KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut.
|
|
- Matěj Čech
- před 10 lety
- Počet zobrazení:
Transkript
1 1/24 KOMPRESE OBRAZŮ Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz hlavac
2 KOMPRESE OBRAZŮ, ÚVOD 2/24 Cíl: Spočívá v redukci množství dat potřebných k reprezentaci obrazu. Spotřebované množství paměti se měří například v bitech. Použití: Pro přenos a uchování dat. Proč se liší komprese 2D obrazů od komprese 1D dat?
3 ROZDĚLENÍ METOD KOMPRESE OBRAZŮ 1. Segmentace objektů v obraze. 3/24 Je potřebná interpretace obrazu. Metody jsou závislé na datech. Dosahuje se nejvyšších kompresních poměrů. Není možná zpětná rekonstrukce výchozího obrazu. 2. Odstranění redundandní informace. Data se neinterpretují. Lze použít na libovolná obrazová data. Využívá se statistických závislostí v obraze (sekvenci obrazů).
4 ODSTRANĚNÍ REDUNDANTNÍ INFORMACE 4/24 Dvě velké třídy používaných postupů: 1. Bezeztrátové metody. Umožňují úplnou rekonstrukci výchozího signálu. 2. Ztrátové metody. Umožňují pouze částečnou rekonstrukci výchozího signálu.
5 KÓDOVÁNÍ SEGMENTOVANÝCH DAT (1) Kódování hranic oblastí 5/24 Polygonální aproximace hranice
6 KÓDOVÁNÍ SEGMENTOVANÝCH DAT (2) Kódování hranic oblastí 6/24 Řetězový (též Freemanův) kód, 4-okolí Řetězový kód: 3, 0, 0, 3, 0, 1, 1, 2, 1, 2, 3, 2. Derivace kódu: 1, 0, 3, 1, 1, 0, 1, 3, 1, 1, 3, 1.
7 KÓDOVÁNÍ SEGMENTOVANÝCH DAT (3) Kódování hranic oblastí 7/24 Řetězový (též Freemanův) kód, 8-okolí Kód:
8 KÓDOVÁNÍ SEGMENTOVANÝCH DAT (4) Kódování oblastí 8/24 Kódování úseky řádků (angl. Run Length Encoding, RLE) Kódem je seznam seznamů. Každý seznam popisuje situaci v jednom řádku. Používá FAX (CCITT Group 3). ((11144)(214)(52355))
9 KOMPRESE OBRAZU A JEHO REKONSTRUKCE 9/24 Original image Data redundancy reduction Coding Transmission, Archiving Reconstructed image Reconstruction Decoding
10 POSTUPY ODSTRAŇOVÁNÍ REDUNDANCE V DATECH 10/24 Pomocí lineárních integrálních transformací obrazu, např. Fourierou transformací. Prediktivní komprese. Hybridní metody. KÓDOVÁNÍ Obvykle optimální kódování, tj. nejkratším kódem. Kódy pevné délky (Huffmanovo kódování) nebo kódy proměnné délky (aritmetické kódování).
11 TEORIE INFORMACE A REDUNDANCE Entropie ve fyzice je měrou energie soustavy, která není k dispozici k vykonání práce. Jelikož práci lze získat z řádu soustavy, je entropie měrou neuspořádanosti soustavy. Souvisí s druhou termodynamickou větou. Pojem zavedl v roce 1850 německý fyzik Rudolf Claudius. 11/24 Entropie v teorii informace, Claude Shannon, 1948 H e = i p i log 2 p i [bitů], kde p i je pravděpodobnost i-tého symbolu ve zprávě.
12 ENTROPIE, DVA PŘÍKLADY Nechť jsou ve zprávě jen dva znaky a, b. Příklad 1 12/24 p(a) = p(b) = 1 2 H = ( 1 2 log log ) = ( ) = 1 Příklad 2 p(a) = 0, 99; p(b) = 0, 01 H = (0, 99 log 2 0, , 01 log 2 0, 01) = (0.99 ( 0, 0145) + 0, 01 ( 6, 6439)) = 0, , 0664 = 0, 0808
13 ENTROPIE PRO ŠEDOTÓNOVÝ OBRAZ 13/24 Nechť obraz má G jasových úrovní, k = 0... G 1 s pravděpodobnostmi P (k). Entropie H e = k P (k) log 2 P (k) [bitů], Nechť b je nejmenší počet bitů, kterým lze reprezentovat počet kvantizačních úrovní. Informační redundance r = b H e.
14 ODHAD ENTROPIE Z HISTOGRAMU OBRAZU 14/24 Nechť h(k), 0 k 2 b 1 a M, N jsou rozměry obrazu. Odhad pravděpodobnosti ˆP = h(k) M N. Odhad entropie Ĥe = 2 b 1 k ˆP (k) log 2 ˆP (k) [bitů] Poznámka: odhad entropie je příliš optimistický, protože mezi jasy obrazu existují závislosti.
15 TŘI DEFINICE KOMPRESNÍHO POMĚRU 15/24 1. Na základě redundance (měřené entropií) K = b Ĥ e 2. Na základě úspory paměti κ = n 1 n 2 = délka zprávy před kompresí délka zprávy po kompresi 3. Relativní úspora paměti R = 1 1 κ Příklad 1: n 1 = n 2 κ = 1, R = 0. Příklad 2: n 1 : n 2 = 10 : 1 κ = 10, R = 0, 9 = 90%.
16 JPEG PŘÍKLAD, K = /24 Po rekonstrukci K = 3.8. Rozdílový snímek.
17 JPEG PŘÍKLAD, K = /24 Po rekonstrukci K = 4.2. Rozdílový snímek.
18 JPEG PŘÍKLAD, K = /24 Po rekonstrukci K = 5.6. Rozdílový snímek.
19 JPEG PŘÍKLAD, K = /24 Po rekonstrukci K = Rozdílový snímek.
20 PREDIKTIVNÍ KOMPRESE MYŠLENKA 20/24 Najít matematický model, který dokáže predikovat na základě předchozích hodnot další hodnotu. Přenášet pouze rozdíl mezi skutečnou a predikovanou hodnotou. Ke kompresi dochází, protože rozdílová data mají menší statistickou variaci (např. rozptyl) než původní data. f(i,j) + - Quantizer d(i,j) d(i,j) + + f(i,j) Predictor + Predictor (a) + (b)
21 DIGITÁLNÍ PULSNĚ KÓDOVÁ MODULACE (1) 21/24 Mějme obraz f (i, j), odhad jeho statistických vlastností pomocí autokorelační funkce R(i, j, k, l) = E(f (i, j)f (k, l)) = f f T. Hledáme matematický model prediktoru Rozdíl d(i, j) = ˆ f (i, j) f (i, j) ˆ f (i, j) Předpokládejme např. lineární prediktor 3. řádu ˆ f (i, j) = a 1 f (i, j 1) + a 2 f (i 1, j 1) + a 3 f (i 1, j), kde a 1, a 2, a 3 jsou parametry prediktivního modelu..
22 DIGITÁLNÍ PULSNĚ KÓDOVÁ MODULACE (2) Jak se odhadnou parametry prediktivního modelu a 1, a 2, a 3? 22/24 Vyřešením statistické optimalizační úlohu. Předpokládá se stacionární náhodný proces f a nulová střední hodnota. e = E([ f (i, j) f (i, j)] 2 ) a 1 R(0, 0) + a 2 R(0, 1) + a 3 R(1, 1) = R(1, 0) a 1 R(0, 1) + a 2 R(0, 0) + a 3 R(1, 0) = R(1, 1) a 1 R(1, 1) + a 2 R(1, 0) + a 3 R(0, 0) = R(0, 1) kde R(m, n) je autokorelační funkce speciálního tvaru R(α, β) = R(0, 0) exp( c 1 α c 2 β).
23 DPCM PŘÍKLAD, K = /24 Po rekonstrukci K = 3.8. Rozdílový snímek.
24 DPCM PŘÍKLAD, K = /24 Po rekonstrukci K = 6.2. Rozdílový snímek.
KOMPRESE OBRAZŮ. Václav Hlaváč, Jan Kybic. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání.
1/25 KOMPRESE OBRAZŮ Václav Hlaváč, Jan Kybic Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac KOMPRESE OBRAZŮ, ÚVOD
Komprese obrazu. Úvod. Rozdělení metod komprese obrazů. Verze: 1.5, ze dne: 1. června Václav Hlaváč a Tomáš Svoboda
Komprese obrazu Verze:., ze dne:. června 6 Václav Hlaváč a Tomáš Svoboda Czech Technical University, Faculty of Electrical Engineering Center for Machine Perception, Prague, Czech Republic svoboda@cmp.felk.cvut.cz
Komprese obrazu. Verze: 1.5, ze dne: 1. června Václav Hlaváč a Tomáš Svoboda
Komprese obrazu Verze: 1.5, ze dne: 1. června 2006 Václav Hlaváč a Tomáš Svoboda Czech Technical University, Faculty of Electrical Engineering Center for Machine Perception, Prague, Czech Republic svoboda@cmp.felk.cvut.cz
Komprese obrazů. Václav Hlaváč. České vysoké učení technické v Praze
Komprese obrazů Václav Hlaváč České vysoké učení technické v Praze Český institut informatiky, robotiky a kybernetiky 166 36 Praha 6, Jugoslávských partyzánů 1580/3 http://people.ciirc.cvut.cz/hlavac,
Kompresní metody první generace
Kompresní metody první generace 998-20 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Stillg 20 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca / 32 Základní pojmy komprese
Algoritmy komprese dat
Algoritmy komprese dat Úvod do teorie informace Claude Shannon (1916 2001) 5.11.2014 NSWI072-7 Teorie informace Informace Co je to informace? Můžeme informaci měřit? Existují teoretické meze pro délku
Základní principy přeměny analogového signálu na digitální
Základní y přeměny analogového signálu na digitální Pro přenos analogového signálu digitálním systémem, je potřeba analogový signál digitalizovat. Digitalizace je uskutečňována pomocí A/D převodníků. V
Komprese dat. Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI. přednášky
Komprese dat Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI přednášky Statistické metody Jan Outrata (Univerzita Palackého v Olomouci) Komprese dat Olomouc, únor březen 2016 1 / 23 Tunstallův
1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15
Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních
Informační systémy ve zdravotnictví
Informační systémy ve zdravotnictví ZS 2008/2009 Zoltán Szabó Tel.: (+420) 312 608 207 E-mail: szabo@fbmi.cvut.cz č.dv.: 504, 5.p Dnešní přednáška Kódování, komprese 2 1 Komprese dat Cíl komprese: redukovat
1. Základy teorie přenosu informací
1. Základy teorie přenosu informací Úvodem citát o pojmu informace Informace je název pro obsah toho, co se vymění s vnějším světem, když se mu přizpůsobujeme a působíme na něj svým přizpůsobováním. N.
UČENÍ BEZ UČITELE. Václav Hlaváč
UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení
Komprese videa Praha 2010 Účel komprese Snížení zátěže přenosového média Zmenšení objemu dat pro uložení Metody komprese obrazu Redundance Irelevance Redundantní složka část informace, po jejíž odstranění
Teorie informace: řešené příklady 2014 Tomáš Kroupa
Teorie informace: řešené příklady 04 Tomáš Kroupa Kolik otázek je třeba v průměru položit, abychom se dozvěděli datum narození člověka (den v roce), pokud odpovědi jsou pouze ano/ne a tázaný odpovídá pravdivě?
Kompresní techniky. David Bařina. 15. února David Bařina Kompresní techniky 15. února / 37
Kompresní techniky David Bařina 15. února 2013 David Bařina Kompresní techniky 15. února 2013 1 / 37 Obsah 1 Pojmy 2 Jednoduché techniky 3 Entropická kódování 4 Slovníkové metody 5 Závěr David Bařina Kompresní
Obraz matematický objekt. Spojitý obraz f c : (Ω c R 2 ) R
Obraz matematický objekt Spojitý obraz f c : (Ω c R 2 ) R Obraz matematický objekt Spojitý obraz f c : (Ω c R 2 ) R Diskrétní obraz f d : (Ω {0... n 1 } {0... n 2 }) {0... f max } Obraz matematický objekt
aneb jiný úhel pohledu na prvák
Účelná matematika aneb jiný úhel pohledu na prvák Jan Hejtmánek FEL, ČVUT v Praze 24. června 2015 Jan Hejtmánek (FEL, ČVUT v Praze) Technokrati 2015 24. června 2015 1 / 18 Outline 1 Motivace 2 Proč tolik
Komprese dat (Komprimace dat)
Komprese dat (Komprimace dat) Př.: zakódovat slovo ARARAUNA K K 2 četnost absolutní relativní A 4,5 N,25 R 2,25 U,25 kód K : kód K 2 :... 6 bitů... 4 bitů prefixový kód: žádné kódové slovo není prefixem
Informatika Kódování. Obsah. Kód. Radim Farana Podklady předmětu Informatika pro akademický rok 2007/2008
Informatika Kódování Radim Farana Podklady předmětu Informatika pro akademický rok 27/28 Obsah Základy pojmy diskrétních kódů. Druhy kódů. Nejkratší kódy. Detekce chyb, Hammingova vdálenost. Kontrolní
25. DIGITÁLNÍ TELEVIZNÍ SIGNÁL A KABELOVÁ TELEVIZE
25. DIGITÁLNÍ TELEVIZNÍ SIGNÁL A KABELOVÁ TELEVIZE Digitalizace obrazu a komprese dat. Uveďte bitovou rychlost nekomprimovaného číslicového TV signálu a jakou šířku vysílacího pásma by s dolním částečně
Technická kybernetika. Obsah. Principy zobrazení, sběru a uchování dat. Měřicí řetězec. Principy zobrazení, sběru a uchování dat
Akademický rok 2016/2017 Připravil: Radim Farana Technická kybernetika Principy zobrazení, sběru a uchování dat 2 Obsah Principy zobrazení, sběru a uchování dat strana 3 Snímač Měřicí řetězec Měřicí obvod
Jasové transformace. Karel Horák. Rozvrh přednášky:
1 / 23 Jasové transformace Karel Horák Rozvrh přednášky: 1. Úvod. 2. Histogram obrazu. 3. Globální jasová transformace. 4. Lokální jasová transformace. 5. Bodová jasová transformace. 2 / 23 Jasové transformace
Úvod do teorie informace
PEF MZLU v Brně 24. září 2007 Úvod Výměna informací s okolím nám umožňuje udržovat vlastní existenci. Proces zpracování informací je trvalý, nepřetržitý, ale ovlivnitelný. Zabezpečení informací je spojeno
III/ 2 Inovace a zkvalitnění výuky prostřednictvím ICT
Metodický list k didaktickému materiálu Číslo a název šablony Číslo didaktického materiálu Druh didaktického materiálu Autor Téma sady didaktických materiálů Téma didaktického materiálu Vyučovací předmět
Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014
Harmonogram výuky předmětu Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014 Vedoucí cvičení: ing. Václav Klika, Ph.D. & MSc. Karolína Korvasová & & ing. Matěj Tušek, Ph.D. Katedra
Teorie informace 21.9.2014. Obsah. Kybernetika. Radim Farana Podklady pro výuku
Teorie Radim Farana Podklady pro výuku Obsah Seznámení s problematikou a obsahem studovaného předmětu. Základní pojmy z Teorie, jednotka, informační obsah zprávy, střední délka zprávy, redundance. Kód.
Restaurace (obnovení) obrazu při známé degradaci
Restaurace (obnovení) obrazu při známé degradaci Václav Hlaváč České vysoké učení technické v Praze Centrum strojového vnímání (přemosťuje skupiny z) Český institut informatiky, robotiky a kybernetiky
Samoopravné kódy. Katedra matematiky a Institut teoretické informatiky Západočeská univerzita
Katedra matematiky a Institut teoretické informatiky Západočeská univerzita Seminář pro učitele středních a vysokých škol, Plzeň, 30. března 2012 jsou všude Některé oblasti využití: CD přehrávače mobilní
Kapitola 4: Extrémy funkcí dvou proměnných 1/5
Kapitola 4: Extrémy funkcí dvou proměnných 1/5 Lokální extrémy Definice: Necht f : M R 2 R a (x 0, y 0 ) M. Říkáme, že fce f má v bodě (x 0, y 0 ) lokální maximum (resp. lokální minimum) jestliže existuje
Komprese obrazu. Multimedia Technology Group, K13137, FEE CTU 0
Komprese obrazu Multimedia Technology Group, K337, FEE CTU 0 Komprese obrazu Kódování : zdrojové vlastnosti obrazu kanálové vlastnosti přenosového kanálu kodek komprese a dekomprese still picture (statický
Geometrické transformace
1/15 Předzpracování v prostoru obrazů Geometrické transformace Václav Hlaváč, Jan Kybic Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/
SYSTÉMOVÁ METODOLOGIE (VII) Kybernetika. Ak. rok 2011/2012 vbp 1
SYSTÉMOVÁ METODOLOGIE (VII) Kybernetika Ak. rok 2011/2012 vbp 1 ZÁKLADNÍ SMĚRY A DISCIPLÍNY Teoretická kybernetika (vědecký aparát a metody ke zkoumání kybernetických systémů; používá abstraktní modely
ZPRACOVÁNÍ OBRAZU přednáška 4
ZPRACOVÁNÍ OBRAZU přednáška 4 Vít Lédl vit.ledl@tul.cz TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,
Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2013/2014 Radim Farana. Obsah. Kybernetika
2 Podklady předmětu pro akademický rok 2013/2014 Radim Farana Obsah Základní pojmy z Teorie informace, jednotka informace, informační obsah zprávy, střední délka zprávy, redundance. Přenosový řetězec.
Zkouškové otázky ze 17PMPZAO Zpracování a analýza obrazu
Zkouškové otázky ze 17PMPZAO Zpracování a analýza obrazu Václav Hlaváč České vysoké učení technické v Praze Fakulta elektrotechnická, katedra kybernetiky Centrum strojového vnímání http://cmp.felk.cvut.cz/
Teorie informace Obsah. Kybernetika. Radim Farana Podklady pro výuku
Teorie Radim Farana Podklady pro výuku Obsah Seznámení s problematikou a obsahem studovaného předmětu. Základní pojmy z Teorie, jednotka, informační obsah zprávy, střední délka zprávy, redundance. Kód.
Kompresní algoritmy grafiky. Jan Janoušek F11125
Kompresní algoritmy grafiky Jan Janoušek F11125 K čemu je komprese dobrá? Pokud je třeba skladovat datově náročné soubory. Např. pro záznam obrazu, hudby a hlavně videa je třeba skladovat překvapivě mnoho
Komprese dat Obsah. Komprese videa. Radim Farana. Podklady pro výuku. Komprese videa a zvuku. Komprese MPEG. Komprese MP3.
Komprese dat Radim Farana Podklady pro výuku Obsah Komprese videa a zvuku. Komprese MPEG. Komprese MP3. Komprese videa Velký objem přenášených dat Typický televizní signál - běžná evropská norma pracuje
Minikurz aplikované statistiky. Minikurz aplikované statistiky p.1
Minikurz aplikované statistiky Marie Šimečková, Petr Šimeček Minikurz aplikované statistiky p.1 Program kurzu základy statistiky a pravděpodobnosti regrese (klasická, robustní, s náhodnými efekty, ev.
Zkouškové otázky ze A4M33DZO Digitální zpracování obrazu
Zkouškové otázky ze A4M33DZO Digitální zpracování obrazu Václav Hlaváč České vysoké učení technické v Praze Fakulta elektrotechnická, katedra kybernetiky Centrum strojového vnímání http://cmp.felk.cvut.cz/
Informace v počítači. Výpočetní technika I. Ing. Pavel Haluza ústav informatiky PEF MENDELU v Brně haluza@mendelu.cz
.. Informace v počítači Ing. Pavel Haluza ústav informatiky PEF MENDELU v Brně haluza@mendelu.cz Osnova přednášky Úvod do teorie informace základní pojmy měření množství informace ve zprávě přenos a kódování
1. Přednáška: Obecné Inf. + Signály a jejich reprezentace
1. Přednáška: Obecné Inf. + Signály a jejich reprezentace 1 Obecné informace Změna rozvrhů Docházka na cvičení 2 Literatura a podklady Základní učební texty : Prchal J., Šimák B.: Digitální zpracování
BPC2E_C09 Model komunikačního systému v Matlabu
BPCE_C9 Model komunikačního systému v Matlabu Cílem cvičení je vyzkoušet si sestavit skripty v Matlabu pro model jednoduchého komunikačního systému pro přenos obrázků. Úloha A. Sestavte model komunikačního
Metodické listy pro kombinované studium předmětu. B_PPG Principy počítačové grafiky
Metodické listy pro kombinované studium předmětu B_PPG Principy počítačové grafiky Metodický list č. l Název tématického celku: BARVY V POČÍTAČOVÉ GRAFICE Cíl: Základním cílem tohoto tematického celku
Charakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
3. ANTAGONISTICKÉ HRY
3. ANTAGONISTICKÉ HRY ANTAGONISTICKÝ KONFLIKT Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku,
Kybernetika a umělá inteligence, cvičení 10/11
Kybernetika a umělá inteligence, cvičení 10/11 Program 1. seminární cvičení: základní typy klasifikátorů a jejich princip 2. počítačové cvičení: procvičení na problému rozpoznávání číslic... body za aktivitu
Úloha - rozpoznávání číslic
Úloha - rozpoznávání číslic Vojtěch Franc, Tomáš Pajdla a Tomáš Svoboda http://cmp.felk.cvut.cz 27. listopadu 26 Abstrakt Podpůrný text pro cvičení předmětu X33KUI. Vysvětluje tři způsoby rozpoznávání
Úvod do zpracování signálů
1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování
Vzdálenost jednoznačnosti a absolutně
Vzdálenost jednoznačnosti a absolutně bezpečné šifry Andrew Kozlík KA MFF UK Značení Pracujeme s šifrou (P, C, K, E, D), kde P je množina otevřených textů, C je množina šifrových textů, K je množina klíčů,
Počítačové vidění vs. digitální zpracování obrazu Digitální obraz a jeho vlastnosti
Počítačové vidění vs. digitální zpracování obrazu Digitální obraz a jeho vlastnosti 1/32 Václav Hlaváč Fakulta elektrotechnická ČVUT, katedra kybernetiky Centrum strojového vnímání, Praha hlavac@fel.cvut.cz
OPTIMALIZAČNÍ ÚLOHY. Modelový příklad problém obchodního cestujícího:
OPTIMALIZAČNÍ ÚLOHY Problém optimalizace v různých oblastech: - minimalizace času, materiálu, - maximalizace výkonu, zisku, - optimalizace umístění komponent, propojení,... Modelový příklad problém obchodního
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2017
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 207 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Teorie informace II: obtížnější řešené příklady 2014 Tomáš Kroupa
Teorie informace II: obtížnější řešené příklady 204 Tomáš Kroupa. Máme n mincí, z nichž nejvýše jedna je falešná. Pozná se podle toho, že má jinou hmotnost než ostatní mince (ty váží všechny stejně). Mince
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Pravděpodobnost, náhoda, kostky
Pravděpodobnost, náhoda, kostky Radek Pelánek IV122, jaro 2015 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností krátké
Datové struktury 2: Rozptylovací tabulky
Datové struktury 2: Rozptylovací tabulky prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy
Osnova přednášky. Informace v počítači. Interpretace dat. Údaje, data. Úvod do teorie informace. Výpočetní technika I. Ochrana dat
Osnova přednášky 2/44 Informace v počítači Ing Pavel Haluza ústav informatiky PEF MENDELU v Brně haluza@mendelucz základní pojmy měření množství informace ve zprávě přenos a kódování dat parita kontrolní
Datové formáty videa a jejich využití. Tomáš Kvapil, Filip Le Manažerská informatika Multimédia
Datové formáty videa a jejich využití Tomáš Kvapil, Filip Le Manažerská informatika Multimédia 8.12.2016 Obsah Vlastnosti videa Kontejnery Kodeky Vlastnosti videa Snímková frekvence Datový tok Prokládání
Motivace příklad použití lokace radarového echa Význam korelace Popis náhodných signálů číselné charakteristiky
A0M38SPP - Signálové procesory v praxi - přednáška 7 2 Motivace příklad použití lokace radarového echa Význam korelace Popis náhodných signálů číselné charakteristiky (momenty) Matematická definice korelační
Generující kořeny cyklických kódů. Generující kořeny. Alena Gollová, TIK Generující kořeny 1/30
Generující kořeny cyklických kódů 6. přednáška z algebraického kódování Alena Gollová, TIK Generující kořeny 1/30 Obsah 1 Alena Gollová, TIK Generující kořeny 2/30 Hammingovy kódy Hammingovy kódy jsou
FILTRACE VE FOURIEROVSKÉM SPEKTRU
1/18 FILTRACE VE FOURIEROVSKÉM SPEKTRU (patří do lineárních integrálních transformací) Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz
Odhad parametrů N(µ, σ 2 )
Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný
Základy a aplikace digitálních. Katedra radioelektroniky (13137), blok B2, místnost 722
Základy a aplikace digitálních modulací Josef Dobeš Katedra radioelektroniky (13137), blok B2, místnost 722 dobes@fel.cvut.cz 6. října 2014 České vysoké učení technické v Praze, Fakulta elektrotechnická
UNIVERZITA PARDUBICE. 4.4 Aproximace křivek a vyhlazování křivek
UNIVERZITA PARDUBICE Licenční Studium Archimedes Statistické zpracování dat a informatika 4.4 Aproximace křivek a vyhlazování křivek Mgr. Jana Kubátová Endokrinologický ústav V Praze, leden 2012 Obsah
Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy
Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy Lukáš Havrlant Univerzita Palackého 10. ledna 2014 Primární zdroj Jiří Adámek: Foundations of Coding. Strany 137 160. Na webu ke stažení, heslo:
ANTAGONISTICKE HRY 172
5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Základní pojmy diagnostiky a statistických metod vyhodnocení Učební text Ivan Jaksch Liberec 2012 Materiál vznikl
Intervalová data a výpočet některých statistik
Intervalová data a výpočet některých statistik Milan Hladík 1 Michal Černý 2 1 Katedra aplikované matematiky Matematicko-fyzikální fakulta Univerzita Karlova 2 Katedra ekonometrie Fakulta informatiky a
Hammingovy kódy. dekódování H.kódů. konstrukce. šifrování. Fanova rovina charakteristický vektor. princip generující a prověrková matice
Hammingovy kódy konstrukce Fanova rovina charakteristický vektor šifrování princip generující a prověrková matice dekódování H.kódů třída lineárních binárních kódů s A n, 3 n = délka kódu, d = distance
ZÁPADOČESKÁ UNIVERZITA V PLZNI
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA PEDAGOGICKÁ KATEDRA VÝPOČETNÍ A DIDAKTICKÉ TECHNIKY KOMPONENTY PRO VÝUKOVÝ ELEKTRONICKÝ MATERIÁL - KOMPRESE V OBLASTI POČÍTAČŮ BAKALÁŘSKÁ PRÁCE Lukáš Smutný Přírodovědná
Ústav technologie, mechanizace a řízení staveb. CW01 - Teorie měření a regulace 10.2 ZS 2010/2011. reg Ing. Václav Rada, CSc.
Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 10.2 reg-2 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření Teorie
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 05 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým
Pravděpodobnost, náhoda, kostky
Pravděpodobnost, náhoda, kostky Radek Pelánek IV122 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností připomenutí, souvislosti
Vlastnosti a modelování aditivního
Vlastnosti a modelování aditivního bílého šumu s normálním rozdělením kacmarp@fel.cvut.cz verze: 0090913 1 Bílý šum s normálním rozdělením V této kapitole se budeme zabývat reálným gaussovským šumem n(t),
Kvalita zvuku a obrazu v elektronických komunikacích aneb Ještě chceme HiFi?
Kvalita zvuku a obrazu v elektronických komunikacích aneb Ještě chceme HiFi? Doc. Ing. Jiří MASOPUST, CSc. Katedra aplikované elektroniky a telekomunikací Fakulta elektrotechnická, ZČU v Plzni Kvalita
Osnova přednášky. Formáty uložení dat. Vyjádření hodnot datového typu. Vyjádření hodnot datového typu. Datové formáty. Výpočetní technika I
Osnova přednášky 2/36 Formáty uložení dat Ing Pavel Haluza ústav informatiky PEF MENDELU v Brně haluza@mendelucz vyjádření hodnot datového typu formátová specifikace textový a binární formát otevřený a
Informace, kódování a redundance
Informace, kódování a redundance Data (jednotné číslo údaj) obvykle chápeme jako údaje, tj. číselné hodnoty, znaky, texty a další fakta zaznamenaná (a uložená v databázi) ve formě uspořádané posloupnosti
Přednáška 13 Redukce dimenzionality
Vytěžování Dat Přednáška 13 Redukce dimenzionality Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ČVUT (FEL) Redukce dimenzionality 1 /
Nestranný odhad Statistické vyhodnocování exp. dat M. Čada
Nestranný odhad 1 Parametr θ Máme statistický (výběrový) soubor, který je realizací náhodného výběru 1, 2, 3,, n z pravděpodobnostní distribuce, která je kompletně stanovena jedním nebo více parametry
Netradiční výklad tradičních témat
Netradiční výklad tradičních témat J. Musilová, P. Musilová: Matematika pro porozumění i praxi I. VUTIUM, Brno 2006 (291 s.), 2009 (349 s.). J. Musilová, P. Musilová: Matematika pro porozumění i praxi
Náhodné (statistické) chyby přímých měření
Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně
11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah
11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné
Analýza a zpracování digitálního obrazu
Analýza a zpracování digitálního obrazu Úlohy strojového vidění lze přibližně rozdělit do sekvence čtyř funkčních bloků: Předzpracování veškerých obrazových dat pomocí filtrací (tj. transformací obrazové
Komplexní analýza. Laplaceova transformace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze
Komplexní analýza Laplaceova transformace Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Laplaceova transformace 1 / 18 Definice Definice Laplaceovou
Cvičení 11. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.
11 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické
Digitální magnetický záznam obrazového signálu
Digitální magnetický záznam obrazového signálu Ing. Tomáš Kratochvíl Současná televizní technika a videotechnika kurz U3V Program semináře a cvičení Digitální videosignál úvod a specifikace. Komprese obrazu
Síla a významnost asociace mezi proměnnými v systému
Síla a významnost asociace mezi proměnnými v systému Program 1. Entropie jako míra neuspořádanosti. 2. Entropie jako míra informace. 3. Entropie na rozkladu množiny elementárních jevů. 4. Vlastnosti entropie.
Apriorní rozdělení. Jan Kracík.
Apriorní rozdělení Jan Kracík jan.kracik@vsb.cz Apriorní rozdělení Apriorní rozdělení (spolu s modelem) reprezentuje informaci o neznámém parametru θ, která je dostupná předem, tj. bez informace z dat.
7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
MKI Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0.
MKI -00 Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0. V jakém rozmezí se může pohybovat poloměr konvergence regulární
Interpolace Uvažujme třídu funkcí jedné proměnné ψ(x; a 0,..., a n ), kde a 0,..., a n jsou parametry, které popisují jednotlivé funkce této třídy. Mějme dány body x 0, x 1,..., x n, x i x k, i, k = 0,
Aplikace 2: Hledání informativních příznaků pro rozpoznávání
Aplikace : Hledání informativních příznaků pro rozpoznávání Sonogram štítné žlázy v podélném řezu zdravá lymfocitická thyroitida Zajímá nás, kolik se lze z dat dozvědět o třídě c a kde ta informace je.
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Pravděpodobnost a statistika
Pravděpodobnost a statistika Teorie pravděpodobnosti popisuje vznik náhodných dat, zatímco matematická statistika usuzuje z dat na charakter procesů, jimiž data vznikla. NÁHODNOST - forma existence látky,
Aplikovaná matematika I
Metoda nejmenších čtverců Aplikovaná matematika I Dana Říhová Mendelu Brno c Dana Říhová (Mendelu Brno) Metoda nejmenších čtverců 1 / 8 Obsah 1 Formulace problému 2 Princip metody nejmenších čtverců 3
Osnova. Idea ASK/FSK/PSK ASK Amplitudové... Strana 1 z 16. Celá obrazovka. Konec Základy radiotechniky
Pulsní kódová modulace, amplitudové, frekvenční a fázové kĺıčování Josef Dobeš 24. října 2006 Strana 1 z 16 Základy radiotechniky 1. Pulsní modulace Strana 2 z 16 Pulsní šířková modulace (PWM) PAM, PPM,
Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II
Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické