Cvičení 11. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Rozměr: px
Začít zobrazení ze stránky:

Download "Cvičení 11. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc."

Transkript

1 11 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze Rudolf Blažek 2011 BI-PST, LS 2010/11 Evropský sociální fond Praha & EU: Investujeme do vaší

2 2

3 Rybáři v Jižních Čechách potřebují před vánoci odhadnout počet kaprů v relativně velkém rybníku. Postupují takto: 2

4 Rybáři v Jižních Čechách potřebují před vánoci odhadnout počet kaprů v relativně velkém rybníku. Postupují takto: Chytí a označí 100 kaprů a vypustí je zpět do rybníka. 2

5 Rybáři v Jižních Čechách potřebují před vánoci odhadnout počet kaprů v relativně velkém rybníku. Postupují takto: Chytí a označí 100 kaprů a vypustí je zpět do rybníka. Za měsíc opět chytí 100 kaprů a zjistí, že 10 jich má značku. 2

6 Rybáři v Jižních Čechách potřebují před vánoci odhadnout počet kaprů v relativně velkém rybníku. Postupují takto: Chytí a označí 100 kaprů a vypustí je zpět do rybníka. Za měsíc opět chytí 100 kaprů a zjistí, že 10 jich má značku. Odpovězte následující dotazy 2

7 Rybáři v Jižních Čechách potřebují před vánoci odhadnout počet kaprů v relativně velkém rybníku. Postupují takto: Chytí a označí 100 kaprů a vypustí je zpět do rybníka. Za měsíc opět chytí 100 kaprů a zjistí, že 10 jich má značku. Odpovězte následující dotazy Najděte hrubý odhad počtu kaprů v rybníku (bez výpočtů) 2

8 Rybáři v Jižních Čechách potřebují před vánoci odhadnout počet kaprů v relativně velkém rybníku. Postupují takto: Chytí a označí 100 kaprů a vypustí je zpět do rybníka. Za měsíc opět chytí 100 kaprů a zjistí, že 10 jich má značku. Odpovězte následující dotazy Najděte hrubý odhad počtu kaprů v rybníku (bez výpočtů) Nechť N je skutečný počet kaprů v rybníku. Najděte výraz pro pravděpodobnost, že 10 ze 100 chycených kaprů má značku. 2

9 Rybáři v Jižních Čechách potřebují před vánoci odhadnout počet kaprů v relativně velkém rybníku. Postupují takto: Chytí a označí 100 kaprů a vypustí je zpět do rybníka. Za měsíc opět chytí 100 kaprů a zjistí, že 10 jich má značku. Odpovězte následující dotazy Najděte hrubý odhad počtu kaprů v rybníku (bez výpočtů) Nechť N je skutečný počet kaprů v rybníku. Najděte výraz pro pravděpodobnost, že 10 ze 100 chycených kaprů má značku. Najděte hodnotu N, která maximizuje předchozí výraz. Toto je odhad metodou maximální věrohodnosti. Rada: Uvažujte poměr výrazů pro N a N + 1 2

10 Cvičení 24 CHAPTER 5. IMPORTANT DI (b) P (T >3) = ( 5 6 )3 = (c) P (T >6 T>3) = ( 5 6 )3 = (a) 1000 (b) 100 N N 100 (c) N = 999 or N = ,.2222,

11 Odpovědi Cvičení 24 CHAPTER 5. IMPORTANT DI (b) P (T >3) = ( 5 6 )3 = (c) P (T >6 T>3) = ( 5 6 )3 = (a) 1000 (b) 100 N N 100 (c) N = 999 or N = ,.2222,

12 Odpovědi Cvičení 24 CHAPTER 5. IMPORTANT DI (b) P (T >3) = ( 5 6 )3 = Najděte hrubý odhad počtu kaprů v rybníku (bez výpočtů) N = 1000 (c) P (T >6 T>3) = ( 5 6 )3 = (a) 1000 (b) 100 N N 100 (c) N = 999 or N = ,.2222,

13 Odpovědi Cvičení 24 CHAPTER 5. IMPORTANT DI (b) P (T >3) = ( 5 6 )3 = Najděte hrubý odhad počtu kaprů v rybníku (bez výpočtů) N = 1000 (c) P (T >6 T>3) = ( 5 6 )3 = Nechť N je skutečný počet kaprů v rybníku. Najděte výraz pro pravděpodobnost, 9. (a) že ze 100 chycených kaprů má značku. (b) N N 100 (c) N = 999 or N = ,.2222,

14 Odpovědi Cvičení 24 CHAPTER 5. IMPORTANT DI (b) P (T >3) = ( 5 6 )3 = Najděte hrubý odhad počtu kaprů v rybníku (bez výpočtů) N = 1000 (c) P (T >6 T>3) = ( 5 6 )3 = Nechť N je skutečný počet kaprů v rybníku. Najděte výraz pro pravděpodobnost, 9. (a) že ze 100 chycených kaprů má značku. (b) N N 100 Najděte hodnotu N, která maximizuje předchozí výraz. Toto je (c) N = 999 or N = 1000 odhad metodou maximální věrohodnosti. N = 999 nebo N = ,.2222,

15 Znáhodného výběru 10 párů (x i, y i ) jsme spočetli P 10 i=1 x i = 10 P 10 i=1 y i =4 P 10 i=1 x 2 i = 15 P 10 i=1 y 2 i =7 P 10 i=1 x i y i =6 1. Spočtěte výběrové průměry x a y a rozptyly s 2 x a s2 y. 2. Najděte výběrovou covarianci S X,Y 3. Pro Z = X + Y 2 najděte bodový odhad střední hodnoty EZ pomocí momentové metody. Je tento odhad nevychýlený? 4

16 5

17 Uvažujme model, kde délka transakce databázového serveru je náhodná veličina s exponeciálním rozdělením s parametrem θ. Doby transakcí jsou nezávislé. 5

18 Uvažujme model, kde délka transakce databázového serveru je náhodná veličina s exponeciálním rozdělením s parametrem θ. Doby transakcí jsou nezávislé. Odvoďte odhad θ metodou maximální věrohodnosti a momentovou metodou. 5

19 Uvažujme model, kde délka transakce databázového serveru je náhodná veličina s exponeciálním rozdělením s parametrem θ. Doby transakcí jsou nezávislé. Odvoďte odhad θ metodou maximální věrohodnosti a momentovou metodou. Jsou tyto odhady nevychýlené a konzistentní? 5

20 Uvažujme model, kde délka transakce databázového serveru je náhodná veličina s exponeciálním rozdělením s parametrem θ. Doby transakcí jsou nezávislé. Odvoďte odhad θ metodou maximální věrohodnosti a momentovou metodou. Jsou tyto odhady nevychýlené a konzistentní? Z logu jsme zjistili, že délky posledních 10 transakcí byly + 5.4, 15.6, 15.4, 9.3, 0.5, 14.4, 2.6, 0.7, 40.4, 21.9 ms 5

21 Uvažujme model, kde délka transakce databázového serveru je náhodná veličina s exponeciálním rozdělením s parametrem θ. Doby transakcí jsou nezávislé. Odvoďte odhad θ metodou maximální věrohodnosti a momentovou metodou. Jsou tyto odhady nevychýlené a konzistentní? Z logu jsme zjistili, že délky posledních 10 transakcí byly + 5.4, 15.6, 15.4, 9.3, 0.5, 14.4, 2.6, 0.7, 40.4, 21.9 ms Odhadněte θ pomocí obou odhadů. 5

22 6

23 Uvažujme i.i.d. náhodné veličiny X1, X2, X3,..., Xn, které mají konečnou střední hodnotu µ a konečný rozptyl σ 2. 6

24 Uvažujme i.i.d. náhodné veličiny X1, X2, X3,..., Xn, které mají konečnou střední hodnotu µ a konečný rozptyl σ 2. Uvažujme odhady µ a σ 2 výběrovým průměrem a výběrovým rozptylem s 2. 6

25 Uvažujme i.i.d. náhodné veličiny X1, X2, X3,..., Xn, které mají konečnou střední hodnotu µ a konečný rozptyl σ 2. Uvažujme odhady µ a σ 2 výběrovým průměrem a výběrovým rozptylem s 2. Jsou tyto odhady nevychýlené a konzistentní? 6

26 7

27 Uvažujme i.i.d. náhodné veličiny X1, X2, X3,..., Xn, které mají normální rozdělení N(µ, σ 2 ). 7

28 Uvažujme i.i.d. náhodné veličiny X1, X2, X3,..., Xn, které mají normální rozdělení N(µ, σ 2 ). Předpokládejme, že σ je známé. Odvoďte odhad µ metodou maximální věrohodnosti. 7

29 Uvažujme i.i.d. náhodné veličiny X1, X2, X3,..., Xn, které mají normální rozdělení N(µ, σ 2 ). Předpokládejme, že σ je známé. Odvoďte odhad µ metodou maximální věrohodnosti. Je tento odhad nevychýlený a konzistentní? 7

30 Uvažujme i.i.d. náhodné veličiny X1, X2, X3,..., Xn, které mají normální rozdělení N(µ, σ 2 ). Předpokládejme, že σ je známé. Odvoďte odhad µ metodou maximální věrohodnosti. Je tento odhad nevychýlený a konzistentní? Předpokládejme, že σ je neznámé. Odvoďte odhad (µ, σ 2 ) metodou maximální věrohodnosti. 7

31 Uvažujme i.i.d. náhodné veličiny X1, X2, X3,..., Xn, které mají normální rozdělení N(µ, σ 2 ). Předpokládejme, že σ je známé. Odvoďte odhad µ metodou maximální věrohodnosti. Je tento odhad nevychýlený a konzistentní? Předpokládejme, že σ je neznámé. Odvoďte odhad (µ, σ 2 ) metodou maximální věrohodnosti. Jsou tyto odhady nevychýlené a konzistentní? 7

32 Uvažujme i.i.d. náhodné veličiny X1, X2, X3,..., Xn, které mají normální rozdělení N(µ, σ 2 ). Předpokládejme, že σ je známé. Odvoďte odhad µ metodou maximální věrohodnosti. Je tento odhad nevychýlený a konzistentní? Předpokládejme, že σ je neznámé. Odvoďte odhad (µ, σ 2 ) metodou maximální věrohodnosti. Jsou tyto odhady nevychýlené a konzistentní? Porovnejte získaný odhad σ 2 s výběrovým rozptylem s 2. 7

Cvičení 3. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Cvičení 3. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Cvičení 3 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

Lineární Regrese Hašovací Funkce

Lineární Regrese Hašovací Funkce Hašovací Funkce Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v

Více

Pravděpodobnost a statistika (BI-PST) Cvičení č. 1

Pravděpodobnost a statistika (BI-PST) Cvičení č. 1 Pravděpodobnost a statistika (BI-PST) Cvičení č. 1 Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení technické v Praze ZS 2014/2015 (FIT ČVUT) BI-PST, Cvičení č. 1 ZS 2014/2015

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 4: Statistické vlastnosti MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Upřesnění k pojmům a značení

Více

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1

Více

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni BAYESOVSKÉ ODHADY V NĚKTERÝCH MODELECH Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Slunce Řidiči IQ Regrese Přežití Obvyklý model Pozorování X = (X 1,..., X

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

í ž ý š í ď ý í ě í í ť Ž ě š ěž ě í í ě í ě í ů Ž ěž ý ů ě í ě í í í ě Ž Ú í í í Ť í í í í ť í í í í š í íť ó í ý í ý í ó í í ů ů ě í ů ů ě í ů ě ěž ů ě ěž ě ě í í í ó í í í ó í í í í í í í í ů í í š

Více

ř ú ú Š Í Á É ř ř ř é é ř ř š é ř ř š ř é ž é ž š é š é é ř ů ž ž ř é ř ů é é ž é ř é é ř é ú é é ž é é š ň é ř š é š é Ť é ř ů ž ž ď ř é é é ž ř é Š ů é ř é ř é Š ú ř Í ž ž ř ř Í é š ž é ř Ť š ř ř ř š

Více

ň ý ě ý ý ý ě ň ý ě ý Ú ú ň ň ý ě ý ó ž ý ň ě ě ě ú ú Ř ň ň ý ě ý ě ě ž ý ž ě ý ě ý ě ě ů ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ě ů ě ý ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ý ě Č Č ě Č ě ů ý ě ý ý ž ě ě ž ů ž ě

Více

ě ě ú ě ě ě ě ě ň ě ň ů ě ů Ý ě ě ů ň ě Í ě ň ě ě Ž ě ň ě ě ú ů ú ě ě ě ú ě ě ě ě ě ě ů ě ů ě ě ú ů ě ě ě Ž ů ě ě ú Ž Ž Ú ě ě ě ě Ž Ž ě ť Ž Í ě Ž ě Ž Ž ů ěž ů ěž ě Í Ú ů ě ů ě Ž Ž Ž ě ě ě ů ě ě ě ě ě ů

Více

ň Š ý ě ý Ě Á ý ý ě ň Š ý ě ý ú ň ň ý ě ý ó ě ž ý ň ě ě Š ú Š ú Š ň Á ň Š ň ý ě ý Š ž ý ě ý ů ě ě ž ý ě Š ě ě ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ó ě ů ě ý Š ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ě Č Č ě Š Č ě

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Praktická úloha celostátního kola 48.ročníku FO

Praktická úloha celostátního kola 48.ročníku FO 1 Praktická úloha celostátního kola 48.ročníku FO Pomůcky: dvě různé pružiny o neznámých tuhostech k 1 a k 2, k 1 < k 2,dvě závaží o hmotnostech m 1 = 0,050 kg a m 2 = 0,100 kg, kladka o známé hmotnosti

Více

KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut.

KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut. 1/24 KOMPRESE OBRAZŮ Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac KOMPRESE OBRAZŮ, ÚVOD 2/24 Cíl:

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Bodové a intervalové odhady parametrů v regresním modelu 1 Odhady parametrů 11 Bodové odhady Mějme lineární regresní model (LRM) kde Y = y 1 y 2 y n, e = e 1 e 2 e n Y = Xβ + e, x 11 x 1k, X =, β = x n1

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Poslední aktualizace: 13. prosince 2011

Poslední aktualizace: 13. prosince 2011 Poslední aktualizace: 13. prosince 2011 DOMÁCÍ ÚLOHY Pokyny k vypracování: Ke každé úloze nezapomeňte napsat alespoň krátký závěr, ve kterém shrnete, co jste zjistili. Úlohy není zapotřebí psát v TeXu

Více

Praktická statistika. Petr Ponížil Eva Kutálková

Praktická statistika. Petr Ponížil Eva Kutálková Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA

PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ HELENA KOUTKOVÁ PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA MODUL GA03 M3 ZÁKLADY TEORIE ODHADU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Pravděpodobnost, náhoda, kostky

Pravděpodobnost, náhoda, kostky Pravděpodobnost, náhoda, kostky Radek Pelánek IV122, jaro 2015 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností krátké

Více

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Inferenční statistika - úvod z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Pravděpodobnost postupy induktivní statistiky vycházejí z teorie pravděpodobnosti pravděpodobnost, že

Více

Z0076 METEOROLOGIE A KLIMATOLOGIE

Z0076 METEOROLOGIE A KLIMATOLOGIE 23.9.2013 Z0076 Meteorologie a klimatologie 1 Z0076 METEOROLOGIE A KLIMATOLOGIE Semestr podzim 2013 23.9.2013 Z0076 Meteorologie a klimatologie 2 Osnova 1) Organizace předmětu 2) Podmínky udělení zápočtu

Více

Úloha2.Naleznětevšechnydvojicereálnýchčísel(a,b)takové,žečísla10, a, b, abtvořívtomtopořadí aritmetickou posloupnost.

Úloha2.Naleznětevšechnydvojicereálnýchčísel(a,b)takové,žečísla10, a, b, abtvořívtomtopořadí aritmetickou posloupnost. Úloha. V Americe se pro měření teploty používají místo Celsiových stupňů stupně Fahrenheitovy. PřepočetzCelsiovýchstupňůnaFahrenheitovylzeprovéstpodlevzorce f = 9 5 c+32(cjsoustupně Celsiovy, f Farenheitovy).

Více

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové

Více

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru

Více

2. Je dáno jevové pole (Ω;A) a na něm nezáporná normovaná funkce. Definujte distrubuční funkci náhodného vektoru.

2. Je dáno jevové pole (Ω;A) a na něm nezáporná normovaná funkce. Definujte distrubuční funkci náhodného vektoru. Varianta I 1. Definujte pravděpodobnostní funkci. 2. Je dáno jevové pole (Ω;A) a na něm nezáporná normovaná funkce. Definujte distrubuční funkci náhodného vektoru. 3. Definujte Fisher-Snedecorovo rozdělení.

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Seminární práce 1 Brno, 2002 Ing. Pavel

Více

Praktikum III - Optika

Praktikum III - Optika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 3 Název: Mřížkový spektrometr Pracoval: Matyáš Řehák stud.sk.: 13 dne: 10. 4. 2008 Odevzdal dne:...

Více

AKTIVNÍ ZAPOJOVÁNÍ STUDENTŮ DO VÝUKY STATISTIKY A PSYCHOMETRIE: ZKUŠENOSTI Z USA

AKTIVNÍ ZAPOJOVÁNÍ STUDENTŮ DO VÝUKY STATISTIKY A PSYCHOMETRIE: ZKUŠENOSTI Z USA AKTIVNÍ ZAPOJOVÁNÍ STUDENTŮ DO VÝUKY STATISTIKY A PSYCHOMETRIE: ZKUŠENOSTI Z USA Patrícia Martinková Ústav informatiky AV ČR martinkova@cs.cas.cz www.cs.cas.cz/martinkova Konference STAKAN, 10. října 2015,

Více

Testování a spolehlivost. 6. Laboratoř Ostatní spolehlivostní modely

Testování a spolehlivost. 6. Laboratoř Ostatní spolehlivostní modely Testování a spolehlivost ZS 2011/2012 6. Laboratoř Ostatní spolehlivostní modely Martin Daňhel Katedra číslicového návrhu Fakulta informačních technologií ČVUT v Praze Příprava studijního programu Informatika

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do

Více

ENS. Nízkoenergetické a pasivní stavby. Cvičení č. 4. Vysoká škola technická a ekonomická V Českých Budějovicích

ENS. Nízkoenergetické a pasivní stavby. Cvičení č. 4. Vysoká škola technická a ekonomická V Českých Budějovicích Vysoká škola technická a ekonomická V Českých Budějovicích ENS Nízkoenergetické a pasivní stavby Cvičení č. 4 Přednášky: Ing. Michal Kraus, Ph.D. Cvičení: Ing. Michal Kraus, Ph.D. Garant: Ing. Michal Kraus,

Více

Základy vytěžování dat

Základy vytěžování dat Základy vytěžování dat předmět A7Bb36vyd Vytěžování dat Filip Železný, Miroslav Čepek, Radomír Černoch, Jan Hrdlička katedra kybernetiky a katedra počítačů ČVUT v Praze, FEL Evropský sociální fond Praha

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.0/1.5.00/4.018 Šablona III/ Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY INOVACE_Hor015 Vypracoval(a), dne Mgr.

Více

Vysoká škola báňská Technická univerzita Ostrava TEORIE ÚDRŽBY. učební text. Jan Famfulík. Jana Míková. Radek Krzyžanek

Vysoká škola báňská Technická univerzita Ostrava TEORIE ÚDRŽBY. učební text. Jan Famfulík. Jana Míková. Radek Krzyžanek Vysoká škola báňská Technická univerzita Ostrava TEORIE ÚDRŽBY učební text Jan Famfulík Jana Míková Radek Krzyžanek Ostrava 2007 Recenze: Prof. Ing. Milan Lánský, DrSc. Název: Teorie údržby Autor: Ing.

Více

České vysoké učení technické v Praze vyhlašuje 8. ročník celoškolské FREKTORYSOVY SOUTĚŽE. v aplikované matematice

České vysoké učení technické v Praze vyhlašuje 8. ročník celoškolské FREKTORYSOVY SOUTĚŽE. v aplikované matematice FREKORYSOVY SOUĚŽE Fakulty jaderné a fyzikálně inženýrské ČVU, rojanova 13, Praha 2, 120 00. Kontaktní osoba (Fakulta dopravní - Ústav aplikované matematiky): RNDr. Olga Vraštilová vrastilova@fd.cvut.cz

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT EU-OVK-VZ-III/2-ZÁ-315

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT EU-OVK-VZ-III/2-ZÁ-315 Číslo a název šablony Číslo didaktického materiálu Druh didaktického materiálu Autor Jazyk Téma sady didaktických materiálů Téma didaktického materiálu Vyučovací předmět Cílová skupina (ročník) Úroveň

Více

Simulace odbavení cestujících na fiktivním letišti

Simulace odbavení cestujících na fiktivním letišti ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ Katedra letecké dopravy Semestrální práce: Předmět: Vybrané statistické metody Vyučující: Mgr. Šárka Voráčová, Ph.D. Simulace odbavení cestujících

Více

š š Ť ř ň š ú ř ý ž š ř ě Š ě š ř ň š ú ř ý ž ř ý ě ř š ř ň š ú ý ř ý ž ě ě š š ě ě ě ž ž š ě ř ý ěž ů ň ů ý š ř ý ř ě ž ř ě ž ý ž ý ř š ř š ě ř ý š ý ě ž ř ě ž ě ř ěž ř ž ř ň ř ý ý š ě ě ž ň ř ý ř ě ý

Více

Marketingová komunikace. 2. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK1aPH/N9KMK1bPH (um1a1ph/um1b1ph)

Marketingová komunikace. 2. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK1aPH/N9KMK1bPH (um1a1ph/um1b1ph) Marketingová komunikace Kombinované studium Skupina N9KMK1aPH/N9KMK1bPH (um1a1ph/um1b1ph) 2. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Minulé soustředění úvod

Více

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí Matematické přístupy k pojištění automobilů Silvie Kafková 3. 6. září 2013, Podlesí Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3 Motivace Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

ě Á Á é é ě ě ě ú é é é ě é é ď ď ď š š Č Á ě ú Á ď š ě Č ě š ěž ě é ě ě ě ě ě ě Č Á ě Á é ú Ž é š ě š š é Ž ě é š é Š ť Ž ě Č Á ú Á Ť é ě é š ě ě š š ď ď Č é š š Č ě ě ú ě ú Ť é ě š ě ě š ě š ě ě ú ě

Více

Databázové systémy úvod

Databázové systémy úvod Databázové systémy úvod Michal Valenta Katedra softwarového inženýrství FIT České vysoké učení technické v Praze c Michal Valenta, 2012 BI-DBS, ZS 2012/13 https://edux.fit.cvut.cz/courses/bi-dbs/ Michal

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

Kulové jiskřiště. Fakulta elektrotechnická 2014/15. Katedra teoretické elektrotechniky. Semestrální práce. Petr Zemek E12B0300P

Kulové jiskřiště. Fakulta elektrotechnická 2014/15. Katedra teoretické elektrotechniky. Semestrální práce. Petr Zemek E12B0300P Fakulta elektrotechnická Katedra teoretické elektrotechniky Semestrální práce Kulové jiskřiště 2014/15 Petr Zemek E12B0300P Vyučující: Ing. David Pánek, Ph.D Předmět: KTE/TEMP Obsah 1 Zadání semestrální

Více

naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená.

naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená. Datum:... Jméno:... Přijímací řízení pro akademický rok 28/9 na magisterské studijní obor Finanční informatiky a statistika Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd se získávají

Více

Cvičení z optimalizace Markowitzův model

Cvičení z optimalizace Markowitzův model Cvičení z optimalizace Markowitzův model Vojtěch Franc, 29 1 Úvod V tomto cvičení se budeme zabývat aplikací kvadratického programování v ekonomii a sice v úloze, jejímž cílem bude optimalizovat portfolio

Více

Cvičení z NSTP097 14. 12. 2009

Cvičení z NSTP097 14. 12. 2009 Cvičení z NSTP097 14. 12. 2009 Empirická distribuční funkce, intervalové odhady Úvodní nastavení. Ze stránky www.karlin.mff.cuni.cz/~omelka/vyuka_stp097.php si stáhněte soubor cviceni2.rdata. Otevřete

Více

Laboratorní práce č. 1: Měření délky

Laboratorní práce č. 1: Měření délky Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.

Více

Ž é ř é ř é ř é č č š ě š ě č ř úř ř úř é é ě ě Í ř č ř ř ěž ě ř č é ř é ř č é ě ř ě č éř Ž é ě ě ř ř ě š ě č Ť é Í ě Ž ř é č ř é ř é Ž ě ě Ž ř é č Č é ě č Č é Ž č Č é é č é ě ř ň č é ř ř č ň č Ť é Ť ů

Více

SOFTWARE PRO ANALÝZU LABORATORNÍCH MĚŘENÍ Z FYZIKY

SOFTWARE PRO ANALÝZU LABORATORNÍCH MĚŘENÍ Z FYZIKY SOFTWARE PRO ANALÝZU LABORATORNÍCH MĚŘENÍ Z FYZIKY P. Novák, J. Novák, A. Mikš Katedra fyziky, Fakulta stavební, České vysoké učení technické v Praze Abstrakt V rámci přechodu na model strukturovaného

Více

1.2.2 Měříme délku II

1.2.2 Měříme délku II 1.2.2 Měříme délku II Předpoklady: 010201 Pomůcky: metr, zavinovací metr, krejčovský metr, šuplera, metrický šroub, pásmo, provázek s vyznačeným metrem, provázek s vyznačenými decimetry, pravítko 30 cm

Více

Marketingová komunikace. 2. a 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3aph)

Marketingová komunikace. 2. a 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3aph) Marketingová komunikace Kombinované studium Skupina N9KMK3PH (vm3aph) 2. a 3. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Co nás čeká: 2. soustředění 16.1.2009

Více

STP022 PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA

STP022 PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA Poslední aktualizace: 29. května 200 STP022 PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA PŘÍKLADY Pro zdárné absolvování předmětu doporučuji věnovat pozornost zejména příkladům označenými hvězdičkou. Příklady

Více

Teorie her a ekonomické rozhodování. 7. Hry s neúplnou informací

Teorie her a ekonomické rozhodování. 7. Hry s neúplnou informací Teorie her a ekonomické rozhodování 7. Hry s neúplnou informací 7.1 Informace Dosud hráči měli úplnou informaci o hře, např. znali svou výplatní funkci, ale i výplatní funkce ostatních hráčů často to tak

Více

Teorie her a ekonomické rozhodování. 11. Aukce

Teorie her a ekonomické rozhodování. 11. Aukce Teorie her a ekonomické rozhodování 11. Aukce 11. Aukce Příklady tržních mechanismů prodej s pevnou cenou cenové vyjednávání aukce Využití aukcí prodej uměleckých předmětů, nemovitostí, prodej květin,

Více

Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (AKADEMIE)

Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (AKADEMIE) V rámci projektu OPVK CZ.1.07/2.2.00/28.0021 Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (AKADEMIE) se v roce 2015

Více

Cvičná bakalářská zkouška, 1. varianta

Cvičná bakalářská zkouška, 1. varianta jméno: studijní obor: PřF BIMAT počet listů(včetně tohoto): 1 2 3 4 5 celkem Cvičná bakalářská zkouška, 1. varianta 1. Matematická analýza Najdětelokálníextrémyfunkce f(x,y)=e 4(x y) x2 y 2. 2. Lineární

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

ODHADY NÁVRATOVÝCH HODNOT PRO

ODHADY NÁVRATOVÝCH HODNOT PRO ODHADY NÁVRATOVÝCH HODNOT PRO SRÁŽKOVÁ A TEPLOTNÍ DATA Katedra aplikované matematiky Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci Novohradské statistické dny ÚVOD Velká pozornost

Více

NÁVRH KOMISE PRO OBHAJOBY BAKALÁŘSKÝCH PRACÍ

NÁVRH KOMISE PRO OBHAJOBY BAKALÁŘSKÝCH PRACÍ NÁVRH KOMISE PRO OBHAJOBY BAKALÁŘSKÝCH PRACÍ Katedra / ústav: Ústav aplikované informatiky Datum a místo konání: 23. a 24. 1. 2013, posluchárna P1 (BC AV ČR) Harmonogram 23. 1. 2013 8:30 Radek Benda: Vývoj

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 2: Metoda nejmenších čtverců LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Doplnění a opakování z

Více

Historie matematiky a informatiky Cvičení 1

Historie matematiky a informatiky Cvičení 1 Historie matematiky a informatiky Cvičení 1 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Kapitola z teorie čísel Co

Více

ď ž Č č č ě Ů š ž Ů Ů Ů ě Ů Ů ě ů Úč ě ě š Š ů Ů ú Ů ěž Ů ě ě Ů č ě Ů ÚČ Č ě č Úč č č š ě Ů ě ě úč č š č Č č Ů č č ÚČ ž š č ů č č Ž ň ž č ě ž ÚČ Č č č č š č ě Ú úč Ů ž ě š Ů ě Ů č š Ů č Í Ů č Ů ě č č ů

Více

Testy pro porovnání vlastností dvou skupin

Testy pro porovnání vlastností dvou skupin Testy pro porovnání vlastností dvou skupin Petr Pošík Části dokumentu jsou převzaty (i doslovně) z Mirko Navara: Pravděpodobnost a matematická statistika, https://cw.felk.cvut.cz/lib/exe/fetch.php/courses/a6m33ssl/pms_print.pdf

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Pro bodový odhad při základním krigování by soustava rovnic v maticovém tvaru vypadala následovně:

Pro bodový odhad při základním krigování by soustava rovnic v maticovém tvaru vypadala následovně: KRIGING Krigování (kriging) označujeme interpolační metody, které využívají geostacionární metody odhadu. Těchto metod je celá řada, zde jsou některé příklady. Pro krigování se používá tzv. Lokální odhad.

Více

1.3 K čemu slouží linearizační transformace? V jakém případě o ní uvažujeme?

1.3 K čemu slouží linearizační transformace? V jakém případě o ní uvažujeme? Otázky k tématu 6 regrese 1 1. Vyberte správnou odpověď 1.1 Který termín patří mezi ostatní nejméně? a) percentil b) korelace c) regrese d) predikce 1.2 O lineárním vztahu mezi dvěma proměnnými. a) vypovídá

Více

É ú ě Ž ě Ú ě ě ě Ř Ř ž ž Č ú ů ů ě ě ě Ó ú ú š Č ú Ž ě ú ě š Ž ú ě Ý ě Č úě ě Ú š ž ů Ú ú Č ě ÓŘ Č ě Č Ú ě ů ú š Ú ě Ú ě ě ů Ž Ť Ť ó š š Ú ó Ú ě Ť ó ů ů Ú ě ú Ú ě ú ě ě Č Ž ě Č Ú ú ě Ú ň ě Ú ě ů ú ň ě

Více

ě ě š é Č ě ě š Š š Č ú ě ě ě ě ó š ě ě š é ě é š ě é é é ě é é ěž ě Ž ě ě ě ů ě š ů ů é Ž ňů ňů Ž Ž é ňů ů ď é ů ď é ů Ý ď é é ňů ňů ě ů ňů ů ů ě é ňů Ý ě Ý ď é é š Ž š š Ž ě Ž ů ě š ě Ž Ž š ě é Ž Ž š

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Regresní a korelační analýza

Regresní a korelační analýza Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Příklady z pravděpodobnosti a statistiky

Příklady z pravděpodobnosti a statistiky Příklady z pravděpodobnosti a statistiky k testům a na zkoušení Ivan Nagy, Pavla Pecherková, Jitka Homolová Obsah 1 PRAVĚPODOBNOST................................ 2 1.1 Popisná statistika...................................

Více

FYZIKÁLNÍ SEKCE. První série úloh

FYZIKÁLNÍ SEKCE. První série úloh FYZIKÁLNÍ SEKCE Přírodovědecká fakulta Masarykovy univerzity v Brně KORESPONDENČNÍ SEMINÁŘ Z FYZIKY 9. ročník 2002/2003 První série úloh (25 bodů) Zdroje energie Je jisté, že civilizace potřebuje energii

Více

úř é ř ř ř Č ř Í ř ď ú ů ů Í ř úř ř ř ř ř ř ř ř ř ř ř é ř é úř ó ř ř ř ú ó Č Č ř ř ř ř ď ť é Í ř ř ů ř ř ť ů ň ř ů ú ř é ř ř ř ř ř Í é é ř Š ú é ů ř ů é é ů žň ř Ž é ř Ž š ř ř ž é Ť Ž é ř š é é ú ž ř ů

Více

Domácí experiment v inovované sadě učebnic fyziky

Domácí experiment v inovované sadě učebnic fyziky Domácí experiment v inovované sadě učebnic fyziky Jiří Tesař Vlachovice 14. 10. 2011 Experiment ve výuce fyziky Výuka na ZŠ se řídí podle RVP, resp. ŠVP neakcentují encyklopedické znalosti preferují tvůrčí

Více

Bc. Filip Rychetský Katedra systémové analýzy FIS VŠE Zimní semestr 2009/2010

Bc. Filip Rychetský Katedra systémové analýzy FIS VŠE Zimní semestr 2009/2010 Bc. Filip Rychetský Katedra systémové analýzy FIS VŠE Zimní semestr 2009/2010 filip.rychetsky@vse.cz 24.9.2009 ECTS: 5 kreditů 13 cvičení, každý čt Podrobný popis na ISISu Přednášející: Doc. Ing. Prokop

Více

UČENÍ BEZ UČITELE. Václav Hlaváč

UČENÍ BEZ UČITELE. Václav Hlaváč UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení

Více

4IT218 Databáze. 4IT218 Databáze

4IT218 Databáze. 4IT218 Databáze 4IT218 Databáze Osmá přednáška Dušan Chlapek (katedra informačních technologií, VŠE Praha) 4IT218 Databáze Osmá přednáška Normalizace dat - dokončení Transakce v databázovém zpracování Program přednášek

Více