Kvalita v laboratorní a kontrolní praxi

Rozměr: px
Začít zobrazení ze stránky:

Download "Kvalita v laboratorní a kontrolní praxi"

Transkript

1 Kvalita v laboratorní a kontrolní praxi Část 3: Chyby a hodnocení výsledků měření Vladimír Kocourek Praha, únor 2015

2 Zkoušení (analýza) v laboratoři Výroba Výzkum a vývoj (R&D) Obchodování (dodávání) Ochrana zdraví a životního prostředí

3

4 Zkoušení potravin pro kvalitu a bezpečnost Kvalita a bezpečnost Analýza potravin Chemické složení potravin Chemické reakce v potravinách Výživa a zdraví

5 Chemická / potravinářská výroba - provoz Požadavky na měření / analýzu: Opakovatelnost měření monitoruje se vývoj reakčního procesu zjišťuje se kolísání (fluktuace) procesu Pravdivost měření je trochu méně důležitá Dostatečná frekvence analýz Minimální náklady a úsilí Přehledné výsledky/ protokoly

6 Obchodování - dodávání Požadavky na měření / analýzu: Přesnost (zejména pravdivost): výrobek je ve shodě se specifikacemi Prokázání platnosti metody: všeobecně uznávané metody, validace, návaznost k referencím Reprodukovatelnost: výsledky jsou srovnatelné, bez ohledu na to, která laboratoř zkoušku provádí Konsistentnost: bez rozporů, stejný vzorek stejný výsledek Vzájemné uznávání výsledků různých laboratoří

7 Sjednání analytického servisu: 1 SPECIFIKACE VZORKU druh vzorku počet vzorků, popř. frekvence vzorkování hmotnost (objem) vzorků obal, uzavření označování, vstupní dokumentace archivace vzorků, vracení 2 CENA, platební podmínky, odpovědnost 3 TERMÍN DODÁNÍ VÝSLEDKU, PROTOKOL 4 PARAMETRY (přesnost, mez stanovitelnosti,..)

8 Dobrý analytický výsledek Vhodný pro daný účel: Umožňuje provést rozhodnutí Presentovaný ve srozumitelné formě Konsistentní a úplný Dodaný včas a za přiměřenou cenu Přesný (pravdivý a precizní) Postihující i malé množství sledované látky S prokazatelnou vazbou k referencím

9 Analytický interval spolehlivosti každé měření je spojeno s chybami každá střední hodnota by proto měla být doplněna údajem o nejistotě jejího odhadu [např. X ± x g/l] Při prokazování, že vzorek je ve shodě se specifikacemi je nutné vzít do úvahy interval spolehlivosti (nejistotu) hodnoty výsledku Příklad: analýza (metoda) poskytla hodnotu výsledku ± 1,5% je požadován obsah analytu ve vzorku min. 97% aby byla jistota, že obsah analytu je >97%, musí být výsledek analýzy nejméně 98,5 %

10 Přesnost měření / zkoušek Data jsou vysoké kvality, pokud jsou vhodné pro jejich zamýšlené použití v provozu, rozhodování a plánování. (JM Juran).

11 Přesnost měření / zkoušek

12 Přesnost měření / zkoušek MĚŘENÍ jako snaha trefit CÍL pravá hodnota (pravdivá hodnota měřené veličiny) Měření Terč - cíl (target)

13 Přesnost výsledků měření / zkoušek přesný výsledek: precizní a pravdivý pravdivost systematická chyba preciznost náhodné rozptýlení nepřesný výsledek: precizní ale vychýlený

14 Distribuce naměřených hodnot veličiny Histogram Probability Distribution Function (Gauss) 1. There is a strong tendency for the variable to take a central value; 2. Positive and negative deviations from this central value are equally likely; 3. The frequency of deviations falls off rapidly as the deviations become larger.

15 Pravděpodobnostní rozdělení náhodných chyb tzv. normální Gaussovo Charakterizováno střední hodnotou a směrodatnou odchylkou náhodného výběru s q k frequency q

16 Rozptyl střední hodnoty výběru V ( q ) = s 2 ( q ) = s 2 ( n q ) s s ( q ) ( q k ) distribution of the mean distribution of the single values of one individual de determination of q mean

17 Systematické chyby měření

18 Zešikmená data: život bývá log-normální Environmentální kontaminanty v potravinách, Citlivost jedinců v populaci vůči působení chemické látky, Výsledky opakované analýzy těsně nad LOQ, Počty zaměstnanců podle výše platu

19 Výběrové charakteristiky Výběrový průměr: x = 1 n n i= 1 x i Odhad směrodatné odchylky: Medián: hodnota, která dělí řadu podle velikosti seřazených výsledků na dvě stejně početné poloviny. Výhodou mediánu jako statistického ukazatele je fakt, že není tolik ovlivněn extrémními (nebo odlehlými) hodnotami. Modus: hodnota, která se v daném statistickém souboru vyskytuje nejčastěji. Modus lze použít i na kvalitativní výsledky: např. modus ze souboru žlutá, zelená, červená, modrá, žlutá, zelená, červená, fialová, zelená, hnědá je:...

20 Intervalové odhady s definovanou pravděpodobností Interval spolehlivosti (průměru): Pološířka intervalu spolehlivosti: Intervalový odhad průměru: (n opakování, hladina spolehlivosti α) Obsah vody: 11,02 ± 0,22 % Interval hodnot: 10,80 až 11,24 % s x t1 α / 2 ( ν ) µ < x + t1 α / 2 ( ν ) n s n

21 Charakteristiky souboru dat (robustní odhady) Odhad robustních statistik z kvartilů: Gastwirthův medián: Interkvartilové rozpětí: (n opakování, α=0,05) Winsorizace dat korekce: (nechceme-li odlehlé hodnoty vylučovat) Logaritmická transformace: (jako log-normální rozdělení) maximální a minimální hodnota v uspořádaném souboru se nahradí hodnotou sousední nejmenší druhým nejmenším a největší druhým největším. Trend se zachová, extrémní hodnoty ztratí svou váhu. hodnoty se převedou na logaritmy, zpracují se jako normálně rozdělené a takto získané charakteristiky se tranformují zpět ( odlogaritmují)

22 Přesnost měření / zkoušek Co všechno obsahuje výsledek analýzy X? X = µ + ε + Σδ µ...pravá (pravdivá) hodnota ε...systematická chyba - stejná velikost a znaménko δ...náhodné chyby v součtu mění velikost a znaménko Přesnost = Pravdivost (ε) + Preciznost (δ) Accuracy = Trueness (ε) + Precision (δ)

23 Co je to chyba výsledku analýzy (měření) Chyba měření (measurement error): (ε + Σδ) = X µ Chyba měření je rozdíl mezi hodnotou naměřenou (X) a hodnotou pravou (µ). zahrnuje vždy chybu systematickou (ε) a náhodné vlivy (δ). Problém: často neznáme dost dobře µ a tedy ani chybu systematickou a tudíž ani celkovou...zase nejistota. Nejistota?

24 Pravdivost výsledku měření Systematická chyba (ε + Σδ) = X µ systematická chyba výsledku je rozdílem mezi průměrným výsledkem z velkého počtu opakování a pravou hodnotou (true value) někdy je nazývána vychýlení (bias) v analytické chemii se zjišťuje např. jako průměrná výtěžnost (c x /c 0 )

25 Pravá hodnota - true value...je hodnota charakterizující dokonale definovanou veličinu za podmínek existujících v okamžiku, kdy je uvažována Je to ideální pojem - obecně nemůže být dokonale poznána! pro praxi se proto nahrazuje REFERENČNÍ HODNOTOU

26 Referenční hodnota Realizuje se zpravidla prostřednictvím referenčního materiálu 1. střední hodnota dle definitní metody 2. teoretická hodnota (ze složení čisté látky) 3. expertní mezilaboratorní porovnání zkoušek 4. známé množství analytu přidané do matrice 5. střední hodnota základního souboru měření

27 Náhodná chyba výsledku složka chyby, která se v průběhuřady zkoušek téhož znaku mění nepředvídatelným způsobem kolísá okolo střední hodnoty nelze ji odstranit jakoukoli korekcí! Některé zdroje náhodných chyb: metoda laboratoř (prostředí) zařízení a materiály (nádobí, přístroje, činidla ) analytik časové rozmezí

28 Náhodná chyba výsledku vyjadřuje náhodné rozptýlení hodnot okolo střední hodnoty vyjadřuje se jako PRECIZNOST (precision) výsledků opakovaného měření za určitých podmínek vypočte se jako směrodatná odchylka σ x z řady opakování nemá nic společného s pravou (referenční) hodnotou!

29 Náhodná chyba výsledku za různých podmínek působí různé náhodné vlivy preciznost výsledků (precision) je různá 1. extrém: co nejméně odlišností při opakování: OPAKOVATELNOST (jak se to daří opakovat mně) 2. extrém: co nejvíce odlišností při opakování: REPRODUKOVATELNOST (jak se to daří zreprodukovat jinde)

30 Náhodná chyba výsledku podmínky OPAKOVATELNOSTI: stejná metoda, laboratoř, analytik, zařízení, přístroje, standardy, chemikálie, kalibrační křivka, v krátkém časovém rozmezí ( paralelky ) podmínky REPRODUKOVATELNOSTI : zpravidla stejná metoda ale jiná laboratoř a tedy všechny ostatní faktory jiné. a což takhle něco mezi? podmínky MEZILEHLÉ PRECIZNOSTI : zpravidla stejná metoda i laboratoř ale v dlouhém časovém období (dlouhodobá opakovatelnost)

31 Ilustrace variability výsledků: dva různí pracovníci Standard Integrace 1 Integrace 2 FLD1 A, Ex=248, Em=374, TT (C:\DATAHP~1\FLD154-4\DATA02\MJKOLONY\MDER2.D) FLD1 A, Ex=248, Em=374, TT (C:\DATAHP~1\FLD154-4\DATA02\MT021016\ D) LU LU MePyr B[a]A MePyr BaA Area: Area: Area: LU FLD1 A, Ex=248, Em=374, TT (C:\DATAHP~1\FLD154-4\DATA02\MT021016\ D) MePyr Area: Area: min min min Rozdíl mezi výsledky 42 % (koncentrační hladina ppb)

32 Ilustrace vlivu přístroje na mezilehlou preciznost výsledků 6.22 % Analýza vzorku na dvou přístrojích stejného typu

33 Mez opakovatelnosti (r) Vypočte se ze směrodatné odchylky opakování analýzy stejnou metodou na stejném vzorku (homogenním) za podmínek opakovatelnosti: r = f. 2. σ r Použití: r = 2,8. s r Jsou-li výsledky zatíženy pouze přijatelnou náhodnou chybou (H 0 ), pak rozdíl mezi výsledky dvou opakování nesmí být větší nežli r : x 1 -x 2 r

34 Opakovatelnost (s r ) Postup 1: provede se řada opakování (n = 8 až 15) na tomtéž homogenním vzorku za podmínek opakovatelnosti, vypočte se směrodatná odchylka Postup 2: různé ale podobné vzorky se za podmínek opakovatelnosti analyzují dvojmo a vypočtou rozpětí, vypočte se směrodatná odchylka: s r2 = Σ D i2 /(2n)

35 I. II. Příklady použití: Stanovení dusíku Kjeldahl, pro 3 % obsahy: r = 0,14 % Výsledky analýzy: x 1 = 2,96 %; x 2 = 3,19 % 3,19 2,96 > 0,14! Tedy ještě další opakování: x 3 = 2,92 %; 3,19 vyloučíme (???) 2,96-2,92 < 0,14 Výsledkem X je průměr platných opakování: X = (x 1 + x 3 )/2 = 2,94 %; D 1,3 < 0,14 Výsledky analýzy: x 1 = 3,18 %; x 2 = 3,36 % D 1,2 = 0,18 > 0,14! Tedy ještě další opakování: x 3 = 3,25 %; 3,25-3,18 < 0,14 a 3,36 3,25 < 0,14 Výsledkem X je průměr platných opakování: X = (x 1 + x 2 + x 3 )/3 = 3,26 %; D 1,3 < 0,14 a D 2,3 < 0,14

36 Příklady použití: Stanovení dusíku Kjeldahl, pro 3 % obsahy: r = 0,14 % ještě II. Výsledky analýzy: x 1 = 3,18 %; x 2 = 3,36 %; x 3 = 3,25 %; Rozpětí souboru je 0,18 % : jaká je kritická hodnota pro 3 opakování? r 3 = f. 3. σ r r 3 = 3,3. s r Rozpětí našeho souboru je 0,18 % > r 3 = 0.17! Možná příčina? 1. nehomogenní vzorek, 2. nezvládnutá metoda 3. špatně určená opakovatelnost

37 Opakovatelnost (r) Význam - odpověď na otázku: "lze rozdíl mezi výsledky opakování vysvětlit náhodným kolísáním (rozptýlením) anebo se analytický systém ocitl v nezvládnutém stavu?" Standardně se uvádí mez opakovatelnosti pro α = 0,05 pro α = 0,01 se násobí koeficientem 1,29 pro α = 0,10 se násobí koeficientem 0,82

38 Reprodukovatelnost (R) Význam - odpověď na otázku: "lze rozdíl mezi výsledky získanými na tomtéž vzorku jinou laboratoří vysvětlit náhodným rozptýlením anebo nejsou výsledky laboratoří srovnatelné?" Použití: R = 2,8. s R Jsou-li výsledky zatíženy pouze přijatelnou chybou, pak rozdíl mezi výsledky dvou laboratoří nesmí být větší nežli R : X 1 -X 2 R Nelze ovšem říci, který ze dvou výsledků je pravdivější

39 Reprodukovatelnost (R) Skládá se ze dvou složek: σ 2 r - rozptyl výsledků uvnitř laboratoře σ 2 L - rozptyl výsledků mezi laboratořemi σ 2 R = σ 2 r + σ 2 L Způsob zjištění R: 1. experimentálně na základě mezilaboratorního porovnání zkoušek (MPZ) 2. odhadem z Horwitzova/Thompsonova empirického vztahu Horwitz

40 Reprodukovatelnost (R) - Horwitz Horwitzova křivka 30 CV (%) Preciznost Koncentrace ppb

41 Reprodukovatelnost (R) - Horwitz Relativní směrodatná odchylka variační koeficient: s klesající koncentrací analytu roste CV závislost na druhu analytu, typu vzorku a analytické metodě je méně důležitá CV R = 2 (1-0,5*logX) X je koncentrace analytu vyjádřená jako hmotnostní zlomek! Thompson: Pro X < 1,2*10-7 (tedy pod 0,12 mg.kg -1 ) má být CV R asi 22 % Pro X > 0,14 (tedy nad 14 %) je CV R = 0,01*X 0,5

42 Reprodukovatelnost (R)

43 Reprodukovatelnost (R) - Horwitz Požadavky na preciznost ve stopové analýze: Koncentrace (ppb) CV r (%) Codex Alimentarius CV R (%) Horwitz < 1 35 > > < 22

44 Pravdivost (Výtěžnost - Recovery) Příklad požadavků na výtěžnost ve stopové analýze: Koncentrace (ppb) Dolní mez (%) Horní mez (%) < >

45 OPAKOVATELNOST, REPRODUKOVATELNOST (repeatability, reproducibility) závisí pouze na rozdělení náhodných chyb, nemá žádný vztah k hodnotě pravé, resp. referenční. Příklad: Nejvyšší přijatelné rozdíly mezi výsledky dvou analýz - za podmínek opakovatelnosti a reprodukovatelnosti (EN :1998) Koncentrační hladina [mg/kg] Absolutní rozdíl mezi 2 opakováními [mg/kg] Absolutní rozdíl mezi 2 laboratořemi [mg/kg] 0,01 0,005 (50 %) 0,01 (100 %) 0,1 0,025 (25 %) 0,05 (50 %) 1 0,125 (12 %) 0,25 (25 %)

46 Mezilehlá opakovatelnost Příklad požadavku na maximální hodnoty variačních koeficientů pro intralaboratorní preciznost ( dlouhodobá opakovatelnost ) (Rozhodnutí Komise 2002/657/EC: stanovení prvků) Koncentrace (mg/kg) Variační koeficient (%) 10 až až

47 Mezilehlá opakovatelnost Příklad hodnot variačních koeficientů pro opakovatelnost, intralaboratorní preciznost a reprodukovatelnost: z výsledků mezilaboratorní studie (validace) metody. (ISO 15753: Stanovení PAU v rostlinných tucích a olejích)

48 PRAVDIVOST (Trueness) celková systematická chyba - měřítkem je odchylka výsledků od skutečné hodnoty, zjišťuje se jako výtěžnost Výtěžnost: Rec = X s /C ref R 100 % R S A A = > R S B B A B

49 NAŘÍZENÍ KOMISE (ES) č. 401/2006 kterým se stanoví metody odběru vzorků a metody analýzy pro úřední kontrolu množství mykotoxinů v potravinách

50 NAŘÍZENÍ KOMISE (ES) č. 401/2006 kterým se stanoví metody odběru vzorků a metody analýzy pro úřední kontrolu množství mykotoxinů v potravinách

51 PRAVDIVOST (Trueness) měření / analýzy t - test pravdivosti vzhledem k referenční hodnotě N = 11 m 8,4 xi (X - xi)^2 t-krit 95 t-krit 90 chí - krit 1 8 0, ,5 0, ,3 0, ,303 2,920 0, ,1 0, ,182 2,353 0, ,6 0, ,776 2,132 0, ,2 0, ,571 2,045 1, ,8 0, ,447 1,943 1, ,2 0, ,365 1,895 2, ,4 0, ,306 1, ,8 0, ,262 1, ,3 0, ,228 1,812 2,131 1,753 X = 8,29091 výběr: 2,228 xxxxxxx 3,330 L1 = 8,10220 L2 = 8,47961 rozptyl: 0,07891 horní mez: 0,26066 s = 0,28091 horní mez: 0,51055 CV = 3,38814 % t = 1,28802 m..referenční hodnota N..počet opakování xi...výsledek měření X...průměrná hodnota L1..dolní mez IS L2..horní mez IS

52 Srovnání postupů měření / analýzy A -extrakce: Soxhlet, hexan 8 h B -extrakce: 3 x 20 min UF, hexan, Na 2 SO 4 N postup A postup B 1 37,83 37, ,18 35, ,84 36, ,61 37, ,96 38, ,05 36, ,77 35,86 Excel ANALYSIS TOOL Dvouvýběrový t-test s nerovností rozptylů Sh-hexan UF/síran 2 hod Stř. hodnota 37,75 36,78 Rozptyl 0,20 0,87 Směr. odch. sr 0,44 0,93 t Stat 2,500 P(T<=t) (1) 0,017 t krit (1) 1,833 P(T<=t) (2) 0,034 t krit (2) 2,262 Dvouvýběrový F-test pro rozptyl Sh-hexan UF/síran 3 hod Stř. hodnota 37,749 36,776 Rozptyl 0,196 0,866 Pozorování 7,000 7,000 Rozdíl 6,000 6,000 F 0,226 P(F<=f) (1) 0,047 F krit (1) 0,233

53 měření chyba měření systematická chyba náhodná chyba známá systematická chyba korekce zbývající chyby neznámá systematická chyba hodnota výsledku nejistota výsledku výsledek měření

54 Definice nejistoty měření (Uncertainty) Parametr spojený s výsledkem měření charakterizující rozptýlení hodnot, které mohou být důvodně připsány měřené veličině. Odhad přiřazený k výsledku zkoušky a charakterizující interval hodnot, o němž se tvrdí, že uvnitř něho leží pravá hodnota

Základní terminologické pojmy (Mezinárodní metrologický slovník VIM3)

Základní terminologické pojmy (Mezinárodní metrologický slovník VIM3) Základní terminologické pojmy (Mezinárodní metrologický slovník VIM3) Přesnost a správnost v metrologii V běžné řeči zaměnitelné pojmy. V metrologii a chemii ne! Anglický termín Measurement trueness Measurement

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Chyby spektrometrických metod

Chyby spektrometrických metod Chyby spektrometrických metod Náhodné Soustavné Hrubé Správnost výsledku Přesnost výsledku Reprodukovatelnost Opakovatelnost Charakteristiky stanovení 1. Citlivost metody - směrnice kalibrační křivky 2.

Více

Stavba slovníku VIM 3: Zásady terminologické práce

Stavba slovníku VIM 3: Zásady terminologické práce VIM 1 VIM 2:1993 ČSN 01 0115 Mezinárodní slovník základních a všeobecných termínů v metrologii VIM 3:2007 International Vocabulary of Metrology Basic and General Concepts and Associated Terms Mezinárodní

Více

Nejistota měř. ěření, návaznost a kontrola kvality. Miroslav Janošík

Nejistota měř. ěření, návaznost a kontrola kvality. Miroslav Janošík Nejistota měř ěření, návaznost a kontrola kvality Miroslav Janošík Obsah Referenční materiály Návaznost referenčních materiálů Nejistota Kontrola kvality Westgardova pravidla Unity Referenční materiál

Více

Požadavky kladené na úřední laboratoře v oblasti kontroly potravin

Požadavky kladené na úřední laboratoře v oblasti kontroly potravin SZPI Požadavky kladené na úřední laboratoře v oblasti kontroly potravin Petr Cuhra (VŠCHT, 1.2.2013) Státní zemědělská a potravinářská inspekce Za Opravnou 6, Praha 5, petr.cuhra@szpi.gov.cz www.szpi.gov.cz

Více

NEJISTOTA MĚŘENÍ. David MILDE, 2014 DEFINICE

NEJISTOTA MĚŘENÍ. David MILDE, 2014 DEFINICE NEJISTOTA MĚŘENÍ David MILDE, 014 DEFINICE Nejistota měření: nezáporný parametr charakterizující rozptýlení hodnot veličiny přiřazených k měřené veličině na základě použité informace. POZNÁMKA 1 Nejistota

Více

Statistické zpracování výsledků

Statistické zpracování výsledků Statistické zpracování výsledků Výpočet se skládá ze dvou částí. Vztažná hodnota a také hodnota směrodatné odchylky jednotlivých porovnání se určuje z výsledků dodaných účastníky MPZ. V první části je

Více

Verifikace sérologických testů v imunologických laboratořích ISO 15189 5.5 Postupy vyšetření

Verifikace sérologických testů v imunologických laboratořích ISO 15189 5.5 Postupy vyšetření Verifikace sérologických testů v imunologických laboratořích ISO 15189 5.5 Postupy vyšetření Andrea Vinciková Centrum imunologie a mikrobiologie Zdravotní ústav se sídlem v Ústí nad Labem Validace Ověřování,

Více

Resolution, Accuracy, Precision, Trueness

Resolution, Accuracy, Precision, Trueness Věra Fišerová 26.11.2013 Resolution, Accuracy, Precision, Trueness Při skenování se používá mnoho pojmů.. Shodnost měření, rozlišení, pravdivost měření, přesnost, opakovatelnost, nejistota měření, chyba

Více

Skrytá tvář laboratorních metod? J. Havlasová, Interimun s.r.o.

Skrytá tvář laboratorních metod? J. Havlasová, Interimun s.r.o. Skrytá tvář laboratorních metod? J. Havlasová, Interimun s.r.o. Vlastnosti charakterizující laboratorní metodu: 1. z hlediska analytického přesnost/ správnost ( nejistota měření ) analytická citlivost

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

přesnost (reprodukovatelnost) správnost (skutečná hodnota)? Skutečná hodnota použití různých metod

přesnost (reprodukovatelnost) správnost (skutečná hodnota)? Skutečná hodnota použití různých metod přesnost (reprodukovatelnost) správnost (skutečná hodnota)? Skutečná hodnota použití různých metod Měření Pb v polyethylenu 36 různými laboratořemi 0,47 0 ± 0,02 1 µmol.g -1 tj. 97,4 ± 4,3 µg.g -1 Měření

Více

Tuhá alterna,vní paliva validace metody pro stanovení obsahu biomasy podle ČSN EN Ing. Šárka Klimešová, Výzkumný ústav maltovin Praha, s.r.o.

Tuhá alterna,vní paliva validace metody pro stanovení obsahu biomasy podle ČSN EN Ing. Šárka Klimešová, Výzkumný ústav maltovin Praha, s.r.o. Tuhá alterna,vní paliva validace metody pro stanovení obsahu biomasy podle ČSN EN 15 440 Ing. Šárka Klimešová, Výzkumný ústav maltovin Praha, s.r.o. Předchozí přednáška popsala laboratorní metodu jako

Více

Validace sérologických testů výrobcem. Vidia spol. s r.o. Ing. František Konečný IV/2012

Validace sérologických testů výrobcem. Vidia spol. s r.o. Ing. František Konečný IV/2012 Validace sérologických testů výrobcem Vidia spol. s r.o. Ing. František Konečný IV/2012 Legislativa Zákon č. 123/2000 Sb. o zdravotnických prostředcích ve znění pozdějších předpisů Nařízení vlády č. 453/2004

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Nová doporučení o interní kontrole kvality krevního obrazu. Soňa Vytisková

Nová doporučení o interní kontrole kvality krevního obrazu. Soňa Vytisková Nová doporučení o interní kontrole kvality krevního obrazu Soňa Vytisková 1 2 3 4 5 ÚVOD Programy vnitřní kontroly kvality klinických laboratoří mají sice svá obecná pravidla, ale je nutné je individuálně

Více

Zápočtová práce STATISTIKA I

Zápočtová práce STATISTIKA I Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru

Více

23. Matematická statistika

23. Matematická statistika Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 23. Matematická statistika Statistika je věda, která se snaží zkoumat reálná data a s pomocí teorii pravděpodobnosti

Více

Zpracování a vyhodnocování analytických dat

Zpracování a vyhodnocování analytických dat Zpracování a vyhodnocování analytických dat naměřená data Zpracování a statistická analýza dat analytické výsledky Naměř ěřená data jedna hodnota 5,00 mg (bod 1D) navážka, odměřený objem řada dat 15,8;

Více

PRINCIPY ZABEZPEČENÍ KVALITY

PRINCIPY ZABEZPEČENÍ KVALITY (c) David MILDE, 2013 PRINCIPY ZABEZPEČENÍ KVALITY POUŽÍVANÁ OPATŘENÍ QA/QC Interní opatření (uvnitř laboratoře): pravidelná analýza kontrolních vzorků a CRM, sledování slepých postupů a možných kontaminací,

Více

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce STATISTICKÁ

Více

VOLBA OPTIMÁLNÍ METODY

VOLBA OPTIMÁLNÍ METODY VOLBA OPTIMÁLNÍ METODY Jak nalézt z velkého množství metod nejlepší ( fit for purpose ) postup? (c) David MILDE Jak na to? 1. Identifikovat problém požadovaná informace (kvalitativní či kvantitativní analýza,

Více

STATISTICKÉ CHARAKTERISTIKY

STATISTICKÉ CHARAKTERISTIKY STATISTICKÉ CHARAKTERISTIKY 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku

Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Obsah Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Obecné zásady interpretace výsledků - chemické ukazatele

Obecné zásady interpretace výsledků - chemické ukazatele Obecné zásady interpretace výsledků - chemické ukazatele Ivana Pomykačová Konzultační den SZÚ Hodnocení rozborů vody Výsledek měření souvisí s: Vzorkování, odběr vzorku Pravdivost, přesnost, správnost

Více

Národní informační středisko pro podporu jakosti

Národní informační středisko pro podporu jakosti Národní informační středisko pro podporu jakosti STATISTICKÉ METODY V LABORATOŘÍCH Ing. Vratislav Horálek, DrSc. Ing. Jan Král 2 A.Základní a terminologické normy 1 ČSN 01 0115:1996 Mezinárodní slovník

Více

Doplňuje vnitřní kontrolu kvality. Principem je provádění mezilaboratorních porovnávacích zkoušek (srovnatelnost výsledků)

Doplňuje vnitřní kontrolu kvality. Principem je provádění mezilaboratorních porovnávacích zkoušek (srovnatelnost výsledků) Externí hodnocení kvality (EHK) Petr Breinek BC_EHK_N2011 1 Externí hodnocení kvality (EHK) také: Zkoušení způsobilosti nepoužívat: Externí kontrola kvality (od 07/2011) norma ISO 17043 Doplňuje vnitřní

Více

Monitoring složek ŽP - instrumentální analytické metody

Monitoring složek ŽP - instrumentální analytické metody Monitoring složek ŽP - instrumentální analytické metody Seznámení se základními principy sledování pohybu polutantů v životním prostředí. Přehled používaných analytických metod. Způsoby monitoringu kvality

Více

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Seminární práce 1 Brno, 2002 Ing. Pavel

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

TEST Z TEORIE EXPLORAČNÍ ANALÝZA DAT

TEST Z TEORIE EXPLORAČNÍ ANALÝZA DAT EXPLORAČNÍ ANALÝZA DAT TEST Z TEORIE 1. Test ze Statistiky píše velké množství studentů. Představte si, že každý z nich odpoví správně přesně na polovinu otázek. V tomto případě bude směrodatná odchylka

Více

Za hranice nejistoty(2)

Za hranice nejistoty(2) Za hranice nejistoty(2) MUDr. Jaroslava Ambrožová OKB-H Nemocnice Prachatice, a.s. 19.5.2014 1 TNI 01 0115: VIM EP15-A2 User Verification of performance for Precision and Trueness C51-A Expression of measurement

Více

Standardní operační postupy

Standardní operační postupy Standardní operační postupy 1 SOP standardní operační postup 1.Úvod (všeobecné údaje, oblast použití, princip metody, terminologie, rušivé vlivy, omezení metody, bezpečnost při práci,toxikologické údaje,

Více

ČESKÝ INSTITUT PRO AKREDITACI, o.p.s. Dokumenty ILAC. ILAC Mezinárodní spolupráce v akreditaci laboratoří

ČESKÝ INSTITUT PRO AKREDITACI, o.p.s. Dokumenty ILAC. ILAC Mezinárodní spolupráce v akreditaci laboratoří ČESKÝ INSTITUT PRO AKREDITACI, o.p.s. Opletalova 41, 110 00 Praha 1 Nové Město Dokumenty ILAC ILAC Mezinárodní spolupráce v akreditaci laboratoří Číslo publikace: ILAC - G17:2002 Zavádění koncepce stanovení

Více

PŘÍRUČKA ŘEŠENÝCH PŘÍKLADŮ

PŘÍRUČKA ŘEŠENÝCH PŘÍKLADŮ 1999-2011 PŘÍRUČKA ŘEŠENÝCH PŘÍKLADŮ EFFIVALIDATION 3 EffiChem your validation software Lesní 593, 679 71 Lysice http://www.effichem.com 2/57 EffiChem můţe vlastnit patenty, podané ţádosti o patenty, ochranné

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Využití metody bootstrapping při analýze dat II.část Doc. Ing. Olga TŮMOVÁ, CSc. Obsah Klasické procedury a statistické SW - metody výpočtů konfidenčních

Více

Analýza dat na PC I.

Analýza dat na PC I. CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika

Více

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická

Více

3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT

3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT PROKAZOVÁNÍ SHODY VÝROBKŮ část 3, díl 8, kapitola 4, str. 1 3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT Vyjadřování standardní kombinované nejistoty výsledku zkoušky Výsledek zkoušky se vyjadřuje v

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. Stanovení základních materiálových parametrů

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. Stanovení základních materiálových parametrů KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE Stanovení základních materiálových parametrů Vzor laboratorního protokolu Titulní strana: název experimentu jména studentů v pracovní skupině datum Protokol:

Více

KALIBRACE. Definice kalibrace: mezinárodní metrologický slovník (VIM 3)

KALIBRACE. Definice kalibrace: mezinárodní metrologický slovník (VIM 3) KALIBRACE Chemometrie I, David MILDE Definice kalibrace: mezinárodní metrologický slovník (VIM 3) Činnost, která za specifikovaných podmínek v prvním kroku stanoví vztah mezi hodnotami veličiny s nejistotami

Více

VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ. #2 Nejistoty měření

VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ. #2 Nejistoty měření VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ # Nejistoty měření Přesnost měření Klasický způsob vyjádření přesnosti měření chyba měření: Absolutní chyba X = X M X(S) Relativní chyba δ X = X(M) X(S) - X(M) je naměřená hodnota

Více

VOLBA OPTIMÁLNÍ METODY

VOLBA OPTIMÁLNÍ METODY VOLBA OPTIMÁLNÍ METODY Jak nalézt z velkého množství metod nejlepší ( fit for purpose ) postup? Jak na to? 1. Identifikovat problém požadovaná informace (kvalitativní či kvantitativní analýza, ). 2. Nalézt

Více

Kvalita v laboratorní a kontrolní praxi

Kvalita v laboratorní a kontrolní praxi Kvalita v laboratorní a kontrolní praxi Část: Rozhodování o shodě se specifikací (limitem) Vladimír Kocourek Praha, 2016 Shoda se specifikací / limitem Posuzování shody se specifikací / limitem Cílem měření

Více

Kontrola kvality. Marcela Vlková ÚKIA, FNUSA Veronika Kanderová CLIP, FN Motol

Kontrola kvality. Marcela Vlková ÚKIA, FNUSA Veronika Kanderová CLIP, FN Motol Kontrola kvality Marcela Vlková ÚKIA, FNUSA Veronika Kanderová CLIP, FN Motol Kontrola kvality Výsledky analytických měření mají silný dopad v praxi: v klinických laboratořích mohou rozhodným a někdy i

Více

ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY

ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY zhanel@fsps.muni.cz ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY METODY DESKRIPTIVNÍ STATISTIKY 1. URČENÍ TYPU ŠKÁLY (nominální, ordinální, metrické) a) nominální + ordinální neparametrické stat. metody b) metrické

Více

S E M E S T R Á L N Í

S E M E S T R Á L N Í Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie S E M E S T R Á L N Í P R Á C E Licenční studium Statistické zpracování dat při managementu jakosti Předmět Statistická analýza

Více

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu

Více

Regulační diagramy (RD)

Regulační diagramy (RD) Regulační diagramy (RD) Control Charts Patří k základním nástrojům vnitřní QC laboratoře či výrobního procesu (grafická pomůcka). Pomocí RD lze dlouhodobě sledovat stabilitu (chemického) měřícího systému.

Více

Postup praktického testování

Postup praktického testování Testování vzorků škváry odebraných v rámci Doškolovacího semináře Manažerů vzorkování odpadů 17. 9. 2013 v zařízení na energetické využití odpadů společnosti SAKO Brno a.s. Úvod Společnost Forsapi, s.r.o.

Více

Obecné zásady interpretace výsledků - mikrobiologie vody

Obecné zásady interpretace výsledků - mikrobiologie vody Obecné zásady interpretace výsledků - mikrobiologie vody Hodnocení rozborů vody Konzultační den RNDr. Jaroslav Šašek ČSN P ENV ISO 13843: 2002 Jakost vod - Pokyny pro validaci mikrobiologických metod Mez

Více

Kalibrace a limity její přesnosti

Kalibrace a limity její přesnosti Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Kalibrace a limity její přesnosti Zdravotní ústav se sídlem v Ostravě

Více

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a

Více

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. 1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový

Více

Úvod. Postup praktického testování

Úvod. Postup praktického testování Testování vzorků kalů odebraných v rámci Doškolovacího semináře Manažerů vzorkování odpadů 21. 10. 2014 v ČOV Liberec, akciové společnosti Severočeské vodovody a kanalizace Úvod Společnost Forsapi, s.r.o.

Více

VÝKLAD POJMŮ V MANAGEMENTU KVALITY V ANALYTICKÝCH LABORATOŘÍCH

VÝKLAD POJMŮ V MANAGEMENTU KVALITY V ANALYTICKÝCH LABORATOŘÍCH VÝKLAD POJMŮ V MANAGEMENTU KVALITY V ANALYTICKÝCH LABORATOŘÍCH 1. Vysvětlivky k pojmům týkajících se kvality v chemickém měření Vysvětlivky vycházejí z definic pojmů, které byly vytvořeny ISO, IUPAC a

Více

Metodologie pro Informační studia a knihovnictví 2

Metodologie pro Informační studia a knihovnictví 2 Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis nekategorizovaných dat Co se dozvíte v tomto modulu? Kdy používat modus, průměr a medián. Co je to směrodatná odchylka. Jak popsat distribuci

Více

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008)

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Ing. Vratislav Horálek, DrSc., předseda TNK 4 při ČNI 1 Terminologické normy [1] ČSN ISO 3534-1:1994 Statistika Slovník

Více

Národní informační středisko pro podporu jakosti

Národní informační středisko pro podporu jakosti Národní informační středisko pro podporu jakosti Stanovení měr opakovatelnosti a reprodukovatelnosti při kontrole měřením a srovnáváním Ing. Jan Král Úvodní teze Zásah do procesu se děje na základě měření.

Více

Způsobilost systému měření podle normy ČSN ISO doc. Ing. Eva Jarošová, CSc.

Způsobilost systému měření podle normy ČSN ISO doc. Ing. Eva Jarošová, CSc. Způsobilost systému měření podle normy ČSN ISO 22514-7 doc. Ing. Eva Jarošová, CSc. Předmět normy Postup validace měřicího systému a procesu měření (ověření, zda daný proces měření vyhovuje požadavkům

Více

Základní statistické charakteristiky

Základní statistické charakteristiky Základní statistické charakteristiky Základní statistické charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme Základní statistické

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

ODBĚR, PŘÍPRAVA, PŘEPRAVA A UCHOVÁVÁNÍ VZORKŮ

ODBĚR, PŘÍPRAVA, PŘEPRAVA A UCHOVÁVÁNÍ VZORKŮ ODBĚR, PŘÍPRAVA, PŘEPRAVA A UCHOVÁVÁNÍ VZORKŮ Základní pojmy Obecná pravidla vzorkování Chyby při vzorkování, typy materiálů Strategie vzorkování Plán vzorkování Základní způsoby odběru Vzorkovací pomůcky

Více

Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D

Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D Milan Holický Kloknerův ústav ČVUT v Praze 1. Úvod 2. Kvantil náhodné veličiny 3. Hodnocení jedné veličiny 4. Hodnocení modelu 5. Příklady -

Více

VŠB Technická univerzita Ostrava BIOSTATISTIKA

VŠB Technická univerzita Ostrava BIOSTATISTIKA VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: BIOSTATISTIKA Domácí úkoly Zadání 5 DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL 1:

Více

Nejistota měření. Thomas Hesse HBM Darmstadt

Nejistota měření. Thomas Hesse HBM Darmstadt Nejistota měření Thomas Hesse HBM Darmstadt Prof. Werner Richter: Výsledek měření bez určení nejistoty měření je nejistý, takový výsledek je lépe ignorovat" V podstatě je výsledek měření aproximací nebo

Více

Číselné charakteristiky

Číselné charakteristiky . Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

Chyby a neurčitosti měření

Chyby a neurčitosti měření Radioelektronická měření (MREM) Chyby a neurčitosti měření 10. přednáška Jiří Dřínovský Ústav radioelektroniky FEKT VUT v Brně Základní pojmy Měření je souhrn činností s cílem určit hodnotu měřené veličiny

Více

Charakterizují kvantitativně vlastnosti předmětů a jevů.

Charakterizují kvantitativně vlastnosti předmětů a jevů. Měřicí aparatura 1 / 34 Fyzikální veličiny Charakterizují kvantitativně vlastnosti předmětů a jevů. Můžeme je dělit: Podle rozměrů: Bezrozměrné (index lomu, poměry) S rozměrem fyzikální veličiny velikost

Více

Komutabilita referenčních materiálů a bias měření v laboratorní medicíně

Komutabilita referenčních materiálů a bias měření v laboratorní medicíně Komutabilita referenčních materiálů a bias měření v laboratorní medicíně B.Friedecký, J.Kratochvíla, SEKK Pardubice Komutabilita-vlastnost RM Je podmíněna přiměřeností matrice RM a dostatečností její shody

Více

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Inferenční statistika - úvod z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Pravděpodobnost postupy induktivní statistiky vycházejí z teorie pravděpodobnosti pravděpodobnost, že

Více

Hodnotící zpráva o mezilaboratorních analýzách stanovení obsahu popela, veškeré síry, spalného tepla a prchavé hořlaviny v tuhých palivech v roce 2012

Hodnotící zpráva o mezilaboratorních analýzách stanovení obsahu popela, veškeré síry, spalného tepla a prchavé hořlaviny v tuhých palivech v roce 2012 CENTRUM TECHNICKÉ NORMALIZACE Poradenství, kontrola a řízení jakosti tuhých paliv Ing. Pavel Tyle - TEKO, Výletní 353, 142 00 Praha 4 Soudní znalec v oboru tuhých paliv Officially appointed expert by Ministry

Více

Marcela Vlková ÚKIA, FNUSA, Brno Veronika Kanderová CLIP, 2. LF UK a FN Motol, Praha VALIDACE A VERIFIKACE V PRŮTOKOVÉ CYTOMETRII

Marcela Vlková ÚKIA, FNUSA, Brno Veronika Kanderová CLIP, 2. LF UK a FN Motol, Praha VALIDACE A VERIFIKACE V PRŮTOKOVÉ CYTOMETRII Marcela Vlková ÚKIA, FNUSA, Brno Veronika Kanderová CLIP, 2. LF UK a FN Motol, Praha VALIDACE A VERIFIKACE V PRŮTOKOVÉ CYTOMETRII KONTROLA KVALITY Výsledky analytických měření mají silný dopad v praxi:

Více

ZZ SČZL 4/2014. Zkouška rázem v ohybu metodou Charpy za okolní teploty. Ing. Jan Wozniak, CSc.

ZZ SČZL 4/2014. Zkouška rázem v ohybu metodou Charpy za okolní teploty. Ing. Jan Wozniak, CSc. ZZ SČZL 4/2014 Zkouška rázem v ohybu metodou Charpy za okolní teploty Ing. Jan Wozniak, CSc. CTN WOZNIAK Centrum technické normalizace Nr. 2009/0008/RS Základní úkoly organizátorů zkoušení způsobilosti

Více

Metodologie pro Informační studia a knihovnictví 2

Metodologie pro Informační studia a knihovnictví 2 Metodologie pro Informační studia a knihovnictví 2 Modul V: Nekategorizovaná data Metodologie pro ISK 2, jaro 2014. Ladislava Z. Suchá Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis

Více

Výrobní produkce divizí Ice Cream Po lo ha plane t Rozložený výse ový 3D graf Bublinový graf Histogram t s tn e ídy

Výrobní produkce divizí Ice Cream Po lo ha plane t Rozložený výse ový 3D graf Bublinový graf Histogram t s tn e ídy Výrobní produkce divizí Ice Cream Polo ha planet Rozložený výsečový 3D graf Bublinový graf Ice Cream 1 15% Ice Cream 2 12% Ice Cream 3 18% Ice Cream 4 20% Statistika 40 30 20 Ice Cream 6 19% Ice Cream

Více

NEPARAMETRICKÉ TESTY

NEPARAMETRICKÉ TESTY NEPARAMETRICKÉ TESTY Výhodou neparametrických testů je jejich použitelnost bez ohledu na typ rozdělení, z něhož výběr pochází. K testování se nepoužívají parametry výběru (např.: aritmetický průměr či

Více

UZ vyšetření jako měřená veličina v rámci screeningu VVV

UZ vyšetření jako měřená veličina v rámci screeningu VVV UZ vyšetření jako měřená veličina v rámci screeningu VVV Loucký Jaroslav (loucky@imalab.cz) http://www.imalab.cz/ 1 Souhrn Screening VVV je multidisciplinární oblastí vyšetřování Je žádoucí dokumentovat

Více

Validační protokol LT CRP HS II (ADVIA 1800)

Validační protokol LT CRP HS II (ADVIA 1800) Validační protokol LT CRP HS II (ADVIA 1800) Datum vydání: 9.5.2011 Zpracoval: Ing. Luděk Šprongl Pracoviště: Centrální laboratoř, Šumperská nemocnice a.s. Validační protokol LT CRP HS II 1. CÍL, PŘEDMĚT

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Otázky k měření centrální tendence. 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení?

Otázky k měření centrální tendence. 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení? Otázky k měření centrální tendence 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení? 2. Určete průměr, medián a modus u prvních čtyř rozložení (sad dat): a.

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.05 0.0 0.05 0.0 0.005 Nominální napětí v pásnici Std Mean 40 60 80 00 0 40 60 Std Téma : Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

(Text s významem pro EHP) PŘIJALA TUTO SMĚRNICI: v příloze II. této směrnice.

(Text s významem pro EHP) PŘIJALA TUTO SMĚRNICI: v příloze II. této směrnice. L 143/18 Úřední věstník Evropské unie 7.6.2005 SMĚRNICE KOMISE 2005/38/ES ze dne 6. června 2005, kterou se stanoví metody odběru vzorků a metody analýzy pro úřední kontrolu množství fusariových toxinů

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Popisná statistika. Komentované řešení pomocí MS Excel

Popisná statistika. Komentované řešení pomocí MS Excel Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Sedm základních nástrojů řízení kvality Doc. RNDr. Jiří Šimek,

Více

Úloha č.2 Vážení. Jméno: Datum provedení: TEORETICKÝ ÚVOD

Úloha č.2 Vážení. Jméno: Datum provedení: TEORETICKÝ ÚVOD Jméno: Obor: Datum provedení: TEORETICKÝ ÚVOD Jednou ze základních operací v biochemické laboratoři je vážení. Ve většině případů právě přesnost a správnost navažovaného množství látky má vliv na výsledek

Více

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více