Osnova přednášky. Informace v počítači. Interpretace dat. Údaje, data. Úvod do teorie informace. Výpočetní technika I. Ochrana dat

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Osnova přednášky. Informace v počítači. Interpretace dat. Údaje, data. Úvod do teorie informace. Výpočetní technika I. Ochrana dat"

Transkript

1 Osnova přednášky 2/44 Informace v počítači Ing Pavel Haluza ústav informatiky PEF MENDELU v Brně základní pojmy měření množství informace ve zprávě přenos a kódování dat parita kontrolní součet samoopravný kód Údaje, data 3/44 Interpretace dat 4/44 Údaje hodnota libovolné reálné veličiny příklad: 167 cm Data zprávy nebo výroky, které mohou (ale nemusí) snižovat neznalost daného jevu (neurčitost, entropii) jakékoli vyjádření (reprezentace) skutečnosti, schopné přenosu, uchování, interpretace či zpracování sama o sobě jsou nehmotná, i když pro jejich uložení potřebujeme hmotné médium příklad: Průměrná výška ženy je 167 cm Data v počítači jedničky a nuly Pro člověka musí být zobrazeny Zobrazení stejné posloupnosti jedniček a nul může být provedeno nekonečně mnoha způsoby Interpretace zobrazení přisouzení významu zobrazeným údajům Datový typ definován oborem povolených hodnot a kolekcí povolených operací Implementace přisouzení datového typu posloupnosti binárních hodnot v paměti počítače Modeluje objektivní realitu hodnoty jsou zobrazeny pro vstup i výstup

2 Informace, znalosti 5/44 Jak informaci chápat? 6/44 Informace snižují neurčitost a vyvolávají změnu stavu či chování příjemce změna stavu po přijetí zprávy je tím větší, čím větším je informace pro příjemce překvapením množství informace ve zprávě je relativní vzhledem k určitému příjemci a určité situaci každou informaci lze považovat za součást dat, ale každá data nemusí obsahovat informaci Znalosti ucelený komplex informací o nějaké objektivní realitě výsledek poznávacího procesu, předpoklad uvědomělé činnosti, umožňují porozumět skutečnosti příklad: Průměrná žena je docela malá Kvalitativní hledisko získávání, uchovávání, zpracování a přenos informací zkoumá informatika Kvantitativní hledisko množství informace ve zprávě a jeho měření kódování a dekódování zpráv přenos zpráv zkoumá teorie informace Pojem informace 7/44 Informační systém 8/44 Mnoho různých definic podle toho, co autoři definice považovali za nejdůležitější Informace je obsah jakéhokoli oznámení, údaje o čemkoli, s určením pro přenos v prostoru a čase V nejširším slova smyslu je to obsah vztahů mezi materiálními objekty, projevující se změnami těchto objektů Informace je obsah zprávy, sdělení, objasnění, vysvětlení, poučení Informace jsou údaje, čísla, znaky, povely, instrukce, příkazy, zprávy apod Za informace považujeme také podněty a vjemy přijímané a vysílané živými organismy Systém komplex prvků a vazeb ve vzájemné interakci (definice v teorii systémů) Informační systém dynamický systém, jehož vazby tvoří informace a prvky systému jsou místa transformace informací Úkol IS poskytovat potřebné informace v požadovaném rozsahu, lhůtách, podrobnostech i formě Dílčí úlohy IS sběr informací, přenos, redukce, archivace, zpracování, distribuce

3 9/44 10/44 Americký fyzik Claude Shannon ( ) položení základů teorie informace stanovení možností měření informačního množství Informace je míra množství neurčitosti nebo nejistoty o nějakém náhodném ději odstraněná realizací tohoto děje Množství informace ve zprávě tedy měříme podle toho, o kolik se sníží neurčitost nebo nejistota, když zprávu přijmeme a pochopíme Pojem informační entropie míra neurčitosti, která se po přijetí zprávy odstraňuje a vyjadřuje tak množství informace obsažené ve zprávě Jak kvantifikovat rozšíření okruhu znalostí příjemce? Pravděpodobnost zprávy spojeno s individuálními vlastnostmi příjemce (Shannon) Jev náhodný proces s n možnými realizacemi tah sportky, účast na přednášce, semafor na křižovatce aj Realizace jevu jeden projev, získání výsledku vytažení 6 čísel, konkrétní počet osob na přednášce, svítící zelená na semaforu aj Požadované vlastnosti funkce pro výpočet množství informace Jev X má n realizací, množství informace je tedy funkcí n Jediná realizace jevu X pokud n = 1, jedná se o jev jistý množství informace je rovno nule Současně probíhající nezávislé jevy X a Y p(x, y) = p(x) p(y) množství informace je dáno součtem množství informace u jednotlivých jevů: f(x, y) = f(x) + f(y) Porovnání pro dva odlišné jevy X a Y jev X má n realizací, jev Y má m realizací je-li m > n, pak chceme i f(m) > f(n) 11/44 Výpočet vlastní informace Jediná funkce, která vyhovuje uvedeným podmínkám, je logaritmus I(x) = log n Předpokládáme, že pravděpodobnost každé realizace je stejná, tedy kde n je počet realizací Úpravou dostáváme p(x) = 1 n, n = 1 p(x) 12/44

4 Výpočet vlastní informace 13/44 Aplikace vlastní informace 14/44 Vlastní informace výsledku realizace x I(x) = log p(x) Základ logaritmu principiálně není podstatný, ale používají se logaritmy o základu 2 (výsledek v bitech) I(x) = log 2 p(x) Vlastní informace se nazývá též částečná informace Počítání s logaritmy log a x = log b x log b a = log a b log b x Výpočet vlastní informace v bitech = výpočet prostoru pro zadaný počet hodnot příklad: barevná hloubka rastrového obrazu Velikost prostoru v počítači pro určitý údaj hodnocení úspornosti příklad: uložení 6 tažených čísel Sportky znaky, čísla malá, velká, souhrn, kódování Příklad: věta s nezávislými současně vzniklými realizacemi (Auto 1B černé barvy přijelo na křižovatku Horní Jasanová v 19:10 hodin) log 2 x = log 2 10 log x = 3,322 log x Řešený příklad 15/44 Entropie 16/44 Jakou vlastní informaci nese zpráva o výsledku losování určitých 5 čísel z 20? Aplikujeme vztah pro výpočet vlastní informace I(x) = log 2 p(x) Jaká je pravděpodobnost vytažení konkrétní pětice čísel? Dosadíme do vzorce 1 1 I(x) = log 2 ( 20 ) = log = 13,92 5 V jakých jednotkách je výsledek a co nám výsledná hodnota říká? Jak spočítat informační množství celého jevu? Pomůžeme si shrnutím všech vlastních informací jednotlivých realizací Předpokládejme, že jev X má n realizací x1, x2,, x n s pravděpodobnostmi p(x1), p(x2),, p(x n) Entropie H(X) je dána určitou střední hodnotou vlastních informací všech realizací jevů n n H(X) = p(x i) log 2 p(x i) = p(x i) I(x i) i=1 Entropie zahrnující informační množství celého jevu se nazývá též úplná informace i=1

5 Příklad 17/44 Příklad 18/44 Počáteční situace soutěžící v televizní soutěži má na výběr ze čtyř odpovědí na zadanou otázku správnou odpověď však nezná a dokonce ani žádnou variantu nepreferuje Nejistota soutěžícího v této situaci správná odpověď může být se stejnou pravděpodobností kterákoliv ze čtyř nabídnutých Následující situace soutěžící požádá o nápovědu 50 na 50 na výběr už má jen dvě varianty Nejistota soutěžícího v této situaci správná odpověď může být se stejnou pravděpodobností kterákoliv ze dvou nabídnutých p(xi) = 0,5 p(xi) = 0,25 Hodnota informační entropie soutěžícího H(X) = 4 0,25 log 2 0,25 = log 2 0,25 = 2 Hodnota informační entropie soutěžícího H(X) = 2 0,5 log 2 0,5 = log 2 0,5 = 1 Příklad 19/44 Odvození nejmenší míry informace 20/44 Následující situace soutěžící si vybere jednu variantu a odpoví na otázku vzápětí se dozví správnou odpověď Nejistota soutěžícího v této situaci správnou odpověď soutěžící v tuto chvíli již zná p(x) = 1 Entropie nabývá nejvyšší hodnoty při stejné pravděpodobnosti výskytu realizací x i Potom platí H(X) = log 2 p(x) Nejmenší jednotka míry informace (1 bit) je odvozena od entropie jevu, který má jen dvě stejně pravděpodobné realizace Hodnota informační entropie soutěžícího H(X) = 2 0,5 log 2 0,5 = log 2 0,5 = 1 H(X) = 1 log 2 1 = log 2 1 = 0

6 Řešený příklad 21/44 Signál 22/44 Vypočtěte entropii zdroje zpráv: Na železničním návěstidle je možné nastavit návěstí Stůj, které svítí 80 % času, a pak dalších 5 různých návěští s přibližně stejnou pravděpodobností Možné realizace jevu X x1 p(x1) = 0,8 x2 p(x2) = 0,04 x3 p(x3) = 0,04 x4 p(x4) = 0,04 x5 p(x5) = 0,04 x6 p(x6) = 0,04 Dosadíme do vzorce H(X) = (0,8 log 2 0, ,04 log 2 0,04) = 1,19 Základní podmínkou využívání informací je jejich výměna mezi příjemci a odesilateli Informace má nehmotnou povahu, přenos musí být proveden nějakým fyzikálním procesem Nositelem informace nazýváme signál Fyzikální veličinu lze matematicky modelovat funkcí prostoru a času s = f(x, y, z, t), kde s je libovolný signál vyjádřený nezávislými souřadnicemi místa (x, y, z) a časovým parametrem t Dělení signálů dle časového parametru t 23/44 Diskrétní signál 24/44 Spojité každý časový okamžik signálu nese určitou informaci telefonní rozhovory Diskrétní signál nese informaci jen v některých okamžicích telegrafní zprávy vzorkování před přenosem Statické hodnota t nemá vliv na hodnotu signálu kniha, mapa Dynamické hodnota signálu závisí na hodnotě t televizní přenos po přenosu zkresleno rekonstrukce

7 Komunikace 25/44 Kódování informace 26/44 Informační vazba vzniká mezi dvěma systémy tvorbou, přenosem a výměnou informace Informační vazba umožňuje tzv komunikaci Komunikace jedním směrem tvoří jednoduchý komunikační řetěz Základní podmínkou komunikace je vytvoření signálního komunikačního kanálu Informaci je pro tento účel nutné transformovat, tj vyjádřit v jiném jazyce s jinou abecedou Přiřazení znaků jedné abecedy znakům jiné abecedy se nazývá kódování, inverzní postup pak dekódování Předpis, který toto přiřazování definuje, se nazývá kód zdroj kódování přenosový kanál dekódování cíl Kvalita kódování, redundance 27/44 Způsoby kódování 28/44 Z hlediska optimálního přenosu je efektivní kód, který obsahuje minimální počet informačních prvků, každý znak kódu tedy má maximální entropii Maximální entropii má kód, kde všechny znaky abecedy jsou stejně možné a jejich vzájemný výskyt není závislý Kvantitativně je hospodárnost kódu vyčíslitelná redundancí (nadbytečností) R = 1 H Hmax H entropie jazyka Hmax maximální entropie při použití téže abecedy Redundance evropských jazyků je větší než 0,5 (0,75?) Rovnoměrné kódování každému znaku je přiřazen stejně dlouhý kód obvykle je jednodušší, rychlejší na zpracování, ale méně hospodárné Baudotovo kódování Nerovnoměrné kódování každému znaku je přiřazen jinak dlouhý kód pro konstrukci a zpracování je obtížnější, může však být maximálně hospodárné Shannon Fanovo kódování, Huffmanovo kódování

8 Příklady kódů 29/44 Zjištění efektivnosti kódu výpočtem entropie 30/44 Zdroj produkuje 4 nezávislé znak A, B, C, D Stejné pravděpodobnosti Znak p 1 (x) Kód 1 Kód 2 A 0, B 0, C 0, D 0, Který kód je efektivnější? Různé pravděpodobnosti Znak p 2 (x) Kód 1 Kód 2 A 0, B 0, C 0, D 0, Znak p(x) Výskytů Kód Kód A 0, B 0, C 0, D 0, Zpráva ( 1000 H(X1) = 2000 log ) 2000 log = 1, ( 750 H(X2) = 2250 log ) 2250 log = 0, Zjištění efektivnosti kódu výpočtem entropie 31/44 Výpočet optimálního kódu 32/44 Znak p(x) Výskytů Kód Kód A 0, B 0, C 0, D 0, Zpráva ( 1375 H(X1) = 2000 log ) 2000 log = 0, ( 875 H(X2) = 1750 log ) 1750 log = 1, Shannon Fanův algoritmus Znaky uspořádáme sestupně podle pravděpodobnosti jejich výskytu Vypočteme kumulativní pravděpodobnosti Rozdělíme znaky do dvou skupin tak, aby jejich součtové pravděpodobnosti byly blízké 0,5 Předchozí krok opakujeme tak dlouho, dokud existují vícečlenné skupiny znaků

9 Shannon Fanův algoritmus 33/44 Proč zabezpečovat? 34/44 Znak p(x) s(x) Skupiny Výsledek x1 0,30 1, x2 0,24 0, x3 0,20 0, x4 0,15 0, x5 0,11 0, ( 139 H(X) = 246 log ) 246 log = 0, R = 1 0,988 = 0,012 1 Při přenosu může nastat chyba vlivem technické nedokonalosti přenosového kanálu Při přenosu může nepovolaná osoba číst přenášená data Při přenosu může nepovolaná osoba modifikovat přenášená data Zabezpečení proti technickým nedokonalostem přenosu Chyba změna 0 1 nebo 1 0 Násobnost chyby počet chyb v jednotce dat jednonásobná chyba například jedna chyba v přeneseném bytu dvojnásobná chyba, vícenásobná chyba četnost chyb s násobností obvykle prudce klesá (např 0,001/s; 0,000 03/s) četnost chyb je velmi relativní, záleží na zařízení 35/44 Detekce chyby Detekce chyby zjištění, že v přeneseném úseku nastala chyba, není však známo přesné místo Možnosti detekce parita kontrolní součet Obojí na podobném principu detekce chyb s lichou násobností jednoduchá realizace široké použití 36/44

10 Parita Kontrolní součet Detekce parita 37/44 Detekce kontrolní součet 38/44 Parita doplnění binárních jedniček na sudý počet sudá parita lichý počet lichá parita Jednoduchá parita jeden paritní bit Kombinovaná parita více paritních bitů Příklady: jednoduchá parita realizovaná devátým bitem (operační paměť) sudá: lichá: jednoduchá parita realizovaná osmým bitem (Internet) sudá: lichá: kombinovaná parita pracuje na stejném principu, ale paritních bitů je vícenásobná (první čtveřice, druhá, liché bity, sudé bity) sudá: Kontrolní součet přídavný údaj vypočtený z dat zvoleným způsobem a kontrolovaný stejným postupem na přijímací straně Používají se různé varianty pro různé účely podélná parita CRC (Cyclic Redundancy Check) hashování (otisk prstu, miniatura) MD5 (Message Digest Algorithm) SHA (Secure Hash Algorithm) Kontrolní součet Kontrolní součet Podélná parita 39/44 Oprava chyb 40/44 Operace aritmetického součtu bez přenosu do vyššího řádu (XOR) Detekce místa chyby pak stačí provést opravu inverzí příslušného bitu Jednoduchá detekce kombinovanou paritou nebo kombinací příčné a podélné parity Složitější detekce použitím samoopravného kódu Každý bit kontrolního součtu doplňuje počet binárních jedniček v příslušném řádu na sudý počet Proto se kontrolnímu součtu někdy říká podélná parita

11 Kontrolní součet Samoopravný kód Kombinace parit 41/44 Samoopravný kód 42/44 Chyba se projeví v několika místech podle hodnoty paritních bitů lze zjistit místo chyby Kód schopný detekovat místo chyby Příklad: Hammingův kód založen na existenci povolených a zakázaných kódových kombinací Hammingova vzdálenost určuje se pro dvě hodnoty a je rovna počtu rozdílných bitů x = y = h = 3 Samoopravný kód Samoopravný kód Princip Hammingova kódu 43/44 Detekce a oprava chyby 44/44 Povolené hodnoty kódové kombinace, které mají od sebe navzájem Hammingovu vzdálenost minimálně k Zakázané hodnoty všechny ostatní kódové kombinace, jejich podstatně více než povolených Přenos kódové informace získá-li se po přenosu zakázaná kombinace, buď je detekována chyba, nebo se podle Hammingovy vzdálenosti určí nejbližší povolená hodnota Kód (část): povolené hodnoty vyznačeny, k = Přenos: OK Oprava Detekce Násobnost chyby < k/2 oprava, násobnost = k/2 detekce

Informace v počítači. Výpočetní technika I. Ing. Pavel Haluza ústav informatiky PEF MENDELU v Brně haluza@mendelu.cz

Informace v počítači. Výpočetní technika I. Ing. Pavel Haluza ústav informatiky PEF MENDELU v Brně haluza@mendelu.cz .. Informace v počítači Ing. Pavel Haluza ústav informatiky PEF MENDELU v Brně haluza@mendelu.cz Osnova přednášky Úvod do teorie informace základní pojmy měření množství informace ve zprávě přenos a kódování

Více

Úvod do teorie informace

Úvod do teorie informace PEF MZLU v Brně 24. září 2007 Úvod Výměna informací s okolím nám umožňuje udržovat vlastní existenci. Proces zpracování informací je trvalý, nepřetržitý, ale ovlivnitelný. Zabezpečení informací je spojeno

Více

1. Základy teorie přenosu informací

1. Základy teorie přenosu informací 1. Základy teorie přenosu informací Úvodem citát o pojmu informace Informace je název pro obsah toho, co se vymění s vnějším světem, když se mu přizpůsobujeme a působíme na něj svým přizpůsobováním. N.

Více

Formáty uložení dat Výpočetní technika I

Formáty uložení dat Výpočetní technika I .. Výpočetní technika I Ing. Pavel Haluza ústav informatiky PEF MENDELU v Brně pavel.haluza@mendelu.cz Osnova přednášky otevřený a uzavřený formát rozpoznávání formátu asociace a konverze komprimační metody

Více

Kódováni dat. Kódy používané pro strojové operace

Kódováni dat. Kódy používané pro strojové operace Kódováni dat Před zpracováním dat například v počítači je třeba znaky převést do tvaru, kterému počítač rozumí, tj. přiřadit jim určité kombinace bitů. Tomuto převodu se říká kódování. Kód je předpis pro

Více

Teorie informace 21.9.2014. Obsah. Kybernetika. Radim Farana Podklady pro výuku

Teorie informace 21.9.2014. Obsah. Kybernetika. Radim Farana Podklady pro výuku Teorie Radim Farana Podklady pro výuku Obsah Seznámení s problematikou a obsahem studovaného předmětu. Základní pojmy z Teorie, jednotka, informační obsah zprávy, střední délka zprávy, redundance. Kód.

Více

Teorie informace Obsah. Kybernetika. Radim Farana Podklady pro výuku

Teorie informace Obsah. Kybernetika. Radim Farana Podklady pro výuku Teorie Radim Farana Podklady pro výuku Obsah Seznámení s problematikou a obsahem studovaného předmětu. Základní pojmy z Teorie, jednotka, informační obsah zprávy, střední délka zprávy, redundance. Kód.

Více

Kódování signálu. Problémy při návrhu linkové úrovně. Úvod do počítačových sítí. Linková úroveň

Kódování signálu. Problémy při návrhu linkové úrovně. Úvod do počítačových sítí. Linková úroveň Kódování signálu Obecné schema Kódování NRZ (bez návratu k nule) NRZ L NRZ S, NRZ - M Kódování RZ (s návratem k nule) Kódování dvojí fází Manchester (přímý, nepřímý) Diferenciální Manchester 25.10.2006

Více

Automatizační technika. Obsah

Automatizační technika. Obsah 7.09.016 Akademický rok 016/017 Připravil: Radim Farana Automatizační technika Základy teorie Obsah Informace Jednotka Zdroj Kód Přenosový řetězec Prostředky sběru, zobrazování, přenosu, zpracování a úschovy

Více

Informace, kódování a redundance

Informace, kódování a redundance Informace, kódování a redundance INFORMACE = fakt nebo poznatek, který snižuje neurčitost našeho poznání (entropii) DATA (jednotné číslo ÚDAJ) = kódovaná zpráva INFORAMCE = DATA + jejich INTERPRETACE (jak

Více

Náhodné (statistické) chyby přímých měření

Náhodné (statistické) chyby přímých měření Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2013/2014 Radim Farana. Obsah. Kybernetika

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2013/2014 Radim Farana. Obsah. Kybernetika 2 Podklady předmětu pro akademický rok 2013/2014 Radim Farana Obsah Základní pojmy z Teorie informace, jednotka informace, informační obsah zprávy, střední délka zprávy, redundance. Přenosový řetězec.

Více

KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut.

KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut. 1/24 KOMPRESE OBRAZŮ Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac KOMPRESE OBRAZŮ, ÚVOD 2/24 Cíl:

Více

Kódy pro odstranění redundance, pro zabezpečení proti chybám. Demonstrační cvičení 5 INP

Kódy pro odstranění redundance, pro zabezpečení proti chybám. Demonstrační cvičení 5 INP Kódy pro odstranění redundance, pro zabezpečení proti chybám Demonstrační cvičení 5 INP Princip kódování, pojmy Tady potřebujeme informaci zabezpečit, utajit apod. zpráva 000 111 000 0 1 0... kodér dekodér

Více

Algoritmy komprese dat

Algoritmy komprese dat Algoritmy komprese dat Úvod do teorie informace Claude Shannon (1916 2001) 5.11.2014 NSWI072-7 Teorie informace Informace Co je to informace? Můžeme informaci měřit? Existují teoretické meze pro délku

Více

[1] samoopravné kódy: terminologie, princip

[1] samoopravné kódy: terminologie, princip [1] Úvod do kódování samoopravné kódy: terminologie, princip blokové lineární kódy Hammingův kód Samoopravné kódy, k čemu to je [2] Data jsou uložena (nebo posílána do linky) kodérem podle určitého pravidla

Více

Kódy a kódování dat. Binární (dvojkové) kódy. Kód Aikenův

Kódy a kódování dat. Binární (dvojkové) kódy. Kód Aikenův Kódy a kódování dat Kódování je proces, při kterém se každému znaku nebo postupnosti znaků daného souboru znaků jednoznačně přiřadí znak nebo postupnost znaků z jiného souboru znaků. Kódování je tedy transformace

Více

Informatika Kódování. Obsah. Kód. Radim Farana Podklady předmětu Informatika pro akademický rok 2007/2008

Informatika Kódování. Obsah. Kód. Radim Farana Podklady předmětu Informatika pro akademický rok 2007/2008 Informatika Kódování Radim Farana Podklady předmětu Informatika pro akademický rok 27/28 Obsah Základy pojmy diskrétních kódů. Druhy kódů. Nejkratší kódy. Detekce chyb, Hammingova vdálenost. Kontrolní

Více

Informace, kódování a redundance

Informace, kódování a redundance Informace, kódování a redundance Data (jednotné číslo údaj) obvykle chápeme jako údaje, tj. číselné hodnoty, znaky, texty a další fakta zaznamenaná (a uložená v databázi) ve formě uspořádané posloupnosti

Více

Teorie informace: řešené příklady 2014 Tomáš Kroupa

Teorie informace: řešené příklady 2014 Tomáš Kroupa Teorie informace: řešené příklady 04 Tomáš Kroupa Kolik otázek je třeba v průměru položit, abychom se dozvěděli datum narození člověka (den v roce), pokud odpovědi jsou pouze ano/ne a tázaný odpovídá pravdivě?

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

DSY-6. Přenosový kanál kódy pro zabezpečení dat Základy šifrování, autentizace Digitální podpis Základy měření kvality přenosu signálu

DSY-6. Přenosový kanál kódy pro zabezpečení dat Základy šifrování, autentizace Digitální podpis Základy měření kvality přenosu signálu DSY-6 Přenosový kanál kódy pro zabezpečení dat Základy šifrování, autentizace Digitální podpis Základy měření kvality přenosu signálu Kódové zabezpečení přenosu dat Popis přiřazení kódových slov jednotlivým

Více

Diskrétní matematika. DiM /01, zimní semestr 2016/2017

Diskrétní matematika. DiM /01, zimní semestr 2016/2017 Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2016/2017 O tomto souboru Tento soubor je zamýšlen především jako pomůcka

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.025 0.02 0.015 0.01 0.005 Nominální napětí v pásnici Std Mean 140 160 180 200 220 240 260 Std Téma 2: Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Pravděpodobnostní posuzování

Více

VY_32_INOVACE_E 15 03

VY_32_INOVACE_E 15 03 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory

Více

Digitální signály a kódy

Digitální signály a kódy EVROPSKÝ SOCIÁLNÍ FOND Digitální signály a kódy PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206 Digitální signál

Více

Matematika I (KMI/PMATE)

Matematika I (KMI/PMATE) Přednáška první aneb Úvod do matematické analýzy Funkce a její vlastnosti Úvod do matematické analýzy Osnova přednášky pojem funkce definice funkce graf funkce definiční obor funkce obor hodnot funkce

Více

1 Co jsou lineární kódy

1 Co jsou lineární kódy 1 Žádný záznam informace a žádný přenos dat není absolutně odolný vůči chybám. Někdy je riziko poškození zanedbatelné, v mnoha případech je však zaznamenaná a přenášená informace jištěna přidáním dat,

Více

Číselné vyjádření hodnoty. Kolik váží hrouda zlata?

Číselné vyjádření hodnoty. Kolik váží hrouda zlata? Čísla a logika Číselné vyjádření hodnoty Au Kolik váží hrouda zlata? Dekadické vážení Když přidám osmé závaží g, váha se převáží => závaží zase odeberu a začnu přidávat závaží x menší 7 závaží g 2 závaží

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

Základní komunikační řetězec

Základní komunikační řetězec STŘEDNÍ PRŮMYSLOVÁ ŠKOLA NA PROSEKU EVROPSKÝ SOCIÁLNÍ FOND Základní komunikační řetězec PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Podpora kvality výuky informačních a telekomunikačních technologií ITTEL

Více

0.1 Úvod do matematické analýzy

0.1 Úvod do matematické analýzy Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Pojem funkce Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost

Více

http://bruxy.regnet.cz/fel/ Hammingův kód Binární kód se nazývá Hammingův, jestliže má kontrolní matici, jejíž sloupce jsou všechna nenulová slova dané délky n k = r a žádné z nich se neopakuje. Jedná

Více

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů Kapitola 1 Signály a systémy 1.1 Klasifikace signálů Signál představuje fyzikální vyjádření informace, obvykle ve formě okamžitých hodnot určité fyzikální veličiny, která je funkcí jedné nebo více nezávisle

Více

pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti.

pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. 3.1 Základy teorie pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. Co se dozvíte Náhodný pokus a náhodný jev. Pravděpodobnost, počítání s pravděpodobnostmi.

Více

uvedení do problematiky i Bezpečnostní kódy: detekční kódy = kódy zjišťující chyby samoopravné kódy = kódy opravující chyby příklady kódů:

uvedení do problematiky i Bezpečnostní kódy: detekční kódy = kódy zjišťující chyby samoopravné kódy = kódy opravující chyby příklady kódů: I. Bezpečnostníkódy úvod základní pojmy počet zjistitelných a opravitelných chyb 2prvkové těleso a lineární prostor jednoduché bezpečnostní kódy lineární kódy Hammingův kód smysluplnost bezpečnostních

Více

Komprese dat. Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI. přednášky

Komprese dat. Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI. přednášky Komprese dat Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI přednášky Statistické metody Jan Outrata (Univerzita Palackého v Olomouci) Komprese dat Olomouc, únor březen 2016 1 / 23 Tunstallův

Více

13 Barvy a úpravy rastrového

13 Barvy a úpravy rastrového 13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody

Více

Matematika (KMI/PMATE)

Matematika (KMI/PMATE) Úvod do matematické analýzy Funkce a její vlastnosti Funkce a její vlastnosti Veličina Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Funkce a její

Více

PŘEDNÁŠKA PS 6 Přenos dat v počítačových sítích

PŘEDNÁŠKA PS 6 Přenos dat v počítačových sítích PŘEDNÁŠKA PS 6 Přenos dat v počítačových sítích Část 2 Osnova Metody detekce chybovosti Pravděpodobnost chyby ve zprávě Parita Kontrolní blokový součet (pseudosoučet) Redundantní cyklické kódy Jiný způsob

Více

Zobrazení dat Cíl kapitoly:

Zobrazení dat Cíl kapitoly: Zobrazení dat Cíl kapitoly: Cílem této kapitoly je sezn{mit čten{ře se způsoby z{pisu dat (čísel, znaků, řetězců) v počítači. Proto jsou zde postupně vysvětleny číselné soustavy, způsoby kódov{ní české

Více

Základní definice Aplikace hašování Kontrukce Známé hašovací funkce. Hašovací funkce. Jonáš Chudý. Úvod do kryptologie

Základní definice Aplikace hašování Kontrukce Známé hašovací funkce. Hašovací funkce. Jonáš Chudý. Úvod do kryptologie Úvod do kryptologie Základní definice Kryptografická hašovací funkce Kryptografickou hašovací funkcí nazveme zobrazení h, které vstupu X libovolné délky přiřadí obraz h(x) pevné délky m a navíc splňuje

Více

Matematika IV 10. týden Kódování

Matematika IV 10. týden Kódování Matematika IV 10. týden Kódování Jan Slovák Masarykova univerzita Fakulta informatiky 22. 26. 4. 2013 Obsah přednášky 1 (n, k) kódy 2 Polynomiální kódy 3 Lineární kódy Kde je dobré číst? připravovaná učebnice

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.05 0.0 0.05 0.0 0.005 Nominální napětí v pásnici Std Mean 40 60 80 00 0 40 60 Std Téma : Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník

Více

Jednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45.

Jednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. Jednoduché cykly Tento oddíl obsahuje úlohy na první procvičení práce s cykly. Při řešení každé ze zde uvedených úloh stačí použít vedle podmíněných příkazů jen jediný cyklus. Nepotřebujeme používat ani

Více

KIS A JEJICH BEZPEČNOST I ZÁKLADY TEORIE INFORMACE DOC. ING. BOHUMIL BRECHTA, CSC.

KIS A JEJICH BEZPEČNOST I ZÁKLADY TEORIE INFORMACE DOC. ING. BOHUMIL BRECHTA, CSC. KIS A JEJICH BEZPEČNOST I ZÁKLADY TEORIE INFORMACE DOC. ING. BOHUMIL BRECHTA, CSC. Operační program Vzdělávání pro konkurenceschopnost Projekt: Vzdělávání pro bezpečnostní systém státu (reg. č.: CZ.1.01/2.2.00/15.0070)

Více

Definice 7.2. Nejmenší přirozené číslo k, pro které je graf G k-obarvitelný, se nazývá chromatické číslo (barevnost) grafu G a značí se χ(g).

Definice 7.2. Nejmenší přirozené číslo k, pro které je graf G k-obarvitelný, se nazývá chromatické číslo (barevnost) grafu G a značí se χ(g). 7 Barevnost grafu Definice 71 Graf G se nazývá k-obarvitelný, jestliže každému jeho uzlu lze přiřadit jednu z barev 1 k tak, že žádné dva sousední uzly nemají stejnou barvu Definice 72 Nejmenší přirozené

Více

Statistická teorie učení

Statistická teorie učení Statistická teorie učení Petr Havel Marek Myslivec přednáška z 9. týdne 1 Úvod Představme si situaci výrobce a zákazníka, který si u výrobce objednal algoritmus rozpoznávání. Zákazník dodal experimentální

Více

Disková pole (RAID) 1

Disková pole (RAID) 1 Disková pole (RAID) 1 Architektury RAID Základní myšlenka: snaha o zpracování dat paralelně. Pozice diskové paměti v klasickém personálním počítači vyhovuje pro aplikace s jedním uživatelem. Řešení: data

Více

+ 1. doc. Ing. Jan Skrbek, Dr. - KIN. Konzultace: pondělí nebo dle dohody. Spojení:

+ 1. doc. Ing. Jan Skrbek, Dr. - KIN. Konzultace: pondělí nebo dle dohody. Spojení: Informatika I - 5 Sémiotický model informací Sémantická a pragmatická pravidla zpracování informací, znalosti, kompetence, hodnota informace, rozhodování. Přednáší: doc. Ing. Jan Skrbek, Dr. - KIN Konzultace:

Více

ednáška a metody digitalizace telefonního signálu Ing. Bc. Ivan Pravda

ednáška a metody digitalizace telefonního signálu Ing. Bc. Ivan Pravda 2.předn ednáška Telefonní kanál a metody digitalizace telefonního signálu Ing. Bc. Ivan Pravda Telekomunikační signály a kanály - Při přenosu všech druhů telekomunikačních signálů je nutné řešit vztah

Více

Čísla, reprezentace, zjednodušené výpočty

Čísla, reprezentace, zjednodušené výpočty Čísla, reprezentace, zjednodušené výpočty Přednáška 4 A3B38MMP kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2014, J.Fischer, ČVUT - FEL, kat. měření 1 Čísla 4 bitová dec bin. hex. 0 0000 0 1 0001

Více

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY 4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY Průvodce studiem V této kapitole se seznámíte se základními typy rozložení diskrétní náhodné veličiny. Vašim úkolem by neměla být

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Jana

Více

PB169 Operační systémy a sítě

PB169 Operační systémy a sítě PB169 Operační systémy a sítě Řízení přístupu k médiu, MAC Marek Kumpošt, Zdeněk Říha Řízení přístupu k médiu Více zařízení sdílí jednu komunikační linku Zařízení chtějí nezávisle komunikovat a posílat

Více

I. D i s k r é t n í r o z d ě l e n í

I. D i s k r é t n í r o z d ě l e n í 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti.

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti. Přednáška č. 1 Úvod do statistiky a počtu pravděpodobnosti Statistika Statistika je věda a postup jak rozvíjet lidské znalosti použitím empirických dat. Je založena na matematické statistice, která je

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Diskrétní náhodná veličina

Diskrétní náhodná veličina Lekce Diskrétní náhodná veličina Výsledek náhodného pokusu může být vyjádřen slovně to vede k zavedení pojmu náhodného jevu Výsledek náhodného pokusu můžeme někdy vyjádřit i číselně, což vede k pojmu náhodné

Více

Fyzikální korespondenční seminář MFF UK

Fyzikální korespondenční seminář MFF UK Úloha I.S... náhodná 10 bodů; průměr 7,04; řešilo 45 studentů a) Zkuste vlastními slovy popsat, co je to náhodná veličina a jaké má vlastnosti (postačí vlastními slovy objasnit následující pojmy: náhodná

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška devátá Miroslav Kolařík Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008 Obsah 1 Kombinatorika: princip inkluze a exkluze 2 Počítání

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

p(x) = P (X = x), x R,

p(x) = P (X = x), x R, 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

9. PRINCIPY VÍCENÁSOBNÉHO VYUŽITÍ PŘENOSOVÝCH CEST

9. PRINCIPY VÍCENÁSOBNÉHO VYUŽITÍ PŘENOSOVÝCH CEST 9. PRINCIPY VÍCENÁSOBNÉHO VYUŽITÍ PŘENOSOVÝCH CEST Modulace tvoří základ bezdrátového přenosu informací na velkou vzdálenost. V minulosti se ji využívalo v telekomunikacích při vícenásobném využití přenosových

Více

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika. 4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti

Více

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické MODELY ŘÍZENÍ ZÁSOB Význam zásob spočívá především v tom, že - vyrovnávají časový nebo prostorový nesoulad mezi výrobou a spotřebou - zajišťují plynulou výrobu nebo plynulé dodávky zboží i při nepředvídaných

Více

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika Teorie pravděpodobnosti popisuje vznik náhodných dat, zatímco matematická statistika usuzuje z dat na charakter procesů, jimiž data vznikla. NÁHODNOST - forma existence látky,

Více

+ 1. doc. Ing. Jan Skrbek, Dr. - KIN. Konzultace: pondělí 10 00 11 00 nebo dle dohody. Spojení: e-mail: jan.skrbek@tul.cz tel.: 48 535 2442.

+ 1. doc. Ing. Jan Skrbek, Dr. - KIN. Konzultace: pondělí 10 00 11 00 nebo dle dohody. Spojení: e-mail: jan.skrbek@tul.cz tel.: 48 535 2442. Informatika I - 6 Číselné soustavy, redundance, komprimace. Sémantická a pragmatická pravidla zpracování informací, znalosti, kompetence, hodnota informace, rozhodování. Přednáší: doc. Ing. Jan Skrbek,

Více

Mikroprocesorová technika (BMPT)

Mikroprocesorová technika (BMPT) Mikroprocesorová technika (BMPT) Přednáška č. 10 Číselné soustavy v mikroprocesorové technice Ing. Tomáš Frýza, Ph.D. Obsah přednášky Číselné soustavy v mikroprocesorové technice Dekadická, binární, hexadecimální

Více

Teorie informace II: obtížnější řešené příklady 2014 Tomáš Kroupa

Teorie informace II: obtížnější řešené příklady 2014 Tomáš Kroupa Teorie informace II: obtížnější řešené příklady 204 Tomáš Kroupa. Máme n mincí, z nichž nejvýše jedna je falešná. Pozná se podle toho, že má jinou hmotnost než ostatní mince (ty váží všechny stejně). Mince

Více

23. Matematická statistika

23. Matematická statistika Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 23. Matematická statistika Statistika je věda, která se snaží zkoumat reálná data a s pomocí teorii pravděpodobnosti

Více

REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ

REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ 5 přednáška S funkcemi se setkáváme na každém kroku ve všech přírodních vědách ale i v každodenním životě Každá situace kdy jsou nějaký jev nebo veličina jednoznačně určeny

Více

Způsoby realizace této funkce:

Způsoby realizace této funkce: KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je výstup určen jen výhradně kombinací vstupních veličin. Hodnoty výstupních veličin nezávisejí na předcházejícím stavu logického obvodu, což znamená, že kombinační

Více

25. DIGITÁLNÍ TELEVIZNÍ SIGNÁL A KABELOVÁ TELEVIZE

25. DIGITÁLNÍ TELEVIZNÍ SIGNÁL A KABELOVÁ TELEVIZE 25. DIGITÁLNÍ TELEVIZNÍ SIGNÁL A KABELOVÁ TELEVIZE Digitalizace obrazu a komprese dat. Uveďte bitovou rychlost nekomprimovaného číslicového TV signálu a jakou šířku vysílacího pásma by s dolním částečně

Více

Exponenciální funkce. a>1, pro a>0 a<1 existuje jiný graf, který bude uveden za chvíli. Z tohoto

Exponenciální funkce. a>1, pro a>0 a<1 existuje jiný graf, který bude uveden za chvíli. Z tohoto Exponenciální funkce Exponenciální funkce je taková funkce, která má neznámou na místě exponentu. Symbolický zápis by tedy vypadal takto: f:y = a x, kde a > 0 a zároveň a 1 (pokud by se a mohlo rovnat

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více

Disková pole (RAID) 1

Disková pole (RAID) 1 Disková pole (RAID) 1 Architektury RAID Důvod zavedení RAID: reakce na zvyšující se rychlost procesoru. Pozice diskové paměti v klasickém personálním počítači vyhovuje pro aplikace s jedním uživatelem.

Více

Komprese dat Obsah. Komprese videa. Radim Farana. Podklady pro výuku. Komprese videa a zvuku. Komprese MPEG. Komprese MP3.

Komprese dat Obsah. Komprese videa. Radim Farana. Podklady pro výuku. Komprese videa a zvuku. Komprese MPEG. Komprese MP3. Komprese dat Radim Farana Podklady pro výuku Obsah Komprese videa a zvuku. Komprese MPEG. Komprese MP3. Komprese videa Velký objem přenášených dat Typický televizní signál - běžná evropská norma pracuje

Více

Digitální modulace. Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206

Digitální modulace. Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206 EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206 Modulace analogových modulací modulační i

Více

Disková pole (RAID) 1

Disková pole (RAID) 1 Disková pole (RAID) 1 Architektury RAID Důvod zavedení RAID: reakce na zvyšující se rychlost procesoru. Pozice diskové paměti v klasickém personálním počítači vyhovuje pro aplikace s jedním uživatelem.

Více

Počítačové sítě Datový spoj

Počítačové sítě Datový spoj (Data Link) organizovaný komunikační kanál Datové jednotky rámce (frames) indikátory začátku a konce signálu, režijní informace (identifikátor zdroje a cíle, řídící informace, informace o stavu spoje,

Více

Popisná statistika kvantitativní veličiny

Popisná statistika kvantitativní veličiny StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali

Více

Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice

Více

Informační a znalostní systémy

Informační a znalostní systémy Informační a znalostní systémy Teorie pravděpodobnosti není v podstatě nic jiného než vyjádření obecného povědomí počítáním. P. S. de Laplace Pravděpodobnost a relativní četnost Pokusy, výsledky nejsou

Více

Informatika 1-4. doc. Ing. Jan Skrbek, Dr. KIN. Spojení: Ing. Bc. Marian Lamr INN

Informatika 1-4. doc. Ing. Jan Skrbek, Dr. KIN. Spojení:    Ing. Bc. Marian Lamr INN Informatika 1-4 Informační bariéry, kognitivní aspekty informací informační zahlcení. Vymezení definice informace pro různé disciplíny, Wienerovo a Shanonovo pojetí informace, entropie. Přednáší: Konzultace:

Více

Základní pojmy. Program: Algoritmus zapsaný v programovacím jazyce, který řeší nějaký konkrétní úkol. Jedná se o posloupnost instrukcí.

Základní pojmy. Program: Algoritmus zapsaný v programovacím jazyce, který řeší nějaký konkrétní úkol. Jedná se o posloupnost instrukcí. Základní pojmy IT, číselné soustavy, logické funkce Základní pojmy Počítač: Stroj na zpracování informací Informace: 1. data, která se strojově zpracovávají 2. vše co nám nebo něčemu podává (popř. předává)

Více

Náhodný vektor a jeho charakteristiky

Náhodný vektor a jeho charakteristiky Náhodný vektor a jeho číselné charakteristiky 1 Náhodný vektor a jeho charakteristiky V následující kapitole budeme věnovat pozornost pouze dvourozměřnému náhodnému vektoru, i když uvedené pojmy a jejich

Více

Moderní technologie linek. Zvyšování přenosové kapacity Zvyšování přenosové spolehlivosti xdsl Technologie TDMA Technologie FDMA

Moderní technologie linek. Zvyšování přenosové kapacity Zvyšování přenosové spolehlivosti xdsl Technologie TDMA Technologie FDMA Moderní technologie linek Zvyšování přenosové kapacity Zvyšování přenosové spolehlivosti xdsl Technologie TDMA Technologie FDMA Zvyšování přenosové kapacity Cílem je dosáhnout maximum fyzikálních možností

Více

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:

Více

Metody výpočtu limit funkcí a posloupností

Metody výpočtu limit funkcí a posloupností Metody výpočtu limit funkcí a posloupností Martina Šimůnková, 6. listopadu 205 Učební tet k předmětu Matematická analýza pro studenty FP TUL Značení a terminologie R značí množinu reálných čísel, rozšířenou

Více

Číselné soustavy v mikroprocesorové technice Mikroprocesorová technika a embedded systémy

Číselné soustavy v mikroprocesorové technice Mikroprocesorová technika a embedded systémy Ústav radioelektroniky Vysoké učení technické v Brně Číselné soustavy v mikroprocesorové technice Mikroprocesorová technika a embedded systémy Přednáška 8 doc. Ing. Tomáš Frýza, Ph.D. listopad 2012 Obsah

Více

Jana Vránová, 3. lékařská fakulta UK

Jana Vránová, 3. lékařská fakulta UK Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace

Více

[1] samoopravné kódy: terminologie, princip

[1] samoopravné kódy: terminologie, princip [1] Úvod do kódování samoopravné kódy: terminologie, princip blokové lineární kódy Hammingův kód cyklické kódy a) kody, 18, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l.

Více

4. Co je to modulace, základní typy modulací, co je to vícestavová fázová modulace, použití. Znázorněte modulaci, která využívá 4 amplitud a 4 fází.

4. Co je to modulace, základní typy modulací, co je to vícestavová fázová modulace, použití. Znázorněte modulaci, která využívá 4 amplitud a 4 fází. Písemná práce z Úvodu do počítačových sítí 1. Je dán kanál bez šumu s šířkou pásma 10kHz. Pro přenos číslicového signálu lze použít 8 napěťových úrovní. a. Jaká je maximální baudová rychlost? b. Jaká je

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika 1 Náhodné pokusy a náhodné jevy Činnostem, jejichž výsledek není jednoznačně určen podmínkami, za kterých probíhají, a které jsou (alespoň teoreticky) neomezeně opakovatelné,

Více

Název a označení sady: Člověk, společnost a IT technologie; VY_3.2_INOVACE_Ict.8.01 20

Název a označení sady: Člověk, společnost a IT technologie; VY_3.2_INOVACE_Ict.8.01 20 Název materiálu: INFORMACE Autor materiálu: Mgr. Irena Štaffová Zařazení materiálu: Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT (III/2) Název a označení sady: Člověk, společnost a IT technologie;

Více

7. Funkce jedné reálné proměnné, základní pojmy

7. Funkce jedné reálné proměnné, základní pojmy Moderní technologie ve studiu aplikované fyziky CZ.1.07/..00/07.0018 7. Funkce jedné reálné proměnné, základní pojmy V této chvíli jsme již ve výkladu přikročili ke kapitole, kterou můžeme považovat za

Více