na kvazimonoenergetickém neutronovém zdroji v TSL Uppsala. Tento zdroj disponuje energetickým rozsahem od 11 do 175 MeV a využívá reakce 7 Li(p,n) 7 Be. Toto měření jsme ještě doplnili měřením na neutronovém zdroji stejného typu v ÚJF AVČR (energetický rozsah zdroje MeV). Celkově bylo provedeno jedenáct měření účinných průřezů v energetickém rozsahu od 17 do 94 MeV. Výhodou aktivačních detektorů je, kromě jiného, jejich malá velikost. Při umisťování tak není problém s nedostatkem místa. Neutrony interagují s materiálem aktivační fólie a následně je analyzována aktivita radionuklidů produkovaných ve fólii. Prahové detektory jsou aktivovány prostřednictvím (n,xn), (n,α) a (n,p) reakcí. Nově vzniklé izotopy jsou nestabilní, přeměňují se rozpadem beta (β +, β -, záchytem elektronu) a, pokud je dceřiné jádro v excitovaném stavu, emitují charakteristické záření gama. Následně jsou fotony registrovány polovodičovým detektorem (HPGe). Množství produkovaných radionuklidů lze určit z naměřené aktivity. Za předpokladu, že je dostatečně dobře znám průběh vzniku nových izotopů, lze získat informace o neutronovém poli. Je tak důležité znát co nejpřesněji excitační funkce používaných reakcí. A právě získání nových dat o účinných průřezech reakcí neutronů s materiály, které se využívají jako aktivační detektory, bylo hlavním cílem mé práce. Množství radioaktivních izotopů produkovaných různými reakcemi bylo určeno pomocí gama spektrometrie. K vyhodnocování poloh a ploch píků byl využit program DEIMOS32. Na základě ploch píků získaných z programu DEIMOS jsem vypočítala celkové výtěžky prahových reakcí a následně i účinné průřezy. Vhodným nástrojem k výpočtu účinných průřezů je výpočetní kód TALYS. Pro jeho vývoj a testování je třeba co - 6 -

7 nejkompletnější, nejširší a nejpřesnější soubor experimentálních dat. Stejně tak jsou experimentální data důležitá pro vývoj knihoven evaluovaných účinných průřezů. 1 Urychlovačem řízené transmutační systémy 1.1 Motivace ke studiu transmutačních systémů V posledních letech se zřetelně ukazuje, že současný způsob nakládání s vysokoaktivním a dlouhodobým odpadem z vyhořelého jaderného paliva (uložení a separace od životního prostředí na období až 1 5 roků) příliš velkou důvěru společnosti vůči výstavbě a provozu jaderných elektráren nevyvolává. Hlubinné ukládání vyhořelého jaderného paliva (ať už přepracovaného nebo ne) do geologických formací je sice dosud na celém světě považováno za nejvhodnější způsob jeho oddělení od životního prostředí, avšak, jak ukazují nové poznatky a technologie, nemusí být konečným řešením, resp. alespoň v tak rozsáhlé míře. Významný pokrok v několika důležitých oblastech, zejména pak ve vývoji nových urychlovačů a možnostech jejich širokého využití, v materiálové oblasti jaderných zařízení a v separačních metodách, podstatně přispěl k vážným úvahám o reálnosti principiálně nové možnosti zneškodňování jaderných odpadů na bázi jejich jaderné transmutace. Podle věrohodných odborných odhadů by vhodnými transmutacemi mohlo dojít ke zkrácení doby kontrolovaného uložení odpadů na stovky let. Přitom by celkové množství odpadů proti stávajícímu stavu bylo sníženo alespoň o řád [2]. I když se ani tyto technologie bez trvalého úložiště silně radioaktivního odpadu neobejdou, mohou transmutační technologie především časově, ale i objemem, redukovat stávající problém na mnohem přijatelnější úroveň. V urychlovačem řízených transmutačních systémech není jediným zdrojem neutronů štěpení, ale obsahují další zdroj neutronů [3]. Samotný reaktor pak může být podkritický a štěpná řetězová reakce nemůže probíhat samostatně a je v něm udržována právě pomocí vnějšího zdroje neutronů (Obr. 1). V daném případě jsou zmíněným zdrojem neutronů spalační reakce relativistických protonů, případně deuteronů. 1.2 Spalační reakce Spalační reakce spočívá v interakci lehkého projektilu (protony, neutrony, lehká jádra) s kinetickou energií od několika stovek MeV do několika GeV s těžkým jádrem (například z olova), která způsobí emisi velkého počtu hadronů (především neutronů) a fragmentů. Při spalačních reakcích dochází k vnitrojaderné kaskádě a následné deexcitaci jádra s velkým přebytkem energie. Projektil vnikne do jádra a předává nukleonům jádra pružnými srážkami svoji energii. Tyto nukleony následně způsobují další srážky, vzniká vnitrojaderná kaskáda. Se vzrůstající energií dopadající částice dochází k překročení prahových hodnot pro produkci částic v nukleon-nukleonových interakcích. Nejprve vznikají mezony pí, následně při energiích - 7 -

8 kolem 2 1 GeV i těžší hadrony. Vyražené nukleony i nově vznikající částice jsou emitovány převážně ve směru pohybu primární částice a v tlustém terči mohou vyvolat další spalační reakce. Po skončení vnitrojaderné kaskády je energie rovnoměrně rozprostřena v celém jádře, které se nachází ve vysoce vybuzeném stavu. Jádro se energie zbavuje tzv. vypařováním (evaporací) neutronů. Poté se deexcituje gama kvanty a beta přeměnou. Rozložení vypařovacích neutronů je izotropní. Při spalačních reakcích nevznikají monoenergetické neutrony, ale časově a prostorově závislé neutronové toky s energetickým rozložením Ф(E,x,t). Prostorové rozložení neutronového toku i spektrum neutronů může být měřeno malými fóliemi umístěnými v různých pozicích. Je výhodné, když je ozařování aktivační fólie v čase stabilní, v opačném případě je nutné provést korekce na nestabilitu svazku [4], kdy je celý ozařovací proces rozdělen do několika intervalů se stejnou intensitou svazku: B = N t irr i [ t 1 (i) p 1 e λt W ( i) e irr λt ( i) λt (i) e (1 e p, (1) )] kde t irr celková doba ozařování, t e (i) doba od konce ozařovacího intervalu do konce celého ozařování, t p (i) doba trvání ozařovacího intervalu, W(i) poměr mezi počtem ozařovacích částic v ozařovacím intervalu a v celém ozařování, N celkový počet intervalů, λ rozpadová konstanta. Korekční faktor závisí na poločasu rozpadu jednotlivých isotopů (čím menší je poločas rozpadu, tím bude větší korekční faktor na nestabilitu svazku). Obr.1.: Schematický nákres urychlovačem řízeného transmutoru [5] - 8 -

9 1.3 Historie výzkumu ve světě Poprvé se úvahy o využití urychlovačem řízených transmutačních systémů objevily ve čtyřicátých letech. Díky vynálezu cyklotronu E. O. Lawrence v roce 1929 bylo možné produkovat velké množství neutronů za pomoci vysoce výkonných urychlovačů a právě Lawrence přišel s myšlenkou použít urychlovač jako zdroj neutronů k získání štěpného materiálu. Měl se tak řešit nedostatek štěpného materiálu pro výrobu jaderných zbraní v USA (v té době bylo známo jen velmi málo domácích nalezišť uranu a USA byla závislá na zahraničních zdrojích). Jeho MTA projekt (Materials Testing Accelerator) odstartoval roku 195 v Lawrence Livermore National Laboratory v Kalifornii [6]. Lawrence navrhoval ozařovat různě tlusté terče (U, Be, Li) protony a deuterony, měřil účinné průřezy, neutronové výtěžky a schopnost produkovat plutonium 239 z uranu 238 a uran 233 z thoria 232. Jeho projekt testování terčových materiálů a průběhu transmutací byl zastaven po pár letech, když se ve Spojených státech našla vydatná ložiska uranu [5]. Během následujících desetiletí probíhaly důležité experimenty týkající se urychlovačem řízených transmutorů v řadě laboratoří. Například v SÚJV Dubna byly měřeny neutronové výtěžky a spektra v olověných a uranových terčích ozařovaných relativistickými protony a byly určovány účinné průřezy neutronových reakcí různých izotopů [7]. První komplexní program na studium transmutace radioaktivního odpadu odstartoval v roce 198 v japonském výzkumném centru a nesl název OMEGA (Option Making Extra Gains from Actinides and Fission Products) [8]. Další z prvních návrhů pro urychlovačem řízený transmutační systém využívající transmutaci štěpitelného thoria 232 na štěpný uran 233 a získávání energie jeho štěpením přednesl italský fyzik Carl Rubbia z evropského střediska jaderného výzkumu CERN. Uvažoval o možnosti použití reaktoru s rychlým neutronovým spektrem a podkritickým jádrem, který by obsahoval thorium a počáteční množství štěpného materiálu (plutonium z lehkovodních reaktorů). Jako chladící materiál mělo být použito, díky jeho termodynamickým vlastnostem, tekuté olovo, které navíc nezpomaluje neutrony a lze ho použít jako spalační terč pro jejich produkci. K ovládání systému by byl potřeba protonový urychlovač s energií 1 GeV (cyklotron nebo lineární urychlovač). Výkon by byl regulován změnou intenzity protonového svazku, proto by v reaktoru nebyly zapotřebí žádné regulační tyče [9]. Další návrh Charlese Bowmana z Laboratoře v Los Alamos v USA byl zaměřen na transmutaci dlouhodobých radioizotopů z jaderného odpadu pomocí tepelného podkritického reaktoru, ve kterém by palivo ve formě roztavených solí obsahovalo množství aktinidů určených k transmutaci (plutonium nebo těžké aktinidy jako americium nebo curium). Dodatečné přidané množství pevného thoria by sloužilo ke zvýšení neutronové produkce. Tekuté palivo by cirkulovalo extrakčním zařízením, které by odstraňovalo stabilní a krátce žijící štěpné produkty. Spalační neutrony by byly generovány dopadem protonového svazku - 9 -

10 s energií 1 GeV na olověný terč uvnitř reaktoru a potom zpomalovány použitím těžké vody jako moderátoru [1]. Oba projekty byly zaměřeny hlavně na rozbor možností a získání přehledu o potřebných experimentálních studiích. U všech aktinidů je poměr účinného průřezu pro záchyt k účinnému průřezu pro štěpení tepelnými nebo nadtepelnými neutrony relativně velký. Tento poměr klesá se zvyšující se energií neutronů. Proto se mnohem výhodnějším transmutorem zdá být rychlý reaktor [11]. Dále proběhla řada praktických testů, jak v laboratoři CERN, tak i v laboratoři v Los Alamos. Ukázalo se, že před výběrem a realizací konkrétního prototypového transmutoru bude potřeba udělat řadu experimentálních výzkumů, aby bylo možné co nejlépe popsat průběh spalačních reakcí, prostorové a energetické rozložení neutronových polí, pravděpodobnost transmutace jednotlivých isotopů atd. Ve světě a v Evropě se pak rozběhlo několik projektů, které studují různé dílčí problémy spojené s výběrem urychlovače, terče a vhodné sestavy reaktoru [5]. Jsou to projekty zaměřené na získání potřebných jaderných dat, doplnění knihovny účinných průřezů a na testování přesnosti modelů popisujících spalační reakce. 1.4 Současný stav výzkumu ve světě Mezi roky 1998 až 22 vytyčoval priority výzkumu Evropské unie F5E program (Fifth framework programme of the European community for research, technological development and demonstration activities) [12]. Jeho částí byl rámcový program Euratom zahrnující výzkum a výcvikové aktivity v jaderném sektoru. Tento program zahrnoval celou škálu vědních oblastí. Projekty věnované vývoji transmutačních technologií a podkritických systémů byly tyto: MEGAPIE (Megawatt Spallation Target Pilot Experiment) [13] zkoumající chování terče při extrémní tepelné a radiační zátěži, Thorium Cycle project, CONFIRM, PDS-XADS, ADOPT, HINDAS, ntof a MUSE-4. Na tyto projekty pak v rámci F6E (Sixth Framework Programme) [14] a jeho programu Euratom navazují další, v rámci kterých je studována každá část potenciálního sytému transmutace vyhořelého jaderného paliva. V tomto programu je prováděn výzkum v oblasti jaderného štěpení a radiační ochrany. Šestý rámcový program Euratomu financoval následující projekty: EUROTRANS (EUROpean Research Programme for the TRANSmutation of High Level Nuclear Waste in a Accelerator Driven System), EUROPART (EUROpean Research Programme for the Partitioning of Minor Actinides), RED IMPACT (Impact of Partitioning, Transmutation and Waste Reduction Technologies on the Final Waste Disposal Project) a EFNUDAT (European Facilites for Nuclear Data Measurements). Díky poslednímu ze zmiňovaných jsme uskutečnili i naše měření účinných průřezů prahových reakcí neutronů v TSL Uppsala. Na projekt EFNUDAT navázal projekt ERINDA, který v letech 211 až 213 opět umožnil intenzivnější zpřístupnění evropských neutronových zdrojů evropským uživatelů. V tomto projektu byl zapojen i zmíněný - 1 -

11 neutronový zdroj v ÚJF AVČR. V rámci něho polští kolegové s naší pomocí studovali prahové reakce neutronů na yttriu právě s využitím řežského neutronového zdroje [15]. Na končící projekt ERINDA navazuje nový evropský projekt CHANDA (program FP7), kterého se opět účastníme. Za podrobnější zmínku stojí projekt MYRRHA (Multi-purpose hybrid Research Reactor for High-tech Applications) v jaderném výzkumném centru v Molu (Belgie) [16, 17]. Ten je jediným evropským projektem výzkumného reaktoru zkoumajícím možnosti pokročilých jaderných systémů, který má blízko k realizaci. MYRRHA je rychlý, podkritický systém, který má poskytovat protony a neutrony pro nejrůznější aplikace a sloužit ke studiu transmutace minoritních aktinidů. Skládá se z protonového urychlovače dodávajícího svazek o energii 8 MeV do tekutého Pb-Bi spalačního terče, který je spojen s podkritickým rychlým blanketem chlazeným též eutektikem Pb-Bi. Podkritický blanket se skládá z mříže tvořené 99 hexagonálními kanály, z nichž v 45 jsou zasunuty palivové soubory obsahující palivové proutky s MOX obohaceným 3% Pu, uspořádané do trojúhelníkové mříže. Systém může pracovat i v kritickém režimu. Projekt začal v roce 1997, cílem bylo spustit zařízení v letech V současné době je však jasné, že dojde k značnému zpoždění. Teprve v tomto roce snad postoupilo řešení jeho financování natolik, že bude možné přikročit v brzké době k realizaci projektu. Jeho dokončení by tak mohlo být v letech Další experiment TEF v J-PARC (Transmutation Experimental Facility v Japan Proton Accelerator Research Complex) studuje chování urychlovačem řízených systémů při různých podmínkách svazku [18]. Skládá se ze dvou částí. První z nich (TEF-P) je kritický soubor využívaný ke studiu chování ADT sestav při nízkém výkonu protonového svazku. Postupně se plánuje vkládat do souboru palivo z uranu, plutonia i dalších aktinidů. Druhá (TEF-T) testuje chování spalačního terče a inženýrské problémy, které jsou s ním spojeny. Jedná se o terč složený z eutektika olova a bismutu. Je ozařován svazkem protonů s energií 6 MeV a výkonem 2 kw. Pro rozvoj urychlovačem řízených transmutačních sytémů je nutné dále rozvíjet urychlovačovou techniku, zkoumat problematiku vhodných terčů, problematiku stínění vysoce energetických neutronů, pokračovat v doplnění jaderných dat (evaluovaná/ experimentální data) a dále vyvíjet provozní kódy řešící transport a dynamiku sytému

12 2. Měření účinných průřezů prahových reakcí neutronů V následující kapitole se budu věnovat shrnutí výsledků námi provedených experimentů zaměřených na určení účinných průřezů (n,xn), (n,p) a (n,α) reakcí. Získané výsledky jsme opublikovali v časopise Nuclear Instruments and Methods in Physics Research [19]. Experimenty proběhly v TSL Uppsala v letech 28 a 21 a v Ústavu jaderné fyziky AV ČR v Řeži v letech 28 a 29. Aktivační detektory se používají k měření neutronového pole při studiu urychlovačem řízených transmutačních systémů. Pro energie nad 3 MeV je ale v databázích jaderných dat jen velmi omezený počet experimentálně určených hodnot účinných průřezů reakcí na těchto materiálech. V experimentech jsme se proto zaměřili na aktivační materiály, jako jsou zlato, hliník, bismut, indium, tantal, ytrium, které jsou běžně používány pro měření neutronových polí a provedli jsme experimenty i na dalších materiálech: měď, železo, jód, hořčík, nikl, zinek. K měření účinných průřezů jsme použili kvazimonoenergetické neutronové zdroje založené na reakci protonů na lithiovém terči v energetickém rozsahu od 17 MeV do 94 MeV. Během měření jsme pozorovali dobrou shodu našich dat s existujícími daty v databázi EXFOR (v oblastech, kde jsou dostupná) a také s výpočty provedenými v kódu TALYS Analýza dat Používané materiály měly tvar tenkých fólií o rozměrech od 1,5 x 1,5 cm 2 do 3x3 cm 2, tloušťka fólií se pohybovala od 5 µm do 1 mm. Ytrium se nacházelo ve formě tablet slisovaných z kovového prášku s vnějším rozměrem 1 mm a tloušťkou 2 mm. Jódové tablety byly ve formě KIO 3. Vzorky měly čistotu 99,9 % (Goodfellow Metals, Cambridge, Velká Británie; Safina, Česká Republika). Neutronový tok [1/MeV (plocha píku=1)] MeV p-svazek, 4 mm Li-terč 62 MeV p-svazek, 4 mm Li-terč 7 MeV p-svazek, 4 mm Li-terč 8 MeV p-svazek, 4 mm Li-terč 92 MeV p-svazek, 8.5 mm Li-terč 97 MeV p-svazek, 8 mm Li-terč Energie neutronů [MeV] Graf 1.: Kvazimonoenergetická neutronová spektra v TSL Uppsala získaná pomocí algoritmu uvedeného v [24]

13 Protony o vysokých energií z cyklotronu byly směřovány na terč z lithia. Hustota neutronového toku se pohybovala od 1 5 cm - 2 s -1 (TSL) do 1 8 cm -2 s -1 (ÚJF). Přibližně polovina intenzity se nacházela v píku s FWHM 1 MeV (odpovídajícímu základnímu a prvnímu excitovanému stavu o energii,43 MeV v 7 Be) a polovina v kontinuu o nižších energiích (odpovídajícímu vyšším excitovaným stavům a mnohonásobné emisi částic), Graf 1. a 2.. Energetická ztráta protonů v terči se pohybovala od 2 6 MeV v závislosti na energii svazku a tloušťce terče (4 8,5 mm). Počet neutronů [1/sr MeV C] 1.2E+15 1.E+15 8.E+14 6.E+14 4.E+14 2.E+14 E = 2 MeV E = 32.5 MeV E = 37 MeV.E Energie neutronů [MeV] Graf 2.: Kvazimonoenergetická neutronová spektra v ÚJF Řež získaná interpolací dat Y. Uwamina [22] V TSL Uppsala jsme použili svazky protonů s energiemi 5, 62, 7, 8, 92, a 97 MeV, které byly za lithiovým terčem odkloněny pomocí magnetu [2]. Neutronový svazek byl formován 1 cm dlouhým železným kolimátorem. Vzorky byly umístěny 373 cm od lithiového terče a doba ozařování se pohybovala kolem 8 hodin. V ÚJF Řež jsme použili protonové svazky s energiemi 2; 32,5 a 37 MeV. Detaily ohledně popisu zdroje je možné nalézt v [21]. Vzorky byly umístěné cm od lithiového terče a doba ozařování se pohybovala kolem 2 hodin. Neutronová spektra při experimentech v ÚJF jsme získali interpolací dat z práce Y. Uvamina [22], neutronová spektra při experimentech v TSL byla získána měřením pružného np rozptylu pomocí tzv. Medleyova nastavení (osm detektorových teleskopů, každý teleskop obsahuje dva křemíkové detektory a jeden krystalový detektor CsI(Tl)) [24]. Nepřesnost určení neutronového spektra činí 1 % pro oba zdroje [23]. Pro vyhodnocení účinných průřezů jsem použila metodu aktivace a gama spektrometrie. Použila jsem téměř všechny dostupné gama linky a spočítala jsem vážený průměr z jejich výtěžků. Minimální statistická chyba proložení gama píku gaussem se pohybovala kolem 1 % a byla menší než 1 % pro většinu píků. Doba transportu vzorků po ukončení ozařování a začátku měření se pohybovala kolem 2 minuty v TSL a 15 minut v ÚJF

14 Celkový výtěžek pozorovaných izotopů [25] na jeden gram aktivovaného materiálu a jeden neutron byl spočítán na základě této rovnice: N ( λ t ) S ( ) p Cabs E treal 1 e λ tirr yield = ( λ treal ) ( λ t ) I ( ) 1 1 irr γ ε P E COI Carea tlive m foil e e kde S p je plocha píku, C abs korekce na samoabsorpci, I γ pravděpodobnost emise fotonu na rozpad, ε p (E) účinnost detektoru, COI korekce na koincidence, C area korekce na plochu vzorku, t real /t live korekce na mrtvou dobu detektoru (t real je skutečná doba měření, t live doba, po kterou byl detektor aktivní), m foil hmotnost fólie a poslední dva zlomky představují rozpad od konce ozařování a začátku měření (interval t ) a rozpad během ozařování (doba ozařování je t irr ). Nepřesnosti způsobené jednotlivými korekcemi jsou menší než 1 %, s výjimkou nepřesnosti určení účinnosti detektoru, která je menší než 3 %. Celkový účinný průřez byl spočítán se znalostí výtěžku: n A (2) N yield S A σ = (3) N N kde S je plocha fólie, A molární hmotnost, N n počet neutronů v píku, N A Avogadrovo číslo. Detektory byly kalibrovány před začátkem měření i na konci měření pomocí sady kalibračních zářičů. V Grafu 3. je zobrazena účinnost detektoru pro pík plného pohlcení v TSL Uppsala, pozice p2 (vzdálenost detektor-vzorek 3,8 cm) ln (ep) [-] ln (E) [kev] Graf 3.: Účinnost detektoru pro pík plného pohlcení, pozice p2, TSL Uppsala

15 Správné určení intenzity neutronového svazku je důležité pro přesné určení účinných průřezů, bohužel pro neutrony s energií kolem desítek MeV to není jednoduchý úkol a je to jeden z hlavních zdrojů nepřesností v našich experimentech (1 % v ÚJF i v TSL). Účinný průřez versus neutronové spektrum [-] 1 29Bi(n,6n)24Bi svazek 5 MeV (.99) svazek 62 MeV (.87) svazek 7 MeV (.57) svazek 8 MeV (.4) svazek 92 MeV (.29) svazek 97 MeV (.28) Graf 4.: Vliv pozadí (hodnoty v tabulkách představují poměr mezi produkcí v píku a celkovou produkcí v relativních jednotkách) První experiment v TSL Uppsala (28) se uskutečnil krátce po uvedení neutronového zdroje do provozu (v té době nebylo s tímto zdrojem k dispozici ještě dostatečné množství zkušeností). Při druhém experimentu v TSL Uppsala v roce 21 jsme pozorovali nesrovnalosti s prvním měřením a po diskuzi se zaměstnanci TSL bylo zjištěno, že křemíkové detektory používané pro měření neutronového pole degradují s absorbovanou dávkou mnohem rychleji, než se předpokládalo a tudíž změřený neutronový tok v experimentu v roce 28 pro energie neutronů 47 MeV a 94 MeV byl velmi podhodnocen. Spočítali jsme korekci a data, která publikuji v této práci, jsou již na tento efekt opravena. 2.2 Vliv pozadí Neutronové spektrum vysokoenergetického neutronového zdroje obsahuje, kromě hlavního neutronového píku, také nízkoenergetické kontinuum (přibližně 5 % z celkové intenzity s ohledem na energii svazku). Při vyhodnocování dat je potřeba odečíst příspěvek těchto neutronů z pozadí. Příspěvek z pozadí jsme určili konvolucí neutronového spektra a účinného průřezu spočítaného výpočetním kódem TALYS 1.4, Graf 4. Výpočty z kódu TALYS jsme porovnali a zkontrolovali s dostupnými experimentálními daty v databázi EXFOR. TALYS je kód používaný pro výpočet jaderných reakcí. První oficiální verze kódu TALYS 1. byla zveřejněna 21. prosince 27, druhá verze TALYS 1.2 potom 22. prosince 29. Třetí a prozatím poslední verze TALYS 1.4 [26] byla zveřejněna 28. prosince

16 TALYS byl vytvořen francouzskou a nizozemskou společností a poskytuje kompletní výpočty jaderných reakcí v energetickém rozsahu od 1 kev do 25 MeV. Počítá jaderné reakce za účasti fotonů, protonů, deuteronů, tritonů, 3 He a α částic pro terčové nuklidy o atomové hmotnosti alespoň Au(n,8n) 19 Au TALYS 1.4 TALYS 1.2 TALYS Graf 5.: Srovnání účinných průřezů reakce 197 Au(n,8n) 19 Au vypočítaných v programu TALYS 1., TALYS 1.2 a TALYS 1.4 (verze 1.2 a 1.4 jsou pro tento výpočet totožné) Pro názorné porovnání jednotlivých verzí kódu TALYS jsme vypočítali účinný průřez reakce (n,8n) na zlatě [1]. Rozdíly mezi verzí TALYS 1. a TALYS 1.2 jsou malé pro nízké energie prahových reakcí, s rostoucí energií začínají být rozdíly výrazné, Graf 5. Rozdíly mezi verzí TALYS 1.2 a TALYS 1.4 jsou zanedbatelné také pro vyšší energie prahových reakcí Au(n,2n) 196 Au v TALYS 1.4 ld 1 ld 2 ld 3 ld 4 ld Energie neutronů [MeV] Graf 6.: Účinný průřez reakce 197 Au(n,2n) 196 Au spočítaný v TALYS 1.4 použitím pěti různých modelů pro hustotu hladin v jádře (ld1 model konstantní teploty + Fermi model, ld2-16 -

17 zpětně posunutý Fermi model, ld3 supertekutý model, ld4 Gorielyho tabulka, ld5 Hilaireyho tabulka) V našich dřívějších analýzách účinných průřezů jsme použili kód TALYS 1. (Uppsala 28, Řež 28 a 29). Bohužel po srovnání spočítaných výtěžků z pozadí verzí kódu TALYS 1. a 1.4 jsme zjistili, že nesrovnalosti v některých případech dosahují 2 % (ve většině případů se ale pohybují pod 1 %). TALYS 1. byla první verze kódu a autoři preferovali princip nejdříve úplnost, potom kvalita, některé z reakcí proto nebyly namodelovány dostatečně přesně. Dřívější výsledky opublikované v [23] jsem proto přepočítala v kódu TALYS Srovnání různých nastavení kódu TALYS Základní nastavení kódu TALYS lze měnit více jak 25 klíčovými slovy. Abychom posoudili, jaké mají změny vliv na výpočet účinných průřezů, zadávali jsme v nastavení kódu různé modely pro výpočet hustoty hladin v jádře, Graf 6. Rozdíly mezi modely jsou malé (do 2 % pro energie do 3 MeV) a klesají s rostoucí energií (Graf 7.). Větší rozdíly při nižších energiích jsou způsobeny jinou prahovou energií reakce v každém modelu a prudkým nárůstem účinného průřezu. Všechny modely vykazují dobrou shodu s daty v databázi experimentálních dat EXFOR. Pro určení odečtu pozadí jsem spočítala účinné průřezy za pomocí modelů pro různé hladiny v jádře v TALYS 1.4, Graf 8. Celková nejistota způsobená odečtem pozadí nepřesahuje 1 %. Tato nejistota byla přidána k celkové nejistotě určení účinných průřezů. 2 Poměr účinných průřezů [-] ld1/ld2 ld1/ld3 ld1/ld4 ld1/ld Energie neutronů [MeV] Graf 7.: Poměr mezi účinnými průřezy reakce 197 Au(n,2n) 196 Au vypočítanými různými modely pro výpočet hladin v jádře; značení viz Graf

18 TALYS 1.4-ld1 TALYS 1.4-ld2 TALYS 1.4-ld3 TALYS 1.4-ld4 TALYS 1.4-ld5 Uppsala 59 MeV Au-196 Au-194 Au-193 Au-192 Au-191 Izotop Graf 8.: Experimentálně určené účinné průřezy 197 Au(n,xn) reakcí změřených v Uppsale pro energii neutronů 59 MeV; značení hustoty hladin v jádře viz Graf Experimentálně určené účinné průřezy prahových reakcí Získali jsme nové hodnoty účinných průřezů i v oblasti energií, ve kterých nejsou prozatím dostupná žádná data v databázi EXFOR. Některé z výsledků (účinné průřezy pro indium a bismut) jsou zobrazeny v Grafech 1. a 11. (další pak v příloze). Experimentální výsledky jsou porovnány s účinnými průřezy vypočítanými v kódu TALYS. Účinné průřezy některých reakcí jsou porovnány také s daty z databáze EXFOR a se speciální knihovnou evaluovaných dat EAF21 nebo IRDFF [27] (tam, kde jsou tato data dostupná). Reakce 27 Al(n,x) 24 Na je porovnána s knihovnou IRDFF pouze do energie 32 MeV při vyšších energiích přispívají k produkci 24 Na i jiné reakce než (n, alfa), Graf Al(n,x) 24 Na (n,alfa) (n,npd) (n,2d) (n,pt) (n,nh) (n,2n2p) (n,x) Graf 9.: Účinné průřezy jednotlivých reakcí vedoucích k produkci 24 Na na hliníku vypočítané v kódu TALYS

19 Naše data pro reakci 27 Al(n,x) 24 Na jsou ve shodě s kódem TALYS 1.4, ale jsou větší než data z knihovny IRDFF pro energie do 32 MeV. V oblasti energií 3 4 MeV jsou naše data pro tuto reakci asi čtyřikrát větší než data publikovaná Uwaminem [28]. V oblasti energií 3 5 MeV jsou data publikovaná Coszachem [29] dvakrát větší než naše data. V knihovnách evaluovaných dat jsou dostupné numerické hodnoty teoreticky určených účinných průřezů do reakce (n,4n) pro většinu pozorovaných izotopů. V databázi EXFOR jsou dostupná data účinných průřezů pro 197 Au do reakce (n,4n), pro 29 Bi do reakce (n,8n), pro 89 Y do reakce (n,3n), pro 64 Zn do reakce (n,3n), pro 115 In do reakce (n,2n), pro 59 Co do reakce (n,5n), pro 58 Ni do reakce (n,2n) a pro 24 Mg do reakce (n,2n). Data jsou pro většinu těchto reakcí dostupná pro energie neutronů do 3 4 MeV. U některých reakcí, jako např. (n,4n), (n,5n), (n,6n) na bismutu, (n,3n) na kobaltu, jsou v EXFOR uvedeny hodnoty účinných průřezů až do energie 1 MeV. S rostoucí hodnotou x (počtu emitovaných neutronů) však experimentálních dat značně ubývá. Číselné hodnoty námi změřených účinných průřezů pro indium a bismut jsou zaznamenány v Tab. 1 a v Tab. 2. včetně rozpadových konstant [3], které jsem při výpočtu používala (číselné hodnoty pro další izotopy je možné nalézt v příloze). Některé z těchto reakcí byly již publikovány v [19], [25], [31-33]. Celková nejistota účinných průřezů je určena jako odmocnina ze sumy mocnin nejistoty určení intensity svazku, nejistoty určení neutronového spektra a nejistoty proložení píku gaussem v programu DEIMOS. Chyby v ose x jsou dány polovinou FWHM neutronového píku. Z námi naměřených hodnot je patrné, že ve většině případů existuje dobrá shoda mezi účinnými průřezy z experimentů v ÚJF Řež a v TSL Uppsala. Oba použité zdroje se liší, můžeme tedy tvrdit, že vliv systematických chyb máme pod kontrolou. Zároveň je patrné, že v případech kdy existuje v databázi EXFOR řada spolehlivě naměřených účinných průřezů, existuje dobrá shoda mezi nimi a našimi měřeními. Tato shoda je důkazem, že i poprvé námi změřené účinné průřezy odpovídají skutečnosti

20 2.3.1 Reakce na přírodním indiu nat In(n,xn) 114m In EXFOR TALYS 1.4. Uppsala28 Řež a) b) nat In(n,xn)In 113m In TALYS 1.4. Uppsala nat In(n,xn) 111 In TALYS 1.4. Řež29 Uppsala28 Uppsala nat In(n,xn) 11 In TALYS 1.4. Řež29 Uppsala c) d) TALYS 1.4. Uppsala21 nat In(n,xn) 19 In Uppsala nat In(n,xn) 18 In TALYS 1.4. Uppsala e) f) Graf 1.: a)-f) Účinné průřezy (n,xn) reakcí na přírodním indiu - 2 -

21 Tab.1.: Numerické hodnoty účinných průřezů reakcí na přírodním indiu reakce (n,xn) (n,xn) (n,xn) (n,xn) (n,xn) (n,xn) izotop nat In 114m In 113m In 111 In 11 In 19 In 18 In T 1/2 49,51(1) d 1,6582(6) h 2,847(5) d 4,9(1) h 4,2(1) h 58,(12) m E γ [kev] 19,29(3) 391,69(15) 245,395(2) 657,7622(21) 23,5(2) 632,97(2) intenzita [%] 15,56(15) 64, ,3(2) 74 1(4) E n [MeV] účinný průřez [barn] 3,4(8),36(6) ---,49(7) ,9(8),3(4) ---,33(5),8(12) ,(6) ,23(4) ,(4) ---,19(3) ---,92(17) ,4(4) ---,16(4),13(19),116(18),1(23) ,8(4) ---,169(29),94(14),88(13),33(5) ,3(7) ---,158(26),91(13),55(8) ,(7),1(3) ---,73(12) ---,35(5),119(22) Reakce na bismutu Bi(n,3n) 27 Bi EXFOR TALYS 1.4 Řež29 IRDFF a) b) Bi(n,4n) 26 Bi EXFOR TALYS 1.4. EAF21 Řež29 Uppsala28 Uppsala c) 29 Bi(n,5n) 25 Bi EXFOR TALYS 1.4. Řež29 Uppsala28 Uppsala EAF21 d).8 29 Bi(n,6n) 24 Bi.7 EXFOR TALYS 1.4. Uppsala28 Uppsala21.6 EAF

22 Bi(n,7n) 23 Bi EXFOR TALYS 1.4. Uppsala28 Uppsala Bi(n,8n) 22 Bi EXFOR TALYS 1.4. Uppsala28 Uppsala e) f) Graf 11.: a)-f) Účinné průřezy (n,xn) reakcí na bismutu (data z databáze EXFOR pro energie větší jak 3 MeV [34]) Tab.2.: Numerické hodnoty účinných průřezů reakcí na bismutu 29 Bi reakce (n,3n) (n,4n) (n,5n) (n,6n) (n,7n) (n,8n) izotop 27 Bi 26 Bi 25 Bi 24 Bi 23 Bi 22 Bi T 1/2 31,55(5) l 6,243(3) d 15,31(4) d 11,22(1) h 11,76(5) h 1,72(5) h E γ [kev] 569,72(2) 83,1(5) 1764,36(4) 899,15(3) 82,3(3) 96,67(5) intenzita [%] 97,74(3) 99 32,5 (6) 98(8) 3 99 E n [MeV] účinný průřez [barn] 3,4(8),99(19),98(14) ,9(8),48(11) 1,16(16),36(6) ,(6) ---,25(3),81(13),124(18) ,(4) ---,174(25),3(5),39(6),17(3) ,4(4) ---,142(2),19(3),177(25),33(5),33(5) 72,8(4) ---,135(19),151(28),12(18),22(4),154(22) 89,3(7) ---,11(15),14(18),92(14),13(16),123(18) 94,(7) ---,17(11),152(25),93(13),18(15),17(17)

23 3. Studium produkce neutronů ve spalačních reakcích Následující experimenty proběhly pod záštitou spolupráce E&T-Raw (Energy and Transmutation of Radioactive Waste), zaměřené na výzkum v oblasti urychlovačem řízených transmutačních systémů [35]. Pro výzkum transmutace aktinidů v oblasti spalačních reakcí jsou zapotřebí intenzivní vysokoenergetické svazky urychlených částic (protonů, deuteronů). Tyto svazky částic urychlených na stovky MeV lze získat pomocí urychlovačů částic v SÚJV Dubna. 3.1 Experiment na fázotronu Fázotron v Dželepovově laboratoři jaderných problémů byl uveden do provozu v roce Kromě výzkumu v oblasti jaderné fyziky je používán pro účely protonové radioterapie. Poskytuje vysokoenergetické svazky protonů s energií 66 MeV (Obr.2a). Obr. 2.: a) Fázotron v SÚJV Dubna, b) Olověný terč a sada vzorků pro ozařování Experiment, na jehož vyhodnocování jsem se podílela, proběhl 12. února 211 s energií protonů 66 MeV. Byl použit masivní olověný terč (8 cm v průměru) složený z několika sekcí. Obr 3.: Schématické zobrazení umístění vzorků na olověném terči

24 Mým úkolem bylo vyhodnotit část reakčních rychlostí reakcí na prahových detektorech umístěných na povrchu terče (Au, Al, Bi, Cd, Co, Cu, Fe, I, In, Ni, Pb, Ti), které je možné následně použít pro rekonstrukci neutronového spektra (Obr. 3). Celkový tok protonů na terč byl 7,26 (25) 1 14 protonů za 8 hodin ozařování (Graf 13). Pokles v intenzitě svazku byl způsoben požadavky na ozařování jednotlivých výzkumných skupin. Rozměry a hmotnosti použitých aktivačních detektorů jsou uvedeny v následující tabulce. Pro určení počtu částic (protonů, deuteronů) se používají monitory svazku (hliníkové aktivační fólie). V případě protonového svazku se jedná o monitoring reakce 27 Al(p,3pn) 24 Na. Tato reakce je však bohužel ovlivněna parazitní neutronovou reakcí 27 Al(n,α) 24 Na. Ovlivnění je závislé na vzdálenosti hliníkové fólie od soustavy, při rozumné volbě se jedná o vliv v řádech jednotek nebo desetin procent. Monitoring svazku při deuteronových experimentech (experimenty na nuklotronu) je prováděn pomocí reakce 27 Al(d,3pn) 24 Na [11]. Tato reakce má však v databázi EXFOR pouze tři určené hodnoty v oblasti GeV energií, a to pro energie 2,33; 6 a 7,3 GeV. K získání potřebných hodnot účinných průřezů pro námi požadované energie k výpočtu počtu dopadajících částic je možné provést fit mezi daty s databáze EXFOR d například pomocí funkce σ = a b exp( c E ), Graf 12. Vyhodnocováním monitorů svazku na spalačních soustavách v SÚJV Dubna se zabývá Ing. Martin Suchopár. K určení celkové intensity svazku bohužel nemohou být použity jiné aktivační materiály kvůli chybějícím účinným průřezům nebo nevyhovujícímu poločasu rozpadu. Tab.3.: Rozměry a hmotnosti použitých aktivačních detektorů Prahový detektor Hmotnost [g] Rozměr [mm] Zlato 1,92 12 x 12 Hliník,56 11 x 1 Bismut 3,31 r = 6 Kadmium,77 13 x 12 Kobalt 2,21 11 x 12 Měď,72 1 x 11 Železo 1,2 14 x 14 Jód 1,8 r = 1 Indium,35 12 x 12 Nikl 1,6 1 x 11 Olovo 1,52 1 x 1 Titan 1, 14 x 14 Po ozařování na fázotronu byly vzorky přemístěny do laboratoře JASNAPP-2 [36], kde byly proměřeny jejich spektra gama pomocí HPGe detektorů. Před začátkem měření byly detektory kalibrovány pomocí sady standardních kalibračních zářičů: 54 Mn, 57 Co, 6 Co, 19 Cd, 133 Ba,

25 137 Cs, 152 Eu, 228 Th a 241 Am, které mají několik gama linek s rozsahem od 8 do 261 kev. Vzniklá jádra byla identifikována pomocí speciálního balíčku programů [37] a byly určeny jejich reakční rychlosti (Tab. 9). Reakční rychlost byla vypočítána pomocí rychlosti vzniku radionuklidu Q (A r, Z r ) podělené celkovým počtem atomů ve vzorku N c a celkovým počtem dopadajících protonů Np (4). Reakční rychlost představuje celkový počet atomů vzniklého izotopu produkovaného na jeden atom vzorku a jednu dopadající částici za sekundu. R Q( A, Z ) Vztah mezi Q(A r, Z r ) a celkovým výtěžkem N yield (2) je následující: r r ( Ar, Z r ) = (4) N c N p m Q = Nyield (5) t kde t irr je doba ozařování, m hmotnost vzorku. Vztah mezi reakční rychlostí a neutronovým tokem určuje Fredholmova rovnice: irr E σ ( En ) ϕ ( Eprah R = E ) de (6) φ(e n ) tok neutronů [neutron.(mev.proton.cm 2 ) 1 ], σ(e n ) účinný průřez n n Al(d,3p2n) 24 Na Energie deuteronů [MeV] Graf 12.: Účinný průřez reakce 27 Al(d,3pn) 24 Na, pro vyšší energie proložený funkcí d σ = a b exp( c E )

26 Tab. 4.: Příklad reakčních rychlostí reakcí na prahových detektorech Reakce Eprah [MeV] T 1/2 R(dR) [1-28 ] m Cd (n, n`γ) Cd,25 48,7 min 9,43(6) m In ( n, n`γ ) In,35 4,486 h 2,38(11) Ti (n, p) Sc,75 3,351 d 1,56(6) Ni (n, p) Co,9 7,8 d 13,3(22) 24 24m Pb ( n, n`γ ) Pb,95 66,9 min 2,9(15) Fe (n, p) Mn 1,25 312,5 d 2,76(5) Ti (n, p) Sc 3,5 83,83 d 1,44(5) 59 Co (n, p) 59 Fe 3,45 44,529 d,98(36) Cu (n, p) Ni 3,95 2,52 h,624(31) Fe (n, alfa) Cr 4,75 27,7 d 1,11(7) Fe (n, p) Mn 5,4 2,578 h,823(3) Ti (n, p) Sc 5,95 43,7 h,398(12) Al (n, α) Na 6,75 15, h 2,27(9) Co(n, α) Mn 6,95 2,578 h,6(27) Pb (n, 2n) Pb 8,65 52,5 h 2,66(1) In (n, p) Cd 8,9 53,46 h,74(6) Cd (n, 2n) Cd 9,5 53,46 h 2,28(28) m In (n, 2n) In 9,6 49,51 d 1,5(7) Cd (n, p) Ag 1,25 5,3 h,811(63) Cu (n, 2n) Cu 1,45 12,7 h 2,2(17) Cd (n, 2n) Cd 1,85 6,49 h 2,2(2) Co (n, 2n) Co 11,5 7,8 d 5,55(22) Cd (n, p) Ag 11,5 3,12 h 11,8(6) Ni (n, 2n) Ni 13,45 1,52 d 2,12(14) Co (n, 3n) Co 2,95 27,9 d 3,17(12) Cu (n, 3n) Cu 22,5 3,48 h,584(29) Bi(n, 4n) Bi 24,95 6,243 d 5,19(9) Fe(n, 3n) Fe 27,45 8,275 h,15(5) Bi(n, 5n) Bi 33,35 15,31 d 4,2(24) Co(n, 4n) Co 36,85 78,76 d,413(23) Bi(n, 6n) Bi 45, 11,2 h 3,33(14) Co(n, 5n) Co 53,2 17,54 h,582(21) Bi(n, 7n) Bi 54,75 11,76 h 2,9(9) Bi(n, 8n) Bi 65,1 1,67 h 1,82(8) Bi(n, 9n) Bi 77,3 18 min 1,13(12) 29 2 Bi(n, 1n) Bi 83,4 36,4 min,691(7) V Tab. 9 jsou uvedeny některé reakční rychlosti vyhodnocených reakcí seřazených podle rostoucí prahové energie. Na základě nich a pomocí tzv. oporného neutronového spektra je možné metodou efektivních účinných průřezů vypočítat reálný tvar neutronového spektra (Graf 14) [blíže o této metodě, viz 38]

27 Počet částic v pulzu 4.E+9 3.5E+9 3.E+9 2.5E+9 2.E+9 1.5E+9 1.E+9 5.E+8.E Čas od začátku ozařování [s] Tok neutronů [n/cm 2 p 1 MeV 1 ] Graf 13.: Průběh ozařování protony o energii Graf 14.: Předběžný tvar neutronového 66 MeV spektra 3.2 Experiment na nuklotronu (GAMMA 3) Experiment se sestavou GAMMA-3 proběhl v březnu 211 [39]. Tato sestava slouží ke studiu transmutace radioaktivních izotopů v intenzivním poli moderovaných neutronů. K moderaci spalačních neutronů byl použit velký grafitový blok (1,1 x 1,1 x,6 m 3, Obr. 5) složený z 25 menších grafitových cihel různých velikostí. Spalační neutrony byly produkovány dopadem deuteronového svazku o energii 2,33 GeV na olověný terč (průměr 8 cm, délka 6 cm), který byl umístěn v centru grafitového bloku. Tab. 5.: Hmotnosti použitých aktivačních detektorů A B C Materiál m [g] m [g] m [g] Hliník,698,699,616 Hořčík,462,471,48 Bismut 2,617 2,282 2,6 Kadmium 2,929 2,64 1,928 Kobalt 2,56 1,958 2, Měď 2,113 2,7 2,17 Železo 1,771 1,754 1,754 Indium,44,44,44 Nikl 2,578 2,555 2,598 Olovo 2,723 2,778 2,672 Titan 1,115 1,156 1,173 Zirkon 1,769 1,785 1,787 Obr. 5.: GAMMA

28 Obr. 6.: Schématické znázornění soustavy s umístěním aktivačních detektorů (pozice A, B, C) Do kanálů A, B, C (Obr. 6) byly vloženy grafitové válce, na kterých byly umístěny aktivační detektory. Rozměry kanálů jsou 14,6 x 29,6 cm 2 ; 8,8 x 36,3 cm 2 a 15,4 x 34,1 cm 2. Celkový tok deuteronů byl 1,88 (1) 1 13 deuteronů za 21,4 hodin ozařování (Graf 15). Aktivační detektory měly tvar kovových koleček o poloměru 6 mm, jejich hmotnosti jsou uvedeny v Tab. 1. Vypočítané reakční rychlosti pro jednotlivé pozice jsou uvedeny v Tab. 11, Tab. 12 a Tab E+1 1.E+1 Intenzita svazku [d] 8.E+9 6.E+9 4.E+9 2.E+9 Obr. 7.: Grafitový válec s naznačením umístění prahových detektorů.e doba ozařování [h] Graf 15.: Průběh ozařování deuterony Tab. 6a.: Příklad reakčních rychlostí reakcí na prahových detektorech, pozice A A Reakce Eprah [MeV] T 1/2 R(dR) [1-28 ] m Cd (n, n`γ) Cd,25 48,7 min 6,88(63) m In ( n, n`γ ) In,35 4,486 h 9,1(76) Ti (n, p) Sc,75 3,351 d,523(26) Ni (n, p) Co,9 7,8 d 2,82(3) Fe (n, p) Mn 1,25 312,5 d 1,98(19) Cu (n, p) Ni 3,95 2,52 h,443(99)

29 Tab. 6b.: Příklad reakčních rychlostí reakcí na prahových detektorech, pozice A A Reakce Eprah [MeV] T 1/2 R(dR) [1-28 ] Fe (n, p) Mn 5,4 2,578 h 5,3(31) Ti (n, p) Sc 5,95 43,7 h,113(5) Mg (n, p) Na 6,15 15 h,488(38) Al (n, α) Na 6,75 15 h,31(26) Zr (n, 2n) Zr 8,5 63,91 d 1,81(12) Pb (n, 2n) Pb 8,65 52,5 h 2,16(11) Cd (n, 2n) Cd 9,5 53,46 h 26,4(8) m In (n, 2n) In 9,6 49,51 d 1,11(5) Cd (n, p) Ag 1,25 5,3 h,292(56) Cu (n, 2n) Cu 1,45 12,7 h 341(32) Cd (n, 2n) Cd 1,85 6,49 h 2,86(4) Co (n, 2n) Co 11,5 7,8 d 2,43(15) Cd (n, p) Ag 11,5 3,12 h,313(23) Zr (n, 2n) Zr 12,45 3,27 d 1,79(7) Ni (n, 2n) Ni 13,45 1,52 d,139(8) Co (n, 3n) Co 2,95 27,9 d,748(15) Zr (n, 3n) Zr 22,45 3,27 d 1,79(23) Bi(n, 4n) Bi 24,95 6,243 d 1,97(7) Bi(n, 6n) Bi 45, 11,2 h,852(6) Bi(n, 7n) Bi 54,75 11,76 h,795(37) Bi(n, 8n) Bi 65,1 1,67 h,486(36) Bi(n, 9n) Bi 77,3 18 min,369(86) Bi(n, 1n) Bi 83,4 36,4 min,143(33) V Grafu 16. jsou pro ilustraci zobrazeny reakční rychlosti bismutu v různých pozicích, v Grafu 17. pak předběžný tvar neutronových spekter. 2.1E-28 produkce Bi (atom -1 deuteron -1 ) 1.51E E E-29 26Bi 24Bi 23Bi 22Bi 21Bi 2Bi 1.E-3 A B C pozice Graf 16.: Reakční rychlosti bismutu v různých pozicích

30 Tab. 7.: Příklad reakčních rychlostí reakcí na prahových detektorech, pozice B B Reakce Eprah [MeV] T 1/2 R(dR) [1-28 ] m Cd (n, n`γ) Cd,25 48,7 min 1,67(18) m In ( n, n`γ ) In,35 4,486 h 2,99(29) Ti (n, p) Sc,75 3,351 d,362(18) Ni (n, p) Co,9 7,8 d 1,74(23) Fe (n, p) Mn 1,25 312,5 d 1,27(17) Fe (n, a) Cr 4,75 27,7 d,151(37) Fe (n, p) Mn 5,4 2,578 h 3,38(23) Ti (n, p) Sc 5,95 43,7 h,751(44) Mg (n, p) Na 6,15 15 h,24(2) Al (n, α) Na 6,75 15 h,23(19) Zr (n, 2n) Zr 8,5 63,91 d 1,7(12) Pb (n, 2n) Pb 8,65 52,5 h,612(33) Cd (n, 2n) Cd 9,5 53,46 h 9,2(31) m In (n, 2n) In 9,6 49,51 d 66,9(3) Cu (n, 2n) Cu 1,45 12,7 h 218(21) Cd (n, p) Ag 11,5 3,12 h,19(16) Zr (n, 2n) Zr 12,45 3,27 d,764(36) Ni (n, 2n) Ni 13,45 1,52 d,888(61) Bi (n, 3n) Bi 15,4 38 l 27(5) Co (n, 3n) Co 2,95 27,9 d,524(44) Bi(n, 4n) Bi 24,95 6,243 d,67(11) Bi(n, 6n) Bi 45, 11,2 h,337(16) Bi(n, 7n) Bi 54,75 11,76 h,2,91(17) Bi(n, 8n) Bi 65,1 1,67 h,154(16) Tok neutronů [n/cm 2 d 1 MeV 1 ] pozice A pozice B pozice C Graf 17.: Předběžný tvar neutronového spektra, pozice A, B a C - 3 -

31 Tab. 8.: Příklad reakčních rychlostí reakcí na prahových detektorech, pozice C C Reakce Eprah [MeV] T 1/2 R(dR)[1-28 ] m Cd (n, n`γ) Cd,25 48,7 min,211(64) m In ( n, n`γ ) In,35 4,486 h,274(6) Ti (n, p) Sc,75 3,351 d,42(32) Fe (n, p) Mn 5,4 2,578 h,427(27) Ti (n, p) Sc 5,95 43,7 h,111(26) Mg (n, p) Na 6,15 15 h,279(31) Al (n, α) Na 6,75 15 h,165(22) Zr (n, 2n) Zr 8,5 63,91 d,987(23) Pb (n, 2n) Pb 8,65 52,5 h,146(9) Cd (n, 2n) Cd 9,5 53,46 h,518(18) m In (n, 2n) In 9,6 49,51 d 4,86(96) Cu (n, 2n) Cu 1,45 12,7 h 3,9(22) Co (n, 2n) Co 11,5 7,8 d,128(19) Cd (n, p) Ag 11,5 3,12 h,276(8) Zr (n, 2n) Zr 12,45 3,27 d,129(8) Ni (n, 2n) Ni 13,45 1,52 d,174(46) Co (n, 3n) Co 2,95 27,9 d,176(64) Bi(n, 4n) Bi 24,95 3,243 d,143(7) Bi(n, 6n) Bi 45, 11,2 h,762(5) Bi(n, 8n) Bi 65,1 1,67 h,665(114) 3.3 Experiment na nuklotronu (KVINTA) Poslední experiment, kterého jsem se zúčastnila, proběhl v březnu 213 na sestavě KVINTA (Obr. 8a, v olověném stínění 8b). Sestava obsahuje 512 kg přírodního uranu. Terč se skládá z pěti sekcí dlouhých 114 mm. První sekce směrem k deuteronovému svazku obsahuje 54 uranových tyčí a centrální okno o průměru 8 mm. Uranové tyče mají délku 114 mm a průměr 36 mm. Další sekce obsahují 61 uranových tyčí. Celá sestava funguje jako velký uranový terč. Obr. 8.: a) KVINTA, b) KVINTA v olověném stínění umístění vzorků při ozařování

32 Během experimentu byly prahové detektory zasunuty do olověného stínění (Obr. 8b). Celkem bylo během třech ozařování ozářeno 115 aktivačních detektorů ve tvaru kovových koleček o průměru 6 mm (Bi, Pb, Fe, Cu, Ni, Mg, Al, Cd, Co, Zr, In, Au, Ti, Ta). Na následujících obrázcích je znázorněna příprava vzorků na měření a HPGe detektor v laboratoři JASNAPP2. Ozařování probíhalo s energiemi deuteronů 1,3 GeV, 2 GeV a 4 GeV a trvalo 8, 13 a 12 hodin (Graf 18.). Obr 9.: a) Příprava vzorků na měření, b) HPGe detektor Integrál svazku byl,96(5).113 deuteronů, 4,1(4) 113 deuteronů a 1,861(19) 113 deuteronů pro jednotlivá ozařování (vyhodnoceno M. Suchopárem). 1.E+1 1.6E E E+1 Počet částic v pulsu Počet částic v pulsu 8.E+9 7.E+9 6.E+9 5.E+9 4.E+9 3.E+9 1.2E+1 1.E+1 8.E+9 6.E+9 4.E+9 2.E+9 2.E+9 1.E+9.E+.E Čas od začátku ozařování [min] Čas od začátku ozařování [min] 9.E+9 1. ozařování Ed =1,3 GeV; od 11:8 do 18: E+9 Počet částic v pulsu 7.E+9 6.E+9 2. ozařování Ed = 2 GeV; od 17:35 do 7:6 5.E+9 4.E+9 3.E+9 3. ozařování Ed = 4 GeV; od 1:36 do 14:3 2.E+9 1.E+9.E Čas od začátku ozařování [min] Graf 18.: Průběh ozařování deuterony o energii 1,3; 2 a 4 GeV

Studium produkce neutronů v tříštivých reakcích a jejich využití pro transmutaci jaderného odpadu

Studium produkce neutronů v tříštivých reakcích a jejich využití pro transmutaci jaderného odpadu Studium produkce neutronů v tříštivých reakcích a jejich využití pro transmutaci jaderného odpadu Pouze budoucnost může rozhodnout, jestli jsme vybrali právě tu jedinou správnou cestu a nalezli to nejlepší

Více

Gama spektroskopie. Vojtěch Motyčka Centrum výzkumu Řež s.r.o.

Gama spektroskopie. Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Gama spektroskopie Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Teoretický úvod ke spektroskopii Produkce a transport neutronů v různých materiálech, které se v daných zařízeních vyskytují (urychlovačem

Více

NEUTRONOVÁ AKTIVAČNÍ ANALÝZA S MĚŘENÍM ZPOŽDĚNÝCH NEUTRONŮ

NEUTRONOVÁ AKTIVAČNÍ ANALÝZA S MĚŘENÍM ZPOŽDĚNÝCH NEUTRONŮ NEUTRONOVÁ AKTIVAČNÍ ANALÝZA S MĚŘENÍM ZPOŽDĚNÝCH NEUTRONŮ 1.1. ÚVOD Metody využívající k identifikaci i kvantifikaci látek jejich radioaktivní vlastnosti nazýváme radioanalytické. Tyto metody vedou vždy

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA JADERNÁ A FYZIKÁLNĚ INŽENÝRSKÁ DISERTAČNÍ PRÁCE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA JADERNÁ A FYZIKÁLNĚ INŽENÝRSKÁ DISERTAČNÍ PRÁCE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA JADERNÁ A FYZIKÁLNĚ INŽENÝRSKÁ DISERTAČNÍ PRÁCE Experimentální určení účinných průřezů neutronových reakcí důležitých pro urychlovačem řízené transmutační systémy

Více

Aplikace jaderné fyziky (několik příkladů)

Aplikace jaderné fyziky (několik příkladů) Aplikace jaderné fyziky (několik příkladů) Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK pavel.cejnar@mff.cuni.cz Příklad I Datování Galileiho rukopisů Galileo Galilei (1564 1642) Všechny vázané

Více

Měření pravděpodobnosti reakcí neutronů s materiály důležitými pro aktivační detektory neutronů

Měření pravděpodobnosti reakcí neutronů s materiály důležitými pro aktivační detektory neutronů Gymnázium, Brno-Řečkovice, Terezy Novákové 2 Měření pravděpodobnosti reakcí neutronů s materiály důležitými pro aktivační detektory neutronů maturitní práce fyzika jméno: Tomáš Herman odborní vedoucí práce:

Více

1. Proveďte energetickou kalibraci gama-spektrometru pomocí alfa-zářiče 241 Am.

1. Proveďte energetickou kalibraci gama-spektrometru pomocí alfa-zářiče 241 Am. 1 Pracovní úkoly 1. Proveďte energetickou kalibraci gama-spektrometru pomocí alfa-zářiče 241 Am. 2. Určete materiál několika vzorků. 3. Stanovte závislost účinnosti výtěžku rentgenového záření na atomovém

Více

Relativistická dynamika

Relativistická dynamika Relativistická dynamika 1. Jaké napětí urychlí elektron na rychlost světla podle klasické fyziky? Jakou rychlost získá při tomto napětí elektron ve skutečnosti? [256 kv, 2,236.10 8 m.s -1 ] 2. Vypočtěte

Více

Elektroenergetika 1. Jaderné elektrárny

Elektroenergetika 1. Jaderné elektrárny Jaderné elektrárny Vazební energie jádra Klidová hmotnost jádra všech prvků a izotopů je menší než je součet hmotností všech nukleonů -> hmotnostní defekt m j m j = Nm n + Zm p m j Kde m n je klidová hmotnost

Více

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření KAP. 3 RADIOAKTIVITA A JADERNÉ REAKCE sklo barvené uranem RADIOAKTIVITA =SCHOPNOST NĚKTERÝCH ATOMOVÝCH JADER VYSÍLAT ZÁŘENÍ přírodní nuklidy STABILNÍ NKLIDY RADIONKLIDY = projevují se PŘIROZENO RADIOAKTIVITO

Více

Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika

Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika Jaderná fyzika Vlastnosti atomových jader Radioaktivita Jaderné reakce Jaderná energetika Vlastnosti atomových jader tomové jádro rozměry jsou řádově 1-15 m - složeno z protonů a neutronů Platí: X - soustředí

Více

Emise neutronů ů v tříštivých reakcích

Emise neutronů ů v tříštivých reakcích Emise neutronů ů v tříštivých reakcích 0,7-2,0 GeV protonů ů na tlustém Pb terči obklopeném uranovým blanketem Antonín Krása obhajoba PhD. práce Školitel: RNDr. Vladimír Wagner, CSc. Osnova Projekt Energie

Více

JADERNÁ FYZIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník

JADERNÁ FYZIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník JADERNÁ FYZIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník Základní pojmy Jaderná síla - drží u sebe nukleony, velmi krátký dosah, nasycení Vazebná energie jádra: E V = ( Z m p + N

Více

STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST

STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST Využití fólií z tantalu při studiu produkce a transportu neutronů v sestavách s olověným terčem ozařovaným deuterony s vysokou energií Ondřej Novák Praha 2011 STŘEDOŠKOLSKÁ

Více

Výzkumný úkol. Jitka Vrzalová ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA JADERNÁ A FYZIKÁLNĚ INŽENÝRSKÁ. Autor práce

Výzkumný úkol. Jitka Vrzalová ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA JADERNÁ A FYZIKÁLNĚ INŽENÝRSKÁ. Autor práce ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA JADERNÁ A FYZIKÁLNĚ INŽENÝRSKÁ KATEDRA JADERNÝCH REAKTORŮ Praha 8, V Holešovičkách 2, 18, Česká republika Měření účinných průřezů (n,xn) reakcí s využitím pro

Více

Kritický stav jaderného reaktoru

Kritický stav jaderného reaktoru Kritický stav jaderného reaktoru Autoři: L. Homolová 1, L. Jahodová 2, J. B. Hejduková 3 Gymnázium Václava Hlavatého Louny 1, Purkyňovo gymnázium Strážnice 2, SPŠ Stavební Plzeň 3 jadracka@centrum.cz Abstrakt:

Více

Kateřina Fišerová - Seminární práce k předmětu Didaktika fyziky

Kateřina Fišerová - Seminární práce k předmětu Didaktika fyziky Kateřina Fišerová - Seminární práce k předmětu Didaktika fyziky Problémová situace První jaderný reaktor spustil 2. prosince 942 na univerzitě v Chicagu italský fyzik Enrico Fermi se svými spolupracovníky.

Více

Využití aktivačních detektorů při měření neutronového pole v modelových sestavách ADTS

Využití aktivačních detektorů při měření neutronového pole v modelových sestavách ADTS Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Petr Chudoba Využití aktivačních detektorů při měření neutronového pole v modelových sestavách ADTS Ústav částicové a jaderné fyziky

Více

Experimentální studium transmutace štěpných produktů

Experimentální studium transmutace štěpných produktů UNIVERZITA KARLOVA V PRAZE Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Antonín Krása Experimentální studium transmutace štěpných produktů ÚSTAV ČÁSTICOVÉ A JADERNÉ FYZIKY Vedoucí diplomové práce : RNDr.

Více

Detekce a spektrometrie neutronů

Detekce a spektrometrie neutronů Detekce a spektrometrie neutronů 1. Pomalé neutrony a) aktivní detektory, b) pasivní detektory, c) mechanické monochromátory 2. Rychlé neutrony a) detektory používající zpomalování neutronů b) přímá detekce

Více

Spektrometrie záření gama

Spektrometrie záření gama Spektrometrie záření gama M. Kroupa, Gymnázium Děčín, trellac@centrum.cz B. Dvorský, Gymnázium Šternberk, bohuslav.dvorsky@seznam.cz Abstrakt Tento článek pojednává o spektroskopii záření gama. Bylo měřeno

Více

rezonanční neutrony (0,5-1 kev) (pojem rezonanční souvisí s výskytem rezonančních maxim) A Z

rezonanční neutrony (0,5-1 kev) (pojem rezonanční souvisí s výskytem rezonančních maxim) A Z 7. REAKCE NEUTRONŮ velmi časté reakce s vysokými výtěžky pro neutron neexistuje potenciálová bariéra terčového jádra pravděpodobnost záchytu neutronu je tím větší, čím je neutron pomalejší (déle se zdržuje

Více

Úloha 5: Spektrometrie záření α

Úloha 5: Spektrometrie záření α Petra Suková, 3.ročník 1 Úloha 5: Spektrometrie záření α 1 Zadání 1. Proveďte energetickou kalibraci α-spektrometru a určete jeho rozlišení. 2. Určeteabsolutníaktivitukalibračníhoradioizotopu 241 Am. 3.

Více

Urychlovačem řízené transmutační systémy (ADS - Accelerator driven systems)

Urychlovačem řízené transmutační systémy (ADS - Accelerator driven systems) Urychlovačem řízené transmutační systémy (ADS - Accelerator driven systems) Miniprojekt, v rámci Fyzikálního týdne na Fakultě Jaderné a Fyzikálně inženýrské ČVUT Řešitelé: David Brychta - Gymnasium Otokara

Více

Univerzita Karlova v Praze Matematicko-fyzikální fakulta

Univerzita Karlova v Praze Matematicko-fyzikální fakulta Univerzita Karlova v Praze Matematicko-fyzikální fakulta Diplomová práce Filip Křížek Studium tříštivých reakcí, produkce a transportu neutronů v terčích vhodných pro produkci neutronů k transmutacím Ústav

Více

Atomové jádro, elektronový obal

Atomové jádro, elektronový obal Atomové jádro, elektronový obal 1 / 9 Atomové jádro Atomové jádro je tvořeno protony a neutrony Prvek je látka skládající se z atomů se stejným počtem protonů Nuklid je systém tvořený prvky se stejným

Více

Úloha 4: Totální účinný průřez interakce γ záření absorpční koeficient záření gama pro některé elementy

Úloha 4: Totální účinný průřez interakce γ záření absorpční koeficient záření gama pro některé elementy Petra Suková, 3.ročník 1 Úloha 4: Totální účinný průřez interakce γ záření absorpční koeficient záření gama pro některé elementy 1 Zadání 1. UrčeteabsorpčníkoeficientzářenígamaproelementyFe,CdaPbvzávislostinaenergii

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ATOM, ELEKTRONOVÝ OBAL 1) Sestavte tabulku: a) Do prvního sloupce

Více

Neutronové záření ve výzkumných reaktorech. Tereza Lehečková

Neutronové záření ve výzkumných reaktorech. Tereza Lehečková Neutronové záření ve výzkumných reaktorech Tereza Lehečková Výzkumné reaktory ve světě a v ČR Okolo 25, nepřibývají Nulového výkonu či nízkovýkonové Nejčastěji PWR, VVER Obr.1 LR-, [2] Základní a aplikovaný

Více

Práce v radiochemické laboratoři - ověření zákonitostí radioaktivních přeměn

Práce v radiochemické laboratoři - ověření zákonitostí radioaktivních přeměn Práce v radiochemické laboratoři - ověření zákonitostí radioaktivních přeměn Autoři: H.Brandejská, Gymnázium Jiřího Ortena, brandejskahelena@seznam.cz A. Hladíková, Gymnázium J.K.Tyla, AJA.HLADIK@seznam.cz

Více

Elektroenergetika 1. Jaderné elektrárny

Elektroenergetika 1. Jaderné elektrárny Jaderné elektrárny Vazební energie jádra Klidová hmotnost jádra všech prvků a izotopů je menší než je součet hmotností všech nukleonů -> hmotnostní defekt m j m j = Nm n + Zm p m j Kde m n je klidová hmotnost

Více

Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou?

Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou? Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou? 10/20/2004 1 Bethe Blochova formule (1) je maximální možná předaná energie elektronu N r e - vogadrovo čislo - klasický poloměr elektronu

Více

Radioaktivita,radioaktivní rozpad

Radioaktivita,radioaktivní rozpad Radioaktivita,radioaktivní rozpad = samovolná přeměna jader nestabilních nuklidů na jiná jádra, za současného vyzáření neviditelného radioaktivního záření Výskyt v přírodě v přírodě se vyskytuje 264 stabilních

Více

Radiační zátěž na palubách letadel

Radiační zátěž na palubách letadel Radiační zátěž na palubách letadel M. Flusser 1, L. Folwarczny 2, D. Kalasová 3, L. Lachman 4, V. Větrovec 5 1 Smíchovská střední průmyslová škola, Praha, martin.flusser@atlas.cz 2 Gymnázium Komenského,

Více

Vyhořelé jaderné palivo

Vyhořelé jaderné palivo Vyhořelé jaderné palivo Jaderné palivo - složení Jaderné palivo je palivo, z něhož se energie uvolňuje prostřednictvím jaderných reakcí Nejběžnějším typem jaderného paliva je obohacený uran ve formě oxidu

Více

Prvek, nuklid, izotop, izobar

Prvek, nuklid, izotop, izobar Prvek, nuklid, izotop, izobar A = Nukleonové (hmotnostní) číslo A = počet protonů + počet neutronů A = Z + N Z = Protonové číslo, náboj jádra Frederick Soddy (1877-1956) NP za chemii 1921 Prvek = soubor

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA JADERNÁ A FYZIKÁLNĚ INŽENÝRSKÁ

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA JADERNÁ A FYZIKÁLNĚ INŽENÝRSKÁ ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA JADERNÁ A FYZIKÁLNĚ INŽENÝRSKÁ KATEDRA JADERNÝCH REAKTORŮ Praha 8, V Holešovičkách 2, 180 00, Česká republika Aktivační měření účinných průřezů prahových reakcí

Více

3. Radioaktivita. Při radioaktivní přeměně se uvolňuje energie. X Y + n částic. Základní hmotnostní podmínka radioaktivity: M(X) > M(Y) + M(ČÁSTIC)

3. Radioaktivita. Při radioaktivní přeměně se uvolňuje energie. X Y + n částic. Základní hmotnostní podmínka radioaktivity: M(X) > M(Y) + M(ČÁSTIC) 3. Radioaktivita >2000 nuklidů; 266 stabilních radioaktivita samovolná přeměna na jiný nuklid (neplatí pro deexcitaci jádra) pro Z 20 N / Z 1, poté postupně až 1,52 pro 209 Bi, přebytek neutronů zmenšuje

Více

CZ.1.07/1.1.30/01.0038

CZ.1.07/1.1.30/01.0038 Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 29 Téma: RADIOAKTIVITA A JADERNÝ PALIVOVÝ CYKLUS Lektor: Ing. Petr Konáš Třída/y: 3ST,

Více

Jaderné reaktory blízké i vzdálené budoucnosti, vyhořelé jaderné palivo - současné trendy a moznosti

Jaderné reaktory blízké i vzdálené budoucnosti, vyhořelé jaderné palivo - současné trendy a moznosti Jaderné reaktory blízké i vzdálené budoucnosti, vyhořelé jaderné palivo - současné trendy a moznosti aneb co umí, na čem pracují a o čem sní jaderní inženýři a vědci... Tomáš Bílý tomas.bily@fjfi.cvut.cz

Více

Urychlovače částic principy standardních urychlovačů částic

Urychlovače částic principy standardních urychlovačů částic Urychlovače částic principy standardních urychlovačů částic Základní info technické zařízení, které dodává kinetickou energii částicím, které je potřeba urychlit nabité částice jsou v urychlovači urychleny

Více

Jaderná fyzika. Zápisy do sešitu

Jaderná fyzika. Zápisy do sešitu Jaderná fyzika Zápisy do sešitu Vývoj modelů atomu 1/3 Antika intuitivně zavedli pojem atomos nedělitelná část hmoty Pudinkový model J.J.Thomson (1897) znal elektron a velikost atomu 10-10 m v celém atomu

Více

Theory Česky (Czech Republic)

Theory Česky (Czech Republic) Q3-1 Velký hadronový urychlovač (10 bodů) Než se do toho pustíte, přečtěte si prosím obecné pokyny v oddělené obálce. V této úloze se budeme bavit o fyzice částicového urychlovače LHC (Large Hadron Collider

Více

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika Fyzika pro střední školy II 84 R10 F Y Z I K A M I K R O S V Ě T A R10.1 Fotovoltaika Sluneční záření je spojeno s přenosem značné energie na povrch Země. Její velikost je dána sluneční neboli solární

Více

ATOMOVÉ JÁDRO A JEHO STRUKTURA. Aleš Lacina Přírodovědecká fakulta MU, Brno

ATOMOVÉ JÁDRO A JEHO STRUKTURA. Aleš Lacina Přírodovědecká fakulta MU, Brno ATOMOVÉ JÁDRO A JEHO STRUKTURA Aleš Lacina Přírodovědecká fakulta MU, Brno "Poněvadž a-částice... procházejí atomem, pečlivé studium odchylek "těchto střel" od původního směru může poskytnout představu

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 7: Spektrum záření gama. Rentgenová fluorescenční spektroskopie. Abstrakt

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 7: Spektrum záření gama. Rentgenová fluorescenční spektroskopie. Abstrakt FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 15. 3. 21 Úloha 7: Spektrum záření gama Rentgenová fluorescenční spektroskopie Jméno: Jiří Slabý Pracovní skupina: 4 Ročník a kroužek: 2. ročník, 1.

Více

Balmerova série. F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3

Balmerova série. F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3 Balmerova série F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3 Grepl.F@seznam.cz Abstrakt: Metodou dělených svazků jsme určili lámavý

Více

RADIOAKTIVITA TEORIE. Škola: Masarykovo gymnázium Vsetín Mgr.Milan Staněk MGV_F_SS_3S2_D12_Z_MIKSV_Radioaktivita_PL

RADIOAKTIVITA TEORIE. Škola: Masarykovo gymnázium Vsetín Mgr.Milan Staněk MGV_F_SS_3S2_D12_Z_MIKSV_Radioaktivita_PL Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr.Milan Staněk MGV_F_SS_3S2_D12_Z_MIKSV_Radioaktivita_PL Člověk a příroda Fyzika Jaderná fyzika Radioaktivita RADIOAKTIVITA

Více

Využití radionuklidové rentgenfluorescenční analýzy při studiu památek

Využití radionuklidové rentgenfluorescenční analýzy při studiu památek Využití radionuklidové rentgenfluorescenční analýzy při studiu památek V. Klevarová, T. Kráčmerová, V. Vítek Gymnásium Matyáše Lercha Gymnásium Václava Hraběte Gymnásium Bystřice nad Pernštejnem veronika.klevarova@centrum.cz,

Více

212 a. 5. Vyzáří-li radioaktivní nuklid aktinia částici α, přemění se na atom: a) radia b) thoria c) francia d) protaktinia e) zůstane aktinium

212 a. 5. Vyzáří-li radioaktivní nuklid aktinia částici α, přemění se na atom: a) radia b) thoria c) francia d) protaktinia e) zůstane aktinium Pracovní list - Jaderné reakce 1. Vydává-li radionuklid záření alfa: a) protonové číslo se zmenšuje o 4 a nukleonové číslo se nemění b) nukleonové číslo se změní o 4 a protonové se nemění c) protonové

Více

Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích z bublinové komory.

Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích z bublinové komory. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích

Více

Měření absorbce záření gama

Měření absorbce záření gama Měření absorbce záření gama Úkol : 1. Změřte záření gama přirozeného pozadí. 2. Změřte záření gama vyzářené gamazářičem. 3. Změřte záření gama vyzářené gamazářičem přes absorbátor. 4. Naměřené závislosti

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROENERGETIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF

Více

2. Atomové jádro a jeho stabilita

2. Atomové jádro a jeho stabilita 2. Atomové jádro a jeho stabilita Atom je nejmenší hmotnou a chemicky nedělitelnou částicí. Je tvořen jádrem, které obsahuje protony a neutrony, a elektronovým obalem. Elementární částice proton neutron

Více

Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE. Vladimír Henzl

Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE. Vladimír Henzl Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Vladimír Henzl Experimentální studium transmutace aktinidů a štěpných produktů Ústav částicové a jaderné fyziky Vedoucí diplomové

Více

Letní škola RADIOAKTIVNÍ LÁTKY a možnosti detoxikace

Letní škola RADIOAKTIVNÍ LÁTKY a možnosti detoxikace Letní škola 2008 RADIOAKTIVNÍ LÁTKY a možnosti detoxikace 1 Periodická tabulka prvků 2 Radioaktivita radioaktivita je schopnost některých atomových jader odštěpovat částice, neboli vysílat záření jádro

Více

VYBRANÉ DOSIMETRICKÉ VELIČINY A VZTAHY MEZI NIMI

VYBRANÉ DOSIMETRICKÉ VELIČINY A VZTAHY MEZI NIMI VYBRANÉ DOSIMETRICKÉ VELIČINY A VZTAHY MEZI NIMI Přehled dosimrických veličin: Daniel KULA (verze 1.0), 1. Aktivita: Definice veličiny: Poč radioaktivních přeměn v radioaktivním materiálu, vztažený na

Více

Příklady Kosmické záření

Příklady Kosmické záření Příklady Kosmické záření Kosmické částice 1. Jakou kinetickou energii získá proton při pádu z nekonečné výšky na Zem? Poloměr Zeměje R Z =637810 3 maklidováenergieprotonuje m p c 2 =938.3MeV. 2. Kosmickékvantum

Více

Jaderné reakce a radioaktivita

Jaderné reakce a radioaktivita Střední průmyslová škola Hranice - - Jaderné reakce a radioaktivita Radioaktivita Je vlastností atomových jader, která se samovolně přeměňují na jiná a vyzařují při tom pronikavé neviditelné záření. Jádra

Více

Princip metody Transport částic Monte Carlo v praxi. Metoda Monte Carlo. pro transport částic. Václav Hanus. Koncepce informatické fyziky, FJFI ČVUT

Princip metody Transport částic Monte Carlo v praxi. Metoda Monte Carlo. pro transport částic. Václav Hanus. Koncepce informatické fyziky, FJFI ČVUT pro transport částic Koncepce informatické fyziky, FJFI ČVUT Obsah Princip metody 1 Princip metody Náhodná procházka 2 3 Kódy pro MC Příklady použití Princip metody Náhodná procházka Příroda má náhodný

Více

Základy Mössbauerovy spektroskopie. Libor Machala

Základy Mössbauerovy spektroskopie. Libor Machala Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických

Více

1. Zadání Pracovní úkol Pomůcky

1. Zadání Pracovní úkol Pomůcky 1. 1. Pracovní úkol 1. Zadání 1. Ověřte měřením, že směry výletu anihilačních fotonů vznikajících po β + rozpadu jader 22 Na svírají úhel 180. 2. Určete pološířku úhlového rozdělení. 3. Vysvětlete tvar

Více

Jaderná elektrárna. Martin Šturc

Jaderná elektrárna. Martin Šturc Jaderná elektrárna Martin Šturc Princip funkce Štěpení jader Štěpení jader Štěpení těžkých se nejsnáze vyvolá neutronem. Přestože štěpení jader je vždy exotermická reakce, musí mít dopadající neutron určitou

Více

1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin.

1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin. 1 Pracovní úkoly 1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin. 2. Proměřte úhlovou závislost intenzity difraktovaného rentgenového záření při pevné orientaci

Více

Atom jeho složení a struktura Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje

Atom jeho složení a struktura Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje Atom jeho složení a struktura Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje 16.3.2009,vyhotovila Mgr. Alena Jirčáková Atom atom (z řeckého átomos nedělitelný)

Více

LEPTONY. Elektrony a pozitrony a elektronová neutrina. Miony a mionová neutrina. Lepton τ a neutrino τ

LEPTONY. Elektrony a pozitrony a elektronová neutrina. Miony a mionová neutrina. Lepton τ a neutrino τ LEPTONY Elektrony a pozitrony a elektronová neutrina Pozitronium, elektronové neutrino a antineutrino Beta rozpad nezachování parity, měření helicity neutrin Miony a mionová neutrina Lepton τ a neutrino

Více

RADIOAKTIVITA A VLIV IONIZUJÍCÍHO ZÁŘENÍ

RADIOAKTIVITA A VLIV IONIZUJÍCÍHO ZÁŘENÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 RADIOAKTIVITA A VLIV IONIZUJÍCÍHO

Více

Historie zapsaná v atomech

Historie zapsaná v atomech Historie zapsaná v atomech Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK pavel.cejnar@mff.cuni.cz Symposion 2010, Gymnázium Jana Keplera, Praha Stopy, kroky, znamení Historie zapsaná v atomech Pavel

Více

Centrum výzkumu Řež s.r.o. Centrum výzkumu Řež se představuje

Centrum výzkumu Řež s.r.o. Centrum výzkumu Řež se představuje Centrum výzkumu Řež se představuje 1 Založeno 2002, VaV organizace zaměřena na vývoj technologií v energetice Člen Skupiny ÚJV Centrum výzkumu Řež (CVR) stručně Vizí společnosti je: Být silnou, ekonomicky

Více

Radiační monitorovací síť ČR metody stanovení a vybrané výsledky monitorování

Radiační monitorovací síť ČR metody stanovení a vybrané výsledky monitorování Radiační monitorovací síť ČR metody stanovení a vybrané výsledky monitorování Miroslav Hýža a kol., SÚRO v.v.i., miroslav.hyza@suro.cz Otázky dopadu jaderné havárie do zemědělství a připravenost ČR Praha,

Více

Jaderná energie Jaderné elektrárny. Vojtěch Motyčka Centrum výzkumu Řež s.r.o.

Jaderná energie Jaderné elektrárny. Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Jaderná energie Jaderné elektrárny Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Obsah prezentace Energie jaderná Vývoj energetiky Dělení jaderných reaktorů I. Energie jaderná Uvolňuje se při jaderných reakcích

Více

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno 1 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Struktura

Více

Parametrizace ozařovacích míst v aktivní zóně školního reaktoru VR-1 VRABEC

Parametrizace ozařovacích míst v aktivní zóně školního reaktoru VR-1 VRABEC Parametrizace ozařovacích míst v aktivní zóně školního reaktoru VR-1 VRABEC Kohos Antonín, Katovský Karel Huml Ondřeji Vinš Miloslav Fakulta jaderná a fyzikálně inženýrská ČVUT, Katedra jaderných reaktorů,

Více

NEUTRONOVÁ AKTIVAČNÍ ANALÝZA

NEUTRONOVÁ AKTIVAČNÍ ANALÝZA STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST NEUTRONOVÁ AKTIVAČNÍ ANALÝZA Jana Menšíková Frýdlant nad Ostravicí 2015 STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST NEUTRONOVÁ AKTIVAČNÍ ANALÝZA Autor: Škola: Lektor: Jana Menšíková Gymnázium

Více

Dosah γ záření ve vzduchu

Dosah γ záření ve vzduchu Dosah γ záření ve vzduchu Intenzita bodového zdroje γ záření se mění podobně jako intenzita bodového zdroje světla. Ve dvojnásobné vzdálenosti, paprsek pokrývá dvakrát větší oblast povrchu, což znamená,

Více

Úloha 8: Absorpce beta záření. Určení energie betarozpadu měřením absorpce emitovaného záření.

Úloha 8: Absorpce beta záření. Určení energie betarozpadu měřením absorpce emitovaného záření. Petra Suková, 3.ročník 1 Úloha 8: Absorpce beta záření. Určení energie betarozpadu měřením absorpce emitovaného záření. 1 Zadání Vtétoúlozesepoužívázářič 90 Sr,kterýserozpadápodleschematunaobr.1.Spektrumemitovaných

Více

Interakce laserového impulsu s plazmatem v souvislosti s inerciální fúzí zapálenou rázovou vlnou

Interakce laserového impulsu s plazmatem v souvislosti s inerciální fúzí zapálenou rázovou vlnou Interakce laserového impulsu s plazmatem v souvislosti s inerciální fúzí zapálenou rázovou vlnou Autor práce: Petr Valenta Vedoucí práce: Ing. Ondřej Klimo, Ph.D. Konzultanti: prof. Ing. Jiří Limpouch,

Více

JADERNÁ ENERGIE. Jaderné reakce, které slouží k uvolňování jaderné energie, jsou jaderná syntéza a jaderné štěpení.

JADERNÁ ENERGIE. Jaderné reakce, které slouží k uvolňování jaderné energie, jsou jaderná syntéza a jaderné štěpení. JADERNÁ ENERGIE Jaderné reakce, které slouží k uvolňování jaderné energie, jsou jaderná syntéza a jaderné štěpení.. Jaderná syntéza (termonukleární reakce): Je děj, při němž složením dvou lehkých jader

Více

Radioaktivita a radionuklidy - pozitivní i negativní účinky a využití. Jméno: Ondřej Lukas Třída: 9. C

Radioaktivita a radionuklidy - pozitivní i negativní účinky a využití. Jméno: Ondřej Lukas Třída: 9. C Radioaktivita a radionuklidy - pozitivní i negativní účinky a využití Jméno: Ondřej Lukas Třída: 9. C Co to je Radioaktivita/Co je radionuklid Radioaktivita = Samovolná přeměna atomových jader Objev 1896

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 7: Gama spektrometr Datum měření: 15. 4. 2016 Doba vypracovávání: 15 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: Pomocí

Více

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD.

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. KAP FP TU Liberec pavel.pesat@tul.cz tel. 3293 Radioaktivita. Přímo a nepřímo ionizující záření. Interakce záření s látkou. Detekce záření, Dávka

Více

Identifikace typu záření

Identifikace typu záření Identifikace typu záření U radioaktivního záření rozeznáváme několik druhů, jejichž vlastnosti se diametrálně liší. Jednotlivé druhy rozeznáváme podle druhu emitovaného záření. Tyto druhy radioaktivity

Více

Rozměr a složení atomových jader

Rozměr a složení atomových jader Rozměr a složení atomových jader Poloměr atomového jádra: R=R 0 A1 /3 R0 = 1,2 x 10 15 m Cesta do hlubin hmoty Složení atomových jader: protony + neutrony = nukleony mp = 1,672622.10 27 kg mn = 1,6749272.10

Více

Jaderná energetika Je odvětví energetiky a průmyslu, které se zabývá především výrobou energie v jaderných elektrárnách, v širším smyslu může jít i o

Jaderná energetika Je odvětví energetiky a průmyslu, které se zabývá především výrobou energie v jaderných elektrárnách, v širším smyslu může jít i o Anotace Učební materiál EU V2 1/F18 je určen k výkladu učiva jaderná energetika fyzika 9. ročník. UM se váže k výstupu: žák vysvětlí princip jaderného reaktoru, zhodnotí výhody a nevýhody využívání různých

Více

Radiační odstraňování vybraných kontaminantů z podzemních a odpadních vod

Radiační odstraňování vybraných kontaminantů z podzemních a odpadních vod Radiační odstraňování vybraných kontaminantů z podzemních a odpadních vod Václav Čuba, Viliam Múčka, Milan Pospíšil, Rostislav Silber ČVUT v Praze Centrum pro radiochemii a radiační chemii Fakulta jaderná

Více

Radioaktivní záření, jeho druhy, detekce a základní vlastnosti

Radioaktivní záření, jeho druhy, detekce a základní vlastnosti Radioaktivní záření, jeho druhy, detekce a základní vlastnosti M. Vohralík vohralik.m@email.cz Gymnázium Dr. Emila Holuba, Holice D. Horák dombas1999@gmail.com Reálné Gymnázium a základní škola města Prostějova

Více

Opakování: shrnutí základních poznatků o struktuře atomu

Opakování: shrnutí základních poznatků o struktuře atomu 11. Polovodiče Polovodiče jsou krystalické nebo amorfní látky, jejichž elektrická vodivost leží mezi elektrickou vodivostí kovů a izolantů a závisí na teplotě nebo dopadajícím optickém záření. Elektrické

Více

Jaroslav Reichl. Střední průmyslová škola sdělovací techniky Panská 3 Praha 1 Jaroslav Reichl, 2017

Jaroslav Reichl. Střední průmyslová škola sdělovací techniky Panská 3 Praha 1 Jaroslav Reichl, 2017 Střední průmyslová škola sdělovací techniky Panská Praha 1 Jaroslav Reichl, 017 určená studentům 4. ročníku technického lycea jako doplněk ke studiu fyziky Jaroslav Reichl Obsah 1. SPECIÁLNÍ TEORIE RELATIVITY....

Více

Pozitron teoretická předpověď

Pozitron teoretická předpověď Pozitron teoretická předpověď Diracova rovnice: αp c mc x, t snaha popsat relativisticky pohyb elektronu x, t ˆ i t řešení s negativní energií vakuum je Diracovo moře elektronů pozitrony díry ve vaku Paul

Více

Příloha IV Odhady aktivit vybraných štěpných produktů

Příloha IV Odhady aktivit vybraných štěpných produktů Příloha IV Příloha IV List: 2 z 10 Obsah 1. Vybrané krátkodobé štěpné produkty... 3 2. Zkrácený palivový proutek EK-10... 4 3. Palivová peleta UO 2... 6 4. Palivový článek IRT-4M... 8 Příloha IV List:

Více

Kosmické záření a jeho detekce stanicí CZELTA

Kosmické záření a jeho detekce stanicí CZELTA Kosmické záření a jeho detekce stanicí CZELTA Jiří Slabý slabyji2@fjfi.cvut.cz 30.10.2008, Fyzikální seminář, Fakulta jaderná a fyzikálně inženýrská Českého vysokého učení technického v Praze Co nás čeká

Více

Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec

Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec Fotoelektronová spektroskopie Instrumentace RNDr. Věra V Vodičkov ková,, PhD. Katedra materiálů TU Liberec Obecné schéma metody Dopad rtg záření emitovaného ze zdroje na vzorek průnik fotonů několik µm

Více

8.STAVBA ATOMU ELEKTRONOVÝ OBAL

8.STAVBA ATOMU ELEKTRONOVÝ OBAL 8.STAVBA ATOMU ELEKTRONOVÝ OBAL 1) Popiš Daltonovu atomovou teorii postuláty. (urči, které platí dodnes) 2) Popiš Rutherfordův planetární model atomu a jeho přínos. 3) Bohrův model atomu vysvětli kvantování

Více

PRAKTIKUM IV Jaderná a subjaderná fyzika

PRAKTIKUM IV Jaderná a subjaderná fyzika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Jaderná a subjaderná fyzika Úloha č. A15 Název: Studium atomových emisních spekter Pracoval: Radim Pechal dne 19. listopadu

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Fyzika atomu - model atomu struktura elektronového obalu atomu z hlediska energie atomu - stavba atomového jádra; základní nukleony

Více

ŠTĚPNÁ REAKCE (JADERNÁ ENERGIE)

ŠTĚPNÁ REAKCE (JADERNÁ ENERGIE) ŠTĚPNÁ REAKCE (JADERNÁ ENERGIE) Tadeáš Simon, Dominik Němec, David Čížek Štěpení jader informace jádro atomu- rozštěpí se, vzniklé části se rozletí velkými rychlostmi ->kinetická energie (energie pohybu)-

Více

SIMULACE ŠÍŘENÍ NAPĚŤOVÝCH VLN V KRYSTALECH MĚDI A NIKLU

SIMULACE ŠÍŘENÍ NAPĚŤOVÝCH VLN V KRYSTALECH MĚDI A NIKLU SIMULACE ŠÍŘENÍ NAPĚŤOVÝCH VLN V KRYSTALECH MĚDI A NIKLU V. Pelikán, P. Hora, A. Machová Ústav termomechaniky AV ČR Příspěvek vznikl na základě podpory záměru ÚT AV ČR AV0Z20760514. VÝPOČTOVÁ MECHANIKA

Více

Fotoelektrický jev je uvolňování elektronů z látky vlivem dopadu světelného záření.

Fotoelektrický jev je uvolňování elektronů z látky vlivem dopadu světelného záření. FYZIKA pracovní sešit pro ekonomické lyceum. 1 Jiří Hlaváček, OA a VOŠ Příbram, 2015 FYZIKA MIKROSVĚTA Kvantové vlastnosti světla (str. 241 257) Fotoelektrický jev je uvolňování elektronů z látky vlivem

Více

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE VY_32_INOVACE_FY.17 JADERNÁ ENERGIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jaderná energie je energie, která existuje

Více