KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut."

Transkript

1 1/24 KOMPRESE OBRAZŮ Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac

2 KOMPRESE OBRAZŮ, ÚVOD 2/24 Cíl: Spočívá v redukci množství dat potřebných k reprezentaci obrazu. Spotřebované množství paměti se měří například v bitech. Použití: Pro přenos a uchování dat. Proč se liší komprese 2D obrazů od komprese 1D dat?

3 ROZDĚLENÍ METOD KOMPRESE OBRAZŮ 1. Segmentace objektů v obraze. 3/24 Je potřebná interpretace obrazu. Metody jsou závislé na datech. Dosahuje se nejvyšších kompresních poměrů. Není možná zpětná rekonstrukce výchozího obrazu. 2. Odstranění redundandní informace. Data se neinterpretují. Lze použít na libovolná obrazová data. Využívá se statistických závislostí v obraze (sekvenci obrazů).

4 ODSTRANĚNÍ REDUNDANTNÍ INFORMACE 4/24 Dvě velké třídy používaných postupů: 1. Bezeztrátové metody. Umožňují úplnou rekonstrukci výchozího signálu. 2. Ztrátové metody. Umožňují pouze částečnou rekonstrukci výchozího signálu.

5 KÓDOVÁNÍ SEGMENTOVANÝCH DAT (1) Kódování hranic oblastí 5/24 Polygonální aproximace hranice

6 KÓDOVÁNÍ SEGMENTOVANÝCH DAT (2) Kódování hranic oblastí 6/24 Řetězový (též Freemanův) kód, 4-okolí Řetězový kód: 3, 0, 0, 3, 0, 1, 1, 2, 1, 2, 3, 2. Derivace kódu: 1, 0, 3, 1, 1, 0, 1, 3, 1, 1, 3, 1.

7 KÓDOVÁNÍ SEGMENTOVANÝCH DAT (3) Kódování hranic oblastí 7/24 Řetězový (též Freemanův) kód, 8-okolí Kód:

8 KÓDOVÁNÍ SEGMENTOVANÝCH DAT (4) Kódování oblastí 8/24 Kódování úseky řádků (angl. Run Length Encoding, RLE) Kódem je seznam seznamů. Každý seznam popisuje situaci v jednom řádku. Používá FAX (CCITT Group 3). ((11144)(214)(52355))

9 KOMPRESE OBRAZU A JEHO REKONSTRUKCE 9/24 Original image Data redundancy reduction Coding Transmission, Archiving Reconstructed image Reconstruction Decoding

10 POSTUPY ODSTRAŇOVÁNÍ REDUNDANCE V DATECH 10/24 Pomocí lineárních integrálních transformací obrazu, např. Fourierou transformací. Prediktivní komprese. Hybridní metody. KÓDOVÁNÍ Obvykle optimální kódování, tj. nejkratším kódem. Kódy pevné délky (Huffmanovo kódování) nebo kódy proměnné délky (aritmetické kódování).

11 TEORIE INFORMACE A REDUNDANCE Entropie ve fyzice je měrou energie soustavy, která není k dispozici k vykonání práce. Jelikož práci lze získat z řádu soustavy, je entropie měrou neuspořádanosti soustavy. Souvisí s druhou termodynamickou větou. Pojem zavedl v roce 1850 německý fyzik Rudolf Claudius. 11/24 Entropie v teorii informace, Claude Shannon, 1948 H e = i p i log 2 p i [bitů], kde p i je pravděpodobnost i-tého symbolu ve zprávě.

12 ENTROPIE, DVA PŘÍKLADY Nechť jsou ve zprávě jen dva znaky a, b. Příklad 1 12/24 p(a) = p(b) = 1 2 H = ( 1 2 log log ) = ( ) = 1 Příklad 2 p(a) = 0, 99; p(b) = 0, 01 H = (0, 99 log 2 0, , 01 log 2 0, 01) = (0.99 ( 0, 0145) + 0, 01 ( 6, 6439)) = 0, , 0664 = 0, 0808

13 ENTROPIE PRO ŠEDOTÓNOVÝ OBRAZ 13/24 Nechť obraz má G jasových úrovní, k = 0... G 1 s pravděpodobnostmi P (k). Entropie H e = k P (k) log 2 P (k) [bitů], Nechť b je nejmenší počet bitů, kterým lze reprezentovat počet kvantizačních úrovní. Informační redundance r = b H e.

14 ODHAD ENTROPIE Z HISTOGRAMU OBRAZU 14/24 Nechť h(k), 0 k 2 b 1 a M, N jsou rozměry obrazu. Odhad pravděpodobnosti ˆP = h(k) M N. Odhad entropie Ĥe = 2 b 1 k ˆP (k) log 2 ˆP (k) [bitů] Poznámka: odhad entropie je příliš optimistický, protože mezi jasy obrazu existují závislosti.

15 TŘI DEFINICE KOMPRESNÍHO POMĚRU 15/24 1. Na základě redundance (měřené entropií) K = b Ĥ e 2. Na základě úspory paměti κ = n 1 n 2 = délka zprávy před kompresí délka zprávy po kompresi 3. Relativní úspora paměti R = 1 1 κ Příklad 1: n 1 = n 2 κ = 1, R = 0. Příklad 2: n 1 : n 2 = 10 : 1 κ = 10, R = 0, 9 = 90%.

16 JPEG PŘÍKLAD, K = /24 Po rekonstrukci K = 3.8. Rozdílový snímek.

17 JPEG PŘÍKLAD, K = /24 Po rekonstrukci K = 4.2. Rozdílový snímek.

18 JPEG PŘÍKLAD, K = /24 Po rekonstrukci K = 5.6. Rozdílový snímek.

19 JPEG PŘÍKLAD, K = /24 Po rekonstrukci K = Rozdílový snímek.

20 PREDIKTIVNÍ KOMPRESE MYŠLENKA 20/24 Najít matematický model, který dokáže predikovat na základě předchozích hodnot další hodnotu. Přenášet pouze rozdíl mezi skutečnou a predikovanou hodnotou. Ke kompresi dochází, protože rozdílová data mají menší statistickou variaci (např. rozptyl) než původní data. f(i,j) + - Quantizer d(i,j) d(i,j) + + f(i,j) Predictor + Predictor (a) + (b)

21 DIGITÁLNÍ PULSNĚ KÓDOVÁ MODULACE (1) 21/24 Mějme obraz f (i, j), odhad jeho statistických vlastností pomocí autokorelační funkce R(i, j, k, l) = E(f (i, j)f (k, l)) = f f T. Hledáme matematický model prediktoru Rozdíl d(i, j) = ˆ f (i, j) f (i, j) ˆ f (i, j) Předpokládejme např. lineární prediktor 3. řádu ˆ f (i, j) = a 1 f (i, j 1) + a 2 f (i 1, j 1) + a 3 f (i 1, j), kde a 1, a 2, a 3 jsou parametry prediktivního modelu..

22 DIGITÁLNÍ PULSNĚ KÓDOVÁ MODULACE (2) Jak se odhadnou parametry prediktivního modelu a 1, a 2, a 3? 22/24 Vyřešením statistické optimalizační úlohu. Předpokládá se stacionární náhodný proces f a nulová střední hodnota. e = E([ f (i, j) f (i, j)] 2 ) a 1 R(0, 0) + a 2 R(0, 1) + a 3 R(1, 1) = R(1, 0) a 1 R(0, 1) + a 2 R(0, 0) + a 3 R(1, 0) = R(1, 1) a 1 R(1, 1) + a 2 R(1, 0) + a 3 R(0, 0) = R(0, 1) kde R(m, n) je autokorelační funkce speciálního tvaru R(α, β) = R(0, 0) exp( c 1 α c 2 β).

23 DPCM PŘÍKLAD, K = /24 Po rekonstrukci K = 3.8. Rozdílový snímek.

24 DPCM PŘÍKLAD, K = /24 Po rekonstrukci K = 6.2. Rozdílový snímek.

Základní principy přeměny analogového signálu na digitální

Základní principy přeměny analogového signálu na digitální Základní y přeměny analogového signálu na digitální Pro přenos analogového signálu digitálním systémem, je potřeba analogový signál digitalizovat. Digitalizace je uskutečňována pomocí A/D převodníků. V

Více

1. Základy teorie přenosu informací

1. Základy teorie přenosu informací 1. Základy teorie přenosu informací Úvodem citát o pojmu informace Informace je název pro obsah toho, co se vymění s vnějším světem, když se mu přizpůsobujeme a působíme na něj svým přizpůsobováním. N.

Více

Teorie informace 21.9.2014. Obsah. Kybernetika. Radim Farana Podklady pro výuku

Teorie informace 21.9.2014. Obsah. Kybernetika. Radim Farana Podklady pro výuku Teorie Radim Farana Podklady pro výuku Obsah Seznámení s problematikou a obsahem studovaného předmětu. Základní pojmy z Teorie, jednotka, informační obsah zprávy, střední délka zprávy, redundance. Kód.

Více

Samoopravné kódy. Katedra matematiky a Institut teoretické informatiky Západočeská univerzita

Samoopravné kódy. Katedra matematiky a Institut teoretické informatiky Západočeská univerzita Katedra matematiky a Institut teoretické informatiky Západočeská univerzita Seminář pro učitele středních a vysokých škol, Plzeň, 30. března 2012 jsou všude Některé oblasti využití: CD přehrávače mobilní

Více

Experimentální stanovení entropie českého textu

Experimentální stanovení entropie českého textu Experimentální stanovení entropie českého textu Antonín Novák novak.antonin@fel.cvut.cz Tomáš Báča bacatoma@fel.cvut.cz 4. dubna 2012 Abstrakt Práce se zabývá analýzou českého textu. Zkoumali jsme syntaktickou

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky a mezioborových inženýrských studií Komprese měřených dat v 0.1 Liberec 2007 Viktor Bubla Obsah 1 Proč komprimace? 2 2 Filosofie základních komprimačních

Více

Kódy pro odstranění redundance, pro zabezpečení proti chybám. Demonstrační cvičení 5 INP

Kódy pro odstranění redundance, pro zabezpečení proti chybám. Demonstrační cvičení 5 INP Kódy pro odstranění redundance, pro zabezpečení proti chybám Demonstrační cvičení 5 INP Princip kódování, pojmy Tady potřebujeme informaci zabezpečit, utajit apod. zpráva 000 111 000 0 1 0... kodér dekodér

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Cvičení 11. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Cvičení 11. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. 11 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické

Více

Maturitní téma: Počítačová grafika (rastrová a vektorová grafika, grafické programy, formáty)

Maturitní téma: Počítačová grafika (rastrová a vektorová grafika, grafické programy, formáty) Maturitní téma: Počítačová grafika (rastrová a vektorová grafika, grafické programy, formáty) Grafické editory Grafické editory jsou určeny k tvorbě a editaci grafiky neboli obrázků. 2 základní druhy grafických

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Grafické formáty. poznámky k 5. přednášce Zpracování obrazů. Martina Mudrová 2004

Grafické formáty. poznámky k 5. přednášce Zpracování obrazů. Martina Mudrová 2004 Grafické formáty poznámky k 5. přednášce Zpracování obrazů Martina Mudrová 2004 Grafické formáty Proč je tolik formátů pro uložení obrázků? Cíl: uložení obrazových dat ve formě souboru různý charakter

Více

Škola: Gymnázium, Brno, Slovanské náměstí 7 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN

Škola: Gymnázium, Brno, Slovanské náměstí 7 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN Škola: Gymnázium, Brno, Slovanské náměstí 7 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN prostřednictvím ICT Číslo projektu: CZ.1.07/1.5.00/34.0940

Více

Obsah. I. Objektivní pravděpodobnosti. 1. Pravděpodobnost a relativní četnosti... 23

Obsah. I. Objektivní pravděpodobnosti. 1. Pravděpodobnost a relativní četnosti... 23 Obsah Předmluva... 15 I. Objektivní pravděpodobnosti 1. Pravděpodobnost a relativní četnosti... 23 1.1 Úvod... 23 1.2 Základy frekvenční interpretace... 24 1.2.1 Pravděpodobnost a hromadné jevy... 24 1.2.2

Více

Formáty uložení dat Výpočetní technika I

Formáty uložení dat Výpočetní technika I .. Výpočetní technika I Ing. Pavel Haluza ústav informatiky PEF MENDELU v Brně pavel.haluza@mendelu.cz Osnova přednášky otevřený a uzavřený formát rozpoznávání formátu asociace a konverze komprimační metody

Více

aneb jak se to tam všechno vejde?

aneb jak se to tam všechno vejde? 768 576 KOMPRIMACE aneb jak se to tam všechno vejde? Položme si hned na začátku zdánlivě nepodstatnou otázku: Kolik místa zabere dvouhodinový film na CD nebo DVD? Uvažujme následující příklad: rozlišení

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Deset přednášek z teorie statistického a strukturního rozpoznávání

Deset přednášek z teorie statistického a strukturního rozpoznávání Monografie Deset přednášek teorie statistického a strukturního roponávání Michail I. Schlesinger, Václav Hlaváč Praha 1999 Vydavatelství ČVUT 1. přednáška Bayesovská úloha statistického rohodování 1.1

Více

Doporučení pro pořizování datových souborů při digitalizaci analogových originálů

Doporučení pro pořizování datových souborů při digitalizaci analogových originálů Doporučení pro pořizování datových souborů při digitalizaci analogových originálů Smyslem digitalizace analogových originálů je jejich rozšířená dostupnost (všechny druhy dokumentů), případně ochrana/záchrana

Více

POČÍTAČOVĚ PODPOROVANÁ VÝUKA V OBLASTI MULTIMEDIÁLNÍ TECHNIKY

POČÍTAČOVĚ PODPOROVANÁ VÝUKA V OBLASTI MULTIMEDIÁLNÍ TECHNIKY POČÍTAČOVĚ PODPOROVANÁ VÝUKA V OBLASTI MULTIMEDIÁLNÍ TECHNIKY F. Rund, K. Fliegel ČVUT v Praze, Fakulta elektrotechnická, Katedra radioelektroniky Abstrakt V dnešní době je již samozřejmostí využití počítačů

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika.

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Lineární kódy, část 2 Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG 22.12.2014: Lineární kódy, část 2 1/12 Dnešní přednáška 1 Analýza Hammingova (7, 4)-kódu.

Více

Neztrátové komprimační algoritmy v počítačové grafice

Neztrátové komprimační algoritmy v počítačové grafice Neztrátové komprimační algoritmy v počítačové grafice Lossless Compression Algorithms in Computer Graphics Bc. Tomáš Vogeltanz Diplomová práce 2012 UTB ve Zlíně, Fakulta aplikované informatiky, 2012

Více

Á ů Á Á ů Ř Ý ú ř ř ů Ě Á ú ř Ř Ž Ý Ř Ž Á ť ř ů Á Š ú ř ť É Í ř ú ú Á Ě Ý ř ó Ř ú ř ú Ý Í ú Ř ů ú Š ú ř ť ř ř Á ŘÍ ř Ů ú ř ú ú ř Ž ú ú ů ú ř ř ó ř ů ů ř ř ř ř ů ů ř ř ř ů ů Í Ý Ů ů ř ů ř Ř ř ř ú Ý ř ř

Více

ů ž Ř Š Í Ú ů š ů š ů Í Í ů ů ů ů ů Š ú ů ů š ů Š ů ů ů ž ů š ů ů Š Č ů ů š š Í Š Š š ů š ů š ú ž š ů ů ů ů š ů ů ů ú š š ž š š ž ů š ů Š ú Š ů Š š ů š š ú ů ů ů ů ú ů ů š š ú ú Š ů Š ů ů Š ů ů ů š Š ň

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE

SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor CZ.1.07/1.5.00/34.0797 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT 2M3 Slovní

Více

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů Kapitola 1 Signály a systémy 1.1 Klasifikace signálů Signál představuje fyzikální vyjádření informace, obvykle ve formě okamžitých hodnot určité fyzikální veličiny, která je funkcí jedné nebo více nezávisle

Více

ROZPOZNÁVÁNÍ S MARKOVSKÝMI MODELY

ROZPOZNÁVÁNÍ S MARKOVSKÝMI MODELY ROZPOZNÁVÁNÍ S MARKOVSKÝMI MODELY Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/ hlavac 1/31 PLÁN PŘEDNÁŠKY

Více

Počítačová grafika a vizualizace volné 3D modelování. Maxon CINEMA 4D. Mgr. David Frýbert, 2012

Počítačová grafika a vizualizace volné 3D modelování. Maxon CINEMA 4D. Mgr. David Frýbert, 2012 Počítačová grafika a vizualizace volné 3D modelování Maxon CINEMA 4D Mgr. David Frýbert, 2012 Počítačová grafika a vizualizace volné 3D modelování komprese, grafické formáty Mgr. David Frýbert, 2012 Barva

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Kódování na bázi Waveletů

Kódování na bázi Waveletů MULTIMÉDIA A INFORMAČNÍ SYSTÉMY 01. Metody dekompozice v časové oblasti a parametrické (fraktálové) dekompozice obrazu. Kódování na bázi Waveletů Zakládá se na dekompozici originálního signálu na signálové

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 4: Statistické vlastnosti MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Upřesnění k pojmům a značení

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

KOMPRESE DAT ARNOŠT VEČERKA KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO

KOMPRESE DAT ARNOŠT VEČERKA KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO KOMPRESE DAT ARNOŠT VEČERKA VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

KÓDOVÁNÍ A KOMPRESE DAT

KÓDOVÁNÍ A KOMPRESE DAT KÓDOVÁNÍ A KOMPRESE DAT URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH RADIM FARANA ČÍSLO OPERAČNÍHO PROGRAMU: CZ..7 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST OPATŘENÍ:

Více

EU-OPVK: VY_32_INOVACE_FIL12 Vojtěch Filip, 2014

EU-OPVK: VY_32_INOVACE_FIL12 Vojtěch Filip, 2014 Číslo projektu CZ.1.07/1.5.00/34.0036 Tématický celek Inovace výuky ICT na BPA Název projektu Inovace a individualizace výuky Název materiálu Komprese a archivace dat Číslo materiálu VY_32_INOVACE_FIL12

Více

Lineární algebra nad obecným Z m, lineární kódy

Lineární algebra nad obecným Z m, lineární kódy Lineární algebra nad obecným Z m, lineární kódy Jiří Velebil: X01DML 19. listopadu 2010: Lineární algebra a kódy 1/19 Minule: soustavy lineárních rovnic nad Z p, p prvočíslo, stejně jako nad R. Dále nad

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Charakteristiky zvuk. záznamů

Charakteristiky zvuk. záznamů Charakteristiky zvuk. záznamů Your Name Jan Kvasnička Your Title 2010 Roman Brückner Your Organization (Line #1) Your Organization (Line #2) Obsah prezentace Digitalizace zvuku Audio formáty Digitální

Více

METODY KÓDOVÁNÍ, ŠIFROVÁNÍ A BEZPEČNOSTI DAT

METODY KÓDOVÁNÍ, ŠIFROVÁNÍ A BEZPEČNOSTI DAT METODY KÓDOVÁNÍ, ŠIFROVÁNÍ A BEZPEČNOSTI DAT URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH RADIM FARANA ČÍSLO OPERAČNÍHO PROGRAMU: CZ..7 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Propenzitní modelování. Veronika Počerová 10. 4. 2015

Propenzitní modelování. Veronika Počerová 10. 4. 2015 Propenzitní modelování Veronika Počerová 10. 4. 2015 motivace 2 definice Prediktivní analytika je disciplína, která využívá metod Data Miningu k tomu, aby na základě historického chování sledovaného jevu

Více

PILOTNÍ ZKOUŠKOVÉ ZADÁNÍ

PILOTNÍ ZKOUŠKOVÉ ZADÁNÍ INSTITUT SVAZU ÚČETNÍCH KOMORA CERTIFIKOVANÝCH ÚČETNÍCH CERTIFIKACE A VZDĚLÁVÁNÍ ÚČETNÍCH V ČR ZKOUŠKA ČÍSLO 3 KM - IT PILOTNÍ ZKOUŠKOVÉ ZADÁNÍ ÚVODNÍ INFORMACE Struktura zkouškového zadání: testové otázky,

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost

Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen společnost) stanoví k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen osvědčení) následující

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

ednáška a metody digitalizace telefonního signálu Ing. Bc. Ivan Pravda

ednáška a metody digitalizace telefonního signálu Ing. Bc. Ivan Pravda 2.předn ednáška Telefonní kanál a metody digitalizace telefonního signálu Ing. Bc. Ivan Pravda Telekomunikační signály a kanály - Při přenosu všech druhů telekomunikačních signálů je nutné řešit vztah

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 78-42-M/01 Technické lyceum STROJNICTVÍ

Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 78-42-M/01 Technické lyceum STROJNICTVÍ Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 78-42-M/01 Technické lyceum STROJNICTVÍ 1. Mechanické vlastnosti materiálů 2. Technologické vlastnosti materiálů 3. Zjišťování

Více

Cvičení 3. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Cvičení 3. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Cvičení 3 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické

Více

Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 23-41-M/01 Strojírenství STROJÍRENSKÁ TECHNOLOGIE

Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 23-41-M/01 Strojírenství STROJÍRENSKÁ TECHNOLOGIE Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 23-41-M/01 Strojírenství STROJÍRENSKÁ TECHNOLOGIE 1. Mechanické vlastnosti materiálů, zkouška pevnosti v tahu 2. Mechanické

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

Architektura počítačů

Architektura počítačů Architektura počítačů Studijní materiál pro předmět Architektury počítačů Ing. Petr Olivka katedra informatiky FEI VŠB-TU Ostrava email: petr.olivka@vsb.cz Ostrava, 2010 1 1 Architektura počítačů Pojem

Více

Zpracování informací

Zpracování informací Ústav automatizace a informatiky Fakulta strojního inženýrství Vysoké učení technické v Brně Cvičení č. 2 z předmětu Zpracování informací Ing. Radek Poliščuk, Ph.D. 1/9 Téma cvičení Cvičení 2 Přenos dat

Více

Grafické editory. Ing. Jan Steringa 2008

Grafické editory. Ing. Jan Steringa 2008 Grafické editory Ing. Jan Steringa 2008 Grafický editor aplikace určená pro tvorbu nebo úpravu grafických dat (obrázky, výkresy) rozdělení grafických editorů vektorové rastrové jednoúčelové komplexní pro

Více

Moderní technologie linek. Zvyšování přenosové kapacity Zvyšování přenosové spolehlivosti xdsl Technologie TDMA Technologie FDMA

Moderní technologie linek. Zvyšování přenosové kapacity Zvyšování přenosové spolehlivosti xdsl Technologie TDMA Technologie FDMA Moderní technologie linek Zvyšování přenosové kapacity Zvyšování přenosové spolehlivosti xdsl Technologie TDMA Technologie FDMA Zvyšování přenosové kapacity Cílem je dosáhnout maximum fyzikálních možností

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Webové stránky. 16. Obrázky na webových stránkách, optimalizace GIF. Datum vytvoření: 12. 1. 2013. str ánk y. Vytvořil: Petr Lerch. www.isspolygr.

Webové stránky. 16. Obrázky na webových stránkách, optimalizace GIF. Datum vytvoření: 12. 1. 2013. str ánk y. Vytvořil: Petr Lerch. www.isspolygr. Webové stránky 16. Vytvořil: Petr Lerch www.isspolygr.cz Datum vytvoření: 12. 1. 2013 Webové Strana: 1/6 Škola Ročník Název projektu Číslo projektu Číslo a název šablony Autor Tématická oblast Název DUM

Více

13 Barvy a úpravy rastrového

13 Barvy a úpravy rastrového 13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody

Více

25. Přenosová a modulační rychlost, Informační rychlost, Shannon Hartleyův zákon, Propustnost kanálů, Entropie

25. Přenosová a modulační rychlost, Informační rychlost, Shannon Hartleyův zákon, Propustnost kanálů, Entropie 25. Přenosová a modulační rychlost, Informační rychlost, Shannon Hartleyův zákon, Propustnost kanálů, Entropie Tuto otázku jsem pojal trochu dvěma směry. V podtitulu To, co by vám mělo stačit ke státnicím

Více

Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/34.0333 Vzdělávání v informačních a komunikačních technologií

Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/34.0333 Vzdělávání v informačních a komunikačních technologií VY_32_INOVACE_31_18 Škola Název projektu, reg. č. Vzdělávací oblast Vzdělávací obor Tematický okruh Téma Tematická oblast Název Autor Vytvořeno, pro obor, ročník Anotace Přínos/cílové kompetence Střední

Více

Interakce s prostředím. Rozhodnutí, chování. Důsledky, hodnocení.

Interakce s prostředím. Rozhodnutí, chování. Důsledky, hodnocení. 1 T1 Úvod do studia předmětu 01 P1 Úvod do studia Základní informace o předmětu. Vztah předmětu k profilu absolventa. Informace o předmětu Informatika. Tematický plán předmětu. Koncepce předmětu. Studijní

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

0.0001 0.001 0.01 0.1 1 10 100 1000 10000. Čas (s) Model časového průběhu sorpce vyplývá z 2. Fickova zákona a je popsán následující rovnicí

0.0001 0.001 0.01 0.1 1 10 100 1000 10000. Čas (s) Model časového průběhu sorpce vyplývá z 2. Fickova zákona a je popsán následující rovnicí Program Sorpce1.m psaný v prostředí Matlabu slouží k vyhlazování naměřených sorpčních křivek a výpočtu difuzních koeficientů. Kromě standardního Matlabu vyžaduje ještě Matlab Signal Processing Toolbox

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 11 Katedra ekonometrie FEM UO Brno Jedná se o speciální případ dopravních úloh, řeší např. problematiku optimálního přiřazení strojů na pracoviště. Příklad Podnik má k dispozici 3 jeřáby,

Více

Posouzení vlastností elektronických dokumentů z hlediska jejich dlouhodobého uchovávání

Posouzení vlastností elektronických dokumentů z hlediska jejich dlouhodobého uchovávání Posouzení vlastností elektronických dokumentů z hlediska jejich dlouhodobého uchovávání Ing. Ivan Zderadička, spolupracovník společnosti Central European Advisory Group S pokračujícím rozvojem informačních

Více

DTP1. (příprava textu pomocí počítače) Kapitola 3 / Obrázky a rastrování

DTP1. (příprava textu pomocí počítače) Kapitola 3 / Obrázky a rastrování DTP1 (příprava textu pomocí počítače) Kapitola 3 / Obrázky a rastrování Petr Lobaz, 28. 2. 2007 Digitální grafický výstup složen z bodů bod černá/bílá rozlišení počet bodů na palec, dpi pro text alespoň

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Číslicové obvody základní pojmy

Číslicové obvody základní pojmy Číslicové obvody základní pojmy V číslicové technice se pracuje s fyzikálními veličinami, které lze popsat při určité míře zjednodušení dvěma stavy. Logické stavy binární proměnné nabývají dvou stavů:

Více

Úvod do informačních a řídicích systémů. lení

Úvod do informačních a řídicích systémů. lení Úvod do informačních a řídicích systémů Základní pojmy a rozdělen lení Informace Pojem vysoce abstraktní Skutečné informace musí být pravdivé, včasné, jednoznačné a relevantní (atributy informace) Základní

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

1. Formáty grafických dat

1. Formáty grafických dat 1. Formáty grafických dat Studijní cíl Tento blok kurzu je věnován problematice grafických formátů, kompresi grafických dat a odlišností u rastrových a vektorových souborů. Doba nutná k nastudování 2 hodiny

Více

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Rainer Scharf, Félix M. Izrailev, 1990 rešerše: Pavla Cimrová, 28. 2. 2012 1 Náhodné matice Náhodné matice v současnosti nacházejí

Více

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické MODELY ŘÍZENÍ ZÁSOB Význam zásob spočívá především v tom, že - vyrovnávají časový nebo prostorový nesoulad mezi výrobou a spotřebou - zajišťují plynulou výrobu nebo plynulé dodávky zboží i při nepředvídaných

Více

Aplikace multifraktální geometrie na finančních trzích

Aplikace multifraktální geometrie na finančních trzích Aplikace multifraktální geometrie na finančních trzích 5. studentské kolokvium a letní škola matematické fyziky Stará Lesná Fakulta jaderná a fyzikálně inženýrská ČVUT, Praha 1. 9. 2011 Úvod náhodné procesy

Více

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: CZ.1.07/1.5.00/34.0410 Číslo šablony: 17 Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tématický celek:

Více

Automatická segmentace slov s pomocí nástroje Affisix. Michal@Hrusecky.net, Hlavacova@ufal.mff.cuni.cz

Automatická segmentace slov s pomocí nástroje Affisix. Michal@Hrusecky.net, Hlavacova@ufal.mff.cuni.cz Automatická segmentace slov s pomocí nástroje Affisix Michal Hrušecký, Jaroslava Hlaváčová Michal@Hrusecky.net, Hlavacova@ufal.mff.cuni.cz Motivace Při zpracování přirozeného jazyka nikdy nemůžeme mít

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

3. Optimalizace pomocí nástroje Řešitel

3. Optimalizace pomocí nástroje Řešitel 3. Optimalizace pomocí nástroje Řešitel Rovnováha mechanické soustavy Uvažujme dvě různé nehmotné lineární pružiny P 1 a P 2 připevněné na pevné horizontální tyči splývající s osou x podle obrázku: (0,0)

Více

PŘEDNÁŠKA PS 6 Přenos dat v počítačových sítích

PŘEDNÁŠKA PS 6 Přenos dat v počítačových sítích PŘEDNÁŠKA PS 6 Přenos dat v počítačových sítích Část 2 Osnova Metody detekce chybovosti Pravděpodobnost chyby ve zprávě Parita Kontrolní blokový součet (pseudosoučet) Redundantní cyklické kódy Jiný způsob

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

Architektury počítačů a procesorů

Architektury počítačů a procesorů Kapitola 3 Architektury počítačů a procesorů 3.1 Von Neumannova (a harvardská) architektura Von Neumann 1. počítač se skládá z funkčních jednotek - paměť, řadič, aritmetická jednotka, vstupní a výstupní

Více

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol CZ.1.07/1.5.00/34.0452 Číslo projektu Číslo materiálu Název školy CZ.1.07/1.5.00/34.0452 OV_1_49_měření DVB-S2 s

Více

5. Formalizace návrhu databáze

5. Formalizace návrhu databáze 5. Formalizace návrhu databáze 5.1. Úvod do teorie závislostí... 2 5.1.1. Funkční závislost... 2 5.1.2. Vícehodnotová závislost (multizávislost)... 7 5.1.3. Závislosti na spojení... 9 5.2. Využití teorie

Více

Quantization of acoustic low level signals. David Bursík, Miroslav Lukeš

Quantization of acoustic low level signals. David Bursík, Miroslav Lukeš KVANTOVÁNÍ ZVUKOVÝCH SIGNÁLŮ NÍZKÉ ÚROVNĚ Abstrakt Quantization of acoustic low level signals David Bursík, Miroslav Lukeš Při testování kvality A/D převodníků se používají nejrůznější testovací signály.

Více

3 Jednoduché datové typy 2 3.1 Interpretace čísel v paměti počítače... 3. 4 Problémy s matematickými operacemi 5

3 Jednoduché datové typy 2 3.1 Interpretace čísel v paměti počítače... 3. 4 Problémy s matematickými operacemi 5 Obsah Obsah 1 Číselné soustavy 1 2 Paměť počítače 1 2.1 Měření objemu paměti počítače................... 1 3 Jednoduché datové typy 2 3.1 Interpretace čísel v paměti počítače................. 3 4 Problémy

Více

Profilová část maturitní zkoušky 2013/2014

Profilová část maturitní zkoušky 2013/2014 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2013/2014 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: TECHNIKA

Více