KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání.

Rozměr: px
Začít zobrazení ze stránky:

Download "KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut."

Transkript

1 1/24 KOMPRESE OBRAZŮ Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac

2 KOMPRESE OBRAZŮ, ÚVOD 2/24 Cíl: Spočívá v redukci množství dat potřebných k reprezentaci obrazu. Spotřebované množství paměti se měří například v bitech. Použití: Pro přenos a uchování dat. Proč se liší komprese 2D obrazů od komprese 1D dat?

3 ROZDĚLENÍ METOD KOMPRESE OBRAZŮ 1. Segmentace objektů v obraze. 3/24 Je potřebná interpretace obrazu. Metody jsou závislé na datech. Dosahuje se nejvyšších kompresních poměrů. Není možná zpětná rekonstrukce výchozího obrazu. 2. Odstranění redundandní informace. Data se neinterpretují. Lze použít na libovolná obrazová data. Využívá se statistických závislostí v obraze (sekvenci obrazů).

4 ODSTRANĚNÍ REDUNDANTNÍ INFORMACE 4/24 Dvě velké třídy používaných postupů: 1. Bezeztrátové metody. Umožňují úplnou rekonstrukci výchozího signálu. 2. Ztrátové metody. Umožňují pouze částečnou rekonstrukci výchozího signálu.

5 KÓDOVÁNÍ SEGMENTOVANÝCH DAT (1) Kódování hranic oblastí 5/24 Polygonální aproximace hranice

6 KÓDOVÁNÍ SEGMENTOVANÝCH DAT (2) Kódování hranic oblastí 6/24 Řetězový (též Freemanův) kód, 4-okolí Řetězový kód: 3, 0, 0, 3, 0, 1, 1, 2, 1, 2, 3, 2. Derivace kódu: 1, 0, 3, 1, 1, 0, 1, 3, 1, 1, 3, 1.

7 KÓDOVÁNÍ SEGMENTOVANÝCH DAT (3) Kódování hranic oblastí 7/24 Řetězový (též Freemanův) kód, 8-okolí Kód:

8 KÓDOVÁNÍ SEGMENTOVANÝCH DAT (4) Kódování oblastí 8/24 Kódování úseky řádků (angl. Run Length Encoding, RLE) Kódem je seznam seznamů. Každý seznam popisuje situaci v jednom řádku. Používá FAX (CCITT Group 3). ((11144)(214)(52355))

9 KOMPRESE OBRAZU A JEHO REKONSTRUKCE 9/24 Original image Data redundancy reduction Coding Transmission, Archiving Reconstructed image Reconstruction Decoding

10 POSTUPY ODSTRAŇOVÁNÍ REDUNDANCE V DATECH 10/24 Pomocí lineárních integrálních transformací obrazu, např. Fourierou transformací. Prediktivní komprese. Hybridní metody. KÓDOVÁNÍ Obvykle optimální kódování, tj. nejkratším kódem. Kódy pevné délky (Huffmanovo kódování) nebo kódy proměnné délky (aritmetické kódování).

11 TEORIE INFORMACE A REDUNDANCE Entropie ve fyzice je měrou energie soustavy, která není k dispozici k vykonání práce. Jelikož práci lze získat z řádu soustavy, je entropie měrou neuspořádanosti soustavy. Souvisí s druhou termodynamickou větou. Pojem zavedl v roce 1850 německý fyzik Rudolf Claudius. 11/24 Entropie v teorii informace, Claude Shannon, 1948 H e = i p i log 2 p i [bitů], kde p i je pravděpodobnost i-tého symbolu ve zprávě.

12 ENTROPIE, DVA PŘÍKLADY Nechť jsou ve zprávě jen dva znaky a, b. Příklad 1 12/24 p(a) = p(b) = 1 2 H = ( 1 2 log log ) = ( ) = 1 Příklad 2 p(a) = 0, 99; p(b) = 0, 01 H = (0, 99 log 2 0, , 01 log 2 0, 01) = (0.99 ( 0, 0145) + 0, 01 ( 6, 6439)) = 0, , 0664 = 0, 0808

13 ENTROPIE PRO ŠEDOTÓNOVÝ OBRAZ 13/24 Nechť obraz má G jasových úrovní, k = 0... G 1 s pravděpodobnostmi P (k). Entropie H e = k P (k) log 2 P (k) [bitů], Nechť b je nejmenší počet bitů, kterým lze reprezentovat počet kvantizačních úrovní. Informační redundance r = b H e.

14 ODHAD ENTROPIE Z HISTOGRAMU OBRAZU 14/24 Nechť h(k), 0 k 2 b 1 a M, N jsou rozměry obrazu. Odhad pravděpodobnosti ˆP = h(k) M N. Odhad entropie Ĥe = 2 b 1 k ˆP (k) log 2 ˆP (k) [bitů] Poznámka: odhad entropie je příliš optimistický, protože mezi jasy obrazu existují závislosti.

15 TŘI DEFINICE KOMPRESNÍHO POMĚRU 15/24 1. Na základě redundance (měřené entropií) K = b Ĥ e 2. Na základě úspory paměti κ = n 1 n 2 = délka zprávy před kompresí délka zprávy po kompresi 3. Relativní úspora paměti R = 1 1 κ Příklad 1: n 1 = n 2 κ = 1, R = 0. Příklad 2: n 1 : n 2 = 10 : 1 κ = 10, R = 0, 9 = 90%.

16 JPEG PŘÍKLAD, K = /24 Po rekonstrukci K = 3.8. Rozdílový snímek.

17 JPEG PŘÍKLAD, K = /24 Po rekonstrukci K = 4.2. Rozdílový snímek.

18 JPEG PŘÍKLAD, K = /24 Po rekonstrukci K = 5.6. Rozdílový snímek.

19 JPEG PŘÍKLAD, K = /24 Po rekonstrukci K = Rozdílový snímek.

20 PREDIKTIVNÍ KOMPRESE MYŠLENKA 20/24 Najít matematický model, který dokáže predikovat na základě předchozích hodnot další hodnotu. Přenášet pouze rozdíl mezi skutečnou a predikovanou hodnotou. Ke kompresi dochází, protože rozdílová data mají menší statistickou variaci (např. rozptyl) než původní data. f(i,j) + - Quantizer d(i,j) d(i,j) + + f(i,j) Predictor + Predictor (a) + (b)

21 DIGITÁLNÍ PULSNĚ KÓDOVÁ MODULACE (1) 21/24 Mějme obraz f (i, j), odhad jeho statistických vlastností pomocí autokorelační funkce R(i, j, k, l) = E(f (i, j)f (k, l)) = f f T. Hledáme matematický model prediktoru Rozdíl d(i, j) = ˆ f (i, j) f (i, j) ˆ f (i, j) Předpokládejme např. lineární prediktor 3. řádu ˆ f (i, j) = a 1 f (i, j 1) + a 2 f (i 1, j 1) + a 3 f (i 1, j), kde a 1, a 2, a 3 jsou parametry prediktivního modelu..

22 DIGITÁLNÍ PULSNĚ KÓDOVÁ MODULACE (2) Jak se odhadnou parametry prediktivního modelu a 1, a 2, a 3? 22/24 Vyřešením statistické optimalizační úlohu. Předpokládá se stacionární náhodný proces f a nulová střední hodnota. e = E([ f (i, j) f (i, j)] 2 ) a 1 R(0, 0) + a 2 R(0, 1) + a 3 R(1, 1) = R(1, 0) a 1 R(0, 1) + a 2 R(0, 0) + a 3 R(1, 0) = R(1, 1) a 1 R(1, 1) + a 2 R(1, 0) + a 3 R(0, 0) = R(0, 1) kde R(m, n) je autokorelační funkce speciálního tvaru R(α, β) = R(0, 0) exp( c 1 α c 2 β).

23 DPCM PŘÍKLAD, K = /24 Po rekonstrukci K = 3.8. Rozdílový snímek.

24 DPCM PŘÍKLAD, K = /24 Po rekonstrukci K = 6.2. Rozdílový snímek.

Základní principy přeměny analogového signálu na digitální

Základní principy přeměny analogového signálu na digitální Základní y přeměny analogového signálu na digitální Pro přenos analogového signálu digitálním systémem, je potřeba analogový signál digitalizovat. Digitalizace je uskutečňována pomocí A/D převodníků. V

Více

UČENÍ BEZ UČITELE. Václav Hlaváč

UČENÍ BEZ UČITELE. Václav Hlaváč UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení

Více

1. Základy teorie přenosu informací

1. Základy teorie přenosu informací 1. Základy teorie přenosu informací Úvodem citát o pojmu informace Informace je název pro obsah toho, co se vymění s vnějším světem, když se mu přizpůsobujeme a působíme na něj svým přizpůsobováním. N.

Více

25. DIGITÁLNÍ TELEVIZNÍ SIGNÁL A KABELOVÁ TELEVIZE

25. DIGITÁLNÍ TELEVIZNÍ SIGNÁL A KABELOVÁ TELEVIZE 25. DIGITÁLNÍ TELEVIZNÍ SIGNÁL A KABELOVÁ TELEVIZE Digitalizace obrazu a komprese dat. Uveďte bitovou rychlost nekomprimovaného číslicového TV signálu a jakou šířku vysílacího pásma by s dolním částečně

Více

Komprese videa Praha 2010 Účel komprese Snížení zátěže přenosového média Zmenšení objemu dat pro uložení Metody komprese obrazu Redundance Irelevance Redundantní složka část informace, po jejíž odstranění

Více

Teorie informace 21.9.2014. Obsah. Kybernetika. Radim Farana Podklady pro výuku

Teorie informace 21.9.2014. Obsah. Kybernetika. Radim Farana Podklady pro výuku Teorie Radim Farana Podklady pro výuku Obsah Seznámení s problematikou a obsahem studovaného předmětu. Základní pojmy z Teorie, jednotka, informační obsah zprávy, střední délka zprávy, redundance. Kód.

Více

III/ 2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/ 2 Inovace a zkvalitnění výuky prostřednictvím ICT Metodický list k didaktickému materiálu Číslo a název šablony Číslo didaktického materiálu Druh didaktického materiálu Autor Téma sady didaktických materiálů Téma didaktického materiálu Vyučovací předmět

Více

Pravděpodobnost, náhoda, kostky

Pravděpodobnost, náhoda, kostky Pravděpodobnost, náhoda, kostky Radek Pelánek IV122, jaro 2015 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností krátké

Více

Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014

Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014 Harmonogram výuky předmětu Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014 Vedoucí cvičení: ing. Václav Klika, Ph.D. & MSc. Karolína Korvasová & & ing. Matěj Tušek, Ph.D. Katedra

Více

SYSTÉMOVÁ METODOLOGIE (VII) Kybernetika. Ak. rok 2011/2012 vbp 1

SYSTÉMOVÁ METODOLOGIE (VII) Kybernetika. Ak. rok 2011/2012 vbp 1 SYSTÉMOVÁ METODOLOGIE (VII) Kybernetika Ak. rok 2011/2012 vbp 1 ZÁKLADNÍ SMĚRY A DISCIPLÍNY Teoretická kybernetika (vědecký aparát a metody ke zkoumání kybernetických systémů; používá abstraktní modely

Více

Samoopravné kódy. Katedra matematiky a Institut teoretické informatiky Západočeská univerzita

Samoopravné kódy. Katedra matematiky a Institut teoretické informatiky Západočeská univerzita Katedra matematiky a Institut teoretické informatiky Západočeská univerzita Seminář pro učitele středních a vysokých škol, Plzeň, 30. března 2012 jsou všude Některé oblasti využití: CD přehrávače mobilní

Více

Informace v počítači. Výpočetní technika I. Ing. Pavel Haluza ústav informatiky PEF MENDELU v Brně haluza@mendelu.cz

Informace v počítači. Výpočetní technika I. Ing. Pavel Haluza ústav informatiky PEF MENDELU v Brně haluza@mendelu.cz .. Informace v počítači Ing. Pavel Haluza ústav informatiky PEF MENDELU v Brně haluza@mendelu.cz Osnova přednášky Úvod do teorie informace základní pojmy měření množství informace ve zprávě přenos a kódování

Více

Kompresní algoritmy grafiky. Jan Janoušek F11125

Kompresní algoritmy grafiky. Jan Janoušek F11125 Kompresní algoritmy grafiky Jan Janoušek F11125 K čemu je komprese dobrá? Pokud je třeba skladovat datově náročné soubory. Např. pro záznam obrazu, hudby a hlavně videa je třeba skladovat překvapivě mnoho

Více

Netradiční výklad tradičních témat

Netradiční výklad tradičních témat Netradiční výklad tradičních témat J. Musilová, P. Musilová: Matematika pro porozumění i praxi I. VUTIUM, Brno 2006 (291 s.), 2009 (349 s.). J. Musilová, P. Musilová: Matematika pro porozumění i praxi

Více

Metodické listy pro kombinované studium předmětu. B_PPG Principy počítačové grafiky

Metodické listy pro kombinované studium předmětu. B_PPG Principy počítačové grafiky Metodické listy pro kombinované studium předmětu B_PPG Principy počítačové grafiky Metodický list č. l Název tématického celku: BARVY V POČÍTAČOVÉ GRAFICE Cíl: Základním cílem tohoto tematického celku

Více

Počítačové vidění vs. digitální zpracování obrazu Digitální obraz a jeho vlastnosti

Počítačové vidění vs. digitální zpracování obrazu Digitální obraz a jeho vlastnosti Počítačové vidění vs. digitální zpracování obrazu Digitální obraz a jeho vlastnosti 1/32 Václav Hlaváč Fakulta elektrotechnická ČVUT, katedra kybernetiky Centrum strojového vnímání, Praha hlavac@fel.cvut.cz

Více

Osnova přednášky. Informace v počítači. Interpretace dat. Údaje, data. Úvod do teorie informace. Výpočetní technika I. Ochrana dat

Osnova přednášky. Informace v počítači. Interpretace dat. Údaje, data. Úvod do teorie informace. Výpočetní technika I. Ochrana dat Osnova přednášky 2/44 Informace v počítači Ing Pavel Haluza ústav informatiky PEF MENDELU v Brně haluza@mendelucz základní pojmy měření množství informace ve zprávě přenos a kódování dat parita kontrolní

Více

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy

Více

Komprese multimédií. Ing. Jan Přichystal, Ph.D. 7. října 2010. PEF MZLU v Brně

Komprese multimédií. Ing. Jan Přichystal, Ph.D. 7. října 2010. PEF MZLU v Brně PEF MZLU v Brně 7. října 2010 Úvod Komprimace umožňuje efektivní digitální reprezentaci zdrojového signálu jako je text, obraz, zvuk nebo video, použitím redukovaného počtu prvků digitální informace, než

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2013/2014 Radim Farana. Obsah. Kybernetika

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2013/2014 Radim Farana. Obsah. Kybernetika 2 Podklady předmětu pro akademický rok 2013/2014 Radim Farana Obsah Základní pojmy z Teorie informace, jednotka informace, informační obsah zprávy, střední délka zprávy, redundance. Přenosový řetězec.

Více

Komprese DNA pomocí víceproudé komprese a predikce báz. Jan Jelínek, Radek Miček

Komprese DNA pomocí víceproudé komprese a predikce báz. Jan Jelínek, Radek Miček Komprese DNA pomocí víceproudé komprese a predikce báz Jan Jelínek, Radek Miček Víceproudá komprese angl. Multistream compression (MSC) statistická metoda autoři: Kochánek, Lánský, Uzel, Žemlička lze použít

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

ANTAGONISTICKE HRY 172

ANTAGONISTICKE HRY 172 5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí

Více

Teorie informace II: obtížnější řešené příklady 2014 Tomáš Kroupa

Teorie informace II: obtížnější řešené příklady 2014 Tomáš Kroupa Teorie informace II: obtížnější řešené příklady 204 Tomáš Kroupa. Máme n mincí, z nichž nejvýše jedna je falešná. Pozná se podle toho, že má jinou hmotnost než ostatní mince (ty váží všechny stejně). Mince

Více

Osnova přednášky. Formáty uložení dat. Vyjádření hodnot datového typu. Vyjádření hodnot datového typu. Datové formáty. Výpočetní technika I

Osnova přednášky. Formáty uložení dat. Vyjádření hodnot datového typu. Vyjádření hodnot datového typu. Datové formáty. Výpočetní technika I Osnova přednášky 2/36 Formáty uložení dat Ing Pavel Haluza ústav informatiky PEF MENDELU v Brně haluza@mendelucz vyjádření hodnot datového typu formátová specifikace textový a binární formát otevřený a

Více

Elektrické parametry spojů v číslicových zařízeních

Elektrické parametry spojů v číslicových zařízeních Elektrické parametry spojů v číslicových zařízeních Co je třeba znát z teoretických základů? jak vyjádřit schopnost přenášet data jak ji správně chápat jak a v čem ji měřit čím je schopnost přenášet data

Více

Informace, kódování a redundance

Informace, kódování a redundance Informace, kódování a redundance Data (jednotné číslo údaj) obvykle chápeme jako údaje, tj. číselné hodnoty, znaky, texty a další fakta zaznamenaná (a uložená v databázi) ve formě uspořádané posloupnosti

Více

Experimentální stanovení entropie českého textu

Experimentální stanovení entropie českého textu Experimentální stanovení entropie českého textu Antonín Novák novak.antonin@fel.cvut.cz Tomáš Báča bacatoma@fel.cvut.cz 4. dubna 2012 Abstrakt Práce se zabývá analýzou českého textu. Zkoumali jsme syntaktickou

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Obsah. I. Objektivní pravděpodobnosti. 1. Pravděpodobnost a relativní četnosti... 23

Obsah. I. Objektivní pravděpodobnosti. 1. Pravděpodobnost a relativní četnosti... 23 Obsah Předmluva... 15 I. Objektivní pravděpodobnosti 1. Pravděpodobnost a relativní četnosti... 23 1.1 Úvod... 23 1.2 Základy frekvenční interpretace... 24 1.2.1 Pravděpodobnost a hromadné jevy... 24 1.2.2

Více

Digitální magnetický záznam obrazového signálu

Digitální magnetický záznam obrazového signálu Digitální magnetický záznam obrazového signálu Ing. Tomáš Kratochvíl Současná televizní technika a videotechnika kurz U3V Program semináře a cvičení Digitální videosignál úvod a specifikace. Komprese obrazu

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Cvičení 11. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Cvičení 11. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. 11 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Rastrové grafické formáty. Václav Krajíček KSVI MFF UK, 2007

Rastrové grafické formáty. Václav Krajíček KSVI MFF UK, 2007 Rastrové grafické formáty Václav Krajíček KSVI MFF UK, 2007 Grafické formáty Velké množství Mnoho různých požadavků na uložená data neobrazová data Nativní formáty Například: PSP (Photoshop), XFC (Gimp)

Více

Digitální zpracování obrazu počítačové vidění zakotvení

Digitální zpracování obrazu počítačové vidění zakotvení Digitální zpracování obrazu počítačové vidění zakotvení Václav Hlaváč České vysoké učení technické v Praze Fakulta elektrotechnická, katedra kybernetiky Centrum strojového vnímání http://cmp.felk.cvut.cz/

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky a mezioborových inženýrských studií Komprese měřených dat v 0.1 Liberec 2007 Viktor Bubla Obsah 1 Proč komprimace? 2 2 Filosofie základních komprimačních

Více

Grafické formáty. Grafické formáty. Komprese rastrového obrazu. Proč je tolik formátů pro uložení obrázků?

Grafické formáty. Grafické formáty. Komprese rastrového obrazu. Proč je tolik formátů pro uložení obrázků? Grafické formáty poznámky k 5 přednášce Zpracování obrazů Martina Mudrová 00 Grafické formáty Proč je tolik formátů pro uložení obrázků? Cíl: uložení obrazových dat ve formě souboru různý charakter obrazu

Více

Komprese a dotazování nad XML dokumenty

Komprese a dotazování nad XML dokumenty Komprese a dotazování nad XML dokumenty Prezentace diplomové práce Lukáš Skřivánek České vysoké učení technické v Praze Fakulta elektrotechnická Katedra počítačů květen 2007 Vedoucí práce: Ing. Miroslav

Více

8 Kořeny cyklických kódů, BCH-kódy

8 Kořeny cyklických kódů, BCH-kódy 24 8 Kořeny cyklických kódů, BCH-kódy Generující kořeny cyklických kódů Nechť K je cyklický kód délky n nad Z p s generujícím polynomem g(z). Chceme najít rozšíření T tělesa Z p, tedy nějaké těleso GF

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více

Teorie her a ekonomické rozhodování. 2. Maticové hry

Teorie her a ekonomické rozhodování. 2. Maticové hry Teorie her a ekonomické rozhodování 2. Maticové hry 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

9. PRINCIPY VÍCENÁSOBNÉHO VYUŽITÍ PŘENOSOVÝCH CEST

9. PRINCIPY VÍCENÁSOBNÉHO VYUŽITÍ PŘENOSOVÝCH CEST 9. PRINCIPY VÍCENÁSOBNÉHO VYUŽITÍ PŘENOSOVÝCH CEST Modulace tvoří základ bezdrátového přenosu informací na velkou vzdálenost. V minulosti se ji využívalo v telekomunikacích při vícenásobném využití přenosových

Více

Multimediální systémy

Multimediální systémy Multimediální systémy Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI přednášky Authoring Jan Outrata (Univerzita Palackého v Olomouci) Multimediální systémy Olomouc, září prosinec 2011

Více

Kalibrace a limity její přesnosti

Kalibrace a limity její přesnosti Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Kalibrace a limity její přesnosti Zdravotní ústav se sídlem v Ostravě

Více

Uvod Modely n-tic Vyhodnocov an ı Vyhlazov an ı a stahov an ı Rozˇ s ıˇ ren ı model u n-tic Jazykov e modelov an ı Pavel Smrˇ z 27.

Uvod Modely n-tic Vyhodnocov an ı Vyhlazov an ı a stahov an ı Rozˇ s ıˇ ren ı model u n-tic Jazykov e modelov an ı Pavel Smrˇ z 27. Jazykové modelování Pavel Smrž 27. listopadu 2006 Osnova 1 Úvod motivace, základní pojmy 2 Modely n-tic 3 Způsob vyhodnocování 4 Vyhlazování a stahování 5 Rozšíření modelů n-tic 6 Lingvisticky motivované

Více

Kódy pro odstranění redundance, pro zabezpečení proti chybám. Demonstrační cvičení 5 INP

Kódy pro odstranění redundance, pro zabezpečení proti chybám. Demonstrační cvičení 5 INP Kódy pro odstranění redundance, pro zabezpečení proti chybám Demonstrační cvičení 5 INP Princip kódování, pojmy Tady potřebujeme informaci zabezpečit, utajit apod. zpráva 000 111 000 0 1 0... kodér dekodér

Více

KALIBRACE. Definice kalibrace: mezinárodní metrologický slovník (VIM 3)

KALIBRACE. Definice kalibrace: mezinárodní metrologický slovník (VIM 3) KALIBRACE Chemometrie I, David MILDE Definice kalibrace: mezinárodní metrologický slovník (VIM 3) Činnost, která za specifikovaných podmínek v prvním kroku stanoví vztah mezi hodnotami veličiny s nejistotami

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Grafické formáty. poznámky k 5. přednášce Zpracování obrazů. Martina Mudrová 2004

Grafické formáty. poznámky k 5. přednášce Zpracování obrazů. Martina Mudrová 2004 Grafické formáty poznámky k 5. přednášce Zpracování obrazů Martina Mudrová 2004 Grafické formáty Proč je tolik formátů pro uložení obrázků? Cíl: uložení obrazových dat ve formě souboru různý charakter

Více

Moderní multimediální elektronika (U3V)

Moderní multimediální elektronika (U3V) Moderní multimediální elektronika (U3V) Prezentace č. 13 Moderní kompresní formáty pro přenosné digitální audio Ing. Tomáš Kratochvíl, Ph.D. Ústav radioelektroniky, FEKT VUT v Brně Program prezentace Princip

Více

KE STATISTICKÉ DEFINICI DOMÁCNOSTI Jaromír Běláček

KE STATISTICKÉ DEFINICI DOMÁCNOSTI Jaromír Běláček KE STATISTICKÉ DEFINICI DOMÁCNOSTI Jaromír Běláček (9.SLOVENSKÁ DEMOGRAFICKÁ KONFERENCIA RODINA, 17.-19.9.2003, Tajov pro Banskej Bystrici) 1 ÚVOD Při úlohách vztažených k analýze a prezentaci výsledků

Více

Multimediální systémy. 03 Počítačová 2d grafika

Multimediální systémy. 03 Počítačová 2d grafika Multimediální systémy 03 Počítačová 2d grafika Michal Kačmařík Institut geoinformatiky, VŠB-TUO Osnova přednášky Rastrová počítačová grafika Metody komprese obrazu Rastrové formáty Vektorová grafika Křivky

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Počítačová grafika a vizualizace I

Počítačová grafika a vizualizace I Počítačová grafika a vizualizace I KOMPRESE, GRAFICKÉ FORMÁTY Mgr. David Frýbert david.frybert@gmail.com OSNOVA Barva pro TV Datový tok Bitmapové formáty (JPEG, TIFF, PNG, PPM, ) Formáty videa MPEG-1,2,4,7,21

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Jan Kaiser xkaiserj@feld.cvut.cz. ČVUT, Fakulta elektrotechnická, katedra Radioelektroniky Technická 2, 166 27 Praha 6

Jan Kaiser xkaiserj@feld.cvut.cz. ČVUT, Fakulta elektrotechnická, katedra Radioelektroniky Technická 2, 166 27 Praha 6 KOLORIMETRICKÉ ZKRESLENÍ ZPŮSOBENÉ NOVÝMI ZOBRAZOVACÍMI SYSTÉMY, ASPEKTY MODERNÍCH OBRAZOVÝCH KOMPRESNÍCH METOD Jan Kaiser xkaiserj@feld.cvut.cz ČVUT, Fakulta elektrotechnická, katedra Radioelektroniky

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

PROGRAM NA PREZENTACI KÓDOVÁNÍ AKUSTICKÝCH SIGNÁLŮ

PROGRAM NA PREZENTACI KÓDOVÁNÍ AKUSTICKÝCH SIGNÁLŮ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta elektrotechniky a komunikačních technologií Ústav radioelektroniky PROGRAM NA PREZENTACI KÓDOVÁNÍ AKUSTICKÝCH SIGNÁLŮ bakalářská práce Studijní obor: Jméno studenta:

Více

SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE

SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor CZ.1.07/1.5.00/34.0797 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT 2M3 Slovní

Více

Michal Dobeš ZPRACOVÁNÍ OBRAZU A ALGORITMY V C# Praha 2008 Michal Dobeš Zpracování obrazu a algoritmy v C# Bez pøedchozího písemného svolení nakladatelství nesmí být kterákoli èást kopírována nebo rozmnožována

Více

Cvičná bakalářská zkouška, 1. varianta

Cvičná bakalářská zkouška, 1. varianta jméno: studijní obor: PřF BIMAT počet listů(včetně tohoto): 1 2 3 4 5 celkem Cvičná bakalářská zkouška, 1. varianta 1. Matematická analýza Najdětelokálníextrémyfunkce f(x,y)=e 4(x y) x2 y 2. 2. Lineární

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Bodové a intervalové odhady parametrů v regresním modelu 1 Odhady parametrů 11 Bodové odhady Mějme lineární regresní model (LRM) kde Y = y 1 y 2 y n, e = e 1 e 2 e n Y = Xβ + e, x 11 x 1k, X =, β = x n1

Více

Škola: Gymnázium, Brno, Slovanské náměstí 7 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN

Škola: Gymnázium, Brno, Slovanské náměstí 7 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN Škola: Gymnázium, Brno, Slovanské náměstí 7 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN prostřednictvím ICT Číslo projektu: CZ.1.07/1.5.00/34.0940

Více

Kvaterniony, duální kvaterniony a jejich aplikace

Kvaterniony, duální kvaterniony a jejich aplikace 1 / 16 Kvaterniony, duální kvaterniony a jejich aplikace Jitka Prošková Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky 17. 6. 21 2 / 16 Zadání Základní charakteristika tělesa

Více

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY Bakalářský studijní program B1101 (studijní obory - Aplikovaná matematika, Matematické metody v ekonomice, Aplikovaná matematika pro řešení krizových situací)

Více

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0

Více

Informace, kódování a redundance

Informace, kódování a redundance Informace, kódování a redundance INFORMACE = fakt nebo poznatek, který snižuje neurčitost našeho poznání (entropii) DATA (jednotné číslo ÚDAJ) = kódovaná zpráva INFORAMCE = DATA + jejich INTERPRETACE (jak

Více

5. Formalizace návrhu databáze

5. Formalizace návrhu databáze 5. Formalizace návrhu databáze 5.1. Úvod do teorie závislostí... 2 5.1.1. Funkční závislost... 2 5.1.2. Vícehodnotová závislost (multizávislost)... 7 5.1.3. Závislosti na spojení... 9 5.2. Využití teorie

Více

MODERNÍ RADIOTECHNIKA Josef Dobeš Václav Žalud MODERNÍ RADIOTECHNIKA Praha 2006 Doc. Ing. Josef Dobeš, CSc. obhájil dizertaèní práci v oboru mikroelektronika na ÈVUT v Praze v roce 1986. V letech 1986

Více

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika.

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Lineární kódy, část 2 Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG 22.12.2014: Lineární kódy, část 2 1/12 Dnešní přednáška 1 Analýza Hammingova (7, 4)-kódu.

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

Rovinný průtokoměr. Diplomová práce Ústav mechaniky tekutin a termodynamiky, 2013. Jakub Filipský

Rovinný průtokoměr. Diplomová práce Ústav mechaniky tekutin a termodynamiky, 2013. Jakub Filipský Rovinný průtokoměr Diplomová práce Ústav mechaniky tekutin a termodynamiky, 2013 Autor: Vedoucí DP: Jakub Filipský Ing. Jan Čížek, Ph.D. Zadání práce 1. Proveďte rešerši aktuálně používaných způsobů a

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

Kde a jak může být lineární algebra užitečná v praxi.

Kde a jak může být lineární algebra užitečná v praxi. Kde a jak může být lineární algebra užitečná v praxi. Jiří Fiala Všechny příklady jsou zjednodušené tak, aby bylo zřejmé užití nástrojů lineární algebry. Konkrétní implementace jsou však značně složitější.

Více

Praktická statistika. Petr Ponížil Eva Kutálková

Praktická statistika. Petr Ponížil Eva Kutálková Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo

Více

Kurz digitální fotografie. blok 1 data/úpravy fotografií

Kurz digitální fotografie. blok 1 data/úpravy fotografií Kurz digitální fotografie blok 1 data/úpravy fotografií Grafické soubory Grafické soubory Obsahují grafická (obrazová) data, která mohou být uložena různými způsoby, tedy formou různých grafických formátů.

Více

PROFILOVÁ ČÁST MATURITNÍ ZKOUŠKY 2013 v oboru: 26-46-M/001 OBRAZOVÁ A ZVUKOVÁ TECHNIKA TECHNICKÉ ZAMĚŘENÍ

PROFILOVÁ ČÁST MATURITNÍ ZKOUŠKY 2013 v oboru: 26-46-M/001 OBRAZOVÁ A ZVUKOVÁ TECHNIKA TECHNICKÉ ZAMĚŘENÍ PROFILOVÁ ČÁST MATURITNÍ ZKOUŠKY 2013 v oboru: 26-46-M/001 OBRAZOVÁ A ZVUKOVÁ TECHNIKA TECHNICKÉ ZAMĚŘENÍ Ředitel školy vyhlašuje v souladu s 79 odst. 3 zákona č. 561/2004 Sb., o předškolním, základním,

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

Formáty videa. David Bařina. 5. dubna 2013. David Bařina Formáty videa 5. dubna 2013 1 / 46

Formáty videa. David Bařina. 5. dubna 2013. David Bařina Formáty videa 5. dubna 2013 1 / 46 Formáty videa David Bařina 5. dubna 2013 David Bařina Formáty videa 5. dubna 2013 1 / 46 Obsah 1 Komprese videa 2 Bezeztrátové formáty 3 Ztrátové formáty 4 Kontejnery 5 Shrnutí David Bařina Formáty videa

Více

DSY-4. Analogové a číslicové modulace. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

DSY-4. Analogové a číslicové modulace. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti DSY-4 Analogové a číslicové modulace Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti DSY-4 analogové modulace základní číslicové modulace vícestavové modulace modulace s rozprostřeným

Více

Deset přednášek z teorie statistického a strukturního rozpoznávání

Deset přednášek z teorie statistického a strukturního rozpoznávání Monografie Deset přednášek teorie statistického a strukturního roponávání Michail I. Schlesinger, Václav Hlaváč Praha 1999 Vydavatelství ČVUT 1. přednáška Bayesovská úloha statistického rohodování 1.1

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

Automatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011

Automatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011 Automatická detekce anomálií při geofyzikálním průzkumu Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011 Cíle doktorandské práce Seminář 10. 11. 2010 Najít, implementovat, ověřit a do praxe

Více

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky

Více

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM OKRUHY ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM Obor: Studijní program: Aplikace přírodních věd 1. Vektorový prostor R n 2. Podprostory 3. Lineární zobrazení 4. Matice 5. Soustavy lineárních rovnic

Více

Operační výzkum. Teorie her. Hra v normálním tvaru. Optimální strategie. Maticové hry.

Operační výzkum. Teorie her. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační výzkum Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky

Více

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452 Číslo projektu Číslo materiálu Název školy CZ.1.07/1.5.00/34.0452 OV_1_37_měření DVB-C s

Více

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s

Více

Omezení barevného prostoru

Omezení barevného prostoru Úpravy obrazu Omezení barevného prostoru Omezení počtu barev v obraze při zachování obrazového vjemu z obrazu Vytváření barevné palety v některých souborových formátech Různé filtry v grafických programech

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

Stromy, haldy, prioritní fronty

Stromy, haldy, prioritní fronty Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 4: Statistické vlastnosti MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Upřesnění k pojmům a značení

Více

Maturitní téma: Počítačová grafika (rastrová a vektorová grafika, grafické programy, formáty)

Maturitní téma: Počítačová grafika (rastrová a vektorová grafika, grafické programy, formáty) Maturitní téma: Počítačová grafika (rastrová a vektorová grafika, grafické programy, formáty) Grafické editory Grafické editory jsou určeny k tvorbě a editaci grafiky neboli obrázků. 2 základní druhy grafických

Více