20.1 Hmotnostní a entalpická bilance krystalizátoru

Rozměr: px
Začít zobrazení ze stránky:

Download "20.1 Hmotnostní a entalpická bilance krystalizátoru"

Transkript

1 20 Krystalizace Vladimír Kudrna, Pavel Hasal, Vladimír Míka A Výpočtové vztahy Krystalizace je poměrně složitý kinetický proces, při kterém se vylučuje pevná látka z kapalného roztoku (krystalizaci z plynných směsí a z tavenin zde nebudeme uvažovat). Při popisu tohoto procesu budeme užívat pouze hmotnostní a entalpické bilance umožňující vypočítat množství a složení jednotlivých proudů, množství potřebného popř. odvedeného tepla a pod. Kinetika krystalizace (resp. soubor vztahů pro výpočet rychlosti růstu krystalů, velikosti zařízení popř. trvání procesu) je poměrně složitá a proto se jí nebudeme v tomto skriptu zabývat. Krystalizace se uskutečňuje v krystalizátorech, které se rozdělují podle způsobu provozování na periodické a kontinuální. Dále se krystalizátory rozdělují především podle způsobu, jakým se v nich dosahuje přesycení, a to na ochlazovací a odpařovací, popř. kombinované. Často pracují s recyklem roztoku či suspenze Hmotnostní a entalpická bilance krystalizátoru Bilanční schémata krystalizačních zařízení jsou rozmanitá v závislosti na způsobu provozování procesu. Zde je proto uvedeno pouze základní schéma (viz. obr 20-1). m F m P m F - hmotnost suroviny m M m P - hmotnost brýdové páry m M - hmotnost matečného roztoku Q i Q e m K - hmotnost krystalů m K Q i - dodávaná energie - odebíraná energie Q e Obr Bilanční schema krystalizátoru Poznámka I: V tomto odstavci uvádíme bilanční rovnice pouze pro periodicky pracující krystalizátory. Pro kontinuální zařízení platí stejné rovnice pouze s tím rozdílem, že hmotnostní a tepelné proudy jsou označeny tečkou nad symbolem. Poznámka II: Na jednoduchém bilančním schématu jsme proudy označili písmeny (F,P,M,K) analogicky jako např. v kapitolách 5, 17 a 19. Na složitějších schématech je budeme často označovat číslicemi, obdobně jako v kapitolách 1 a 10. Krystalizující složku označíme symbolem A, rozpouštědlo symbolem B a nečistoty symbolem N. Označení proudů je zřejmé z obr Celková hmotnostní bilance má tvar: 20-1

2 m F = m K + m M + m P. (20-1) Pro ochlazovací krystalizátor m P 0, tj. množství brýdových par je zanedbatelné. V rovnici (20-1) označuje symbol mk hmotnost suchých krystalů a m M hmotnost odváděného matečného roztoku (zanedbává se množství matečného roztoku, který ulpěl na krystalech). Bilance složky A má tvar: x AF m F = x AK m K + x AM m M, (20-2) kde x AM označuje hmotnostní zlomek krystalizující složky v matečném roztoku, o kterém se předpokládá, že je v termodynamické rovnováze s vyloučenými krystaly při podmínkách na výstupu z krystalizátoru. Hodnota x AM je potom rovna rozpustnosti složky A při teplotě na výstupu z krystalizátoru. Hodnoty rozpustnosti v závislosti na teplotě jsou tabelovány (viz. např. tab. XV-1 [H1]); resp. uváděny ve formě empirických matematických vztahů (tab. XV-2 [H1]). O hmotnostním zlomku x AK se předpokládá, že jeho hodnota je pro látky, které netvoří solváty, rovna jedničce. V opačném případě plyne ze stechiometrie pro krystaly o chemickém vzorci v obecném tvaru ν A A ν B B: x AK ν AMA = ν M + ν M A A B B, (20-3) kde M i je molární hmotnost složky i (i = A,B). V rovnici (20-3) se předpokládá, že koncentrace nečistot v krystalu je zanedbatelná. Bilance nečistot má potom tvar: x NF m F = x NM m M. (20-4) Při přibližných výpočtech se často koncentrace nečistot ve všech proudech zanedbává. Bilance rozpouštědla B je popsána rovnicí: x BF m F = (1 - x AK ) m K + x BM m M + m P. (20-5) Jedna z bilančních rovnic (20-1), (20-2), (20-4) a (20-5) je ovšem závislá. V některých případech bývá nutno vyjádřit koncentraci složky v suspenzi, tj. v proudu o hmotnosti m S, který obsahuje roztok spolu s pevnou krystalovinou. Zavádí se poměr hmotnosti pevné fáze k hmotnosti suspenze α S = m Ss / m S, [m S = m Ss + m Sl ], (20-6) což je vlastně hmotnostní zlomek pevné fáze v suspenzi. Mezi koncentracemi složek v suspenzi x AS a x NS a jejich koncentracemi v kapalné fázi suspenze x ASl a x NSl platí vztahy x NS = x NSl (1 - α S ) = x NM (1 - α S ), (20-7) x AS = x ASs α S + x ASl (1 - α S ) = x AK α S + x AM (1 - α S ), (20-8) kde x ASs = x AK je hmotnostní zlomek složky A v pevné fázi suspenze, x ASl = x AM a x NSl = x NM je hmotnostní zlomek složky v matečném roztoku. 20-2

3 Tzv. výkon krystalizátoru se udává buď jako hmotnost vstupního proudu m F nebo hmotnost získaných krystalů m K. Jako výtěžek (resp. výtěžnost) je udáván poměr hmotnosti složky A ve vystupujících krystalech ke hmotnosti téže složky ve vstupním proudu (tento poměr bývá často udáván v procentech) Entalpická bilance krystalizátoru Entalpická bilance krystalizátoru se zapisuje vztahem h F m F + Q i = h K m K + h M m M + h P m P + Q e. (20-9) Dodaná energie (teplo) Q i se v ochlazovacích krystalizátorech neuplatňuje, Q e zahrnuje ve všech případech ztráty energie do okolí (tepelné ztráty). Hodnoty měrné entalpie vstupního a výstupního roztoku h F a h M se určují z hodnot měrné entalpie čistých složek s přihlédnutím k rozpouštěcí entalpii (viz kap.10). Referenční stav entalpií se volí při 0 o C, voda v kapalném skupenství, aby se dalo využít tabelovaných hodnot její měrné entalpie. Proto h i = [x Ai c pai + x Bi c pbi ] t i + x Ai Δh mix,ai, [i = F,M], (20-10) kde t i je teplota roztoku ve o C, c pa - střední měrná tepelná kapacita rozpuštěné látky v teplotním intervalu 0,t i, c pb - střední měrná tepelná kapacita rozpouštědla v tomtéž teplotním intervalu a Δh mix,ai - integrální rozpouštěcí entalpie. 1) (Vliv nečistot na entalpickou bilanci se zpravidla zanedbává). Měrnou entalpii krystalů vypočteme podle vztahu h K = c pk t K, (20-11) kde t K je teplota krystalů ve o C a c pk jejich střední měrná tepelná kapacita v teplotním intervalu 0, t K. Měrná entalpie brýdové páry h P se udává stejně jako v kapitole 13, tj. předpokládá se, že brýdová pára je nasycená při teplotě a tlaku v krystalizátoru. Dodaná Q i nebo odvedená energie (teplo) Q e v rovnici (20-9) naznačují, že krystalizátory musí fungovat ve velké většině případů rovněž jako výměníky tepla. Předmětem výpočtu je zde obvykle velikost teplosměnné plochy A podle vztahů uvedených v kapitole 12, popř. v kapitole 13. Pro nepřetržitě pracující ochlazovací krystalizátory platí 1) Poznámka: V literatuře o krystalizaci [N1,N2,N3] se často používá jiného postupu při výpočtu měrných entalpií v rovnici (20-9). Namísto integrálních rozpouštěcích entalpií ve výrazech pro h F a h M se ve výrazu pro h K ještě uvažuje aditivní člen - tzv. krystalizační entalpie. Tabelované hodnoty krystalizačních entalpií jsou však obvykle méně přesné než hodnoty rozpouštěcích entalpií. 20-3

4 Q e A = k Δ t ls, (20-12) kde symbol k označuje střední součinitel prostupu tepla a střední logaritmický rozdíl teplot je určen vztahem Δ t ls = Δt1 Δt2 ln( Δt / Δt ) 1 2. (20-13) V krystalizátorech ochlazovaných při protiproudu je rozdíl teplot na "teplém" konci výměníku Δt 1 definován jako rozdíl teploty vstupní suroviny t F a teploty odcházející (ohřáté) chladicí kapaliny t 1. Rozdíl teplot na druhém konci Δt 2 je rozdíl mezi teplotou vystupující suspenze (příp. matečného roztoku) t M a vstupujícího chladiva t 2. V promíchávaných krystalizátorech se obvykle předpokládá ideální promíchávání a tedy všude stejná teplota vsádky, takže platí Δt 1 = t M - t 1 a Δt 2 = t M - t 2. V odpařovacích krystalizátorech se teplosměnná plocha počítá stejně jako v kapitole 13: A Q = kt ( t ) T M kde symbol t T označuje teplotu topné páry., (20-14) B Úlohy U20-1: Na jakou teplotu je zapotřebí ochladit horký vodný roztok KNO 3 o koncentraci 40 hmotn. %, jestliže se má koncentrace KNO 3 v matečném roztoku po ochlazení a vyloučení krystalů rovnat jedné polovině koncentrace roztoku výchozího? Jaký bude výtěžek této operace? Výsledek: Roztok je třeba ochladit na 13,8 o C. Výtěžek operace je 62,5%. U20-2: Jaká hmotnost krystalů se vyloučí při ochlazení 4,2 tuny roztoku uhličitanu sodného z teploty 30 o C na teplotu 12 o C? Roztok obsahuje při teplotě 30 o C 2,5 mol Na 2 CO 3 na 1000 g vody. Uhličitan sodný krystaluje ve formě dekahydrátu. Jaká bude výtěžnost tohoto procesu? Výsledek: Při ochlazení se vyloučí 1445 kg dekahydrátu. Výtěžnost operace je přitom 60,9%. U 20-3: Kolik kg krystalů K 2 CO 3 1,5 H 2 O se získá v ochlazovacím krystalizátoru při ochlazení 9 tun nasyceného vodného roztoku uhličitanu draselného z teploty 80 o C na 33 o C? Předpokládejte, že přitom nedochází k odpaření vody. 20-4

5 Výsledek: V ochlazovacím krystalizátoru se za uvedených podmínek získá 1401 kg krystalů K 2 CO 3.1,5H 2 O. U20-4: Určete potřebnou velikost teplosměnné plochy protiproudého průtočného krystalizátoru, ve kterém se ochlazuje kg h -1 roztoku obsahujícího 7 mol (NH 4 ) 2 SO 4 na 1000 g vody z teploty 85 o C na 35 o C. Součinitel prostupu tepla je 127 W m -2 K -1. Chladicí voda se ohřívá z 13 o C na 24 o C. Jak by se změnila velikost teplosměnné plochy, kdyby byla vsádka krystalizátoru za jinak stejných podmínek ideálně promíchávána? Určete též spotřebu chladicí vody. Hodnotu integrální rozpouštěcí entalpie pro vodný roztok 50 hmotn. % (NH 4 ) 2 SO 4 uvažujte rovnu 42,8 kj h -1. Výsledek: Potřebná teplosměnná plocha v průtočném protiproudovém krystalizátoru činí 84,4 m 2, v promíchávaném krystalizátoru 203,3 m 2. Spotřeba chladicí vody je v obou případech stejná: 32,1 tun za hodinu. U20-5: Určete množství energie, které je třeba odvádět z ochlazovacího krystalizátoru, v němž se ochlazuje 6000 kg h -1 vodného roztoku NaNO 3 z 90 o C na 40 o C. Roztok na počátku obsahuje 16 mol NaNO 3 na 1000g H 2 O. Při ochlazení roztoku se současně odpaří 3% vody (vztaženo na počáteční roztok). Vypočtěte rovněž velikost potřebné teplosměnné plochy krystalizátoru, je-li součinitel prostupu tepla roven 110 W m -2 K -1, a hmotnostní průtok chladicí vody v kg h -1, která se při průchodu zařízením ohřeje z 15 o C na 40 o C. Vliv rozpouštěcí entalpie NaNO 3 ve vodě zanedbejte. Předpokládejte, že krystalizátor je ideálně promícháván. Výsledek: Z krystalizátoru je nutno odvádět W, na což je třeba 7320 kg h -1 chladicí vody. Velikost teplosměnné plochy krystalizátoru činí 39,5 m 2. U20-6: Do vakuové odparky vstupuje vodný roztok dusičnanu draselného, obsahující 24 g KNO 3 a 1 g nečistot, rozpuštěných ve 100 g vody. Odparka pracuje za jinak stejných podmínek jako v příkladu P Vypočtěte hmotnostní průtok vstupujícího roztoku, výtěžnost zařízení a obsah nečistot v matečném roztoku. Jak se tyto veličiny změní, je-li 40% matečného roztoku recirkulováno zpět do odparky? (Předpokládejte, že přítomnost nečistot významně neovlivní rozpustnost KNO 3.) Výsledek: Při stejné produkci brýdové páry 1500 kg h -1 lze bez recyklu zpracovat 2180 kg h -1 roztoku s výtěžností 76,0%. Matečný roztok přitom obsahuje 4,84 hmotn. % nečistot. V případě 40% recyklu se zpracuje pouze 2058 kg h -1 roztoku, výtěžnost činí 84,1%, avšak matečný roztok obsahuje 7,29% nečistot, což ilustruje tvrzení o hromadění nečistot v systému, uvedené ve výsledku příkladu P U20-7: Do vakuové odparky, která pracuje s roztoky o stejných koncentracích a teplotách jako odparka v příkladu P 20-1 se přivádí 2100 kg h -1 roztoku dusičnanu draselného, který má teplotu 50 o C. Vypočtěte výtěžnost zařízení, hmotnostní průtok odcházející brýdové páry o tlaku 0,055 MPa a hmotnostní průtok topné páry, která má tlak 0,

6 MPa. Jak se tyto veličiny změní, je-li polovina matečného roztoku recirkulována zpět do odparky? (Hodnotu rozpouštěcí entalpie KNO 3 ve vodě a tepelné ztráty v odparce zanedbejte). Výsledek: Bez užití recyklu je výtěžnost zařízení rovna 76,0%, přičemž se odpaří 1420 kg h -1 brýdové páry. Spotřeba topné páry je rovna 1580 kg h -1. V případě, že se recykluje 50% matečného roztoku zpět do odparky, zvýší se výtěžnost zařízení na 86,3%, hmotnostní průtok brýdové páry na 1530 kg h -1 avšak se současným zvýšením spotřeby topné páry na 1710 kg h -1. Tato hodnota ilustruje tvrzení o zvýšení spotřeby energie při recyklu, uvedené při diskusi výsledků příkladu P20-1. U20-8: Vodný roztok síranu amonného obsahující 100 g (NH 4 ) 2 SO 4 ve 100 g vody je přiváděn do vakuového odpařovacího krystalizátoru při teplotě 100 o C. Tlak nad hladinou roztoku v krystalizátoru je 633 Pa. Zvýšení bodu varu nasyceného síranu amonného činí 5 o C. Kolik roztoku je nutno přivádět do krystalizátoru, má-li v něm vzniknout 5 tun za hodinu krystalů (NH 4 ) 2 SO 4? Vypočtěte rovněž hmotnostní průtok, která se přitom odpaří a koncentraci (NH 4 ) 2 SO 4 v matečném roztoku! Předpokládejte, že krystalizátor nevyměňuje teplo s okolím. Hodnotu integrální rozpouštěcí entalpie pro vodný roztok 50 hmotn. % (NH 4 ) 2 SO 4 uvažujte rovnu 42,8 kj h -1. Výsledek: Do krystalizátoru je třeba přivádět 22,8 tun za hodinu roztoku, přičemž se odpaří 2,56 t h -1 vody. Matečný roztok obsahuje 42% hmotn. (NH 4 ) 2 SO 4. U20-9: Krystalická modrá skalice, obsahující 3 hmotn.% nečistot rozpustných ve vodě se čistí překrystalováním v zařízení znázorněném na obr Surovina se s hmotnostním průtokem 150 kg h -1 kontinuálně dávkuje do rozpouštěcího zařízení 2 1 R K S Obr Bilanční schéma krystalizačního zařízení Označení uzlů: R - rozpouštěcí zařízení, K - krystalizátor, S - sušárna; proudy: 1 - surovina, 2 - čerstvá voda, 3 - nasycený horký roztok, 4 - vlhké krystaly, 5 - vysušené krystaly, 6 - odpařená vlhkost, 7 - odváděný matečný roztok, 8 - recykl (čárkování značí, že se tento proud ve variantě výpočtu bez recyklu neuvažuje). spolu s dostatečným množstvím vody tak, aby vznikl roztok nasycený při 75 o C. Tento roztok odtéká do krystalizátoru, kde se ochlazuje na teplotu 23 o C. Vyloučené krystaly CuSO 4.5H 2 O obsahují ještě 10 % matečného roztoku (vztaženo na hmotnost pentahydrátu). Krystaly jsou dále vysušeny tak, aby neobsahovaly volnou (t.j. nekrystalickou) vodu a krystaly vzniklé odpařením matečného roztoku jsou rovněž 20-6

7 pentahydrátem. Rozpustnost modré skalice ve vodě je dána vztahem [B1] log = x A * f(t), kde x A * je molární zlomek CuSO4 ve vodě, T termodynamická teplota (K) a f(t) = -24, ,4664/T + 8, log T. Ve variantě I se uvažuje činnost zařízení bez recyklace matečného roztoku. Vypočtěte hmotnost nastřikované vody, znečištění produktu v % a výtěžek čistého produktu (t.j. poměr hmotnosti čistého CuSO 4.5H 2 O ve vysušených krystalech k hmotnosti téže čisté sloučeniny v surovině). Ve variantě II se uvažuje recykl matečného roztoku takový, aby znečištění produktu nepřesáhlo 0,5 %. Vypočtěte množství recyklu, čerstvé vody a výtěžek čistého produktu. Výsledek: Ve variantě I se na rozpuštění znečištěné látky spotřebuje 126 kg h -1 vody. Získá se produkt se znečištěním 0,25 % při výtěžku 69,3 % pentahydrátu. Ve variantě II je zapotřebí při povoleném znečištění produktu 0,5 % pouze 60 kg h -1 čerstvé vody spolu s 141 kg h -1 recyklovaného matečného roztoku. Výtěžek pentahydrátu je přitom 86,6 %. Při užití recyklu se tedy zvyšuje výtěžek čisticí operace, avšak zároveň vzrůstá znečištění produktu. (Viz rovněž diskusi výsledku příkladu P 20-1.) U20-10: Krystalická soda (Na 2 CO 3 10H 2 O) se připravuje rozpouštěním bezvodého uhličitanu sodného ve směsi matečného roztoku a vody při teplotě 45 o C tak, aby koncentrace Na 2 CO 3 v roztoku byla 25 hmotn. % (viz obr. 20-5). Roztok se potom ochladí na teplotu 15 o C, přičemž dojde ke tvorbě krystalů dekahydrátu. Vlhké krystaly Na 2 CO 3 10H 2 O se odstředí a na jejich povrchu ulpí 10% matečného roztoku. m V m B m A m F m + m M MK m KV m MR Obr Schéma zařízení pro krystalizaci sody. Označení proudů: A-bezvodý uhličitan sodný; V-voda; F-vstupní roztok; K-krystaly; KV-vysušené krystaly; MK-matečný roztok, lpící na krystalech; MR-recykl; B-brýdová pára Zbylých 90% matečného roztoku se vrací do rozpouštěcí nádrže. Vlhké krystaly se dále vysuší tak, že z ulpělého roztoku se na krystalech právě vytvoří další krystalický dekahydrát. Krystalizace probíhá v zařízení, které se skládá z několika na sobě nezávisle pracujících sekcí, ve kterých proti proudu suspenze teče chladicí voda, ohřívající se ze 7 o C na 25 o C. Teplosměnná plocha každé sekce je 2,8 m 2, hodnota 20-7

8 součinitele prostupu tepla je 200 Wm -2 K -1. Ztráty energie do okolí vlivem nedokonalé izolace a množství odpařené vody zanedbejte. Vypočtěte, kolik kg h -1 vody a kolik kg h -1 bezvodé sody je nutno dávkovat do rozpouštěcí nádrže při produkci 1 tuny vysušených krystalů za hodinu. Kolik energie je nutno odvést při chlazení roztoku a kolik sekcí krystalizátoru je nutno použít? Výsledek: Do rozpouštěcí nádrže se musí dávkovat 356 kg h -1 bezvodé sody a 668 kg h -1 vody. Z potřebných čtyř sekcí krystalizátoru je nutno celkem odvádět 28,25 kw. U20-11: Cukrovar zpracovává 1600 tun řepy za den. Z tohoto množství se získá 8,5 hmotn. % zadinové cukroviny. Tato cukrovina, která má teplotu 80 o C, se v zařízení pracujícím při protiproudu ochlazuje na 35 o C. Přitom se 20% energie odvádí do okolí sáláním. Chladicím mediem je voda, která má na vstupu do zařízení teplotu 17 o C a na výstupu 42 o C. Měrná tepelná kapacita cukroviny je 2000 J kg -1 K -1, součinitel prostupu tepla je 35 W m -2 K -1. Vypočtěte spotřebu chladicí vody a potřebnou teplosměnnou plochu! Z ochlazené cukroviny se sacharizací 94% a čistotou 77% se dále odstředí 830 kg h -1 zadinového cukru o čistotě 95%. Jakou čistotu bude mít zbylá cukrovina po této operaci? (Pojmy sacharizace a čistota jsou vysvětleny v textu zadání příkladu P 20-4). Výsledek: Na ochlazení 1,574 kg s -1 (136 tun za den) zadinové cukroviny je zapotřebí 1,01 kg s -1 (87,5 tun za den) chladicí vody. Teplosměnnou plochou o velikosti 105 m 2 se odvádí 106 kw. Obsah sacharozy ve zbylé cukrovině je 68,5% hmotn. a vody 7,03% hmotn., čemuž odpovídá čistota 73,7%. U20-12: Sacharoza krystaluje v průtočných odpařovacích krystalizátorech (zrničích) zařazených v serii. Do pětistupňového systému se uvádí 750 tun za den cukerného roztoku (kléru) o sacharizaci 79%. Klér se uvádí do všech stupňů systému (viz obr. 20-6). Hodnoty sacharizace za jednotlivými stupni jsou 82% - 85% - 88% - 90% - 92%. Vypočtěte množství kléru ( m Fi ) dodávaného do každého stupně, množství vody ( m Bi ) odpařené v každém stupni a množství cukroviny (suspenze krystalů sacharozy a matečného roztoku - m n ) odváděné ze systému pro dvě varianty: I. Množství odpařené vody v každém stupni je stejné. II. Množství odpařené vody se v každém stupni snižuje a to tak, že v jednotlivém stupni se odpaří 95% množství odpařeného ve stupni předcházejícím. (Krystaly se ze systému jako zvláštní proud neodtahují). m B m Bi i m n 20-8 m Fi m F

9 Obr Schéma krystalizačního zařízení. Výsledek: V celém systému se odpaří 106 tun za den vody a odvede se 644 tun za den cukroviny. Ve variantě I se v každém stupni odpaří 21,2 tun za den vody, přičemž se do jednotlivých stupňů nastřikuje (v pořadí rostoucích indexů stupně) 579,4-21,2-21,2-71,9-56,3 tun za den kléru. Ve variantě II se v jednotlivých stupních odpaří 23,4-22,6-21,1-20,1-19,1 tun za den vody a do jednotlivých stupňů se uvádí 641-6,7-6,1-57,9-38,1 tun za den kléru. Literatura B1. Broul M., Nývlt J., Söhnel O.: Tabulky rozpustnosti anorganických látek ve vodě. Academia, Praha H1. Holeček O.: Chemickoinženýrské tabulky. Skriptum, ES VŠCHT, Praha K1. Kubíček M.: Numerické algoritmy řešení chemicko-inženýrských úloh. SNTL/Alfa, Praha N1. Nývlt J.: Výpočty krystalizátorů. Academia, Praha N2. Nývlt J., Söhnel O., Matuchová M., Broul M.: The Kinetics of Industrial Crystallization. Elsevier Amsterdam, Academia Praha N3. Nývlt J., Hostomský J.: Průmyslová krystalizace. Skriptum, VŠChT Praha V1. Valter V., Hampl J., Příhoda J., Bubník Z.: Výpočetní metody a modelování III. Skriptum, VŠCHT Praha

Bilan a ce c zák á l k ad a ní pojm j y m aplikace zákonů o zachování čehokoli 10.10.2008 3

Bilan a ce c zák á l k ad a ní pojm j y m aplikace zákonů o zachování čehokoli 10.10.2008 3 Výpočtový seminář z Procesního inženýrství podzim 2008 Bilance Materiálové a látkové 10.10.2008 1 Tématické okruhy bilance - základní pojmy bilanční schéma způsoby vyjadřování koncentrací a přepočtové

Více

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně Přípravný kurz k přijímacím zkouškám Obecná a anorganická chemie RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně část III. - 23. 3. 2013 Hmotnostní koncentrace udává se jako

Více

Jednotlivým bodům (n,2,a,e,k) z blokového schématu odpovídají body na T-s a h-s diagramu:

Jednotlivým bodům (n,2,a,e,k) z blokového schématu odpovídají body na T-s a h-s diagramu: Elektroenergetika 1 (A1B15EN1) 3. cvičení Příklad 1: Rankin-Clausiův cyklus Vypočtěte tepelnou účinnost teoretického Clausius-Rankinova parního oběhu, jsou-li admisní parametry páry tlak p a = 80.10 5

Více

Výměna tepla může probíhat vedením (kondukcí), prouděním (konvekcí) nebo sáláním (zářením).

Výměna tepla může probíhat vedením (kondukcí), prouděním (konvekcí) nebo sáláním (zářením). 10. VÝMĚNÍKY TEPLA Výměníky tepla jsou zařízení, ve kterých se jeden proud ohřívá a druhý ochlazuje sdílením tepla. Nezáleží přitom na konečném cíli operace, tj. zda chceme proud ochladit nebo ohřát, ani

Více

KTEV Fakulty životního prostředí UJEP v Ústí n.l. Průmyslové technologie 3 příklady pro cvičení. Ing. Miroslav Richter, PhD.

KTEV Fakulty životního prostředí UJEP v Ústí n.l. Průmyslové technologie 3 příklady pro cvičení. Ing. Miroslav Richter, PhD. KTEV Fakulty životního prostředí UJEP v Ústí n.l. Průmyslové technologie 3 příklady pro cvičení Ing. Miroslav Richter, PhD., EUR ING 2014 Materiálové bilance 3.5.1 Do tkaninového filtru vstupuje 10000

Více

EU peníze středním školám digitální učební materiál

EU peníze středním školám digitální učební materiál EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky

Více

RUŠENÁ KRYSTALIZACE A SUBLIMACE

RUŠENÁ KRYSTALIZACE A SUBLIMACE LABORATORNÍ PRÁCE Č. 5 RUŠENÁ KRYSTALIZACE A SUBLIMACE KRYSTALIZACE PRINCIP Krystalizace je důležitý postup při získávání čistých tuhých látek z jejich roztoků. Tuhá látka se rozpustí ve vhodném rozpouštědle.

Více

Univerzita obrany. Měření na výměníku tepla K-216. Laboratorní cvičení z předmětu TERMOMECHANIKA. Protokol obsahuje 13 listů. Vypracoval: Vít Havránek

Univerzita obrany. Měření na výměníku tepla K-216. Laboratorní cvičení z předmětu TERMOMECHANIKA. Protokol obsahuje 13 listů. Vypracoval: Vít Havránek Univerzita obrany K-216 Laboratorní cvičení z předmětu TERMOMECHANIKA Měření na výměníku tepla Protokol obsahuje 13 listů Vypracoval: Vít Havránek Studijní skupina: 21-3LRT-C Datum zpracování: 7.5.2011

Více

Pozn.: Pokud není řečeno jinak jsou pod pojmem procenta míněna vždy procenta hmotnostní.

Pozn.: Pokud není řečeno jinak jsou pod pojmem procenta míněna vždy procenta hmotnostní. Sebrané úlohy ze základních chemických výpočtů Tento soubor byl sestaven pro potřeby studentů prvního ročníku chemie a příbuzných předmětů a nebyl nikterak revidován. Prosím omluvte případné chyby, překlepy

Více

Úloha 3-15 Protisměrné reakce, relaxační kinetika... 5. Úloha 3-18 Protisměrné reakce, relaxační kinetika... 6

Úloha 3-15 Protisměrné reakce, relaxační kinetika... 5. Úloha 3-18 Protisměrné reakce, relaxační kinetika... 6 3. SIMULTÁNNÍ REAKCE Úloha 3-1 Protisměrné reakce oboustranně prvého řádu, výpočet přeměny... 2 Úloha 3-2 Protisměrné reakce oboustranně prvého řádu, výpočet času... 2 Úloha 3-3 Protisměrné reakce oboustranně

Více

KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I.

KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I. KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I. Ing. Jan Schwarzer, Ph.D.. Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 1 Obsah 1 Obsah... 2 2 Označení...3

Více

5. CHEMICKÉ REAKTORY

5. CHEMICKÉ REAKTORY 5. CHEMICÉ REAORY 5.1 IZOERMNÍ REAORY... 5.1.1 Diskontinuální reaktory... 5.1. Průtočné reaktory... 5.1..1 Průtočné reaktory s pístovým tokem... 5.1.. Průtočné reaktory s dokonale promíchávaným obsahem...4

Více

CHEMIE. Pracovní list č. 4 - žákovská verze Téma: Tepelné zabarvení chemických reakcí. Mgr. Kateřina Dlouhá. Student a konkurenceschopnost

CHEMIE. Pracovní list č. 4 - žákovská verze Téma: Tepelné zabarvení chemických reakcí. Mgr. Kateřina Dlouhá. Student a konkurenceschopnost www.projektsako.cz CHEMIE Pracovní list č. 4 - žákovská verze Téma: Tepelné zabarvení chemických reakcí Lektor: Projekt: Reg. číslo: Mgr. Kateřina Dlouhá Student a konkurenceschopnost CZ.1.07/1.1.07/03.0075

Více

Termochemie se zabývá tepelným zabarvením chemických reakcí Vychází z 1. termodynamického zákona. U změna vnitřní energie Q teplo W práce

Termochemie se zabývá tepelným zabarvením chemických reakcí Vychází z 1. termodynamického zákona. U změna vnitřní energie Q teplo W práce Termochemie Termochemie se zabývá tepelným zabarvením chemických reakcí Vychází z 1. termodynamického zákona U = Q + W U změna vnitřní energie Q teplo W práce Teplo a práce dodané soustavě zvyšují její

Více

Kosmická technologie v galvanizovnách

Kosmická technologie v galvanizovnách Kosmická technologie v galvanizovnách Ing. Libor Vodehnal, AITEC s.r.o., Ledeč nad Sázavou Využívání galvanických povlaků vyloučených ze slitinových lázní v současné době nabývá na významu vzhledem k požadavkům

Více

N A = 6,023 10 23 mol -1

N A = 6,023 10 23 mol -1 Pro vyjadřování množství látky se v chemii zavádí veličina látkové množství. Značí se n, jednotkou je 1 mol. Látkové množství je jednou ze základních veličin soustavy SI. Jeden mol je takové množství látky,

Více

Fyzikální parametry oleje: dynamická viskozita je 8 mpa s a hustota 850 kg m 3.

Fyzikální parametry oleje: dynamická viskozita je 8 mpa s a hustota 850 kg m 3. Ocelová deska o ploše 0,2 m 2 se pohybuje rovnoměrným přímočarým pohybem na tenkém olejovém filmu rychlostí 0,1 m s 1. Tloušt ka filmu je 2 mm. Vypočtěte sílu F, kterou musíte působit na desku, abyste

Více

Svaz chladící a klimatizační techniky ve spolupráci s firmou Schiessl, s.r.o. Pro certifikaci dle Nařízení 303/2008/EK. 2010-01 Ing.

Svaz chladící a klimatizační techniky ve spolupráci s firmou Schiessl, s.r.o. Pro certifikaci dle Nařízení 303/2008/EK. 2010-01 Ing. Svaz chladící a klimatizační techniky ve spolupráci s firmou Schiessl, s.r.o Diagram chladícího okruhu Pro certifikaci dle Nařízení 303/2008/EK 2010-01 Ing. Jiří Brož Úvod k prezentaci Tato jednoduchá

Více

Vynález se týká zařízení odluhu vody druhého okruhu jaderných elektráren typu WER.

Vynález se týká zařízení odluhu vody druhého okruhu jaderných elektráren typu WER. ČESKOSLOVENSKA SOCIALISTICKÁ REPUBLIKA (1») POPIS VYNALEZU К AUTORSKÉMU OSVĚDČENÍ (22) Přihlášeno 14 07 88 (21) PV 5086-88.Z 265 650 Ol) (BI) Á13) (51) Int. Cl. 4 G 21 D 1/00 FEDERÁLNÍ ÚŘAD PRO VYNÄLEZY

Více

1) PROCENTOVÁ KONCENTRACE HMOTNOSTNÍ PROCENTO (w = m(s) /m(roztoku))

1) PROCENTOVÁ KONCENTRACE HMOTNOSTNÍ PROCENTO (w = m(s) /m(roztoku)) OBSAH: 1) PROCENTOVÁ KONCENTRACE HMOTNOSTNÍ PROCENTO (w = m(s) /m(roztoku)) 2) ŘEDĚNÍ ROZTOKŮ ( m 1 w 1 + m 2 w 2 = (m 1 + m 2 ) w ) 3) MOLÁRNÍ KONCENTRACE (c = n/v) 12 příkladů řešených + 12příkladů s

Více

Cvičení z termomechaniky Cvičení 2. Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa].

Cvičení z termomechaniky Cvičení 2. Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa]. Příklad 1 Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa]. m 20[kg], t 15 [ C] 288.15 [K], p 10 [MPa] 10.10 6 [Pa], R 8314 [J. kmol 1. K 1 ] 8,314

Více

Blokové schéma Clausius-Rankinova (C-R) cyklu s přihříváním páry je na obrázku.

Blokové schéma Clausius-Rankinova (C-R) cyklu s přihříváním páry je na obrázku. Elektroenergetika 1 (A1B15EN1) 4. cvičení Příklad 1: Přihřívání páry Teoretický parní oběh s přihříváním páry pracuje s následujícími parametry: Admisní tlak páry p a = 10 MPa a teplota t a = 530 C. Tlak

Více

DOUČOVÁNÍ KVINTA CHEMIE

DOUČOVÁNÍ KVINTA CHEMIE 1. ÚVOD DO STUDIA CHEMIE 1) Co studuje chemie? 2) Rozděl chemii na tři důležité obory. DOUČOVÁNÍ KVINTA CHEMIE 2. NÁZVOSLOVÍ ANORGANICKÝCH SLOUČENIN 1) Pojmenuj: BaO, N 2 0, P 4 O 10, H 2 SO 4, HMnO 4,

Více

KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÝ PŘÍKLAD KE CVIČENÍ II.

KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÝ PŘÍKLAD KE CVIČENÍ II. KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÝ PŘÍKLAD KE CVIČENÍ II. (DIMENZOVÁNÍ VĚTRACÍHO ZAŘÍZENÍ BAZÉNU) Ing. Jan Schwarzer, Ph.D.. Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší

Více

SLOŽENÍ ROZTOKŮ. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 12. 4. 2012. Ročník: osmý

SLOŽENÍ ROZTOKŮ. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 12. 4. 2012. Ročník: osmý Autor: Mgr. Stanislava Bubíková SLOŽENÍ ROZTOKŮ Datum (období) tvorby: 12. 4. 2012 Ročník: osmý Vzdělávací oblast: Člověk a příroda / Chemie / Směsi 1 Anotace: Žáci se seznámí se složením roztoku a s veličinou

Více

Měření na rozprašovací sušárně Anhydro návod

Měření na rozprašovací sušárně Anhydro návod Měření na rozprašovací sušárně Anhydro návod Zpracoval : Doc. Ing. Pavel Hoffman, CSc. ČVUT Praha, strojní fakulta U218 Ústav procesní a zpracovatelské techniky Datum: leden 2003 Popis laboratorní sušárny

Více

STANOVENÍ VLASTNOSTÍ AERAČNÍCH ZAŘÍZENÍ

STANOVENÍ VLASTNOSTÍ AERAČNÍCH ZAŘÍZENÍ STANOVENÍ VLASTNOSTÍ AERAČNÍCH ZAŘÍZENÍ Zadání: 1. Stanovte oxygenační kapacitu a procento využití kyslíku v čisté vodě pro provzdušňovací porézní element instalovaný v plexi válci následujících rozměrů:

Více

ÚPRAVA VODY V ENERGETICE. Ing. Jiří Tomčala

ÚPRAVA VODY V ENERGETICE. Ing. Jiří Tomčala ÚPRAVA VODY V ENERGETICE Ing. Jiří Tomčala Úvod Voda je v elektrárnách po palivu nejdůležitější surovinou Její množství v provozních systémech elektráren je mnohonásobně větší než množství spotřebovaného

Více

Vyjadřuje poměr hmotnosti rozpuštěné látky k hmotnosti celého roztoku.

Vyjadřuje poměr hmotnosti rozpuštěné látky k hmotnosti celého roztoku. Koncentrace roztoků Hmotnostní zlomek w Vyjadřuje poměr hmotnosti rozpuštěné látky k hmotnosti celého roztoku. w= m A m s m s...hmotnost celého roztoku, m A... hmotnost rozpuštěné látky Hmotnost roztoku

Více

Výroba páry - kotelna, teplárna, elektrárna Rozvod páry do místa spotřeby páry Využívání páry v místě spotřeby Vracení kondenzátu do místa výroby páry

Výroba páry - kotelna, teplárna, elektrárna Rozvod páry do místa spotřeby páry Využívání páry v místě spotřeby Vracení kondenzátu do místa výroby páry Úvod Znalosti - klíč k úspěchu Materiál přeložil a připravil Ing. Martin NEUŽIL, Ph.D. SPIRAX SARCO spol. s r.o. V Korytech (areál nádraží ČD) 100 00 Praha 10 - Strašnice tel.: 274 00 13 51, fax: 274 00

Více

2 - Kinetika sušení vybraného materiálu (Stanice sušení)

2 - Kinetika sušení vybraného materiálu (Stanice sušení) 2 - Kinetika sušení vybraného materiálu (Stanice sušení) I Základní vztahy a definice Sušení je děj, při kterém se odstraňuje kapalina obsažená v materiálu. Sušením se nejčastěji odstraňuje voda (složka

Více

Termochemie. Úkol: A. Určete změnu teploty při rozpouštění hydroxidu sodného B. Určete reakční teplo reakce zinku s roztokem měďnaté soli

Termochemie. Úkol: A. Určete změnu teploty při rozpouštění hydroxidu sodného B. Určete reakční teplo reakce zinku s roztokem měďnaté soli 1. Termochemie Úkol: Určete změnu teploty při rozpouštění hydroxidu sodného B. Určete reakční teplo reakce zinku s roztokem měďnaté soli Pomůcky : a) kádinky, teploměr, odměrný válec, váženka, váhy, kalorimetr,

Více

12 Prostup tepla povrchem s žebry

12 Prostup tepla povrchem s žebry 2 Prostup tepla povrchem s žebry Lenka Schreiberová, Oldřich Holeček Základní vztahy a definice V případech, kdy je třeba sdílet teplo z média s vysokým součinitelem přestupu tepla do média s nízkým součinitelem

Více

Orientačně lze uvažovat s potřebou cca 650 750 Kcal na vypaření 1 l kapalné odpadní vody.

Orientačně lze uvažovat s potřebou cca 650 750 Kcal na vypaření 1 l kapalné odpadní vody. Proces Biodestil Biodestil je nový pokrokový proces pro zpracování vysoce kontaminovaných nebo zasolených odpadních vod, které jsou obtížně likvidovatelné ostatními konvenčními metodami. Tento proces je

Více

Základy chemických technologií

Základy chemických technologií 8. Přednáška Extrakce Sušení Extrakce extrakce kapalina kapalina rovnováha kapalina kapalina pro dvousložkové systémy jednostupňová extrakce, opakovaná extrakce procesní zařízení extrakce kapalina pevná

Více

LABORATORNÍ PRÁCE č.2

LABORATORNÍ PRÁCE č.2 LABORATORNÍ PRÁCE č.2 Téma: Dělení směsí II Úkol č.1: Destilace směsi manganistan draselný voda Teorie: Jedná se o jeden z nejdůležitějších způsobů oddělování složek kapalných směsí a jejich čištění. Složky

Více

Složení soustav (roztoky, koncentrace látkového množství)

Složení soustav (roztoky, koncentrace látkového množství) VZOROVÉ PŘÍKLADY Z CHEMIE A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava Doporučená literatura z chemie: Prakticky jakákoliv celostátní učebnice

Více

CHEMICKÉ VÝPOČTY HMOTNOST REAKTANTŮ A PRODUKTŮ PŘI CHEMICKÉ REAKCI PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

CHEMICKÉ VÝPOČTY HMOTNOST REAKTANTŮ A PRODUKTŮ PŘI CHEMICKÉ REAKCI PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST CHEMICKÉ VÝPOČTY HMOTNOST REAKTANTŮ A PRODUKTŮ PŘI CHEMICKÉ REAKCI PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST VÝPOČET HMOTNOSTI REAKTANTŮ A PRODUKTŮ PŘI CHEMICKÉ REAKCI

Více

Chemie - cvičení 2 - příklady

Chemie - cvičení 2 - příklady Cheie - cvičení 2 - příklady Stavové chování 2/1 Zásobník o objeu 50 obsahuje plynný propan C H 8 při teplotě 20 o C a přetlaku 0,5 MPa. Baroetrický tlak je 770 torr. Kolik kg propanu je v zásobníku? Jaká

Více

CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST AMEDEO AVOGADRO AVOGADROVA KONSTANTA 2 N 2 MOLY ATOMŮ DUSÍKU 2 ATOMY DUSÍKU

Více

CHEMICKÉ VÝPOČTY II SLOŽENÍ ROZTOKŮ. Složení roztoků udává vzájemný poměr rozpuštěné látky a rozpouštědla v roztoku. Vyjadřuje se:

CHEMICKÉ VÝPOČTY II SLOŽENÍ ROZTOKŮ. Složení roztoků udává vzájemný poměr rozpuštěné látky a rozpouštědla v roztoku. Vyjadřuje se: CEMICKÉ VÝPOČTY II SLOŽENÍ ROZTOKŮ Teorie Složení roztoků udává vzájený poěr rozpuštěné látky a rozpouštědla v roztoku. Vyjadřuje se: MOTNOSTNÍM ZLOMKEM B vyjadřuje poěr hotnosti rozpuštěné látky k hotnosti

Více

Osnova pro předmět Fyzikální chemie II magisterský kurz

Osnova pro předmět Fyzikální chemie II magisterský kurz Osnova pro předmět Fyzikální chemie II magisterský kurz Časový a obsahový program přednášek Týden Obsahová náplň přednášky Pozn. Stavové chování tekutin 1,2a 1, 2a Molekulární přístup kinetická teorie

Více

A. Výpočty z chemických vzorců B. Určení vzorce sloučeniny. Čas potřebný k prostudování učiva kapitoly: 0,5 + 2 hodiny (teorie + řešení úloh)

A. Výpočty z chemických vzorců B. Určení vzorce sloučeniny. Čas potřebný k prostudování učiva kapitoly: 0,5 + 2 hodiny (teorie + řešení úloh) III. Chemické vzorce 1 1.CHEMICKÉ VZORCE A. Výpočty z chemických vzorců B. Určení vzorce sloučeniny Klíčová slova této kapitoly: Chemický vzorec, hmotnostní zlomek w, hmotnostní procento p m, stechiometrické

Více

Tepelná technika. Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007

Tepelná technika. Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007 Tepelná technika Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007 Tepelné konstanty technických látek Základní vztahy Pro proces sdílení tepla platí základní

Více

3. Soda a potaš Ing. Miroslav Richter, Ph.D., EUR ING

3. Soda a potaš Ing. Miroslav Richter, Ph.D., EUR ING ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE 3. Soda a potaš Ing. Miroslav Richter, Ph.D., EUR ING Výroby sody a potaše Suroviny, Přehled výrobních technologií

Více

Obrázek 3: Zápis srážecí reakce

Obrázek 3: Zápis srážecí reakce VG STUDENT CHEMIE T É M A: SRÁŽENÍ, IZOLACE SRAŽENIN Vypracoval/a: Spolupracoval/a: Třída: Datum: ANOTACE: V této laboratorní práci se žáci seznámí s pojmem sraženina a srážení, provedou srážení jodidu

Více

KONTROLNÍ TEST ŠKOLNÍHO KOLA (70 BODŮ)

KONTROLNÍ TEST ŠKOLNÍHO KOLA (70 BODŮ) KONTROLNÍ TEST ŠKOLNÍHO KOLA (70 BODŮ) Úloha 1 Ic), IIa), IIId), IVb) za každé správné přiřazení po 1 bodu; celkem Úloha 2 8 bodů 1. Sodík reaguje s vodou za vzniku hydroxidu sodného a dalšího produktu.

Více

5.7 Vlhkost vzduchu 5.7.5 Absolutní vlhkost 5.7.6 Poměrná vlhkost 5.7.7 Rosný bod 5.7.8 Složení vzduchu 5.7.9 Měření vlhkosti vzduchu

5.7 Vlhkost vzduchu 5.7.5 Absolutní vlhkost 5.7.6 Poměrná vlhkost 5.7.7 Rosný bod 5.7.8 Složení vzduchu 5.7.9 Měření vlhkosti vzduchu Fázové přechody 5.6.5 Fáze Fázové rozhraní 5.6.6 Gibbsovo pravidlo fází 5.6.7 Fázový přechod Fázový přechod prvního druhu Fázový přechod druhého druhu 5.6.7.1 Clausiova-Clapeyronova rovnice 5.6.8 Skupenství

Více

CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL.

CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL. CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL. Látkové množství Značka: n Jednotka: mol Definice: Jeden mol je množina, která má stejný počet prvků, jako je atomů ve 12 g nuklidu

Více

CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM

CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM Místní ztráty, Tlakové ztráty Příklad č. 1: Jistá část potrubí rozvodného systému vody se skládá ze dvou paralelně uspořádaných větví. Obě potrubí mají průřez

Více

Rekuperační jednotky

Rekuperační jednotky Rekuperační jednotky Vysoká účinnost výměníku účinnosti jednotky a komfortu vnitřního prostředí je dosaženo koncepcí výměníku, v němž dochází k rekuperaci energie vnitřního a venkovního vzduchu a takto

Více

1/5. 9. Kompresory a pneumatické motory. Příklad: 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11, 9.12, 9.13, 9.14, 9.15, 9.16, 9.

1/5. 9. Kompresory a pneumatické motory. Příklad: 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11, 9.12, 9.13, 9.14, 9.15, 9.16, 9. 1/5 9. Kompresory a pneumatické motory Příklad: 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11, 9.12, 9.13, 9.14, 9.15, 9.16, 9.17 Příklad 9.1 Dvojčinný vzduchový kompresor bez škodného prostoru,

Více

Spotřeba paliva a její měření je jedna z nejdůležitějších užitných vlastností vozidla. Měřit a uvádět spotřebu paliva je možno několika způsoby.

Spotřeba paliva a její měření je jedna z nejdůležitějších užitných vlastností vozidla. Měřit a uvádět spotřebu paliva je možno několika způsoby. S Spotřeba paliva Spotřeba paliva a její měření je jedna z nejdůležitějších užitných vlastností vozidla. ěřit a uvádět spotřebu paliva je možno několika způsoby. S.1 Spotřeba a měrná spotřeba Spotřeba

Více

Sešit pro laboratorní práci z chemie

Sešit pro laboratorní práci z chemie Sešit pro laboratorní práci z chemie téma: Příprava roztoků a měření ph autor: ing. Alena Dvořáková vytvořeno při realizaci projektu: Inovace školního vzdělávacího programu biologie a chemie registrační

Více

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013 Vysoké učení technické v Brně Fakulta strojního inženýrství, Energetický ústav Odbor termomechaniky a techniky prostředí TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno

Více

Úspory vody a energie na prádelnách podle fyzikálních, nikoliv marketingových zákonů 3. část.

Úspory vody a energie na prádelnách podle fyzikálních, nikoliv marketingových zákonů 3. část. Úspory vody a energie na prádelnách podle fyzikálních, nikoliv marketingových zákonů 3. část. V předchozích dvou dílech této série článků jste se dozvěděli mnohé o snižování spotřeby vody a energie na

Více

K AUTORSKÉMU OSVEDČENÍ

K AUTORSKÉMU OSVEDČENÍ ČESKOSLOVENSKA SOCIALISTICKÁ R E P U B L I K A POPIS VYNÁLEZU w w w K AUTORSKÉMU OSVEDČENÍ 167039 Int. CL- G 21 D 3/00 Přihlášeno 23. X. 1973 (PV 7283-73) OKAD PRO VYNÁLEZY A OBJEVY Zveřejněno 15. VII.

Více

17. METODICKÝ POKYN ODBORU OCHRANY OVZDUŠÍ

17. METODICKÝ POKYN ODBORU OCHRANY OVZDUŠÍ 17. METODICKÝ POKYN ODBORU OCHRANY OVZDUŠÍ ke stanovení roční hmotnostní bilance těkavých organických látek při výrobě kompozitů podle zákona č. 86/2002 Sb. o ochraně ovzduší, v platném znění, a vyhlášky

Více

Anorganické sloučeniny opakování Smart Board

Anorganické sloučeniny opakování Smart Board Anorganické sloučeniny opakování Smart Board VY_52_INOVACE_210 Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemie Ročník: 8.,9. Projekt EU peníze školám Operačního programu Vzdělávání pro konkurenceschopnost

Více

Kogenerační jednotka se spalovací turbínou o výkonu 2500 kw. Stanislav Veselý, Alexander Tóth

Kogenerační jednotka se spalovací turbínou o výkonu 2500 kw. Stanislav Veselý, Alexander Tóth KOTLE A ENERGETICKÁ ZAŘÍZENÍ 2011 BRNO 14.3. až 26.3. 2011 Kogenerační jednotka se spalovací turbínou o výkonu 2500 kw Stanislav Veselý, Alexander Tóth EKOL, spol. s r.o., Brno Kogenerační jednotka se

Více

Laboratorní práce č. 2: Určení měrného skupenského tepla tání ledu

Laboratorní práce č. 2: Určení měrného skupenského tepla tání ledu Přírodní vědy moderně a interaktivně FYZIKA 1. ročník šestiletého studia Laboratorní práce č. 2: Určení měrného skupenského tepla tání ledu ymnázium Přírodní vědy moderně a interaktivně FYZIKA 1. ročník

Více

215.1.9 - REKTIFIKACE DVOUSLOŽKOVÉ SMĚSI, VÝPOČET ÚČINNOSTI

215.1.9 - REKTIFIKACE DVOUSLOŽKOVÉ SMĚSI, VÝPOČET ÚČINNOSTI 215.1.9 - REKTIFIKACE DVOUSLOŽKOVÉ SMĚSI, VÝPOČET ÚČINNOSTI ÚVOD Rektifikace je nejčastěji používaným procesem pro separaci organických látek. Je široce využívána jak v chemické laboratoři, tak i v průmyslu.

Více

Chemie paliva a maziva cvičení, pracovní sešit, (II. část).

Chemie paliva a maziva cvičení, pracovní sešit, (II. část). Chemie paliva a maziva cvičení, pracovní sešit, (II. část). Ing. Eliška Glovinová Ph.D. Tato publikace je spolufinancována z Evropského sociálního fondu a státního rozpočtu České republiky. Byla vydána

Více

Organická chemie 1. ročník studijního oboru - gastronomie.

Organická chemie 1. ročník studijního oboru - gastronomie. Organická chemie 1. ročník studijního oboru - gastronomie. T-4 Metody oddělování složek směsí. Zpracováno v rámci projektu Zlepšení podmínek ke vzdělávání Registrační číslo projektu: CZ.1.07/1.5.00/34.0639

Více

Identifikátor materiálu: ICT 2 58

Identifikátor materiálu: ICT 2 58 Identifikátor materiálu: ICT 58 Registrační číslo projektu Název projektu Název příjemce podpory název materiálu (DUM) Anotace Autor Jazyk Očekávaný výstup Klíčová slova Druh učebního materiálu Druh interaktivity

Více

Základy chemických technologií

Základy chemických technologií 6. Přednáška Výměníky tepla Odpařování, odparky Výměníky tepla: zařízení, které slouží k výměně tepla mezi dvěma fázemi ( obvykle kapalné) z tepejší se teplo odebírá do studenější se převádí technologické

Více

Úloha 1-39 Teplotní závislost rychlostní konstanty, reakce druhého řádu... 11

Úloha 1-39 Teplotní závislost rychlostní konstanty, reakce druhého řádu... 11 1. ZÁKLADNÍ POJMY Úloha 1-1 Různé vyjádření reakční rychlosti rychlosti přírůstku a úbytku jednotlivých složek... 2 Úloha 1-2 Různé vyjádření reakční rychlosti změna celkového látkového množství... 2 Úloha

Více

Název: Krystalizace. Výukové materiály. Téma: Krystalizace. Úroveň: 2. stupeň ZŠ. Tematický celek: Vidět a poznat neviditelné. Předmět (obor): chemie

Název: Krystalizace. Výukové materiály. Téma: Krystalizace. Úroveň: 2. stupeň ZŠ. Tematický celek: Vidět a poznat neviditelné. Předmět (obor): chemie Název: Krystalizace Výukové materiály Téma: Krystalizace Úroveň: 2. stupeň ZŠ Tematický celek: Vidět a poznat neviditelné Předmět (obor): chemie Doporučený věk žáků: 13 14 let Doba trvání: 2 vyučovací

Více

Kyselina fosforečná Suroviny: Výroba: termický způsob extrakční způsob

Kyselina fosforečná Suroviny: Výroba: termický způsob extrakční způsob Kyselina fosforečná bezbarvá krystalická sloučenina snadno rozpustná ve vodě komerčně dodávané koncentrace 75% H 3 PO 4 s 54,3% P 2 O 5 80% H 3 PO 4 s 58.0% P 2 O 5 85% H 3 PO 4 s 61.6% P 2 O 5 po kyselině

Více

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Šablona III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více

PROCESNÍ INŽENÝRSTVÍ cvičení 10

PROCESNÍ INŽENÝRSTVÍ cvičení 10 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESNÍ INŽENÝRSTVÍ cvičení 10 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního

Více

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie TEPELNÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Vnitřní energie tělesa Každé těleso se skládá z látek. Látky se skládají z částic. neustálý neuspořádaný pohyb kinetická energie vzájemné působení

Více

Vícefázové reaktory. Probublávaný reaktor plyn kapalina katalyzátor. Zuzana Tomešová

Vícefázové reaktory. Probublávaný reaktor plyn kapalina katalyzátor. Zuzana Tomešová Vícefázové reaktory Probublávaný reaktor plyn kapalina katalyzátor Zuzana Tomešová 2008 Probublávaný reaktor plyn - kapalina - katalyzátor Hydrogenace méně těkavých látek za vyššího tlaku Kolony naplněné

Více

Teorie přenosu tepla Deskové výměníky tepla

Teorie přenosu tepla Deskové výměníky tepla Teorie přenosu tepla Deskové výměníky tepla Teorie přenosu tepla Následující stránky vám pomohou lépe porozumnět tomu, jak fungují výměníky tepla. Jasně a jednoduše popíšeme základní principy přenosu tepla.

Více

CHEMICKÉ VÝPOČ TY S LOGIKOU II

CHEMICKÉ VÝPOČ TY S LOGIKOU II OSTRAVSKÁ UNIVERZITA [ TADY KLEPNĚ TE A NAPIŠTE NÁZEV FAKULTY] FAKULTA CHEMICKÉ VÝPOČ TY S LOGIKOU II TOMÁŠ HUDEC OSTRAVA 2003 Na této stránce mohou být základní tirážní údaje o publikaci. 1 OBSAH PŘ EDMĚ

Více

SINEAX U 554 Převodník střídavého napětí s různými charakteristikami

SINEAX U 554 Převodník střídavého napětí s různými charakteristikami S připojením napájecího napětí Měření efektivní hodnoty Pouzdro P13/70 pro montáž na lištu Použití Převodník SINEAX U 554 (obr. 1) převádí sinusové nebo zkreslené střídavé napětí na vnucený stejnosměrný

Více

9.1 Okrajové podmínky a spotřeba energie na ohřev teplé vody

9.1 Okrajové podmínky a spotřeba energie na ohřev teplé vody 00+ příklad z techniky prostředí 9. Okrajové podmínky a spotřeba energie na ohřev teplé vody Úloha 9.. V úlohách 9, 0 a určíme spotřebu energie pro provoz zóny zadaného objektu. Zadaná zóna představuje

Více

Autor: Tomáš Galbička www.nasprtej.cz Téma: Roztoky Ročník: 2.

Autor: Tomáš Galbička www.nasprtej.cz Téma: Roztoky Ročník: 2. Roztoky směsi dvou a více látek jsou homogenní (= nepoznáte jednotlivé částečky roztoku - částice jsou menší než 10-9 m) nejčastěji se rozpouští pevná látka v kapalné látce jedna složka = rozpouštědlo

Více

Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha

Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha Názvosloví páry Pro správné pochopení funkce parních systémů musíme znát základní pojmy spojené s párou. Entalpie Celková energie, příslušná danému

Více

Ministerstvo školství, mládeže a tělovýchovy Ústřední komise Chemické olympiády. 46. ročník 2009/2010. KRAJSKÉ KOLO kategorie D

Ministerstvo školství, mládeže a tělovýchovy Ústřední komise Chemické olympiády. 46. ročník 2009/2010. KRAJSKÉ KOLO kategorie D Ministerstvo školství, mládeže a tělovýchovy Ústřední komise Chemické olympiády 46. ročník 2009/2010 KRAJSKÉ KOLO kategorie D ŘEŠENÍ SOUTĚŽNÍCH ÚLOH TEORETICKÁ ČÁST (60 bodů) Úloha 1 Vlastnosti prvků 26

Více

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VÝPOČTY Z CHEMICKÝCH ROVNIC VY_32_INOVACE_03_3_18_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VÝPOČTY Z CHEMICKÝCH

Více

OPTIMALIZACE CHEMICKÝCH STUPŇOVÝCH PROCESŮ POMOCÍ MATLAB SYMBOLIC MATH TOOLBOXU. Vladimír Hanta

OPTIMALIZACE CHEMICKÝCH STUPŇOVÝCH PROCESŮ POMOCÍ MATLAB SYMBOLIC MATH TOOLBOXU. Vladimír Hanta OPTIMALIZACE CHEMICKÝCH STUPŇOVÝCH PROCESŮ POMOCÍ MATLAB SYMBOLIC MATH TOOLBOXU Vladimír Hanta Vysoká škola chemicko-technologická Praha, Ústav počítačové a řídicí techniky Při modelování a simulaci chemicko-inženýrských

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat

Více

Sklářské a bižuterní materiály 2005/06

Sklářské a bižuterní materiály 2005/06 Sklářské a bižuterní materiály 005/06 Cvičení 4 Výpočet parametru Y z hmotnostních a molárních % Vlastnosti skla a skloviny Viskozita. Viskozitní křivka. Výpočet pomocí Vogel-Fulcher-Tammannovy rovnice.

Více

Elektrolytické vylučování mědi (galvanoplastika)

Elektrolytické vylučování mědi (galvanoplastika) Elektrolytické vylučování mědi (galvanoplastika) 1. Úvod Často se setkáváme s požadavkem na zhotovení kopie uměleckého nebo muzejního sbírkového předmětu. Jednou z možností je použití galvanoplastické

Více

K AUTORSKÉMU OSVĚDČENÍ

K AUTORSKÉMU OSVĚDČENÍ ČESKOSLOVENSKÁ SOCIALISTICKÁ R E P U B L I K A POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ 158861 MPT G 21 c 15/16 ^ S á i Přihlášeno 07. VI. 1973 (PV 4118-73) PT 21 g 21/24 Zveřejněno 28. II. 1974 ÚŘAD PRO

Více

CHLADICÍ TECHNIKA A TEPELNÁ ČERPADLA

CHLADICÍ TECHNIKA A TEPELNÁ ČERPADLA CHLADICÍ TECHNIKA A TEPELNÁ ČERPADLA PODKLADY PRO CVIČENÍ Ing. Miroslav Petrák, Ph.D. Praha 2009 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Obsah Popis diagramů... 2 Řešené příklady...

Více

Jazykové gymnázium Pavla Tigrida, Ostrava-Poruba Název projektu: Podpora rozvoje praktické výchovy ve fyzice a chemii

Jazykové gymnázium Pavla Tigrida, Ostrava-Poruba Název projektu: Podpora rozvoje praktické výchovy ve fyzice a chemii Datum: Jazykové gymnázium Pavla Tigrida, Ostrava-Poruba Název projektu: Podpora rozvoje praktické výchovy ve fyzice a chemii Tlak vzduchu: Teplota vzduchu: Laboratorní cvičení č. Oddělování složek směsí

Více

Název DUM: Změny skupenství v příkladech

Název DUM: Změny skupenství v příkladech Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Změny skupenství

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

T0 Teplo a jeho měření

T0 Teplo a jeho měření Teplo a jeho měření 1 Teplo 2 Kalorimetrie Kalorimetr 3 Tepelná kapacita 3.1 Měrná tepelná kapacita Měrná tepelná kapacita při stálém objemu a stálém tlaku Poměr měrných tepelných kapacit 3.2 Molární tepelná

Více

CHEMIE výpočty. 5 z chemických ROVNIC. 1 vyučovací hodina chemie 9. ročník Mgr. Renata Zemková ZŠ a MŠ L. Kuby 48, České Budějovice

CHEMIE výpočty. 5 z chemických ROVNIC. 1 vyučovací hodina chemie 9. ročník Mgr. Renata Zemková ZŠ a MŠ L. Kuby 48, České Budějovice CHEMIE výpočty 5 z chemických ROVNIC 1 vyučovací hodina chemie 9. ročník Mgr. Renata Zemková ZŠ a MŠ L. Kuby 48, České Budějovice 1 definice pojmu a vysvětlení vzorové příklady test poznámky pro učitele

Více

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013 Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná

Více

fan coil jednotky sinclair

fan coil jednotky sinclair fan coil jednotky sinclair katalog 2014 k l i m a t i z a c e Obsah vlastnosti jednotek 3 Technické parametry Kazetových jednotek 4 Technické parametry NÁSTĚNNých jednotek 5 Tabulka chladicích výkonů 6

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

d T FP = fázový přechod (tání, tuhnutí, vypařování, kapalnění, sublimace)

d T FP = fázový přechod (tání, tuhnutí, vypařování, kapalnění, sublimace) Fázové rovnováhy jednoložkový ytém Gibbův fázový zákon k f C Popi záviloti tlaku naycených par na teploě Clapeyronova rovnice: d p F P m n e b o F P d l np F P m F P z FP fázový přechod (tání, tuhnutí,

Více