KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání.

Rozměr: px
Začít zobrazení ze stránky:

Download "KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut."

Transkript

1 1/24 KOMPRESE OBRAZŮ Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac

2 KOMPRESE OBRAZŮ, ÚVOD 2/24 Cíl: Spočívá v redukci množství dat potřebných k reprezentaci obrazu. Spotřebované množství paměti se měří například v bitech. Použití: Pro přenos a uchování dat. Proč se liší komprese 2D obrazů od komprese 1D dat?

3 ROZDĚLENÍ METOD KOMPRESE OBRAZŮ 1. Segmentace objektů v obraze. 3/24 Je potřebná interpretace obrazu. Metody jsou závislé na datech. Dosahuje se nejvyšších kompresních poměrů. Není možná zpětná rekonstrukce výchozího obrazu. 2. Odstranění redundandní informace. Data se neinterpretují. Lze použít na libovolná obrazová data. Využívá se statistických závislostí v obraze (sekvenci obrazů).

4 ODSTRANĚNÍ REDUNDANTNÍ INFORMACE 4/24 Dvě velké třídy používaných postupů: 1. Bezeztrátové metody. Umožňují úplnou rekonstrukci výchozího signálu. 2. Ztrátové metody. Umožňují pouze částečnou rekonstrukci výchozího signálu.

5 KÓDOVÁNÍ SEGMENTOVANÝCH DAT (1) Kódování hranic oblastí 5/24 Polygonální aproximace hranice

6 KÓDOVÁNÍ SEGMENTOVANÝCH DAT (2) Kódování hranic oblastí 6/24 Řetězový (též Freemanův) kód, 4-okolí Řetězový kód: 3, 0, 0, 3, 0, 1, 1, 2, 1, 2, 3, 2. Derivace kódu: 1, 0, 3, 1, 1, 0, 1, 3, 1, 1, 3, 1.

7 KÓDOVÁNÍ SEGMENTOVANÝCH DAT (3) Kódování hranic oblastí 7/24 Řetězový (též Freemanův) kód, 8-okolí Kód:

8 KÓDOVÁNÍ SEGMENTOVANÝCH DAT (4) Kódování oblastí 8/24 Kódování úseky řádků (angl. Run Length Encoding, RLE) Kódem je seznam seznamů. Každý seznam popisuje situaci v jednom řádku. Používá FAX (CCITT Group 3). ((11144)(214)(52355))

9 KOMPRESE OBRAZU A JEHO REKONSTRUKCE 9/24 Original image Data redundancy reduction Coding Transmission, Archiving Reconstructed image Reconstruction Decoding

10 POSTUPY ODSTRAŇOVÁNÍ REDUNDANCE V DATECH 10/24 Pomocí lineárních integrálních transformací obrazu, např. Fourierou transformací. Prediktivní komprese. Hybridní metody. KÓDOVÁNÍ Obvykle optimální kódování, tj. nejkratším kódem. Kódy pevné délky (Huffmanovo kódování) nebo kódy proměnné délky (aritmetické kódování).

11 TEORIE INFORMACE A REDUNDANCE Entropie ve fyzice je měrou energie soustavy, která není k dispozici k vykonání práce. Jelikož práci lze získat z řádu soustavy, je entropie měrou neuspořádanosti soustavy. Souvisí s druhou termodynamickou větou. Pojem zavedl v roce 1850 německý fyzik Rudolf Claudius. 11/24 Entropie v teorii informace, Claude Shannon, 1948 H e = i p i log 2 p i [bitů], kde p i je pravděpodobnost i-tého symbolu ve zprávě.

12 ENTROPIE, DVA PŘÍKLADY Nechť jsou ve zprávě jen dva znaky a, b. Příklad 1 12/24 p(a) = p(b) = 1 2 H = ( 1 2 log log ) = ( ) = 1 Příklad 2 p(a) = 0, 99; p(b) = 0, 01 H = (0, 99 log 2 0, , 01 log 2 0, 01) = (0.99 ( 0, 0145) + 0, 01 ( 6, 6439)) = 0, , 0664 = 0, 0808

13 ENTROPIE PRO ŠEDOTÓNOVÝ OBRAZ 13/24 Nechť obraz má G jasových úrovní, k = 0... G 1 s pravděpodobnostmi P (k). Entropie H e = k P (k) log 2 P (k) [bitů], Nechť b je nejmenší počet bitů, kterým lze reprezentovat počet kvantizačních úrovní. Informační redundance r = b H e.

14 ODHAD ENTROPIE Z HISTOGRAMU OBRAZU 14/24 Nechť h(k), 0 k 2 b 1 a M, N jsou rozměry obrazu. Odhad pravděpodobnosti ˆP = h(k) M N. Odhad entropie Ĥe = 2 b 1 k ˆP (k) log 2 ˆP (k) [bitů] Poznámka: odhad entropie je příliš optimistický, protože mezi jasy obrazu existují závislosti.

15 TŘI DEFINICE KOMPRESNÍHO POMĚRU 15/24 1. Na základě redundance (měřené entropií) K = b Ĥ e 2. Na základě úspory paměti κ = n 1 n 2 = délka zprávy před kompresí délka zprávy po kompresi 3. Relativní úspora paměti R = 1 1 κ Příklad 1: n 1 = n 2 κ = 1, R = 0. Příklad 2: n 1 : n 2 = 10 : 1 κ = 10, R = 0, 9 = 90%.

16 JPEG PŘÍKLAD, K = /24 Po rekonstrukci K = 3.8. Rozdílový snímek.

17 JPEG PŘÍKLAD, K = /24 Po rekonstrukci K = 4.2. Rozdílový snímek.

18 JPEG PŘÍKLAD, K = /24 Po rekonstrukci K = 5.6. Rozdílový snímek.

19 JPEG PŘÍKLAD, K = /24 Po rekonstrukci K = Rozdílový snímek.

20 PREDIKTIVNÍ KOMPRESE MYŠLENKA 20/24 Najít matematický model, který dokáže predikovat na základě předchozích hodnot další hodnotu. Přenášet pouze rozdíl mezi skutečnou a predikovanou hodnotou. Ke kompresi dochází, protože rozdílová data mají menší statistickou variaci (např. rozptyl) než původní data. f(i,j) + - Quantizer d(i,j) d(i,j) + + f(i,j) Predictor + Predictor (a) + (b)

21 DIGITÁLNÍ PULSNĚ KÓDOVÁ MODULACE (1) 21/24 Mějme obraz f (i, j), odhad jeho statistických vlastností pomocí autokorelační funkce R(i, j, k, l) = E(f (i, j)f (k, l)) = f f T. Hledáme matematický model prediktoru Rozdíl d(i, j) = ˆ f (i, j) f (i, j) ˆ f (i, j) Předpokládejme např. lineární prediktor 3. řádu ˆ f (i, j) = a 1 f (i, j 1) + a 2 f (i 1, j 1) + a 3 f (i 1, j), kde a 1, a 2, a 3 jsou parametry prediktivního modelu..

22 DIGITÁLNÍ PULSNĚ KÓDOVÁ MODULACE (2) Jak se odhadnou parametry prediktivního modelu a 1, a 2, a 3? 22/24 Vyřešením statistické optimalizační úlohu. Předpokládá se stacionární náhodný proces f a nulová střední hodnota. e = E([ f (i, j) f (i, j)] 2 ) a 1 R(0, 0) + a 2 R(0, 1) + a 3 R(1, 1) = R(1, 0) a 1 R(0, 1) + a 2 R(0, 0) + a 3 R(1, 0) = R(1, 1) a 1 R(1, 1) + a 2 R(1, 0) + a 3 R(0, 0) = R(0, 1) kde R(m, n) je autokorelační funkce speciálního tvaru R(α, β) = R(0, 0) exp( c 1 α c 2 β).

23 DPCM PŘÍKLAD, K = /24 Po rekonstrukci K = 3.8. Rozdílový snímek.

24 DPCM PŘÍKLAD, K = /24 Po rekonstrukci K = 6.2. Rozdílový snímek.

Algoritmy komprese dat

Algoritmy komprese dat Algoritmy komprese dat Úvod do teorie informace Claude Shannon (1916 2001) 5.11.2014 NSWI072-7 Teorie informace Informace Co je to informace? Můžeme informaci měřit? Existují teoretické meze pro délku

Více

Základní principy přeměny analogového signálu na digitální

Základní principy přeměny analogového signálu na digitální Základní y přeměny analogového signálu na digitální Pro přenos analogového signálu digitálním systémem, je potřeba analogový signál digitalizovat. Digitalizace je uskutečňována pomocí A/D převodníků. V

Více

Informační systémy ve zdravotnictví

Informační systémy ve zdravotnictví Informační systémy ve zdravotnictví ZS 2008/2009 Zoltán Szabó Tel.: (+420) 312 608 207 E-mail: szabo@fbmi.cvut.cz č.dv.: 504, 5.p Dnešní přednáška Kódování, komprese 2 1 Komprese dat Cíl komprese: redukovat

Více

Komprese dat. Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI. přednášky

Komprese dat. Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI. přednášky Komprese dat Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI přednášky Statistické metody Jan Outrata (Univerzita Palackého v Olomouci) Komprese dat Olomouc, únor březen 2016 1 / 23 Tunstallův

Více

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních

Více

1. Základy teorie přenosu informací

1. Základy teorie přenosu informací 1. Základy teorie přenosu informací Úvodem citát o pojmu informace Informace je název pro obsah toho, co se vymění s vnějším světem, když se mu přizpůsobujeme a působíme na něj svým přizpůsobováním. N.

Více

UČENÍ BEZ UČITELE. Václav Hlaváč

UČENÍ BEZ UČITELE. Václav Hlaváč UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení

Více

Komprese videa Praha 2010 Účel komprese Snížení zátěže přenosového média Zmenšení objemu dat pro uložení Metody komprese obrazu Redundance Irelevance Redundantní složka část informace, po jejíž odstranění

Více

Teorie informace: řešené příklady 2014 Tomáš Kroupa

Teorie informace: řešené příklady 2014 Tomáš Kroupa Teorie informace: řešené příklady 04 Tomáš Kroupa Kolik otázek je třeba v průměru položit, abychom se dozvěděli datum narození člověka (den v roce), pokud odpovědi jsou pouze ano/ne a tázaný odpovídá pravdivě?

Více

Kompresní techniky. David Bařina. 15. února David Bařina Kompresní techniky 15. února / 37

Kompresní techniky. David Bařina. 15. února David Bařina Kompresní techniky 15. února / 37 Kompresní techniky David Bařina 15. února 2013 David Bařina Kompresní techniky 15. února 2013 1 / 37 Obsah 1 Pojmy 2 Jednoduché techniky 3 Entropická kódování 4 Slovníkové metody 5 Závěr David Bařina Kompresní

Více

Úvod do teorie informace

Úvod do teorie informace PEF MZLU v Brně 24. září 2007 Úvod Výměna informací s okolím nám umožňuje udržovat vlastní existenci. Proces zpracování informací je trvalý, nepřetržitý, ale ovlivnitelný. Zabezpečení informací je spojeno

Více

Kapitola 4: Extrémy funkcí dvou proměnných 1/5

Kapitola 4: Extrémy funkcí dvou proměnných 1/5 Kapitola 4: Extrémy funkcí dvou proměnných 1/5 Lokální extrémy Definice: Necht f : M R 2 R a (x 0, y 0 ) M. Říkáme, že fce f má v bodě (x 0, y 0 ) lokální maximum (resp. lokální minimum) jestliže existuje

Více

25. DIGITÁLNÍ TELEVIZNÍ SIGNÁL A KABELOVÁ TELEVIZE

25. DIGITÁLNÍ TELEVIZNÍ SIGNÁL A KABELOVÁ TELEVIZE 25. DIGITÁLNÍ TELEVIZNÍ SIGNÁL A KABELOVÁ TELEVIZE Digitalizace obrazu a komprese dat. Uveďte bitovou rychlost nekomprimovaného číslicového TV signálu a jakou šířku vysílacího pásma by s dolním částečně

Více

Informatika Kódování. Obsah. Kód. Radim Farana Podklady předmětu Informatika pro akademický rok 2007/2008

Informatika Kódování. Obsah. Kód. Radim Farana Podklady předmětu Informatika pro akademický rok 2007/2008 Informatika Kódování Radim Farana Podklady předmětu Informatika pro akademický rok 27/28 Obsah Základy pojmy diskrétních kódů. Druhy kódů. Nejkratší kódy. Detekce chyb, Hammingova vdálenost. Kontrolní

Více

III/ 2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/ 2 Inovace a zkvalitnění výuky prostřednictvím ICT Metodický list k didaktickému materiálu Číslo a název šablony Číslo didaktického materiálu Druh didaktického materiálu Autor Téma sady didaktických materiálů Téma didaktického materiálu Vyučovací předmět

Více

Teorie informace 21.9.2014. Obsah. Kybernetika. Radim Farana Podklady pro výuku

Teorie informace 21.9.2014. Obsah. Kybernetika. Radim Farana Podklady pro výuku Teorie Radim Farana Podklady pro výuku Obsah Seznámení s problematikou a obsahem studovaného předmětu. Základní pojmy z Teorie, jednotka, informační obsah zprávy, střední délka zprávy, redundance. Kód.

Více

Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014

Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014 Harmonogram výuky předmětu Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014 Vedoucí cvičení: ing. Václav Klika, Ph.D. & MSc. Karolína Korvasová & & ing. Matěj Tušek, Ph.D. Katedra

Více

Teorie informace Obsah. Kybernetika. Radim Farana Podklady pro výuku

Teorie informace Obsah. Kybernetika. Radim Farana Podklady pro výuku Teorie Radim Farana Podklady pro výuku Obsah Seznámení s problematikou a obsahem studovaného předmětu. Základní pojmy z Teorie, jednotka, informační obsah zprávy, střední délka zprávy, redundance. Kód.

Více

SYSTÉMOVÁ METODOLOGIE (VII) Kybernetika. Ak. rok 2011/2012 vbp 1

SYSTÉMOVÁ METODOLOGIE (VII) Kybernetika. Ak. rok 2011/2012 vbp 1 SYSTÉMOVÁ METODOLOGIE (VII) Kybernetika Ak. rok 2011/2012 vbp 1 ZÁKLADNÍ SMĚRY A DISCIPLÍNY Teoretická kybernetika (vědecký aparát a metody ke zkoumání kybernetických systémů; používá abstraktní modely

Více

Samoopravné kódy. Katedra matematiky a Institut teoretické informatiky Západočeská univerzita

Samoopravné kódy. Katedra matematiky a Institut teoretické informatiky Západočeská univerzita Katedra matematiky a Institut teoretické informatiky Západočeská univerzita Seminář pro učitele středních a vysokých škol, Plzeň, 30. března 2012 jsou všude Některé oblasti využití: CD přehrávače mobilní

Více

ZPRACOVÁNÍ OBRAZU přednáška 4

ZPRACOVÁNÍ OBRAZU přednáška 4 ZPRACOVÁNÍ OBRAZU přednáška 4 Vít Lédl vit.ledl@tul.cz TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

Restaurace (obnovení) obrazu při známé degradaci

Restaurace (obnovení) obrazu při známé degradaci Restaurace (obnovení) obrazu při známé degradaci Václav Hlaváč České vysoké učení technické v Praze Centrum strojového vnímání (přemosťuje skupiny z) Český institut informatiky, robotiky a kybernetiky

Více

Informace v počítači. Výpočetní technika I. Ing. Pavel Haluza ústav informatiky PEF MENDELU v Brně haluza@mendelu.cz

Informace v počítači. Výpočetní technika I. Ing. Pavel Haluza ústav informatiky PEF MENDELU v Brně haluza@mendelu.cz .. Informace v počítači Ing. Pavel Haluza ústav informatiky PEF MENDELU v Brně haluza@mendelu.cz Osnova přednášky Úvod do teorie informace základní pojmy měření množství informace ve zprávě přenos a kódování

Více

Zkouškové otázky ze 17PMPZAO Zpracování a analýza obrazu

Zkouškové otázky ze 17PMPZAO Zpracování a analýza obrazu Zkouškové otázky ze 17PMPZAO Zpracování a analýza obrazu Václav Hlaváč České vysoké učení technické v Praze Fakulta elektrotechnická, katedra kybernetiky Centrum strojového vnímání http://cmp.felk.cvut.cz/

Více

Kybernetika a umělá inteligence, cvičení 10/11

Kybernetika a umělá inteligence, cvičení 10/11 Kybernetika a umělá inteligence, cvičení 10/11 Program 1. seminární cvičení: základní typy klasifikátorů a jejich princip 2. počítačové cvičení: procvičení na problému rozpoznávání číslic... body za aktivitu

Více

Kompresní algoritmy grafiky. Jan Janoušek F11125

Kompresní algoritmy grafiky. Jan Janoušek F11125 Kompresní algoritmy grafiky Jan Janoušek F11125 K čemu je komprese dobrá? Pokud je třeba skladovat datově náročné soubory. Např. pro záznam obrazu, hudby a hlavně videa je třeba skladovat překvapivě mnoho

Více

Pravděpodobnost, náhoda, kostky

Pravděpodobnost, náhoda, kostky Pravděpodobnost, náhoda, kostky Radek Pelánek IV122, jaro 2015 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností krátké

Více

Komprese dat Obsah. Komprese videa. Radim Farana. Podklady pro výuku. Komprese videa a zvuku. Komprese MPEG. Komprese MP3.

Komprese dat Obsah. Komprese videa. Radim Farana. Podklady pro výuku. Komprese videa a zvuku. Komprese MPEG. Komprese MP3. Komprese dat Radim Farana Podklady pro výuku Obsah Komprese videa a zvuku. Komprese MPEG. Komprese MP3. Komprese videa Velký objem přenášených dat Typický televizní signál - běžná evropská norma pracuje

Více

1. Přednáška: Obecné Inf. + Signály a jejich reprezentace

1. Přednáška: Obecné Inf. + Signály a jejich reprezentace 1. Přednáška: Obecné Inf. + Signály a jejich reprezentace 1 Obecné informace Změna rozvrhů Docházka na cvičení 2 Literatura a podklady Základní učební texty : Prchal J., Šimák B.: Digitální zpracování

Více

Metodické listy pro kombinované studium předmětu. B_PPG Principy počítačové grafiky

Metodické listy pro kombinované studium předmětu. B_PPG Principy počítačové grafiky Metodické listy pro kombinované studium předmětu B_PPG Principy počítačové grafiky Metodický list č. l Název tématického celku: BARVY V POČÍTAČOVÉ GRAFICE Cíl: Základním cílem tohoto tematického celku

Více

Motivace příklad použití lokace radarového echa Význam korelace Popis náhodných signálů číselné charakteristiky

Motivace příklad použití lokace radarového echa Význam korelace Popis náhodných signálů číselné charakteristiky A0M38SPP - Signálové procesory v praxi - přednáška 7 2 Motivace příklad použití lokace radarového echa Význam korelace Popis náhodných signálů číselné charakteristiky (momenty) Matematická definice korelační

Více

BPC2E_C09 Model komunikačního systému v Matlabu

BPC2E_C09 Model komunikačního systému v Matlabu BPCE_C9 Model komunikačního systému v Matlabu Cílem cvičení je vyzkoušet si sestavit skripty v Matlabu pro model jednoduchého komunikačního systému pro přenos obrázků. Úloha A. Sestavte model komunikačního

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2013/2014 Radim Farana. Obsah. Kybernetika

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2013/2014 Radim Farana. Obsah. Kybernetika 2 Podklady předmětu pro akademický rok 2013/2014 Radim Farana Obsah Základní pojmy z Teorie informace, jednotka informace, informační obsah zprávy, střední délka zprávy, redundance. Přenosový řetězec.

Více

Úloha - rozpoznávání číslic

Úloha - rozpoznávání číslic Úloha - rozpoznávání číslic Vojtěch Franc, Tomáš Pajdla a Tomáš Svoboda http://cmp.felk.cvut.cz 27. listopadu 26 Abstrakt Podpůrný text pro cvičení předmětu X33KUI. Vysvětluje tři způsoby rozpoznávání

Více

Počítačové vidění vs. digitální zpracování obrazu Digitální obraz a jeho vlastnosti

Počítačové vidění vs. digitální zpracování obrazu Digitální obraz a jeho vlastnosti Počítačové vidění vs. digitální zpracování obrazu Digitální obraz a jeho vlastnosti 1/32 Václav Hlaváč Fakulta elektrotechnická ČVUT, katedra kybernetiky Centrum strojového vnímání, Praha hlavac@fel.cvut.cz

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Základní pojmy diagnostiky a statistických metod vyhodnocení Učební text Ivan Jaksch Liberec 2012 Materiál vznikl

Více

OPTIMALIZAČNÍ ÚLOHY. Modelový příklad problém obchodního cestujícího:

OPTIMALIZAČNÍ ÚLOHY. Modelový příklad problém obchodního cestujícího: OPTIMALIZAČNÍ ÚLOHY Problém optimalizace v různých oblastech: - minimalizace času, materiálu, - maximalizace výkonu, zisku, - optimalizace umístění komponent, propojení,... Modelový příklad problém obchodního

Více

Osnova přednášky. Informace v počítači. Interpretace dat. Údaje, data. Úvod do teorie informace. Výpočetní technika I. Ochrana dat

Osnova přednášky. Informace v počítači. Interpretace dat. Údaje, data. Úvod do teorie informace. Výpočetní technika I. Ochrana dat Osnova přednášky 2/44 Informace v počítači Ing Pavel Haluza ústav informatiky PEF MENDELU v Brně haluza@mendelucz základní pojmy měření množství informace ve zprávě přenos a kódování dat parita kontrolní

Více

Netradiční výklad tradičních témat

Netradiční výklad tradičních témat Netradiční výklad tradičních témat J. Musilová, P. Musilová: Matematika pro porozumění i praxi I. VUTIUM, Brno 2006 (291 s.), 2009 (349 s.). J. Musilová, P. Musilová: Matematika pro porozumění i praxi

Více

Datové formáty videa a jejich využití. Tomáš Kvapil, Filip Le Manažerská informatika Multimédia

Datové formáty videa a jejich využití. Tomáš Kvapil, Filip Le Manažerská informatika Multimédia Datové formáty videa a jejich využití Tomáš Kvapil, Filip Le Manažerská informatika Multimédia 8.12.2016 Obsah Vlastnosti videa Kontejnery Kodeky Vlastnosti videa Snímková frekvence Datový tok Prokládání

Více

Základy a aplikace digitálních. Katedra radioelektroniky (13137), blok B2, místnost 722

Základy a aplikace digitálních. Katedra radioelektroniky (13137), blok B2, místnost 722 Základy a aplikace digitálních modulací Josef Dobeš Katedra radioelektroniky (13137), blok B2, místnost 722 dobes@fel.cvut.cz 6. října 2014 České vysoké učení technické v Praze, Fakulta elektrotechnická

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

Odhad parametrů N(µ, σ 2 )

Odhad parametrů N(µ, σ 2 ) Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

FILTRACE VE FOURIEROVSKÉM SPEKTRU

FILTRACE VE FOURIEROVSKÉM SPEKTRU 1/18 FILTRACE VE FOURIEROVSKÉM SPEKTRU (patří do lineárních integrálních transformací) Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz

Více

ANTAGONISTICKE HRY 172

ANTAGONISTICKE HRY 172 5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí

Více

Teorie informace II: obtížnější řešené příklady 2014 Tomáš Kroupa

Teorie informace II: obtížnější řešené příklady 2014 Tomáš Kroupa Teorie informace II: obtížnější řešené příklady 204 Tomáš Kroupa. Máme n mincí, z nichž nejvýše jedna je falešná. Pozná se podle toho, že má jinou hmotnost než ostatní mince (ty váží všechny stejně). Mince

Více

Experimentální stanovení entropie českého textu

Experimentální stanovení entropie českého textu Experimentální stanovení entropie českého textu Antonín Novák novak.antonin@fel.cvut.cz Tomáš Báča bacatoma@fel.cvut.cz 4. dubna 2012 Abstrakt Práce se zabývá analýzou českého textu. Zkoumali jsme syntaktickou

Více

Informace, kódování a redundance

Informace, kódování a redundance Informace, kódování a redundance Data (jednotné číslo údaj) obvykle chápeme jako údaje, tj. číselné hodnoty, znaky, texty a další fakta zaznamenaná (a uložená v databázi) ve formě uspořádané posloupnosti

Více

Osnova přednášky. Formáty uložení dat. Vyjádření hodnot datového typu. Vyjádření hodnot datového typu. Datové formáty. Výpočetní technika I

Osnova přednášky. Formáty uložení dat. Vyjádření hodnot datového typu. Vyjádření hodnot datového typu. Datové formáty. Výpočetní technika I Osnova přednášky 2/36 Formáty uložení dat Ing Pavel Haluza ústav informatiky PEF MENDELU v Brně haluza@mendelucz vyjádření hodnot datového typu formátová specifikace textový a binární formát otevřený a

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 05 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

Digitální magnetický záznam obrazového signálu

Digitální magnetický záznam obrazového signálu Digitální magnetický záznam obrazového signálu Ing. Tomáš Kratochvíl Současná televizní technika a videotechnika kurz U3V Program semináře a cvičení Digitální videosignál úvod a specifikace. Komprese obrazu

Více

Nestranný odhad Statistické vyhodnocování exp. dat M. Čada

Nestranný odhad Statistické vyhodnocování exp. dat M. Čada Nestranný odhad 1 Parametr θ Máme statistický (výběrový) soubor, který je realizací náhodného výběru 1, 2, 3,, n z pravděpodobnostní distribuce, která je kompletně stanovena jedním nebo více parametry

Více

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah 11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné

Více

Cvičení 11. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Cvičení 11. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. 11 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky a mezioborových inženýrských studií Komprese měřených dat v 0.1 Liberec 2007 Viktor Bubla Obsah 1 Proč komprimace? 2 2 Filosofie základních komprimačních

Více

SENZORY PRO ROBOTIKU

SENZORY PRO ROBOTIKU 1/13 SENZORY PRO ROBOTIKU Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac ROBOTICKÉ SENZORY - PŘEHLED

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika Teorie pravděpodobnosti popisuje vznik náhodných dat, zatímco matematická statistika usuzuje z dat na charakter procesů, jimiž data vznikla. NÁHODNOST - forma existence látky,

Více

Komprese a dotazování nad XML dokumenty

Komprese a dotazování nad XML dokumenty Komprese a dotazování nad XML dokumenty Prezentace diplomové práce Lukáš Skřivánek České vysoké učení technické v Praze Fakulta elektrotechnická Katedra počítačů květen 2007 Vedoucí práce: Ing. Miroslav

Více

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické

Více

Rastrové grafické formáty. Václav Krajíček KSVI MFF UK, 2007

Rastrové grafické formáty. Václav Krajíček KSVI MFF UK, 2007 Rastrové grafické formáty Václav Krajíček KSVI MFF UK, 2007 Grafické formáty Velké množství Mnoho různých požadavků na uložená data neobrazová data Nativní formáty Například: PSP (Photoshop), XFC (Gimp)

Více

Katedra radioelektroniky K13137, FEL ČVUT Praha. zakódování dané informace. Tento trend postihl i oblast záznamu a přenosu širokopásmových

Katedra radioelektroniky K13137, FEL ČVUT Praha. zakódování dané informace. Tento trend postihl i oblast záznamu a přenosu širokopásmových EXPERIMENTÁLNÍ ZVUKOVÝ KODÉR F. Rund, J. Nováček Katedra radioelektroniky K13137, FEL ČVUT Praha Abstrakt Všechny dnes široce rozšířené systémy pro kompresi zvuku vycházejí ze stejných psychoakustických

Více

1 Komprese obrazových signálů

1 Komprese obrazových signálů 1 Komprese obrazových signálů Proč je potřeba data komprimovat? Odpověď je jednoduchá, zmenšení objemu dat a tím úspora potřebné paměti pro jejich uchování nebo kapacity přenosového kanálu. V případě obrazového

Více

23. Matematická statistika

23. Matematická statistika Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 23. Matematická statistika Statistika je věda, která se snaží zkoumat reálná data a s pomocí teorii pravděpodobnosti

Více

Komprese multimédií. Ing. Jan Přichystal, Ph.D. 7. října 2010. PEF MZLU v Brně

Komprese multimédií. Ing. Jan Přichystal, Ph.D. 7. října 2010. PEF MZLU v Brně PEF MZLU v Brně 7. října 2010 Úvod Komprimace umožňuje efektivní digitální reprezentaci zdrojového signálu jako je text, obraz, zvuk nebo video, použitím redukovaného počtu prvků digitální informace, než

Více

Vlastnosti a modelování aditivního

Vlastnosti a modelování aditivního Vlastnosti a modelování aditivního bílého šumu s normálním rozdělením kacmarp@fel.cvut.cz verze: 0090913 1 Bílý šum s normálním rozdělením V této kapitole se budeme zabývat reálným gaussovským šumem n(t),

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Digitální zpracování obrazu počítačové vidění zakotvení

Digitální zpracování obrazu počítačové vidění zakotvení Digitální zpracování obrazu počítačové vidění zakotvení Václav Hlaváč České vysoké učení technické v Praze Fakulta elektrotechnická, katedra kybernetiky Centrum strojového vnímání http://cmp.felk.cvut.cz/

Více

Neparametrické odhady hustoty pravděpodobnosti

Neparametrické odhady hustoty pravděpodobnosti Neparametrické odhady hustoty pravděpodobnosti Václav Hlaváč Elektrotechnická fakulta ČVUT Katedra kybernetiky Centrum strojového vnímání 121 35 Praha 2, Karlovo nám. 13 hlavac@fel.cvut.cz Statistické

Více

Kódy pro odstranění redundance, pro zabezpečení proti chybám. Demonstrační cvičení 5 INP

Kódy pro odstranění redundance, pro zabezpečení proti chybám. Demonstrační cvičení 5 INP Kódy pro odstranění redundance, pro zabezpečení proti chybám Demonstrační cvičení 5 INP Princip kódování, pojmy Tady potřebujeme informaci zabezpečit, utajit apod. zpráva 000 111 000 0 1 0... kodér dekodér

Více

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy

Více

Statistická teorie učení

Statistická teorie učení Statistická teorie učení Petr Havel Marek Myslivec přednáška z 9. týdne 1 Úvod Představme si situaci výrobce a zákazníka, který si u výrobce objednal algoritmus rozpoznávání. Zákazník dodal experimentální

Více

Entropie. Tak vznikl (dříve v termodynamice) v informační teorii pojem ENTROPIE.

Entropie. Tak vznikl (dříve v termodynamice) v informační teorii pojem ENTROPIE. Entropie V polovině dvacátého století byl pojem INFORMACE již ve značné saturaci. CLAUDE ELWOOD SHANNON přemýšlel jak svou veličinu pojmenovat. Tehdy mu John von Neuman údajně řekl: You should call it

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Multimediální systémy

Multimediální systémy Multimediální systémy Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI přednášky Authoring Jan Outrata (Univerzita Palackého v Olomouci) Multimediální systémy Olomouc, září prosinec 2011

Více

EXPERIMENTÁLNÍ METODY I. 2. Zpracování měření

EXPERIMENTÁLNÍ METODY I. 2. Zpracování měření FSI VUT v Brně, Energetický ústav Odbor termomechanik a technik prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I OSNOVA. KAPITOLY. Zpracování měření Zpracování výsledků měření (nezávislých

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

Komprese DNA pomocí víceproudé komprese a predikce báz. Jan Jelínek, Radek Miček

Komprese DNA pomocí víceproudé komprese a predikce báz. Jan Jelínek, Radek Miček Komprese DNA pomocí víceproudé komprese a predikce báz Jan Jelínek, Radek Miček Víceproudá komprese angl. Multistream compression (MSC) statistická metoda autoři: Kochánek, Lánský, Uzel, Žemlička lze použít

Více

Rozdělení náhodné veličiny

Rozdělení náhodné veličiny Rozdělení náhodné veličiny Náhodná proměnná může mít - diskrétní rozdělení (nabývá jen určitých číselných hodnot) - spojité rozdělení (nabývá libovolných hodnot z určitého intervalu) Fyzikální veličiny

Více

Elektrické parametry spojů v číslicových zařízeních

Elektrické parametry spojů v číslicových zařízeních Elektrické parametry spojů v číslicových zařízeních Co je třeba znát z teoretických základů? jak vyjádřit schopnost přenášet data jak ji správně chápat jak a v čem ji měřit čím je schopnost přenášet data

Více

8 Kořeny cyklických kódů, BCH-kódy

8 Kořeny cyklických kódů, BCH-kódy 24 8 Kořeny cyklických kódů, BCH-kódy Generující kořeny cyklických kódů Nechť K je cyklický kód délky n nad Z p s generujícím polynomem g(z). Chceme najít rozšíření T tělesa Z p, tedy nějaké těleso GF

Více

KE STATISTICKÉ DEFINICI DOMÁCNOSTI Jaromír Běláček

KE STATISTICKÉ DEFINICI DOMÁCNOSTI Jaromír Běláček KE STATISTICKÉ DEFINICI DOMÁCNOSTI Jaromír Běláček (9.SLOVENSKÁ DEMOGRAFICKÁ KONFERENCIA RODINA, 17.-19.9.2003, Tajov pro Banskej Bystrici) 1 ÚVOD Při úlohách vztažených k analýze a prezentaci výsledků

Více

Grafika na počítači. Bc. Veronika Tomsová

Grafika na počítači. Bc. Veronika Tomsová Grafika na počítači Bc. Veronika Tomsová Proces zpracování obrazu Proces zpracování obrazu 1. Snímání obrazu 2. Digitalizace obrazu převod spojitého signálu na matici čísel reprezentující obraz 3. Předzpracování

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

EFEKTIVNÍ METODY KÓDOVÁNÍ ZVUKOVÝCH SIGNÁLŮ

EFEKTIVNÍ METODY KÓDOVÁNÍ ZVUKOVÝCH SIGNÁLŮ EFEKTIVNÍ METODY KÓDOVÁNÍ ZVUKOVÝCH SIGNÁLŮ Effective coding of sound signals Jiří Stifter * Abstrakt Příspěvek popisuje problematiku a možný způsob náhledu na dělení kódovacích technik širokopásmových

Více

Informace, kódování, data. Dušan Saiko, FD ČVUT, K620 pro předmět Telematika

Informace, kódování, data. Dušan Saiko, FD ČVUT, K620 pro předmět Telematika Informace, kódování, data Dušan Saiko, FD ČVUT, K620 pro předmět Telematika 16.03.2010 saiko@lss.fd.cvut.cz Představení Subjeku základ práce každého informatika zajímavé technické i filozofické poznatky

Více

Cvičení 5. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Cvičení 5. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. 5 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v

Více

Moderní multimediální elektronika (U3V)

Moderní multimediální elektronika (U3V) Moderní multimediální elektronika (U3V) Prezentace č. 13 Moderní kompresní formáty pro přenosné digitální audio Ing. Tomáš Kratochvíl, Ph.D. Ústav radioelektroniky, FEKT VUT v Brně Program prezentace Princip

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

Automatizační technika. Obsah

Automatizační technika. Obsah 7.09.016 Akademický rok 016/017 Připravil: Radim Farana Automatizační technika Základy teorie Obsah Informace Jednotka Zdroj Kód Přenosový řetězec Prostředky sběru, zobrazování, přenosu, zpracování a úschovy

Více

Multimediální systémy. 03 Počítačová 2d grafika

Multimediální systémy. 03 Počítačová 2d grafika Multimediální systémy 03 Počítačová 2d grafika Michal Kačmařík Institut geoinformatiky, VŠB-TUO Osnova přednášky Rastrová počítačová grafika Metody komprese obrazu Rastrové formáty Vektorová grafika Křivky

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e

Více

Teorie her a ekonomické rozhodování. 2. Maticové hry

Teorie her a ekonomické rozhodování. 2. Maticové hry Teorie her a ekonomické rozhodování 2. Maticové hry 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Počítačová grafika a vizualizace I

Počítačová grafika a vizualizace I Počítačová grafika a vizualizace I KOMPRESE, GRAFICKÉ FORMÁTY Mgr. David Frýbert david.frybert@gmail.com OSNOVA Barva pro TV Datový tok Bitmapové formáty (JPEG, TIFF, PNG, PPM, ) Formáty videa MPEG-1,2,4,7,21

Více

9. PRINCIPY VÍCENÁSOBNÉHO VYUŽITÍ PŘENOSOVÝCH CEST

9. PRINCIPY VÍCENÁSOBNÉHO VYUŽITÍ PŘENOSOVÝCH CEST 9. PRINCIPY VÍCENÁSOBNÉHO VYUŽITÍ PŘENOSOVÝCH CEST Modulace tvoří základ bezdrátového přenosu informací na velkou vzdálenost. V minulosti se ji využívalo v telekomunikacích při vícenásobném využití přenosových

Více

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce

Více