Skládání kmitů

Rozměr: px
Začít zobrazení ze stránky:

Download "1.7.4. Skládání kmitů"

Transkript

1 .7.4. Skládání kmitů. Umět vysvětlit pojem superpozice.. Umět rozdělit různé typy skládání kmitů podle směru a frekvence. 3. Umět určit amplitudu a fázi výsledného kmitu. 4. Vysvětlit pojem fázor. 5. Znát závislost amplitudy výsledného kmitu na fázovém posuvu. 6. Vysvětlit, kdy vznikají Lissajousovy obrazce. 7. Umět vysvětlit tvar Lissajousova obrazce v závislosti na fázovém posuvu. 8. Umět vysvětlit tvar Lissajousova obrazce v závislosti na frekvenci. Kdybychom sledovali pohyb hmotného bodu, který by byl připevněn v závěsu na dvou různých pružinách umístěných za sebou, studovali bychom složený kmitavý pohyb (Obr..7.-7). Oba kmitavé pohyby se budou skládat vzhledem k závěsu horní pružiny. Jestliže těleso vykonává dva nebo více kmitavých pohybů, určíme výsledný kmitavý tak, že složíme výchylky jednotlivých kmitavých pohybů na základě principu superpozice. Jednotlivé pohyby podle tohoto principu probíhají nezávisle na sobě. Dva harmonické pohyby se mohou lišit v amplitudách, frekvencích, ve fázi i ve směru kmitání. Z názorného hlediska je vhodné sledovat. skládání kmitů stejného směru a) stejných frekvencí b) blízkých frekvencí c) různých frekvencí Obr skládání kolmých kmitů a) stejných frekvencí b) různých frekvencí Skládání kmitů stejného směru. a) skládání kmitů stejného směru a stejné frekvence (izochronní) Jestliže budeme sledovat pohyb hmotného bodu, který koná dva kmity současně, můžeme každý z nich popsat rovnicí pro výchylku. Protože u obou kmitů je ω ω ω, můžeme rovnice pro okamžitou výchylku obou kmitů zapsat takto: a) první kmit bude popsán rovnicí pro okamžitou výchylku y A sin( ω t + ϕ ) b) druhý kmit bude popsán rovnicí pro okamžitou výchylku A sin( ω t + ϕ ) y. Na obrázku jsou složeny hodnoty okamžitých výchylek jednotlivých kmitů v konkrétních časových okamžicích. Výchylky se sčítají a vytvářejí výsledný kmit grafickou metodou. 90

2 Obr Rovnice výsledného kmitu bude ve tvaru y Asin ( ω t + ϕ ) V této rovnici je nutné určit výslednou amplitudu A a výslednou počáteční fázi ϕ, které získáme podrobným odvozením. Pro amplitudu získáme vztah ( ϕ ) A A + A + A A cos ϕ Výslednou fázi určíme ze vztahu A sinϕ + A sinϕ tgϕ A cosϕ + A cosϕ Výsledný kmit vzniklý superpozici má stejnou frekvenci jako jednotlivé skládané kmity. Amplituda ovšem závisí na amplitudách dílčích kmitů a na jejich vzájemném fázovém posunutí ϕ ϕ ϕ. Mohou nastat zvláštní případy. a) Jestliže je fázový rozdíl ϕ k π kde k je celé číslo, pak budou oba kmity ve fázi a výsledná amplituda bude rovna A A + A. b) Jestliže je fázový rozdíl ϕ ( k + )π, kde k je celé číslo, pak se oba kmity setkají v opačné fázi a výsledná amplituda A A A ve směru větší amplitudy. c) V případě, že by se setkaly ve stejné fázi kmity se stejnou amplitudou, pak by výsledná amplituda byla dvojnásobná. Pokud by se tyto kmity setkaly v opačné fázi, pak by se oba kmity zrušily..b) skládání stejnosměrných kmitů blízkých frekvencí Pro jednoduchost budeme uvažovat kmity stejné amplitudy a stejné fáze a ϕ ϕ 0. Frekvence obou pohybů budou velmi blízké, pak ω ω. 9 A A

3 Obr Z obrázku je zřejmé, že amplituda výsledného kmitu se bude periodicky měnit. Dojde zároveň ke změně frekvence výsledného kmitu. To znamená, že amplituda výsledného kmitu se periodicky zvětšuje a opět zmenšuje podle periodické goniometrické funkce cosinus. Vznikají tzv. rázy nebo zázněje. První kmit má rovnici y Asin( ω t) Asin π f t Druhý kmit bude popsán rovnicí y Asin( ω t) Asin π f t Po úpravě dostaneme vztah pro okamžitou výchylku y výsledného kmitavého pohybu ve tvaru f f f + f y Acos π t sin π t Tento vztah charakterizuje výsledný kmitavý pohyb, který má proměnnou amplitudu f f A v Acos π t V tomto případě určujeme dvě frekvence: 9

4 . amplitudovou frekvenci f f f, a určuje frekvenci, se kterou se mění amplituda výsledného kmitu.. frekvenci výsledného kmitu f + f f,.7.-6 r určuje frekvenci výsledného kmitu, je rovna průměrné hodnotě frekvence obou kmitů. 3. frekvenci rázů f f f,.7.-6 r určuje počet maxim, které výsledný kmit dosáhne za jednu sekundu. Poznámka: Rázy můžeme pozorovat například v případě dvou ladiček. Jedna vydává tón o frekvenci f. Na druhou ladičku připevníme kousek drátu. Tím zvětšíme její hmotnost a pozměníme frekvenci vydávaného tónu. Oba tóny se budou skládat a my zřetelně uslyšíme tón o frekvenci f r, který se bude periodicky zesilovat a zeslabovat s periodou f a. S rázy se můžeme setkat v hudbě, kde tento jev v některých případech je žádoucí, v jiných (např. klasická hudba) nikoliv. Rázy můžeme záměrně vyvolávat i při některých světelných efektech..c) skládání stejnosměrných kmitů různých frekvencí (anizochronních) Při skládání stejnosměrných kmitů různých frekvencí vznikne periodický kmit v tom případě, když periody obou kmitů budou v poměru celých čísel. ω ω T T k k TO Izochronní kmity jsou kmity a) stejného směru b) stejné frekvence c) různého směru d) různé frekvence TO Anizochronní kmity jsou kmity a) stejného směru b) stejné frekvence c) různého směru d) různé frekvence TO Amplituda výsledného kmitu závisí a) na amplitudách jednotlivých kmitů 93

5 b) na fázovém posuvu ϕ c) na amplitudách jednotlivých kmitů a zároveň na fázovém posuvu ϕ TO Skládané kmity budou ve fázi, jestliže a) ϕ k π b) ϕ kπ π ϕ k + c) ( ) d) ϕ ( k + )π TO Skládané kmity budou v opačné fázi, jestliže a) ϕ k π b) ϕ kπ c) ϕ ( k + )π π ϕ k + d) ( ) TO Amplituda výsledného kmitu je a) A A + A + A A cos( ϕ ϕ ) b) A A + A + A A cos( ϕ ϕ ) c) A A + A + A A cos( ϕ ϕ ) d) A A + A A A cos( ϕ ϕ ) TO Jestliže bude fázový rozdíl ϕ 4π, pak a) kmity budou ve fázi b) kmity budou v opačné fázi c) amplituda výsledného kmitu bude A A + A d) amplituda výsledného kmitu bude A 94 A A TO Jestliže bude fázový rozdíl ϕ 7π, pak a) kmity budou ve fázi b) kmity budou v opačné fázi c) amplituda výsledného kmitu bude A A + A d) amplituda výsledného kmitu bude TO Jestliže amplituda a) kmity budou ve fázi b) kmity budou v opačné fázi c) nelze určit A + A A A A A, pak

6 TO Jestliže amplituda A A A, pak a) kmity budou ve fázi b) kmity budou v opačné fázi c) nelze určit TO Rázy vznikají v případě, kdy jsou frekvence skládaných kmitů a) stejné b) jeden je dvojnásobkem druhého c) mají přibližně stejnou hodnotu TO Frekvence rázů je a) rovna vyšší frekvenci skládaných kmitů b) rovna nižší frekvenci skládaných kmitů c) rovna rozdílu obou frekvencí skládaných kmitů d) rovna průměrné hodnotě frekvencí skládaných kmitů TO Určete amplitudovou frekvenci dvou skládaných kmitů o frekvencích f 96 Hz, f 00 Hz. a) 4 Hz b) Hz c) 98 Hz d) 96 Hz TO Určete frekvenci výsledného kmitavého pohybů tvořených dvěma kmity o frekvencích f 96 Hz, f 00 Hz. e) 4 Hz f) Hz g) 98 Hz h) 96 Hz TO Určete frekvenci rázů výsledného kmitavého pohybu, který vznikne složením dvou kmitů o frekvencích f 96 Hz, f 00 Hz. i) 4 Hz j) Hz k) 98 Hz l) 96 Hz Určete amplitudu a fázové posunutí výsledného kmitavého pohybu, který vznikne složením dvou stejnosměrných kmitavých pohybů o týchž amplitudách A A 0 cm a počáteční fáze φ 30, φ 60. A A 0cm, ϕ 30, ϕ 60 Použijeme vztahy pro výpočet výsledné amplitudy a výsledné fáze: 95

7 + A + A cos ( ϕ ) A A A ϕ. A sinϕ + A sinϕ tgϕ. A cosϕ + A cosϕ Dosadíme zadané hodnoty a vypočteme. A cos tg ϕ ϕ ( ) ,3cm Amplituda výsledného kmitavého pohybu je 9,3 cm, fáze výsledného kmitavého pohybu je 45º. Určete periodu amplitudy Ta a periodu T výsledného kmitavého pohybu, který vznikne složením dvou kmitů o stejných amplitudách a periodách T 400 s a T 44 s. T 400s, T 44s, T?, T a? Pro amplitudovou frekvenci platí vztah T a f f T T T T T T Pro frekvenci výsledného kmitu platí vztah f T f + f + T T T T T + T s f + f, pak s f a f f, pak Proveďte skládání dvou stejnosměrných izochronních kmitů pomocí fázorového diagramu. Grafická metoda skládání kmitů využívá podobnost s pohybem po kružnici, kdy se těleso otáčí s úhlovou rychlostí ω π f. Každý z obou kmitů znázorníme jako fázor. Fázor je orientovaná úsečka, jejíž velikost určuje amplituda kmitu A. Otáčí se s úhlovou frekvencí ω π f. Orientaci fázoru v rovině x,y určuje počáteční fáze ϕ, která představuje úhel mezi fázorem a osou x. 96

8 Obr Zakreslíme v rovině x,y kmit y A sin( ω t + ϕ ) a kmit A sin( ω t + ϕ ) Úhel ϕ je úhel, který svírá fázor o velikosti amplitudy svírá fázor o velikosti amplitudy A s osou x. y. A s osou x. Úhel ϕ je úhel, který Úhel ϕ mezi oběma fázory představuje fázi výsledného kmitu. Oba časové vektory (fázory) rotují se stejnou úhlovou frekvencí ω a svírají spolu stále tentýž úhel ϕ (Obr..7.-). Oba zakreslené kmity složíme podle pravidel pro počítání s vektory a určíme amplitudu A a fázi ϕ výsledného kmitu. Obr

9 Amplitudu A stanovíme jako vektorový součet A A + A pomocí kosinové věty c a + b a bcosγ. Úhel γ v tomto případě podle nákresu představuje doplněk ϕ ϕ do 80. Pak A + A + A A cos( ϕ ϕ ) A. Fázi výsledného kmitu určíme pomocí kolmých průmětů jednotlivých fázorů do os x, y. Podle pravoúhlého trojúhelníku a funkce tangens je A sinϕ + A sinϕ tgϕ. A cosϕ + A cosϕ KO Co jsou izochronní kmity? KO Co jsou anizochronní kmity? KO Určete vztah pro amplitudu výsledného kmitu při izochronním kmitání. KO Určete vztah pro fázi výsledného kmitu při izochronním kmitání. KO Kdy bude amplituda maximální? KO Kdy bude amplituda nulová? KO Vysvětlete pojem fázoru. KO Kdy vznikají rázy (zázněje)? KO Co je amplitudová frekvence? KO Co je frekvence rázů? Skládání kolmých kmitů Jestliže má hmotný bod konat současně dva pohyby ve dvou různých směrech, potom výslednou polohu určíme vektorovým součtem obou složek (např. plavec v tekoucí řece). Totéž platí o kmitech, které se dějí ve dvou různých směrech. Průběh výsledného kmitu závisí na poměru úhlových frekvencí ω, ω a na fázovém rozdílu φ φ φ φ obou kmitů. Jestliže jsou ω, ω libovolná čísla, má výsledný kmit velmi složitý průběh. Jednodušší případ nastane, pokud složíme kmity, jejichž frekvence jsou souměřitelné..a) skládání kolmých kmitů stejné frekvence Výsledný pohyb je dán principem superpozice. 98

10 Uvažujeme, že ω ω ω. Jestliže je vzájemný fázový posuv mezi oběma kmitavými pohyby ϕ ϕ, pak rovnice pro okamžitou výchylku ve směru osy x a osy y budou zapsány ve tvaru: ( ω t) ( ω + ϕ) x A sin y A sin t Matematickým složením těchto dvou kolmých kmitavých pohybů získáme rovnici křivky, po které se kmitající těleso pohybuje. Výsledná rovnice má tvar x y x y + cosϕ sin ϕ A A A A Obr Tato rovnice představuje rovnici elipsy, jejíž osy nesplývají se souřadnými osami x a y. Její tvar závisí na fázové rozdílu φ φ a na amplitudách A, A. Při skládání kolmých kmitů mohou nastat zvláštní případy. Záleží na tom, jestli oba dva kmitavé pohyby začínají ve stejném časovém okamžiku v rovnovážné poloze nebo je mezi nimi fázový posuv. Mohou nastat tyto obecné případy: a) ϕ kπ, kde k je celé číslo 0becná rovnice elipsy bude mít tvar x y x y A A A A Lze ji upravit na 99

11 A y x A Tato rovnice je rovnicí přímky. Obr Hmotný bod koná harmonické kmity v přímce, která prochází počátkem a prvním a třetím kvadrantem s amplitudou A A + A b) ϕ ( k + )π, kde k je celé číslo Obecná rovnice elipsy bude mít tvar x y x y + + A A A A A y x. A.7.-7 Hmotný bod koná harmonické kmity v přímce, která prochází počátkem a druhým a čtvrtým kvadrantem s amplitudou A A + A. 00

12 Obr π ϕ k +, kde k je celé číslo.7.-7 c) ( ) Obecná rovnice elipsy přejde na tvar x y A A Tato rovnice představuje rovnici elipsy, jejíž osy jsou totožné se souřadnými osami x a y. π ϕ k +, kde k je celé číslo d) ( ) Obr a amplitudy kmitů se rovnají, pak křivka, kterou opisuje hmotný bod při výsledném pohybu má tvar kružnice s rovnicí x + y A o poloměru A. 0

13 Obr e) ve všech ostatních případech bude trajektorie tvořit obecnou elipsu..b) skládání kolmých kmitů s různou frekvencí V tomto případě vznikají složitější Lissajousovy obrazce. Jestliže je poměr frekvencí v poměru malých celých čísel, bude výsledný kmit periodický a Lissajousův obrazec tvoří uzavřenou křivku. 0

14 Obr V opačném případě je výsledný kmitavý pohyb neperiodický a obrazec netvoří uzavřenou křivku. TO Při skládání dvou kolmých kmitů na fázovém posunu závisí a) ano b) ne ϕ TO Jestliže fázový posuv ϕ kπ, kde k je celé číslo a frekvence obou kmitů stejné, pak výsledný pohyb tvoří a) elipsu b) úsečku, která prochází prvním a třetím kvadrantem c) úsečku, která prochází druhým a čtvrtým kvadrantem d) kružnici TO Jestliže fázový posuv ϕ ( k + )π, kde k je celé číslo a frekvence obou kmitů stejné, pak výsledný pohyb tvoří a) elipsu b) úsečku, která prochází prvním a třetím kvadrantem c) úsečku, která prochází druhým a čtvrtým kvadrantem d) kružnici 03

15 TO Jaký musí být fázový posuv, aby výsledný kmit tvořil úsečku procházející prvním a třetím kvadrantem? a) ϕ kπ b) ϕ ( k + )π c) ϕ k π π ϕ k + d) ( ) TO Jaký musí být fázový posuv, aby výsledný kmit tvořil úsečku procházející druhým a čtvrtým kvadrantem? a) ϕ kπ b) ϕ ( k + )π c) ϕ k π π ϕ k + d) ( ) x 6sin 4π t Určete trajektorii výsledného kmitu, který vznikne složením dvou kolmých kmitů o rovnicích x 6sin 4π t π y 0sin 4π t +. π y 0 sin 4π t + 0cos 4π t. Obě rovnice umocníme a přepíšeme do tvaru x sin 4π t 36 y cos 4π t. 00 V dalším kroku rovnice sečteme x y + sin 4π t + cos 4π t Výraz na pravé straně je podle známého goniometrického vztahu roven jedné. Pak získáme rovnici x + y Trajektorie výsledného kmitu je elipsa s poloosami A 6 m a A 0 m. 04

16 KO Kdy vznikají Lissajousovy obrazce? KO Jakou podmínku musí splňovat dva kolmé kmity, aby výsledný pohyb po jejich složení představoval pohyb po elipse? KO Jakou podmínku musí splňovat dva kolmé kmity, aby výsledný pohyb po jejich složení představoval pohyb po kružnici?. Základními charakteristikami jsou frekvence kmitu f (Hz), doba kmitu T (s), úhlová frekvence ω (rad.s - ), okamžitá výchylka y (m), amplituda výchylky kmitu (výkmit) A (m).. Netlumený kmitavý pohyb charakterizují rovnice pro okamžitou výchylku: π y Asin ω t + ϕ, kde ϕ je počáteční fáze, ω πf,. 0 T d y okamžitá rychlost v ω A cos ω t + ϕ, dt 0 okamžité zrychlení a (m.s - d y ) platí rovnice a ω Asin ω t + ϕ, dt 0 sílu pružnosti F způsobující harmonický kmitavý pohyb oscilátoru je F k y, kde k mω je tuhost pružiny. Jednotkou tuhosti pružiny je (N.m - ), kinetickou energii E k je vyjádřena vztahem E k m v, potenciální energii pružnosti E p charakterizuje vztah E p k y. Jednotkou energie je (J). Součet obou energií je u netlumeného kmitavého pohybu konstantní. E + E E konst ka, k P 3. Tlumený kmitavý pohyb v odporujícím prostředí charakterizují rovnice pro tlumící sílu F R v, kde R je koeficient odporu prostředí (jednotka kg.s - ), v je t rychlost oscilátoru, R součinitel útlumu b, (s - ), m okamžitou výchylku tlumených kmitů y Asin ω t + ϕ, kde t 0 amplituda tlumených mechanických kmitů, úhlová frekvence tlumených kmitů. ω ω b, bt útlum λ e t, 05 t b t A A e je 0

17 logaritmický dekrement útlumu δ bt, kde t bt bt celková energie E k A e E e, Nucený kmitavý pohyb popisují rovnice T je perioda tlumených kmitů, t budící sílu F sin Ω t, kde Ω je úhlová frekvence budící síly, F b b t okamžitou výchylku y A e sin ω t + ϕ + A sin( Ω t + Ψ ) vynucených kmitů amplitudu vynucených kmitů rezonanční frekvenci Ω ω b, r a rezonanční amplitudu A. r b ω b 5. Složený kmit je popsán rovnicí pro y Asin ω t + ϕ, kde okamžitou výchylku ( ) 0 A v t 0 a, ω Ω + 4 b Ω amplituda A A + A + A A cos ϕ ϕ, fázi ϕ určíme podle A sinϕ + A sinϕ tgϕ. A cosϕ + A cosϕ b, kde Ψ je fáze Klíč.7. Mechanické kmitání.7.. Kmitavý pohyb netlumený TO.7.-. a) TO.7.-. b) TO d) TO c) TO a) TO a) TO a) TO b) TO b) TO a) TO.7.-. b) TO.7.-. a) 06

18 TO b) TO a) TO a) KO.7.- Konstanta charakterizující oscilátor KO.7.- Způsobuje při vychýlení návrat tělesa do rovnovážné polohy k KO ω m KO.7.-4 T π m k d y KO ω y 0 dt KO.7.-6 viz text KO.7.-7 maximální vzdálenost tělesa z rovnovážné polohy KO.7.-8 Okamžitá vzdálenost tělesa z rovnovážné polohy, y Asin ( ω t + ϕ ), 0 KO.7.-9 viz text KO.7.-0 viz text KO.7.- v v ( ) 0 cos ω t + ϕ 0 KO.7.- v Aω 0 KO.7.-3 v rovnovážné poloze KO.7.-4 a a ( ) 0 sin ω t + ϕ 0 KO.7.-5 v amplitudách KO.7.-6 maximální je v amplitudách, nulová v rovnovážné poloze KO.7.-7 E m ω A cos ( ω t + ϕ ). k 0 KO.7.-8 Maximální kinetickou energii má těleso při průchodu rovnovážnou polohou, nulovou v amplitudách KO.7.-9 E k A sin ( ω t + ϕ ). p 0 KO.7.-0 maximální potenciální energii pružnosti má těleso v amplitudách, nulovou v rovnovážné poloze KO.7.- E k A. KO.7.-.viz text.7.. Tlumené kmity TO d) TO b) TO b), d) 07

19 TO c) TO c) KO viz text KO.7.-7 T KO.7.-8 f KO.7.-3 text KO.7.-4 T KO.7.-5 π π J m g d f m g d J π π KO tlumící síla ( síla odporu prostředí) KO F R v, t KO.7.-3 kg.s - KO s - KO perioda se prodlužuje, frekvence se zmenšuje KO viz text l g g l KO energie exponenciálně klesá KO exponenciální KO amplituda exponenciálně klesá b t KO y A e sin( ω t + ϕ ) 0 KO viz text KO R b m KO λ e bt KO δ ln λ KO (s - ), (bez jednotky), (bez jednotky) KO ω ω t b t Kmity vynucené TO.7.-. a) TO.7.-. c) 08

20 TO b) energii. KO Část energie spotřebovaná oscilátorem vlivem odporu prostředí je pravidelně dodávána prostřednictvím periodické budící síly. KO Shoda frekvence vlastních kmitů oscilátoru a frekvence budící síly. KO Periodicky proměnná síla dodávající oscilátoru pravidelně KO Doba, během které vymizí vlastní kmity oscilátoru. Poté oscilátor kmitá s frekvencí budící síly. KO Frekvence, při které dochází k rezonanci, tj. amplituda kmitů oscilátoru se zvětší. KO Viz. text KO.7.-5 Charakterizuje závislost amplitudy nucených kmitů na frekvenci budící síly. KO.7.-5 viz text. KO Zesílení signálu v přijímači. KO Destrukce staveb Skládání kmitů TO b) TO d) TO c) TO b) TO c) TO c) TO a), c) TO b),d) TO a) TO b) TO c) TO c) TO b) TO c) TO a) TO a) TO b) TO c) TO a) TO b) KO Viz text. KO Viz text. 09

21 KO A A + A A A cos ϕ. KO tgϕ KO Když kmity budou ve fázi. KO Když kmity budou v opačné fázi a A sinϕ + A A cosϕ + A sinϕ cosϕ A KO.7.-6 Viz text. KO.7.-6 Při skládání kmitů blízkých frekvencí. KO Viz text. KO Viz text. A 0

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A MECHANICKÉ KMITÁNÍ Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A Kinematika kmitavého pohybu Mechanický oscilátor - volně kmitající zařízení Rovnovážná poloha Výchylka Kinematika kmitavého pohybu Veličiny charakterizující

Více

Mechanické kmitání (oscilace)

Mechanické kmitání (oscilace) Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje

Více

DUM označení: VY_32_INOVACE_... Jméno autora výukového materiálu: Ing. Jitka Machková Škola: Základní škola a mateřská škola Josefa Kubálka Všenory

DUM označení: VY_32_INOVACE_... Jméno autora výukového materiálu: Ing. Jitka Machková Škola: Základní škola a mateřská škola Josefa Kubálka Všenory DUM označení: VY_32_INOVACE_... Jméno autora výukového materiálu: Ing. Jitka Machková Škola: Základní škola a mateřská škola Josefa Kubálka Všenory Karla Majera 370, 252 31 Všenory. Datum (období) vytvoření:

Více

Mechanické kmitání Kinematika mechanického kmitání Vojtěch Beneš

Mechanické kmitání Kinematika mechanického kmitání Vojtěch Beneš Mechanické kmitání Vojtěch Beneš Výstup RVP: Klíčová slova: žák užívá základní kinematické vztahy při řešení problémů a úloh o pohybech mechanické kmitání, kinematika, harmonický oscilátor Sexta Příprava

Více

Kmitání mechanického oscilátoru Mechanické vlnění Zvukové vlnění

Kmitání mechanického oscilátoru Mechanické vlnění Zvukové vlnění Mechanické kmitání a vlnění Kmitání mechanického oscilátoru Mechanické vlnění Zvukové vlnění Kmitání mechanického oscilátoru Kmitavý pohyb Mechanický oscilátor = zařízení, které kmitá bez vnějšího působení

Více

Mechanické kmitání - určení tíhového zrychlení kyvadlem

Mechanické kmitání - určení tíhového zrychlení kyvadlem I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 9 Mechanické kmitání - určení

Více

6. Střídavý proud. 6. 1. Sinusových průběh

6. Střídavý proud. 6. 1. Sinusových průběh 6. Střídavý proud - je takový proud, který mění v čase svoji velikost a smysl. Nejsnáze řešitelný střídavý proud matematicky i graficky je sinusový střídavý proud, který vyplývá z konstrukce sinusovky.

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor. FREKVENČNĚ ZÁVISLÉ OBVODY Základní pojmy: IMPEDANCE Z (Ω)- charakterizuje vlastnosti prvku pro střídavý proud. Impedance je základní vlastností, kterou potřebujeme znát pro analýzu střídavých elektrických

Více

Elektromagnetický oscilátor

Elektromagnetický oscilátor Elektromagnetický oscilátor Již jsme poznali kmitání mechanického oscilátoru (závaží na pružině) - potenciální energie pružnosti se přeměňuje na kinetickou energii a naopak. T =2 m k Nejjednodušší elektromagnetický

Více

4.1 Kmitání mechanického oscilátoru

4.1 Kmitání mechanického oscilátoru 4.1 Kmitání mechanického oscilátoru 4.1 Komorní a má frekvenci 440 Hz. Určete periodu tohoto kmitání. 4.2 Časový signál v rozhlase je tvořen čtyřmi zvukovými značkami o frekvenci 1 000 Hz, z nichž první

Více

2. Kmity. 2.1 Úvod. 2.2 Kmity tělesa na pružině, harmonický pohyb

2. Kmity. 2.1 Úvod. 2.2 Kmity tělesa na pružině, harmonický pohyb 2. Kmity 2.1 Úvod Kmitání stejně jako vlnění patří k typickým nestacionárním dějům s převážně periodickým průběhem. Veličiny, kterými kmitání popisujeme, se tedy s časem mění, ale mají také opakující se

Více

FYZIKA II. Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování)

FYZIKA II. Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování) FYZIKA II Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování) Osnova přednášky činitel jakosti, vektorové diagramy v komplexní rovině Sériový RLC obvod - fázový posuv, rezonance

Více

1 Tuhé těleso a jeho pohyb

1 Tuhé těleso a jeho pohyb 1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité

Více

Fyzikální praktikum 1

Fyzikální praktikum 1 Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #10 Lineární harmonický oscilátor a Pohlovo kyvadlo Jméno: Ondřej Finke Datum měření: 10.11.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) Změřte

Více

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s 1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření

Více

MECHANICKÉ KMITÁNÍ A VLNĚNÍ VLASTNÍ KMITÁNÍ MECHANICKÉHO OSCILÁTORU

MECHANICKÉ KMITÁNÍ A VLNĚNÍ VLASTNÍ KMITÁNÍ MECHANICKÉHO OSCILÁTORU Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 9. 6. 2013 Název zpracovaného celku: MECHANICKÉ KMITÁNÍ A VLNĚNÍ VLASTNÍ KMITÁNÍ MECHANICKÉHO OSCILÁTORU Kmitavý pohyb Je periodický pohyb

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

1.3 Pohyb hmotného nabitého bodu v homogenním magnetickém poli

1.3 Pohyb hmotného nabitého bodu v homogenním magnetickém poli Klasická mechanika analytická řešení pohybu částic a těles 1. Pohyb v odporujícím prostředí 1.1 Odporující síla je úměrná rychlosti pohybujícího se tělesa 1.2 Pohyb hmotného nabitého bodu v homogenním

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P04 MECHANICKÉ KMITÁNÍ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P04 MECHANICKÉ KMITÁNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. Ing. Bohumil Koktavý,CSc. FYZIKA PRŮVODCE GB01-P04 MECHANICKÉ KMITÁNÍ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 2 OBSAH 1 Úvod...5

Více

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity Tlumené kmit V praxi téměř vžd brání pohbu nějaká brzdicí síla, jejíž původ je v třecích silách mezi reálnými těles. Matematický popis těchto sil bývá dosti komplikovaný. Velmi často se vsktuje tzv. viskózní

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

4. Měření rychlosti zvuku ve vzduchu. A) Kalibrace tónového generátoru

4. Měření rychlosti zvuku ve vzduchu. A) Kalibrace tónového generátoru 4. Měření rychlosti zvuku ve vzduchu Pomůcky: 1) Generátor normálové frekvence 2) Tónový generátor 3) Digitální osciloskop 4) Zesilovač 5) Trubice s reproduktorem a posuvným mikrofonem 6) Konektory A)

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

ČÁST VI - K M I T Y A V L N Y

ČÁST VI - K M I T Y A V L N Y ČÁST VI - K M I T Y A V L N Y 23. Harmonický oscilátor 24. Vlnění 25. Elektromagnetické vlnění 26. Geometrická optika 27. Fyzikální optika 28. Nelineární optika 261 Periodické pohyby částic a těles (jako

Více

Dynamika. Dynamis = řecké slovo síla

Dynamika. Dynamis = řecké slovo síla Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při

Více

Akustická měření - měření rychlosti zvuku

Akustická měření - měření rychlosti zvuku Akustická měření - měření rychlosti zvuku Úkol : 1. Pomocí přizpůsobené Kundtovy trubice určete platnost vztahu λ = v / f. 2. Určete rychlost zvuku ve vzduchu pomocí Kundtovy a Quinckeho trubice. Pomůcky

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 17. 10. 2012 Pořadové číslo 05 1 Kmitavý pohyb Předmět: Ročník: Jméno autora:

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.4 Prvky elektronických obvodů Kapitola

Více

1.7. Mechanické kmitání

1.7. Mechanické kmitání 1.7. Mechanické kmitání. 1. Umět vysvětlit princip netlumeného kmitavého pohybu.. Umět srovnat periodický kmitavý pohyb s periodickým pohybem po kružnici. 3. Znát charakteristické veličiny periodického

Více

Okamžitý výkon P. Potenciální energie E p (x, y, z) E = x E = E = y. F y. F x. F z

Okamžitý výkon P. Potenciální energie E p (x, y, z) E = x E = E = y. F y. F x. F z 5. Práce a energie 5.1. Základní poznatky Práce W jestliže se hmotný bod pohybuje po trajektorii mezi body (1) a (), je práce definována křivkovým integrálem W = () () () F dr = Fx dx + Fy dy + (1) r r

Více

Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I. Mechanika hmotného bodu

Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I. Mechanika hmotného bodu Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I Mechanika hmotného bodu Autor: Kateřina Kárová Text vznikl v rámci bakalářské práce roku 2006. Návod na práci s

Více

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu.

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu. Pracovní úkoly. Změřte účiník: a) rezistoru, b) kondenzátoru C = 0 µf) c) cívky. Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE

PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE Jméno: Třída: Úloha: F-VI-1 Izotermický děj Spolupracovník: Hodnocení: Datum měření: Úkol: Experimentálně ověřte platnost Boyle-Mariottova zákona. Pomůcky: Teorie:

Více

Měření modulů pružnosti G a E z periody kmitů pružiny

Měření modulů pružnosti G a E z periody kmitů pružiny Měření modulů pružnosti G a E z periody kmitů pružiny Online: http://www.sclpx.eu/lab2r.php?exp=2 V tomto experimentu vycházíme z pojetí klasického pokusu s pružinovým oscilátorem. Z periody kmitů se obvykle

Více

3.1 Magnetické pole ve vakuu a v látkovén prostředí

3.1 Magnetické pole ve vakuu a v látkovén prostředí 3. MAGNETSMUS 3.1 Magnetické pole ve vakuu a v látkovén prostředí 3.1.1 Určete magnetickou indukci a intenzitu magnetického pole ve vzdálenosti a = 5 cm od velmi dlouhého přímého vodiče, jestliže jím protéká

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:

Více

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0 Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +

Více

Výkon střídavého proudu, účiník

Výkon střídavého proudu, účiník ng. Jaromír Tyrbach Výkon střídavého proudu, účiník odle toho, kterého prvku obvodu se výkon týká, rozlišujeme u střídavých obvodů výkon činný, jalový a zdánlivý. Ve střídavých obvodech se neustále mění

Více

3.2 Rovnice postupné vlny v bodové řadě a v prostoru

3.2 Rovnice postupné vlny v bodové řadě a v prostoru 3 Vlny 3.1 Úvod Vlnění můžeme pozorovat například na vodní hladině, hodíme-li do vody kámen. Mechanické vlnění je děj, při kterém se kmitání šíří látkovým prostředím. To znamená, že například zvuk, který

Více

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1 Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1 Funkce pro UO 1 Co je to matematická funkce? Mějme dvě množiny čísel. Množinu A a množinu B, které jsou neprázdné. Jestliže přiřadíme

Více

ZVUKOVÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

ZVUKOVÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie ZVUKOVÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Odraz zvuku Vznik ozvěny Dozvuk Několikanásobný odraz Ohyb zvuku Zvuk se dostává za překážky Překážka srovnatelná s vlnovou délkou Pružnost Působení

Více

6. Viskoelasticita materiálů

6. Viskoelasticita materiálů 6. Viskoelasticita materiálů Viskoelasticita materiálů souvisí se schopností materiálů tlumit mechanické vibrace. Uvažujme harmonické dynamické namáhání (tzn. střídavě v tahu a tlaku) materiálu v oblasti

Více

4.2.15 Funkce kotangens

4.2.15 Funkce kotangens 4..5 Funkce kotangens Předpoklady: 44 Pedagogická poznámka: Pokud nemáte čas, doporučuji nechat tuto hodinu studentům na domácí práci. Nedá se na tom nic zkazit a v budoucnu to není nikde příliš potřeba.

Více

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0. Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,

Více

Vzorce počítačové grafiky

Vzorce počítačové grafiky Vektorové operace součet vektorů rozdíl vektorů opačný vektor násobení vektoru skalárem úhel dvou vektorů velikost vektoru a vzdálenost dvojice bodů v rovině (v prostoru analogicky) u = B A= b a b a u

Více

1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem

1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem Praktické příklady z Elektrotechniky. Střídavé obvody.. Základní pojmy.. Jednoduché obvody se střídavým proudem Příklad : Stanovte napětí na ideálním kondenzátoru s kapacitou 0 µf, kterým prochází proud

Více

Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr

Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Geometrické transformace v prostoru Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Shodné transformace 1 Shodné transformace stejný přístup jako ve 2D shodné transformace (shodnosti,

Více

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze.

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze. Nejprve několik fyzikálních analogií úvodem Rezonance Rezonance je fyzikálním jevem, kdy má systém tendenci kmitat s velkou amplitudou na určité frekvenci, kdy malá budící síla může vyvolat vibrace s velkou

Více

POŽADAVKY pro přijímací zkoušky z MATEMATIKY

POŽADAVKY pro přijímací zkoušky z MATEMATIKY TU v LIBERCI FAKULTA MECHATRONIKY POŽADAVKY pro přijímací zkoušky z MATEMATIKY Tematické okruhy středoškolské látky: Číselné množiny N, Z, Q, R, C Body a intervaly na číselné ose Absolutní hodnota Úpravy

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 10. 2012 Číslo DUM: VY_32_INOVACE_01_FY_B

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 10. 2012 Číslo DUM: VY_32_INOVACE_01_FY_B Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 10. 2012 Číslo DUM: VY_32_INOVACE_01_FY_B Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:

Více

Měření momentu setrvačnosti prstence dynamickou metodou

Měření momentu setrvačnosti prstence dynamickou metodou Měření momentu setrvačnosti prstence dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=13 Tato úloha patří zejména svým teoretickým základem k nejobtížnějším. Pojem momentu setrvačnosti dělá

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny.

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny. 1. Auto zrychlí rovnoměrně zrychleným pohybem z 0 km h -1 na 72 km h -1 za 10 sekund. 2. Auto zastaví z rychlosti 64,8 km h -1 rovnoměrně zrychleným (zpomaleným) pohybem za 9 sekund. V obou případech nakreslete

Více

Klasické a inovované měření rychlosti zvuku

Klasické a inovované měření rychlosti zvuku Klasické a inovované měření rychlosti zvuku Jiří Tesař katedra fyziky, Pedagogická fakulta JU Klíčová slova: Rychlost zvuku, vlnová délka, frekvence, interference vlnění, stojaté vlnění, kmitny, uzly,

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

Ing. Václav Losík. Dynamický výpočet otočného sloupového jeřábu OS 5/5 MD TECHNICKÁ ZPRÁVA

Ing. Václav Losík. Dynamický výpočet otočného sloupového jeřábu OS 5/5 MD TECHNICKÁ ZPRÁVA Ing. Václav Losík Dynamický výpočet otočného sloupového jeřábu OS 5/5 MD TECHNICKÁ ZPRÁVA Obr. 0 Ocelový otočný sloupový jeřáb OS 5/5 MD I. Popis objektu a úlohy Jedná se o ocelový otočný sloupový jeřáb

Více

Tlumené kmitání tělesa zavěšeného na pružině

Tlumené kmitání tělesa zavěšeného na pružině Tlumené kmitání tělesa zavěšeného na pružině Kmitavé pohyby jsou důležité pro celou fyziku a její aplikace, protože umožňují relativně jednoduše modelovat řadu fyzikálních dějů a jevů. V praxi ale na pohybující

Více

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace.

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace. STUDUM OTÁčENÍ TUHÉHO TěLESA TEREZA ZÁBOJNÍKOVÁ 1. Pracovní úkol (1) Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti. (2) Určete složky jednotkového vektoru ve směru zadané obecné

Více

Přípravný kurz - příklady

Přípravný kurz - příklady Přípravný kurz - příklady 1. Cyklista ujel první čtvrtinu cesty rychlostí v 1, další tři čtvrtiny pak rychlostí 20 km/hod, průměrná rychlost na celé dráze byla16 km/hod, jaká byla průměrná rychlost v první

Více

3.3 Kalorimetrie. stránka 51. nebo [C] = J K 1. nebo. [c] = J kg 1 K 1

3.3 Kalorimetrie. stránka 51. nebo [C] = J K 1. nebo. [c] = J kg 1 K 1 3.3 Kalorimetrie KALORIMETRIE: Část experimentální fyziky, která se zabývá měřením tepla při různých fyzikálních, chemických, popř. biologických dějích. TEPLO - Q: Veličina určená energií přijatou, popř.

Více

GONIOMETRIE A TRIGONOMETRIE

GONIOMETRIE A TRIGONOMETRIE GONIOMETRIE A TRIGONOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu

Více

PROJEKT ZPÍVAJÍCÍ SKLENIČKY

PROJEKT ZPÍVAJÍCÍ SKLENIČKY PROJEKT ZPÍVAJÍCÍ SKLENIČKY Vypracovali: Kamil Al Jamal Konzultant: Věra Koudelková Hana Hrubešová Datum: 14.7.2005 Tereza Holasová soustředění, Nekoř 2005 Úvod V tomto projektu jsme analyzovali jevy spojené

Více

3.1.3 Rychlost a zrychlení harmonického pohybu

3.1.3 Rychlost a zrychlení harmonického pohybu 3.1.3 Rychlost a zrychlení haronického pohybu Předpoklady: 312 Kroě dráhy (výchylky) popisujee pohyb i poocí dalších dvou veličin: rychlosti a zrychlení. Jak budou vypadat jejich rovnice? Společný graf

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA MECHANICKÉ KMITÁNÍ 1) Hmotný bod koná harmonický pohyb. Na obrázku

Více

SBÍRKA PŘÍKLADŮ ZE ZÁKLADŮ FYZIKY

SBÍRKA PŘÍKLADŮ ZE ZÁKLADŮ FYZIKY VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE FAKULTA CHEMICKO-INŽENÝRSKÁ SBÍRKA PŘÍKLADŮ ZE ZÁKLADŮ FYZIKY Doc. Ing. Jaroslav Hofmann, CSc. PRAHA 009 Hofmann J.: Sbírka příkladů ze Základů fyziky VŠCHT

Více

3. Kmitočtové charakteristiky

3. Kmitočtové charakteristiky 3. Kmitočtové charakteristiky Po základním seznámení s programem ATP a jeho preprocesorem ATPDraw následuje využití jednotlivých prvků v jednoduchých obvodech. Jednotlivé příklady obvodů jsou uzpůsobeny

Více

Teorie sférické trigonometrie

Teorie sférické trigonometrie Teorie sférické trigonometrie Trigonometrie (z řeckého trigónon = trojúhelník a metrein= měřit) je oblast goniometrie zabývající se praktickým užitím goniometrických funkcí při řešení úloh o trojúhelnících.

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

2 Teoretický úvod 3. 4 Schéma zapojení 6. 4.2 Měření třemi wattmetry (Aronovo zapojení)... 6. 5.2 Tabulka hodnot pro měření dvěmi wattmetry...

2 Teoretický úvod 3. 4 Schéma zapojení 6. 4.2 Měření třemi wattmetry (Aronovo zapojení)... 6. 5.2 Tabulka hodnot pro měření dvěmi wattmetry... Měření trojfázového činného výkonu Obsah 1 Zadání 3 2 Teoretický úvod 3 2.1 Vznik a přenos třífázového proudu a napětí................ 3 2.2 Zapojení do hvězdy............................. 3 2.3 Zapojení

Více

Opakování k maturitě matematika 4. roč. TAD 2 <

Opakování k maturitě matematika 4. roč. TAD 2 < 8.. Otázka číslo Mocniny a odmocniny. b.) Zjednodušte: 6 b. b Opakování k maturitě matematika. roč. TAD : 6.) Zjednodušte: 6 6.) Vypočtěte: a. y : ( a. y ) =.) Usměrněte zlomek =.. Otázka číslo Lineární

Více

Podívejte se na časový průběh harmonického napětí

Podívejte se na časový průběh harmonického napětí Střídavý proud Doteď jse se zabývali pouze proude, který obvode prochází stále stejný sěre (stejnosěrný proud). V praxi se ukázalo, že tento proud je značně nevýhodný. kázalo se, že zdroje napětí ůže být

Více

GONIOMETRICKÉ FUNKCE

GONIOMETRICKÉ FUNKCE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol GONIOMETRICKÉ

Více

Úvod do nebeské mechaniky

Úvod do nebeské mechaniky OPT/AST L09 Úvod do nebeské mechaniky pohyby astronomických těles ve společném gravitačním poli obecně: chaotický systém nestabilní numerické řešení speciální případ: problém dvou těles analytické řešení

Více

Vznik střídavého proudu Obvod střídavého proudu Výkon Střídavý proud v energetice

Vznik střídavého proudu Obvod střídavého proudu Výkon Střídavý proud v energetice Střídavý proud Vznik střídavého proudu Obvod střídavého proudu Výkon Střídavý proud v energetice Vznik střídavého proudu Výroba střídavého napětí:. indukční - při otáčivé pohybu cívky v agnetické poli

Více

Určení hlavních geometrických, hmotnostních a tuhostních parametrů železničního vozu, přejezd vozu přes klíny

Určení hlavních geometrických, hmotnostních a tuhostních parametrů železničního vozu, přejezd vozu přes klíny Určení hlavních geometrických, hmotnostních a tuhostních parametrů železničního vozu, přejezd vozu přes klíny Název projektu: Věda pro život, život pro vědu Registrační číslo: CZ.1.07/2.3.00/45.0029 V

Více

Integrovaná střední škola, Sokolnice 496

Integrovaná střední škola, Sokolnice 496 Název projektu: Moderní škola Integrovaná střední škola, Sokolnice 496 Registrační číslo: CZ.1.07/1.5.00/34.0467 Název klíčové aktivity: V/2 - Inovace a zkvalitnění výuky směřující k rozvoji odborných

Více

Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium

Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium V řešení číslujte úlohy tak, jak jsou číslovány v zadání. U všech úloh uveďte stručné zdůvodnění. Vyřešené úlohy zašlete elektronicky

Více

Název: Téma: Autor: Číslo: Prosinec 2013. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1

Název: Téma: Autor: Číslo: Prosinec 2013. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Inovace a zkvalitnění výuky prostřednictvím ICT Elektrický proud střídavý Elektronický oscilátor

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

Mgr. Jan Ptáčník. Elektrodynamika. Fyzika - kvarta! Gymnázium J. V. Jirsíka

Mgr. Jan Ptáčník. Elektrodynamika. Fyzika - kvarta! Gymnázium J. V. Jirsíka Mgr. Jan Ptáčník Elektrodynamika Fyzika - kvarta! Gymnázium J. V. Jirsíka Vodič v magnetickém poli Vodič s proudem - M-pole! Vložení vodiče s proudem do vnějšího M-pole = interakce pole vnějšího a pole

Více

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky 1. Lineární rovnice a nerovnice a) Rovnice a nerovnice s absolutní hodnotou absolutní hodnota reálného čísla definice, geometrický význam, srovnání řešení rovnic s abs. hodnotou

Více

HARMONICKÉ KMITY MECHANICKÝCH SOUSTAV. Studijní text pro řešitele FO a ostatní zájemce o fyziku

HARMONICKÉ KMITY MECHANICKÝCH SOUSTAV. Studijní text pro řešitele FO a ostatní zájemce o fyziku HARMONICKÉ KMITY MECHANICKÝCH SOUSTAV Studijní text pro řešitele FO a ostatní zájemce o fyziku Přemysl Šedivý, Ivo Volf a Radmila Horáková ÚVFO Hradec Králové Obsah 1 Kinematika harmonických kmitů 2 2

Více

100 1500 1200 1000 875 750 675 600 550 500 - - 775 650 550 500 450 400 350 325 - -

100 1500 1200 1000 875 750 675 600 550 500 - - 775 650 550 500 450 400 350 325 - - Prostý kružnicový oblouk Prostý kružnicový oblouk se používá buď jako samostatné řešení změny směru osy nebo nám slouží jako součást směrové změny v kombinaci s přechodnicemi nebo složenými oblouky. Nejmenší

Více

Značení krystalografických rovin a směrů

Značení krystalografických rovin a směrů Značení krystalografických rovin a směrů (studijní text k předmětu SLO/ZNM1) Připravila: Hana Šebestová 1 Potřeba označování krystalografických rovin a směrů vyplývá z anizotropie (směrové závislosti)

Více

SINOVÁ A KOSINOVÁ VĚTA VZORCE PRO OBSAH TROJÚHELNÍKU

SINOVÁ A KOSINOVÁ VĚTA VZORCE PRO OBSAH TROJÚHELNÍKU Projekt ŠLONY N GVM Gymnázium Velké Meziříčí registrační číslo projektu: Z.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol SINOVÁ KOSINOVÁ

Více

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy, Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání

Více

Sbírka úloh z matematiky

Sbírka úloh z matematiky Střední průmyslová škola a Střední odborné učiliště, Trutnov, Školní 101 Sbírka úloh z matematiky v rámci projektu královéhradeckého kraje zavádění inovativních metod výuky pomocí ICT v předmětu matematika

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

3. Vypočítejte chybu, které se dopouštíte idealizací reálného kyvadla v rámci modelu kyvadla matematického.

3. Vypočítejte chybu, které se dopouštíte idealizací reálného kyvadla v rámci modelu kyvadla matematického. Pracovní úkoly. Změřte místní tíhové zrychlení g metodou reverzního kyvadla. 2. Změřte místní tíhové zrychlení g metodou matematického kyvadla. 3. Vypočítejte chybu, které se dopouštíte idealizací reálného

Více

K přednášce NUFY028 Teoretická mechanika prozatímní učební text, verze 01 10. Spojitá prostředí: rovnice struny Leoš Dvořák, MFF UK Praha, 2014

K přednášce NUFY028 Teoretická mechanika prozatímní učební text, verze 01 10. Spojitá prostředí: rovnice struny Leoš Dvořák, MFF UK Praha, 2014 K přednášce NUFY8 Teoretická mechanika prozatímní učební text, verze 1 1 Spojitá prostředí: rovnice strun Leoš Dvořák, MFF UK Praha, 14 Spojitá prostředí: rovnice strun Dosud jsme se zabývali pohbem soustav

Více

Signál v čase a jeho spektrum

Signál v čase a jeho spektrum Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě

Více