4.1 Kmitání mechanického oscilátoru

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "4.1 Kmitání mechanického oscilátoru"

Transkript

1 4.1 Kmitání mechanického oscilátoru 4.1 Komorní a má frekvenci 440 Hz. Určete periodu tohoto kmitání. 4.2 Časový signál v rozhlase je tvořen čtyřmi zvukovými značkami o frekvenci Hz, z nichž první tři mají trvání po 100 ms a čtvrtá 500 ms. Kolik kmitů při každé značce proběhne? 4.3 Na obr. 4-3 [4-1] je časový diagram kmitání. Určete jeho frekvenci a periodu. Obr Záznam kmitavého děje je pořizován zapisovačem, v němž se registrační papír pohybuje rovnoměrně rychlostí o velikosti 2 cm s 1. Jedna perioda kmitavého děje má na záznamu délku 8 mm. Určete frekvenci kmitavého děje. 4.5 Registrační papír v elektrokardiografu se pohybuje rovnoměrně rychlostí o velikosti 20 mm s 1. Jakou délku bude mít záznam jedné periody činnosti srdce, které vykoná 72 tepů na minutu? 4.6 Hmotný bod kmitá harmonicky. Které veličiny charakterizující jeho pohyb (okamžitá výchylka, amplituda výchylky, perioda, frekvence, fáze, rychlost, zrychlení) jsou při pohybu konstantní a které se mění? 4.7 Čím se navzájem liší kmitání, jejichž časové diagramy jsou na obr. 4-7 [4-2]? Napište rovnice pro okamžitou výchylku zobrazených harmonických kmitání.

2 Obr Hmotný bod kmitá harmonicky s amplitudou výchylky 0,2 m. Určete okamžité výchylky hmotného bodu v časech T/4, T/3, T/2. Počáteční fáze kmitání 0 = Číselná hodnota okamžité výchylky harmonického kmitání je dána vztahem {y} = 0,2sin 5 /2{t}. V tomto vztahu číselné hodnoty odpovídají hodnotám fyzikálních veličin vyjádřených v nenásobných jednotkách SI. Určete amplitudu výchylky, periodu a frekvenci kmitání Napište rovnici harmonického kmitání, které má amplitudu výchylky 5 cm, periodu 0,5 s a nulovou počáteční fázi Určete počáteční fáze pro harmonické pohyby, jejichž časové diagramy jsou na obr [4-3]. Napište rovnice pro okamžitou výchylku.

3 Obr Hmotný bod kmitá harmonicky a za 1 min vykoná 150 kmitů s amplitudou výchylky 5 cm. Počáteční fáze kmitání je 45. Napište rovnici harmonického kmitání a nakreslete jeho časový diagram Hmotný bod kmitá harmonicky podle rovnice Určete okamžité výchylky v časech t = 0, T/4, T/3, T/2. Nakreslete časový diagram kmitavého pohybu Hmotný bod kmitá harmonicky s frekvencí 400 Hz a s amplitudou výchylky 2 mm. Počáteční fáze kmitání je 30. Napište rovnici pro okamžitou výchylku hmotného bodu. Určete a) okamžitou výchylku hmotného bodu v počátečním okamžiku, b) dobu, za kterou hmotný bod dospěje do rovnovážné polohy, c) rychlost hmotného bodu v rovnovážné poloze Hmotný bod M 1 kmitá s okamžitou výchylkou {y 1 } = {y m1 }sin (2 {t} + /4), kde y m1 = 2 cm, a hmotný bod M 2 kmitá s okamžitou výchylkou {y 2 } = {y m2 }sin(4 {t} /2), kde y m2 = 1 cm. Určete a) okamžitou výchylku kmitání obou bodů v počátečním okamžiku, b) okamžitou výchylku bodu M 1 v okamžiku, kdy bod M 2 poprvé prošel rovnovážnou polohou (y 2 = 0), c) dobu, za kterou budou mít oba hmotné body poprvé současně nulovou okamžitou výchylku Hmotný bod vykoná 150 kmitů za minutu. Určete počáteční fázi kmitání, jestliže hmotný bod dosáhl kladné amplitudy výchylky za dobu 0,3 s od počátečního okamžiku Určete amplitudu výchylky hmotného bodu, který kmitá s počáteční fází /3, je-li jeho okamžitá výchylka v počátečním okamžiku 2,6 cm.

4 4.18 Hmotný bod kmitá harmonicky s amplitudou výchylky 50 mm, s periodou 4 s a s počáteční fází /4. Určete okamžitou výchylku při t 1 = 0 a t 2 = 1,5 s Hmotný bod kmitá s amplitudou výchylky 4 cm. Určete okamžitou výchylku odpovídající hodnotě t = /3, je-li počáteční fáze kmitání / Hmotný bod kmitá harmonicky s amplitudou výchylky 1,2 cm a s periodou 0,25 s. Určete amplitudu rychlosti a amplitudu zrychlení Oscilátor kmitá harmonicky, přičemž okamžitá výchylka závisí na čase vztahem kde y m = 0,02 m. Určete periodu kmitání, amplitudu rychlosti a amplitudu zrychlení Rovnice harmonického kmitání má tvar. Určete časové okamžiky, v nichž dosahují rychlost a zrychlení maximálních hodnot Hmotný bod kmitá harmonicky s amplitudou výchylky 5 cm a s periodou 2 s. Počáteční fáze kmitání je nulová. Určete velikost rychlosti hmotného bodu v okamžiku, kdy okamžitá výchylka je 2,5 cm Dvě izochronní harmonická kmitání téhož směru o frekvenci 4 Hz mají stejnou amplitudu výchylky 2 cm a rozdíl fází kmitání je /2. Napište rovnici výsledného kmitání, jestliže jedno kmitání má nulovou počáteční fázi Napište rovnici výsledného kmitání, které vzniká superpozicí izochronních kmitání o amplitudách výchylky 3 cm a 5 cm, jestliže složky mají a) stejnou fázi ( 1 = 2 ), b) opačnou fázi ( 2 = 1 + ) Napište rovnici výsledného kmitání, které vzniká superpozicí dvou izochronních kmitání o frekvenci 8 Hz a o stejné amplitudě výchylky 2 cm. Fázový rozdíl kmitání je /4 a počáteční fáze jedné složky je nulová Superpozicí izochronních kmitání, která mají stejné amplitudy výchylky, vzniká výsledné kmitání popsané rovnicí. Určete amplitudu výchylky složek, jejich frekvenci a fázový rozdíl, jestliže počáteční fáze jedné složky je nulová Určete amplitudu a počáteční fázi harmonického kmitání, které vzniklo superpozicí kmitání, pro jejichž okamžité výchylky platí rovnice

5 a Mechanický oscilátor je tvořen pružinou o tuhosti 10 N m 1 a tělesem o hmotnosti 100 g. Určete periodu kmitání oscilátoru Mechanický oscilátor tvořený pružinou a tělesem o hmotnosti 5 kg vykoná 45 kmitů za minutu. Určete tuhost pružiny Určete hmotnost tělesa, které na pružině o tuhosti 250 N m 1 kmitá tak, že za 16 s vykoná 20 kmitů Těleso zavěsíme na pružné gumové vlákno a vytvoříme tak oscilátor, který kmitá s periodou T. Pak odstřihneme 0,75 délky vlákna a oscilátor vytvoříme z kratší části vlákna stejného tělesa. Jak se změní perioda kmitání? Ověřte experimentálně Pružina se po zavěšení tělesa prodlouží o 2,5 cm. Určete frekvenci vlastního kmitání takto vzniklého oscilátoru Těleso zavěšené na pružině kmitá s periodou 0,5 s. O kolik se pružina zkrátí, jestliže těleso z pružiny sejmeme? 4.35 Mechanický oscilátor je tvořen pružinou, na níž je zavěšena miska se závažím. Perioda oscilátoru je 0,50 s. Přidáním dalšího závaží se perioda oscilátoru zvětší na 0,60 s. Určete, o kolik cm se pružina přidáním závaží prodloužila Na dvou pružinách jsou zavěšena tělesa o hmotnostech m 1 a m 2, přičemž m 1 > m 2. Po zavěšení těles se obě pružiny prodloužily o stejnou délku. Které těleso bude po vychýlení z rovnovážné polohy kmitat s větší periodou? Které těleso bude mít při kmitavém pohybu se stejnou amplitudou výchylky větší energii? Hmotnost pružiny můžeme zanedbat Těleso o hmotnosti 0,1 kg je zavěšeno na pružině o tuhosti 160 N m 1 pomocí niti AB (obr [4-5]). Jaká musí být amplituda výchylky závaží, aby jeho kmitání bylo harmonické? Obr Určete úhlové frekvence vlastního kmitání oscilátorů na obr [4-6]. Hmotnost tělesa je m a tuhost pružin je k 1 a k 2. Hmotnosti pružin jsou zanedbatelně malé.

6 Obr Lehká pružná tyčinka, na jejímž konci je kulička o hmotnosti m (obr. 4-39a [4-7a]), je vetknuta do stěny a kmitá harmonicky s frekvencí f 1. Stejná kulička na konci pružiny o tuhosti k 2 (obr. 4-39b [4-7b]) kmitá harmonicky s frekvencí f 2. S jakou frekvencí bude kmitat soustava tvořená tyčinkou, na jejímž konci je připevněna pružina s kuličkou (obr. 4-39c [4-7c])? Obr Skleněná trubice tvaru U je naplněna rtutí tak, že celková délka sloupce rtuti je 20 cm (obr [4-8]). Nakloněním trubice a jejím vrácením do původní polohy se sloupec rtuti rozkmitá. Určete periodu kmitání rtuti. Obr Hranol z dubového dřeva o rozměrech 10 cm 20 cm 20 cm plove na hladině vody (obr [4-9]). Hranol poněkud zatlačíme do vody a pustíme. Jaká by byla perioda kmitání hranolu, kdybychom odpor prostředí mohli zanedbat? Hustota dubového dřeva je 900 kg m 3. Výška hladiny je stálá. Obr. 4-41

7 4.42 Jak se změní perioda kmitání dětské houpačky, jestliže a) místo jednoho dítěte se budou současně houpat dvě děti, b) dítě na houpačce bude nejdříve sedět a pak se postaví? 4.43 Kyvadlo je tvořeno nádobou s pískem zavěšenou na pevném vlákně. Jak se bude měnit perioda kmitání, když se písek z nádoby postupně vysypává? Změnu polohy těžiště při sypání písku neuvažujte Dříve se k měření času používaly kyvadlové hodiny, jejichž periodu určovalo kyvadlo ve tvaru tyče se závažím na konci. Proč nebylo závaží s tyčí spojeno pevně, ale mohlo se posunovat nahoru a dolů? Jaký vliv to mělo na chod hodin? Jak ovlivňovala chod hodin teplota v místnosti? 4.45 Jak by se změnil chod kyvadlových hodin při jejich přemístění a) na vysokou horu, b) z rovníku na pól? 4.46 Za jakou dobu by vykonala jeden oběh minutová ručička kyvadlových hodin, kdybychom je umístili na povrch Měsíce? Velikost tíhového zrychlení na Měsíci je 1,6 m s Kolikrát se změní perioda kmitání kyvadla přeneseného ze Země na Měsíc, jestliže hmotnost Měsíce je 81krát menší než hmotnost Země a poloměr Země je 3,7krát větší než poloměr Měsíce? 4.48 Periody dvou kyvadel tvořených pevnými vlákny, na nichž jsou zavěšeny kuličky, jsou v poměru 3 : 2. Kolikrát je první kyvadlo delší než druhé? 4.49 Kyvadlo je tvořeno pevným vláknem, na jehož konci je zavěšena kulička. Jak musíme změnit délku niti, aby frekvence kyvadla vzrostla na dvojnásobek? Ověřte experimentálně Kyvadlo délky 150 cm vykonalo 125 kmitů za 300 s. Určete velikost tíhového zrychlení Za tutéž dobu vykoná jedno kyvadlo 50 kmitů a druhé 30 kmitů. Určete délku kyvadel, jestliže rozdíl jejich délek je 32 cm Kyvadlo na Zemi kmitá s periodou 1,0 s. Jak se změní perioda kyvadla na palubě rakety, která se pohybuje svisle vzhůru se zrychlením o velikosti 3,0 m s 2? 4.53 V kabině výtahu visí kyvadlo, které kmitá s periodou 1 s. Když se kabina pohybuje se stálým zrychlením, kyvadlo kmitá s periodou 1,2 s. Určete velikost a směr zrychlení výtahu Kabina výtahu se pohybuje vzhůru nejprve po dobu t 1 rovnoměrně zrychleně se zrychlením a 1 a potom po dobu t 2 rovnoměrně zpomaleně se zrychlením a 2 = a 1. Určete, kolik kmitů vykoná kyvadlo délky l zavěšené v kabině výtahu za dobu jeho pohybu. Řešte pro a 1 = a 2 = 0,5g, t 1 = t 2 = 10 s, l = 0,50 m Raketa startuje svisle vzhůru se zrychlením o velikosti 3g (g je velikost tíhového zrychlení). Kolik celých kmitů vykoná kyvadlo délky 1,0 m umístěné v raketě za dobu, za kterou raketa dosáhne výšky m? Změnu tíhového zrychlení při pohybu rakety neuvažujte Určete poměr potenciální energie harmonického kmitání hmotného bodu a jeho kinetické energie jako funkci fáze kmitání.

8 4.57 Určete poměr potenciální energie a kinetické energie při harmonickém kmitání hmotného bodu s nulovou počáteční fází v časových okamžicích a) T/12, b) T/8, c) T/ Určete poměr kinetické energie a potenciální energie při harmonickém kmitání hmotného bodu v okamžicích, kdy okamžitá výchylka je a) y m /4, b) y m /2, c) y m Pro okamžitou výchylku kmitání hmotného bodu platí rovnice y = y m sin ( 2 {t} + /6). Určete, v kterém okamžiku je poprvé potenciální energie hmotného bodu rovna jeho kinetické energii Pro okamžitou výchylku hmotného bodu o hmotnosti 32 g platí rovnice {y} = 0,02sin ( {t}/4 + /4). Sestrojte časový diagram (pro jednu periodu) kinetické, potenciální a celkové energie hmotného bodu Celková energie harmonického oscilátoru je J a maximální velikost síly, která na něj působí, je 1, N. Napište rovnici okamžité výchylky oscilátoru, jestliže oscilátor kmitá s periodou 2 s a jeho počáteční fáze je Mechanický oscilátor kmitá s amplitudou výchylky 2 cm a jeho celková energie je J. Určete okamžitou výchylku oscilátoru, při níž na oscilátor působí síla o velikosti 2, N Těžké závaží zavěšené na niti můžeme rozkmitat foukáním. Navrhněte a vysvětlete postup a experimentálně ho ověřte Někdy vznikají na povrchu vozovky pravidelně rozmístěné nerovnosti, které mohou vyvolat rezonanční rozkmitání automobilu. Jak se budou lišit rychlosti prázdného a naloženého automobilu, při nichž nastane rezonance? 4.65 Na obr [4-10] je rezonanční křivka nosníku, na kterém je připevněn elektromotor. Při jaké frekvenci otáčení elektromotoru se nosník silně rozkmitá? Obr. 4-65

9 4.66 Voda v nádobě, kterou nese chlapec, má periodu vlastního kmitání 0,8 s. Při jaké velikosti rychlosti pohybu chlapce se voda značně rozkmitá, je-li délka chlapcova kroku 60 cm? 4.67 Při jaké velikosti rychlosti vlaku se vagony velmi silně rozkmitají vlivem nárazů kol na spoje mezi kolejnicemi? Délka kolejnic je l, péra vagonu jsou zatížena tíhou o velikosti G a při zatížení silou o velikosti F se stlačí o vzdálenost h Perioda vlastního kmitání železničního vagonu je 1,25 s. Při jaké velikosti rychlosti dosáhne kmitání způsobené nárazy kol na spoje mezi kolejnicemi maxima, jestliže délka kolejnic je 25 m? 4.69 Kapky vody padají volným pádem v pravidelných intervalech na destičku připevněnou na pružině. Úhlová frekvence vlastního kmitání pružiny je 0. Určete vzdálenost mezi právě odkapávající kapkou a nejbližší k ní padající kapkou v případě, že kmitání destičky má největší amplitudu výchylky. 4.1 Kmitání mechanického oscilátoru R4.1 f = 440 Hz = 4, Hz; T =? R4.2 f = 10 3 Hz, t 1 = 0,1 s, t 2 = 0,5 s; n 1 =?, n 2 =? R4.3 f =?, T =? f = 5 Hz, T = 0,2 s R4.4 v = 2 cm s 1 = m s 1, l = 8 mm = m; f =? R4.5 v = 20 mm s 1 = m s 1, f = 72 min 1 = 1,2 Hz; l =? R4.6 Konstantní jsou amplituda výchylky, perioda a frekvence, ostatní se mění. R4.7 Kmitání na obr. 4-7a, b [4-2a, b] se liší periodou, kmitání na obr. b, c se liší amplitudou, kmitání na obr. a, c se liší periodou a amplitudou.

10 R4.8 y m = 0,2 m R4.9 Rovnici porovnáme s rovnicí pro okamžitou výchylku harmonického kmitání y = y m sin (ωt + 0 ). Porovnáním určíme y m = 0,2 m, = 5/2 s 1, 0 = 0. Protože = 2 /T, platí R4.10 y m = 5 cm = m, T = 0,5 s, 0 = 0 R4.11 a) 01 = 0, b) 02 = /2, c) 03 =, d) 04 = /2 a) y 1 = 5 sin 2 t b) y 2 = 5 sin (2 t + /2) c) y 3 = 5 sin (2 t ) d) y 4 = 5 sin (2 t /2) R4.12 t = 1 min = 60 s, n = 150, y m = 5 cm = m, 0 = 45 = /4; y =?

11 Obr. R4-12 [V4-1] R4.13 t = 0, T/4, T/3, T/2; y =? Obr. R4-13 [V4-2] R4.14 f = 400 Hz, y m = 2 mm = m, 0 = 30 = /6; y =?, t =?, v =? Pro kmitání platí rovnice {y} = sin (800 {t} + /6): y = 10 3 m = 1 mm

12 b) Počáteční fáze odpovídá 1/12 periody kmitání. To znamená, že hmotný bod byl v rovnovážné poloze v čase t 0 = T/12 = 1/12f a v rovnovážné poloze se bude nacházet opět v čase: R4.15 a) V počátečním okamžiku t = 0, a proto b) Bod M 2 má okamžitou výchylku nulovou, když a tedy pro čas první nulové výchylky platí Odtud Pro okamžitou výchylku bodu M 1 pak vychází c) Hmotný bod M 1 má nulovou okamžitou výchylku, když a tedy

13 takže t 1 = 1/8 s. Poněvadž hmotný bod prochází rovnovážnou polohou v každé půlperiodě, platí t 1 = 1/8 s + k 1 T 1 /2, kde k 1 = 0, 1, 2,... Podobně platí pro bod M 2 (viz b) t 2 = 1/8 s + k 2 T 2 /2. Z rovnic pro okamžitou výchylku vyplývá, že bod M 1 kmitá s periodou T 1 = 1 s a bod M 2 kmitá s periodou T 2 = 0,5 s. Oba body budou mít současně nulovou výchylku v čase t = t 1 = t 2, tzn. když Odtud po dosazení za T 1 a T 2 vychází podmínka 2k 1 = k 2 + 1, čili při všech lichých hodnotách k 2. Poprvé od počátečního okamžiku projdou oba hmotné body rovnovážnou polohou při k 1 = 1 a k 2 = 1, čili za dobu R4.16 f = 150 min 1 = 2,5 s 1, t = 0,3 s, y = y m ; 0 =? Kmitání hmotného bodu vyjadřuje rovnice y = y m sin ( t + 0 ). Poněvadž y = y m, platí R4.17 y = 2,6 cm = 2, m, 0 = /3, t = 0; y m =? y = y m sin ( t + 0 ) Pro t = 0: R4.18 y m = 50 mm = m, T = 4 s, 0 = /4, t 1 = 0, t 2 = 1,5 s; y 1 =?, y 2 =?

14 R4.19 y m = 4 cm = m, t = /3, 0 = /2; y =? R4.20 y m = 1,2 cm = 1, m, T = 0,25 s; v m =?, a m =? R4.21 y m = 0,02 m = 2, m; T =?, v m =?, a m =? srovnáme s rovnicí a dostaneme: R4.22 t =? pro v m a a m maximální v = v m pro cos /6 {t} = k, kde k = 0, 1, 2,.... Odtud t = 0, 6 s, 12 s,.... a = a m, když sin /6 {t} = 1, tj. když t = (2k + 1) 3 s. Odtud t = 3 s, 9 s, 15 s,... R4.23 y m = 5 cm = m, T = 2 s, 0 = 0, y = 2,5 cm; v =?

15 R4.24 f 1 = f 2 = 4 Hz, y m1 = y m2 = y m = 2,0 cm, 01 = 0, = /2; y 12 =? Složky výsledného kmitání můžeme symbolicky znázornit fázory y 1 a y 2 (obr. R4-24a [4-4a]). Obr. R4-24a Z fázorového diagramu je zřejmé, že amplituda výchylky výsledného kmitání je Počáteční fáze výsledného kmitání 012 = /2 = /4. Protože 01 = 0, je rovnice výsledného kmitání Řešením je i případ, kdy 012 = /4. Časové diagramy obou řešení jsou na obr. R4-24b [4-4b]. Obr. R4-24b R4.25 y m1 = 3 cm = m, y m2 = 5 cm = m; y 12 =?

16 R4.26 f = 8 Hz, y m1 = y m2 = y m = 2 cm = m, = = /4 Použijeme vztah a dostaneme: R4.27 {y 12 } = 0,14 sin(10π{t} + π/4); y m1 = y m2 = y m =?, f =?, 0 =? Pro součet dvou izochronních kmitání o stejné amplitudě platí vztah (viz úlohu 4.26) Jestliže bude 01 = 0, pak 02 = = 0. Poněvadž. Z obecně vyjádřené rovnice dále vyplývá:. R4.28 y m12 =?, 012 =? Z rovnic najdeme: R4.29 k = 10 N m 1, m = 100 g = 0,1 kg; T =?

17 R4.30 m = 5 kg, f = 45 min 1 = 0,75 Hz; k =? R4.31 k = 250 N m 1, t = 16 s, n = 20; m =? R4.32 T 1 = T, l = 0,75l 1 ; T 2 =? Tuhost k pružného vlákna je nepřímo úměrná jeho délce, tedy R4.33 l = 2,5 cm = 2, m; f =? R4.34 T = 0,5 s; l =? R4.35 T 1 = 0,50 s, T 2 = 0,60 s; l =? Před přidáním závaží oscilátor kmital s periodou

18 a po zvětšení hmotnosti závaží o m bude perioda oscilátoru Pro druhé mocniny period platí vztahy a pro jejich rozdíl dostaneme Tuhost pružiny kde F je velikost síly, která způsobila prodloužení pružiny o l. Dosazením do vztahu pro rozdíl druhých mocnin period dostaneme a odtud Přidáním závaží se pružina prodloužila o 2,7 cm. R4.36 a) Poněvadž při stejném prodloužení l pružin takže při y m1 = y m2 a 1 = 2 je vzhledem k m 1 > m 2, E c1 > E c2. R4.37 m = 1 kg, k = 160 N m 1 ; y m =? Kmitání bude harmonické jen v případě, že se vzdálenost AB nebude měnit, tzn. že nit bude stále napjatá. Tak tomu bude v případě, že amplituda zrychlení kmitavého pohybu a m g, čili když platí Poněvadž

19 R =? a) Výchylka x obou oscilátorů je stejná, takže platí: b) Oba oscilátory jsou napínány stejnou silou, takže platí: R4.39 f =? Příčinou harmonického kmitání tyčinky je síla pružnosti o velikosti F p = k 1 y 1, kde k 1 je konstanta závislá na vlastnostech tyčinky. Kmitání tyčinky odpovídá kmitání pružiny o tuhosti k 1, takže pro frekvenci tyčinky platí. Ve druhém případě platí při stejné hmotnosti kuličky F p = k 2 y 2, a tedy. Soustavu na obr. 4-39c [4-7c] lze považovat za dvě navzájem spojené pružiny o tuhostech k 1 a k 2. Poněvadž výchylka y kuličky je rovna součtu výchylek konce tyčinky (y 1 ) a konce pružiny (y 2 ), platí kde k je celková tuhost soustavy. Po úpravě dostaneme, a pro frekvenci f vlastního kmitání soustavy dostaneme

20 Vyjádříme-li k 1 a k 2 pomocí vztahů pro frekvence f 1 a f 2, dostaneme R4.40 l = 20 cm = 0,2 m; T =? Síla působící na sloupec rtuti F = g V = 2 gsy, kde S je obsah plochy průřezu trubice. Tuhost soustavy je dána vztahem k = F/y = 2 gs a její hmotnost m = Sl. Odtud R4.41 V = ( ) cm, = 900 kg m 3 ; T =? Vztlaková síla F = 0 gsx, kde 0 je hustota vody a x je dodatečné ponoření hranolu. Hranol o výšce h kmitá s periodou. R4.42 a) Nezmění se (uvažujeme, že těžiště těl obou dětí je ve stejné poloze), poněvadž perioda kyvadla je jen funkcí jeho délky a nezávisí na hmotnosti. b) Zkrátí se, poněvadž změna polohy těžiště odpovídá zmenšení délky kyvadla. R4.43 Nezmění se, poněvadž perioda kyvadla na jeho hmotnosti nezávisí. R4.44 Při posunutí závaží nahoru se perioda chodu zkrátila a naopak, poněvadž perioda kyvadla závisí na délce kyvadla. Při vyšší teplotě se perioda chodu hodin prodloužila (hodiny se opožďovaly), poněvadž délka kyvadla se zvětšila. R4.45 a) Zpomalil by se, b) zrychlil by se. Příčinou je změna tíhového zrychlení, které je na vysoké hoře menší a na pólu větší. R4.46 g M = 1,6 m s 2 ; t M =? Budeme-li předpokládat, že pro periodu kyvadla hodin platí na Zemi vztah a minutová ručička vykoná jeden oběh za dobu t = nt = 1 h, kde n je počet period kyvadla, pak na Měsíci vykoná ručička jeden oběh za stejný počet period a potřebuje k tomu čas

21 R4.47 M M = M Z /81, R M = R Z /3,7; T M =? R4.48 T 1 : T 2 = 3 : 2; l 1 /l 2 =? R4.49 f 2 = 2f 1 ; l 2 =? R4.50 l = 150 cm = 1,5 m, t = 300 s, n = 125; g =? R T 1 = 30T 2, l = 32 cm = 0,32 m; l =? l 1 = l = 18 cm, l 2 = l + l = 50 cm R4.52 T 0 = 1,0 s, a = 3,0 m s 2 ; T =? Na kyvadlo v raketě působí kromě tíhové síly o velikosti F G = mg ještě setrvačná síla, která má stejný směr a velikost F s = ma, takže celková síla má velikost F = mg + ma = m(g + a) a pro periodu kyvadla platí vztah

22 Jestliže pak R4.53 T 1 = 1 s, T 2 = 1,2 s; a =? Poněvadž T 1 < T 2, je výsledné zrychlení kabiny menší než g, takže platí: Výtah se pohybuje ve směru tíhového zrychlení, tzn. směrem dolů. R4.54 a 1 = a 2 = a = 0,5g, t 1 = t 2 = 10 s, l = 0,50 m; n =? R4.55 a = 3g, l = 1,0 m, h = m; n =? Raketa se pohybuje vzhůru rovnoměrně zrychleným pohybem po dobu t se zrychlením 3g a pro výšku h platí vztah Za dobu t vykoná kyvadlo v raketě n kmitů: R4.56 E p /E k =?

23 R4.57 =0, t = T/12, T/8, T/6; E p /E k =? Využijeme výsledek úlohy 56: R4.58 y = y m /4, y m /2, y m R4.59 y = y m sin ( 2 {t} + /6), E p /E k = 1; t =? R4.60 Obr. R4-60 [V4-3]

24 Obr. R4-60 R4.61 E = J, F m = 1, N, T = 2 s, = /3; y =? Největší síla F m působí na oscilátor v okamžiku, kdy oscilátor dosahuje amplitudy výchylky. Pro velikost síly F m platí F m = ky m. V tomto okamžiku má oscilátor také největší potenciální energii, která je rovna energii celkové: Poněvadž k = F m /y m, je E = F m y m /2 a odtud y m = 2E/F m = m. Úhlová frekvence oscilátoru = 2 /T = s 1 a pro okamžitou výchylku platí rovnice: R4.62 y m = 2 cm = m, E = J, F = 2, N; y =? R4.63 Závaží se rozkmitá periodickým kmitáním s periodou vlastního kmitání závaží. Při rezonanci lze soustavu oscilátoru rozkmitat i malými silovými impulzy. Periodické působení musí trvat dostatečně dlouhou dobu. R4.64 Prázdný automobil se rozkmitá při větší rychlosti než plný, poněvadž jeho rezonanční frekvence je větší. R4.65 f rez = 4,5 Hz = 4,5 60 ot/min = 270 ot/min R4.66 T 0 = 0,8 s, l = 60 cm = 0,6 m; v =?

25 R4.67 R4.68 T 0 = 1,25 s, l = 25 m; v =? kde n = 1, 2, 3,. R4.69 h =? Destička kmitá s maximální amplitudou, jestliže kapky na ni dopadají s periodou T 0 vlastního kmitání oscilátoru, pro kterou platí T 0 = 2 /. 4.2 Mechanické vlnění R4.70 v 2 =? R4.71 T v = 2,0 ms = 2, s, v = 2,9 m; v v =? R4.72 f = 200 Hz, v v =1, m s 1 ; v =? R4.73 f = 10 MHz, v Al = 5, m s 1 ; =? R4.74 x = 4 cm, t = T/6, y = y m /2; =?

26 R4.75 {y} = 0,03 sin 20 {t}; v = 200 m s 1, x = 5,0 m, t = 0,10 s; T =?, y =? R4.76 f = 450 Hz, v = 360 m s 1, x = 20 cm = 0,2 m; =? R4.77 T = 0,010 s, v = 340 m s 1, x a = 3,4 m, x b = 1,7 m, x c = 0,85 m; =? R4.78 f = 100 Hz, v = m s 1 ; =? R4.79 T = 1,0 ms, x 1 = 12,0 m, x 2 = 14,7 m, = 3 /2; v =? R4.80 T = 0,04 s, v x = 300 m s 1, A(10 m, 3 m, 0), B(16 m, 0, 0); =?

27 R4.81 f = 725 Hz, v = m s 1, = ; x =? R4.82 x = 0,025 m, = /6; =? Kmity bodů můžeme popsat rovnicemi kde v je velikost fázové rychlosti vlnění, = x/v je fázový rozdíl obou vlnění. Platí tedy: R4.83 a) = 0, b) = R4.84 T = 1,2 s, y m = 0,2 m, v = 15 m s 1, x = 45 m, t = 4,0 s; y =? R4.85 T = 0,25 s, v = 68 m s 1, t = 10 s, x 1 = 43 m, y 1 = 3,0 cm = 0,03 m, x 2 = 45 m; y 2 =?, =? R4.86 t = 0,50T, x = /3, y = 5,0 cm = 5, m; y m =?

28 R4.87 v = 300 m s 1, x = 60 cm = 0,6 m, t = 0,01 s; y =? Z rovnice {y} = 0,05sin 500 {t} najdeme: R4.88 f = 3,0 Hz, v = 2,4 m s 1, x = 20 cm = 0,2 m; =? R4.89 y 1 = y 2 = y 0 sin t R4.90 T = 2, s, x = 1,5 m; v =? R4.91 T = 0,1 s, v = m s 1 ; x =? R4.92 f = 475 Hz, /2 = 1,5 m; v =? R4.93 x = m, t = 12,0 s; v =? R4.94 v = 5, m s 1, t = t 2 t 1 = 1, s; s =?

29 R4.95 v = 10 m s 1, t = 0,15 s, = 26 C; t' =? R4.96 v = 18 km h 1 = 5 m s 1, v z = m s 1, t = 50 ms = s, t = 5 s Ponorka nenarazí, doba plavby je větší, než je doba potřebná ke změně směru. R4.97 u = 36 km h 1 = 10 m s 1, = 90 ; v =? Z rozboru situace znázorněné na obr [4-12] vyplývá, že úhel, který svírají vlnoplochy, závisí na poměru rychlostí u, v vztahem Odtud hledaná rychlost: 4.2 Mechanické vlnění 4.70 Vlnění má v daném prostředí vlnovou délku 1 a rychlost o velikosti v 1. Po průchodu do jiného prostředí se jeho vlnová délka změní na 2. Vyjádřete velikost rychlosti v 2 vlnění v tomto prostředí Ze zdroje zvuku se ve vodě šíří vlnění s periodou 2,0 ms a s vlnovou délkou 2,9 m. Jak velká je rychlost zvuku ve vodě? 4.72 Zvuk o frekvenci 200 Hz se šíří ve vodě rychlostí o velikosti m s 1. Určete vlnovou délku zvukových vln Určete vlnovou délku ultrazvukových vln o frekvenci 10 MHz v hliníku. Velikost rychlosti zvuku v hliníku je m s Vlnění s periodou T postupuje podél osy x. Bod o souřadnici x = 4 cm má v čase T/6 okamžitou výchylku rovnou polovině amplitudy. Určete vlnovou délku vlnění. [Řešte pro y(t = 0; x = 0) = 0; > x.]

30 4.75 Pro okamžitou výchylku kmitajícího zdroje vlnění platí vztah {y} = 0,03 sin 20 {t} za předpokladu, že délku vyjadřujeme v metrech a čas v sekundách. Velikost fázové rychlosti vlnění je 200 m s 1. Určete a) periodu kmitů, b) okamžitou výchylku bodu, který leží ve vzdálenosti 5,0 m od zdroje, v čase 0,10 s od začátku kmitání zdroje Vlnění o frekvenci 450 Hz se šíří fázovou rychlostí o velikosti 360 m s 1 ve směru přímky p. Jaký je fázový rozdíl kmitavých pohybů dvou bodů, které leží na přímce p a mají vzájemnou vzdálenost 20 cm? 4.77 Vlnění s periodou 0,010 s se šíří fázovou rychlostí o velikosti 340 m s 1 ve směru přímky. Určete fázový rozdíl kmitavých pohybů takových dvou bodů přímky, které mají vzájemnou vzdálenost a) 3,4 m, b) 1,7 m, c) 0,85 m Vlnění o frekvenci 100 Hz se šíří ve směru přímky fázovou rychlostí o velikosti m s 1. Jakou nejmenší vzájemnou vzdálenost mohou mít dva body, které kmitají se stejnými fázemi? 4.79 Ze zdroje vlnění, který kmitá s periodou 1,0 ms, se šíří vlnění ve směru přímky. Dva body této přímky, vzdálené od zdroje 12,0 m a 14,7 m, kmitají s fázovým rozdílem 3 /2. Určete velikost fázové rychlosti vlnění Rovinné vlnoplochy vlnění o periodě 0,04 s postupují v pravoúhlé souřadnicové soustavě Oxyz ve směru osy x rychlostí o velikosti 300 m s 1. S jakým fázovým rozdílem kmitají dva body, které mají souřadnice (10 m, 3 m, 0), (16 m, 0, 0)? 4.81 Vlnění o frekvenci 725 Hz se šíří ve vodě fázovou rychlostí o velikosti m s 1. Jaká je nejmenší vzájemná vzdálenost (měřená ve směru šíření vlnění) dvou bodů, které kmitají s opačnými fázemi? 4.82 Dva body ležící na přímce, podél níž se šíří vlnění, jsou ve vzájemné vzdálenosti 25 mm a kmitají s fázovým rozdílem /6. Určete vlnovou délku vlnění Jaký je rozdíl fází kmitavých pohybů bodů, které při stojatém vlnění kmitají a) mezi dvěma sousedními uzly, b) na navzájem opačných stranách uzlu, ve vzdálenosti menší než polovina vlnové délky od uzlu? 4.84 Spodní koncový bod pružného lana, zavěšeného na balkoně výškové budovy, rozkmitáme rukou. Měřením jsme zjistili hodnoty 1,2 s pro periodu, 20 cm pro amplitudu a 15 m s 1 pro velikost rychlosti příčného vlnění. Určete velikost okamžité výchylky bodu lana ve výšce 45 m v čase 4,0 s Podél přímky postupuje vlnění s periodou 0,25 s rychlostí o velikosti 68 m s 1. V čase 10 s od začátku kmitání zdroje vlnění má bod ležící ve vzdálenosti 43 m od zdroje okamžitou výchylku 3,0 cm. Jaká je v tomto čase okamžitá výchylka bodu, který je ve vzdálenosti 45 m od zdroje? Jaký je fázový rozdíl kmitavých pohybů obou bodů?

31 4.86 Vlnění o periodě T a vlnové délce se šíří ze zdroje podél přímky. V čase 0,50T má bod, který leží na přímce ve vzdálenosti /3 od zdroje, okamžitou výchylku 5,0 cm. Určete amplitudu vlnění Zdroj vlnění koná netlumené kmity, které lze popsat rovnicí {y} = 0,05sin 500 {t}, jestliže délku vyjadřujeme v metrech a čas v sekundách. Vlnění se šíří ze zdroje ve směru přímky rychlostí o velikosti 300 m s 1. Jakou okamžitou výchylku má bod vzdálený 60 cm od zdroje v čase 0,01 s od začátku kmitání zdroje? 4.88 Podél pružného lana se šíří příčné vlnění o frekvenci 3,0 Hz fázovou rychlostí o velikosti 2,4 m s 1. S jakým fázovým rozdílem kmitají dva body lana, které jsou ve vzájemné vzdálenosti 20 cm? 4.89 V bodech S 1, S 2, jejichž vzájemná vzdálenost je d, jsou zdroje vlnění, které kmitají synchronně, každý podle rovnice y 1 = y 2 = y 0 sin t. Napište rovnici popisující kmity bodu, který leží na přímce S 1 S 2 za bodem S 2 ve vzdálenosti x od něho Interferencí dvou vlnění o periodách 2, s vzniká stojaté vlnění. Vzájemná vzdálenost sousedních uzlů je 1,5 m. Jak velkou rychlostí se šíří postupné vlnění? 4.91 Dva zdroje příčných vlnění kmitají s periodami 0,1 s a se stejnými fázemi. Ze zdrojů se šíří vlnění rychlostmi o velikosti m s 1 ve směru téže přímky a interferují spolu. Určete dráhový rozdíl obou vlnění v bodech, v nichž má nastat a) interferenční maximum, b) interferenční minimum Interferencí dvou postupných, opačnými směry postupujících vlnění o stejných frekvencích 475 Hz a stejných amplitudách vzniká stojaté vlnění. Vzájemná vzdálenost sousedních uzlů je 1,5 m. Určete velikost rychlosti postupného vlnění v daném prostředí Pozorovatel, který stojí ve vzdálenosti m od střelce, zjistí, že mezi zábleskem a zvukovým vjemem při výstřelu uplyne doba 12,0 s. Určete velikost rychlosti zvuku ve vzduchu Velikost rychlosti ultrazvuku v ocelovém válečku je m s 1. Kvalita válečku se zkoumá ultrazvukovým defektoskopem. Ultrazvuk ze sondy defektoskopu přiložené na podstavu P 1 válečku postupuje ve směru jeho osy a odráží se jednak na trhlině (defektu) T, jednak na druhé podstavě P 2 válečku. Po odrazu se opět vrací na sondu. Na obrazovce defektoskopu se na časové ose zobrazí dvě maxima, odpovídající dobám mezi vysláním signálu sondou a jeho přijetím po odrazu. Určete vzdálenost trhliny od podstavy P 2, jestliže t 2 t 1 = 1, s (obr [4-11]). Obr. 4-94

32 4.95 Netopýr se pohybuje směrem k překážce stálou rychlostí o velikosti 10,0 m s 1. Zvukový signál, který vyslal směrem dopředu, se po odrazu vrátil k netopýrovi za dobu 0,15 s od vyslání. Teplota vzduchu je 26 C. Kolik času zbylo netopýrovi, aby se překážce vyhnul? 4.96 Ponorka se pohybuje pod hladinou moře stálou rychlostí o velikosti 18 km h 1. Zvukový signál, který vyslala směrem dopředu, se ve vodě šíří rychlostí o velikosti m s 1 a po odrazu od překážky se vrací k ponorce. Od vyslání signálu do jeho přijetí po odrazu uplyne doba 50 ms. Na změnu směru ponorky je potřebná doba 5,0 s. Narazí ponorka na překážku? 4.97 Velikost konstantní rychlosti motorového člunu je 36 km h 1. Člun za sebou zanechává stopu (brázdu) ve tvaru písmene V, jehož vrchol leží na přední části člunu (obr [4-12]) a jehož ramena tvoří vlnoplochy vlnění šířícího se po vodní hladině. Vlnoplochy spolu svírají úhel 90. Určete velikost rychlosti, kterou se vlnoplochy šíří po povrchu vody. Obr. 4-97

Mechanické kmitání (oscilace)

Mechanické kmitání (oscilace) Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje

Více

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A MECHANICKÉ KMITÁNÍ Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A Kinematika kmitavého pohybu Mechanický oscilátor - volně kmitající zařízení Rovnovážná poloha Výchylka Kinematika kmitavého pohybu Veličiny charakterizující

Více

Kmitání mechanického oscilátoru Mechanické vlnění Zvukové vlnění

Kmitání mechanického oscilátoru Mechanické vlnění Zvukové vlnění Mechanické kmitání a vlnění Kmitání mechanického oscilátoru Mechanické vlnění Zvukové vlnění Kmitání mechanického oscilátoru Kmitavý pohyb Mechanický oscilátor = zařízení, které kmitá bez vnějšího působení

Více

DUM označení: VY_32_INOVACE_... Jméno autora výukového materiálu: Ing. Jitka Machková Škola: Základní škola a mateřská škola Josefa Kubálka Všenory

DUM označení: VY_32_INOVACE_... Jméno autora výukového materiálu: Ing. Jitka Machková Škola: Základní škola a mateřská škola Josefa Kubálka Všenory DUM označení: VY_32_INOVACE_... Jméno autora výukového materiálu: Ing. Jitka Machková Škola: Základní škola a mateřská škola Josefa Kubálka Všenory Karla Majera 370, 252 31 Všenory. Datum (období) vytvoření:

Více

1.7.4. Skládání kmitů

1.7.4. Skládání kmitů .7.4. Skládání kmitů. Umět vysvětlit pojem superpozice.. Umět rozdělit různé typy skládání kmitů podle směru a frekvence. 3. Umět určit amplitudu a fázi výsledného kmitu. 4. Vysvětlit pojem fázor. 5. Znát

Více

Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium

Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium V řešení číslujte úlohy tak, jak jsou číslovány v zadání. U všech úloh uveďte stručné zdůvodnění. Vyřešené úlohy zašlete elektronicky

Více

MECHANICKÉ KMITÁNÍ A VLNĚNÍ VLASTNÍ KMITÁNÍ MECHANICKÉHO OSCILÁTORU

MECHANICKÉ KMITÁNÍ A VLNĚNÍ VLASTNÍ KMITÁNÍ MECHANICKÉHO OSCILÁTORU Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 9. 6. 2013 Název zpracovaného celku: MECHANICKÉ KMITÁNÍ A VLNĚNÍ VLASTNÍ KMITÁNÍ MECHANICKÉHO OSCILÁTORU Kmitavý pohyb Je periodický pohyb

Více

Mechanické kmitání - určení tíhového zrychlení kyvadlem

Mechanické kmitání - určení tíhového zrychlení kyvadlem I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 9 Mechanické kmitání - určení

Více

Elektromagnetický oscilátor

Elektromagnetický oscilátor Elektromagnetický oscilátor Již jsme poznali kmitání mechanického oscilátoru (závaží na pružině) - potenciální energie pružnosti se přeměňuje na kinetickou energii a naopak. T =2 m k Nejjednodušší elektromagnetický

Více

Dynamika. Dynamis = řecké slovo síla

Dynamika. Dynamis = řecké slovo síla Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při

Více

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N?

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? MECHANICKÁ PRÁCE 1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? l = s = 6 cm = 6 10 2 m F = 120 N W =? (J) W = F. s W = 6 10 2 120 = 7,2 W = 7,2 J

Více

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s 1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření

Více

Obsah. 1 Vznik a druhy vlnění. 2 Interference 3. 5 Akustika 9. 6 Dopplerův jev 12. přenosu energie

Obsah. 1 Vznik a druhy vlnění. 2 Interference 3. 5 Akustika 9. 6 Dopplerův jev 12. přenosu energie Obsah 1 Vznik a druhy vlnění 1 2 Interference 3 3 Odraz vlnění. Stojaté vlnění 5 4 Vlnění v izotropním prostředí 7 5 Akustika 9 6 Dopplerův jev 12 1 Vznik a druhy vlnění Mechanické vlnění vzniká v látkách

Více

Název: Studium kmitů na pružině

Název: Studium kmitů na pružině Název: Studium kmitů na pružině Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek: Mechanické kmitání

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA MECHANICKÉ KMITÁNÍ 1) Hmotný bod koná harmonický pohyb. Na obrázku

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 17. 10. 2012 Pořadové číslo 05 1 Kmitavý pohyb Předmět: Ročník: Jméno autora:

Více

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný

Více

Měření momentu setrvačnosti prstence dynamickou metodou

Měření momentu setrvačnosti prstence dynamickou metodou Měření momentu setrvačnosti prstence dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=13 Tato úloha patří zejména svým teoretickým základem k nejobtížnějším. Pojem momentu setrvačnosti dělá

Více

Okamžitý výkon P. Potenciální energie E p (x, y, z) E = x E = E = y. F y. F x. F z

Okamžitý výkon P. Potenciální energie E p (x, y, z) E = x E = E = y. F y. F x. F z 5. Práce a energie 5.1. Základní poznatky Práce W jestliže se hmotný bod pohybuje po trajektorii mezi body (1) a (), je práce definována křivkovým integrálem W = () () () F dr = Fx dx + Fy dy + (1) r r

Více

Mechanické kmitání Kinematika mechanického kmitání Vojtěch Beneš

Mechanické kmitání Kinematika mechanického kmitání Vojtěch Beneš Mechanické kmitání Vojtěch Beneš Výstup RVP: Klíčová slova: žák užívá základní kinematické vztahy při řešení problémů a úloh o pohybech mechanické kmitání, kinematika, harmonický oscilátor Sexta Příprava

Více

1 Tuhé těleso a jeho pohyb

1 Tuhé těleso a jeho pohyb 1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

Klasické a inovované měření rychlosti zvuku

Klasické a inovované měření rychlosti zvuku Klasické a inovované měření rychlosti zvuku Jiří Tesař katedra fyziky, Pedagogická fakulta JU Klíčová slova: Rychlost zvuku, vlnová délka, frekvence, interference vlnění, stojaté vlnění, kmitny, uzly,

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Přípravný kurz - příklady

Přípravný kurz - příklady Přípravný kurz - příklady 1. Cyklista ujel první čtvrtinu cesty rychlostí v 1, další tři čtvrtiny pak rychlostí 20 km/hod, průměrná rychlost na celé dráze byla16 km/hod, jaká byla průměrná rychlost v první

Více

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská

Více

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce a energie Mechanická práce Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce Mechanickou práci koná každé těleso,

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

4. Měření rychlosti zvuku ve vzduchu. A) Kalibrace tónového generátoru

4. Měření rychlosti zvuku ve vzduchu. A) Kalibrace tónového generátoru 4. Měření rychlosti zvuku ve vzduchu Pomůcky: 1) Generátor normálové frekvence 2) Tónový generátor 3) Digitální osciloskop 4) Zesilovač 5) Trubice s reproduktorem a posuvným mikrofonem 6) Konektory A)

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Dynamika Vojtěch Beneš žák měří vybrané veličiny vhodnými metodami, zpracuje a vyhodnotí výsledky měření, určí v konkrétních situacích síly působící na

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ODRAZ A LOM SVĚTLA 1) Index lomu vody je 1,33. Jakou rychlost má

Více

SCLPX 11 1R Zákon zachování mechanické energie

SCLPX 11 1R Zákon zachování mechanické energie Klasické provedení a didaktické aspekty pokusu Zákony zachování mají ve fyzice významné postavení. V učivu mechaniky se na střední škole věnuje pozornost zákonu zachování hybnosti a zákonu zachování energie

Více

Přípravný kurz z fyziky na DFJP UPa

Přípravný kurz z fyziky na DFJP UPa Přípravný kurz z fyziky na DFJP UPa 26. 28.8.2015 RNDr. Jan Zajíc, CSc. ÚAFM FChT UPa Pohyby rovnoměrné 1. Člun pluje v řece po proudu z bodu A do bodu B rychlostí 30 km.h 1. Při zpáteční cestě z bodu

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. x m. Ne čas!

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. x m. Ne čas! MECHANICKÉ VLNĚNÍ I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í uveďte rozdíly mezi mechanickým a elektromagnetickým vlněním zdroj mechanického vlnění musí. a to musí být přenášeno vhodným prostředím,

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ELEKTRICKÝ NÁBOJ A COULOMBŮV ZÁKON 1) Dvě malé kuličky, z nichž

Více

2.1 2.2. Testový sešit neotvírejte, počkejte na pokyn!

2.1 2.2. Testový sešit neotvírejte, počkejte na pokyn! FYZIKA DIDAKTICKÝ TEST FYM0D11C0T01 Maximální bodové hodnocení: 45 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 20 úloh. Časový limit pro řešení didaktického

Více

17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N?

17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N? 1. Za jaký čas a jakou konečnou rychlostí (v km/hod.) dorazí automobil na dolní konec svahu dlouhého 25 m a skloněného o 7 0 proti vodorovné rovině, jestliže na horním okraji začal brzdit na hranici možností

Více

Fyzikální praktikum 1

Fyzikální praktikum 1 Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #9 Základní experimenty akustiky Jméno: Ondřej Finke Datum měření: 3.11.014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) V domácí přípravě spočítejte,

Více

SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda SÍLY A JEJICH VLASTNOSTI Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vzájemné působení těles Silové působení je vždy vzájemné! 1.Působení při dotyku 2.Působení na dálku prostřednictvím polí gravitační pole

Více

Optika pro mikroskopii materiálů I

Optika pro mikroskopii materiálů I Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických

Více

Prováděcí plán Školní rok 2013/2014

Prováděcí plán Školní rok 2013/2014 září Období Prováděcí plán Školní rok 2013/2014 Vyučovací předmět: Fyzika Třída: VIII. Vyučující: Jitka Wachtlová, Clive Allen Časová dotace: 1 hodina týdně v českém jazyce + 1 hodina týdně v anglickém

Více

Mechanické kmitání. Def: Hertz je frekvence periodického jevu, jehož 1 perioda trvá 1 sekundu. Y m

Mechanické kmitání. Def: Hertz je frekvence periodického jevu, jehož 1 perioda trvá 1 sekundu. Y m Mehaniké kmitání Periodiký pohyb - harakterizován pravidelným opakováním pohybového stavu tělesa ( kyvadlo, těleso na pružině, píst motoru, struna na kytaře, nohy běžíího člověka ) - nejkratší doba, za

Více

(2) 2 b. (2) Řešení. 4. Platí: m = Ep

(2) 2 b. (2) Řešení. 4. Platí: m = Ep (1) 1. Zaveďte slovy fyzikální veličinu účinnost 2. Vyjádřete 1 Joule v základních jednotkách SI. 3. Těleso přemístíme do vzdálenosti 8,1 m, přičemž na ně působíme silou o velikosti 158 N. Jakou práci

Více

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2006 2007

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2006 2007 TEST Z FYZIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-F-2006-01 1. Převeďte 37 mm 3 na m 3. a) 37 10-9 m 3 b) 37 10-6 m 3 c) 37 10 9 m 3 d) 37 10 3 m 3 e) 37 10-3 m 3 2. Voda v řece proudí rychlostí 4 m/s. Kolmo

Více

ÚLOHA 1 Ladi = 100 Hz = 340 m/s Úkoly: lnovou d él é ku k periodu T frekvenci f =? vlnovou délku =?

ÚLOHA 1 Ladi = 100 Hz = 340 m/s Úkoly: lnovou d él é ku k periodu T frekvenci f =? vlnovou délku =? ÚLOHA 1 Ladička má rekvenci 100 Hz. Kmitá ve vzduchu, kde je rychlost zvuku přibližně c 340 m/s. Úkoly: a) Jak lze u zvuku charakterizovat vlnovou délku λ? b) Jak lze u zvuku charakterizovat periodu T?

Více

Určení hlavních geometrických, hmotnostních a tuhostních parametrů železničního vozu, přejezd vozu přes klíny

Určení hlavních geometrických, hmotnostních a tuhostních parametrů železničního vozu, přejezd vozu přes klíny Určení hlavních geometrických, hmotnostních a tuhostních parametrů železničního vozu, přejezd vozu přes klíny Název projektu: Věda pro život, život pro vědu Registrační číslo: CZ.1.07/2.3.00/45.0029 V

Více

FYZIKA. Kapitola 3.: Kinematika. Mgr. Lenka Hejduková Ph.D.

FYZIKA. Kapitola 3.: Kinematika. Mgr. Lenka Hejduková Ph.D. 1. KŠPA Kladno, s. r. o., Holandská 2531, 272 01 Kladno, www.1kspa.cz FYZIKA Kapitola 3.: Kinematika Mgr. Lenka Hejduková Ph.D. Kinematika obor, který zkoumá pohyb bez ohledu na jeho příčiny klid nebo

Více

Příklady: 7., 8. Práce a energie

Příklady: 7., 8. Práce a energie Příklady: 7., 8. Práce a energie 1. Dělník tlačí bednu o hmotnosti m = 25, 0 kg vzhůru po dokonale hladké nakloněné rovině o úhlu sklonu α = 25. Působí na ni při tom stálou silou F o velikosti F = 209

Více

Fyzikální praktikum 1

Fyzikální praktikum 1 Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #10 Lineární harmonický oscilátor a Pohlovo kyvadlo Jméno: Ondřej Finke Datum měření: 10.11.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) Změřte

Více

KMITÁNÍ A VLNĚNÍ. Kmitavý pohyb je pravidelně se opakující pohyb tělesa kolem rovnovážné polohy (stálé).

KMITÁNÍ A VLNĚNÍ. Kmitavý pohyb je pravidelně se opakující pohyb tělesa kolem rovnovážné polohy (stálé). FYZIKA pracovní sešit pro ekonomické lyceum. 1 Jiří Hlaváček, OA a VOŠ Příbram, 2015 KMITAVÝ POHYB Kmitavý pohyb je pravidelně se opakující pohyb tělesa kolem rovnovážné polohy (stálé). Příklady: (II.str.

Více

PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE

PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE Jméno: Třída: Úloha: F-VI-1 Izotermický děj Spolupracovník: Hodnocení: Datum měření: Úkol: Experimentálně ověřte platnost Boyle-Mariottova zákona. Pomůcky: Teorie:

Více

FYZIKA. Newtonovy zákony. 7. ročník

FYZIKA. Newtonovy zákony. 7. ročník FYZIKA Newtonovy zákony 7. ročník říjen 2013 Autor: Mgr. Dana Kaprálová Zpracováno v rámci projektu Krok za krokem na ZŠ Želatovská ve 21. století registrační číslo projektu: CZ.1.07/1.4.00/21.3443 Projekt

Více

VY_52_INOVACE_2NOV42. Autor: Mgr. Jakub Novák. Datum: 15. 11. 2012 Ročník: 8.

VY_52_INOVACE_2NOV42. Autor: Mgr. Jakub Novák. Datum: 15. 11. 2012 Ročník: 8. VY_52_INOVACE_2NOV42 Autor: Mgr. Jakub Novák Datum: 15. 11. 2012 Ročník: 8. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Zvukové děje, Energie Téma: Kmitání kyvadla Metodický

Více

Zákon zachování energie - příklady

Zákon zachování energie - příklady DUM Základy přírodních věd DUM III/2-T3-13 Téma: ZZE - příklady Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý VÝKLAD Zákon zachování energie - příklady 1.) Jakou má polohovou energii

Více

Laboratorní práce č. 3: Měření vlnové délky světla

Laboratorní práce č. 3: Měření vlnové délky světla Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 3: Měření vlnové délky světla G Gymnázium Hranice Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Gymnázium G Hranice Test

Více

Archimédův zákon, vztlaková síla

Archimédův zákon, vztlaková síla Variace 1 Archimédův zákon, vztlaková síla Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Vztlaková síla,

Více

DYNAMIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika

DYNAMIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika DYNAMIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Dynamika Obor mechaniky, který se zabývá příčinami změn pohybového stavu těles, případně jejich deformací dynamis = síla

Více

2. Kmity. 2.1 Úvod. 2.2 Kmity tělesa na pružině, harmonický pohyb

2. Kmity. 2.1 Úvod. 2.2 Kmity tělesa na pružině, harmonický pohyb 2. Kmity 2.1 Úvod Kmitání stejně jako vlnění patří k typickým nestacionárním dějům s převážně periodickým průběhem. Veličiny, kterými kmitání popisujeme, se tedy s časem mění, ale mají také opakující se

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

Magnetické pole drátu ve tvaru V

Magnetické pole drátu ve tvaru V Magnetické pole drátu ve tvaru V K prvním úspěchům získaným Ampèrem při využívání magnetických jevů patří výpočet indukce magnetického pole B, vytvořeného elektrickým proudem procházejícím vodiči. Srovnáme

Více

4. V každé ze tří lahví na obrázku je 600 gramů vody. Ve které z lahví má voda největší objem?

4. V každé ze tří lahví na obrázku je 600 gramů vody. Ve které z lahví má voda největší objem? TESTOVÉ ÚLOHY (správná je vždy jedna z nabídnutých odpovědí) 1. Jaká je hmotnost vody v krychlové nádobě na obrázku, která je vodou zcela naplněna? : (A) 2 kg (B) 4 kg (C) 6 kg (D) 8 kg 20 cm 2. Jeden

Více

Testové otázky za 2 body

Testové otázky za 2 body Přijímací zkoušky z fyziky pro obor PTA K vypracování písemné zkoušky máte k dispozici 90 minut. Kromě psacích potřeb je povoleno používání kalkulaček. Pro úspěšné zvládnutí zkoušky je třeba získat nejméně

Více

V 1 = 0,50 m 3. ΔV = 50 l = 0,05 m 3. ρ s = 1500 kg/m 3. n = 6

V 1 = 0,50 m 3. ΔV = 50 l = 0,05 m 3. ρ s = 1500 kg/m 3. n = 6 ÚLOHY - ŘEŠENÍ F1: Objem jedné dávky písku u nakládače je 0,50 m 3 a dávky se od této hodnoty mohou lišit až o 50 litrů podle toho, jak se nabírání písku zdaří. Suchý písek má hustotu 1500 kg/m 3. Na valník

Více

2.1 Pokyny k uzavřeným úlohám. 2.2 Pokyny k otevřeným úlohám. Testový sešit neotvírejte, počkejte na pokyn!

2.1 Pokyny k uzavřeným úlohám. 2.2 Pokyny k otevřeným úlohám. Testový sešit neotvírejte, počkejte na pokyn! FYZIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 45 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 20 úloh. Časový limit pro řešení didaktického testu je

Více

Fyzikální veličiny. Převádění jednotek

Fyzikální veličiny. Převádění jednotek Fyzikální veličiny Vlastnosti těles, které můžeme měřit nebo porovnávat nazýváme fyzikální veličiny. Značka fyzikální veličiny je písmeno, kterým se název fyzikální veličiny nahradí pro zjednodušení zápisu.

Více

4. Akustika. 4.1 Úvod. 4.2 Rychlost zvuku

4. Akustika. 4.1 Úvod. 4.2 Rychlost zvuku 4. Akustika 4.1 Úvod Fyzikálními ději, které probíhají při vzniku, šíření či vnímání zvuku, se zabývá akustika. Lidské ucho je schopné vnímat zvuky o frekvenčním rozsahu 16 Hz až 16 khz. Mechanické vlnění

Více

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce

Více

Akustika. Rychlost zvukové vlny v v prostředí s hustotou ρ a modulem objemové pružnosti K

Akustika. Rychlost zvukové vlny v v prostředí s hustotou ρ a modulem objemové pružnosti K zvuk každé mechanické vlnění v látkovém prostředí, které je schopno vyvolat v lidském uchu sluchový vjem akustika zabývá se fyzikálními ději spojenými se vznikem zvukového vlnění, jeho šířením a vnímáním

Více

Předmět: Seminář z fyziky

Předmět: Seminář z fyziky Pracovní list č. 1: Kinematika hmotného bodu a) Definujte základní kinematické veličiny, charakterizujte tečné a normálové zrychlení. b) Proveďte rozbor charakteristik jednotlivých konkrétních neperiodických

Více

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají

Více

Mgr. Jan Ptáčník. Elektrodynamika. Fyzika - kvarta! Gymnázium J. V. Jirsíka

Mgr. Jan Ptáčník. Elektrodynamika. Fyzika - kvarta! Gymnázium J. V. Jirsíka Mgr. Jan Ptáčník Elektrodynamika Fyzika - kvarta! Gymnázium J. V. Jirsíka Vodič v magnetickém poli Vodič s proudem - M-pole! Vložení vodiče s proudem do vnějšího M-pole = interakce pole vnějšího a pole

Více

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace.

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace. STUDUM OTÁčENÍ TUHÉHO TěLESA TEREZA ZÁBOJNÍKOVÁ 1. Pracovní úkol (1) Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti. (2) Určete složky jednotkového vektoru ve směru zadané obecné

Více

3. Vypočítejte chybu, které se dopouštíte idealizací reálného kyvadla v rámci modelu kyvadla matematického.

3. Vypočítejte chybu, které se dopouštíte idealizací reálného kyvadla v rámci modelu kyvadla matematického. Pracovní úkoly. Změřte místní tíhové zrychlení g metodou reverzního kyvadla. 2. Změřte místní tíhové zrychlení g metodou matematického kyvadla. 3. Vypočítejte chybu, které se dopouštíte idealizací reálného

Více

POHYB TĚLESA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

POHYB TĚLESA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda POHYB TĚLESA Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Pohyb Pohyb = změna polohy tělesa vůči jinému tělesu. Neexistuje absolutní klid. Pohyb i klid jsou relativní. Záleží na volbě vztažného tělesa. Spojením

Více

3.2 Rovnice postupné vlny v bodové řadě a v prostoru

3.2 Rovnice postupné vlny v bodové řadě a v prostoru 3 Vlny 3.1 Úvod Vlnění můžeme pozorovat například na vodní hladině, hodíme-li do vody kámen. Mechanické vlnění je děj, při kterém se kmitání šíří látkovým prostředím. To znamená, že například zvuk, který

Více

1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy

1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy MěřENÍ MOMENTU SETRVAčNOSTI KOLA TEREZA ZÁBOJNÍKOVÁ 1. Teorie Moment setrvačnosti kola lze měřit dvěma metodami. 1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy otáčení

Více

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:

Více

TESTY Závěrečný test 2. ročník Skupina A

TESTY Závěrečný test 2. ročník Skupina A 1. Teplota tělesa se zvýšila o o C. Analogicky tomu lze říci, že se a) snížila o K. b) zvýšila o 93,15 K c) snížila o 53,15 K d) zvýšila o K. Částice v látce se pohybují a) neustáleným a uspořádaným pohybem

Více

Integrovaná střední škola, Sokolnice 496

Integrovaná střední škola, Sokolnice 496 Název projektu: Moderní škola Integrovaná střední škola, Sokolnice 496 Registrační číslo: CZ.1.07/1.5.00/34.0467 Název klíčové aktivity: V/2 - Inovace a zkvalitnění výuky směřující k rozvoji odborných

Více

5.1.3 Lom světla. vzduch n 1 v 1. n 2. v 2. Předpoklady: 5101, 5102

5.1.3 Lom světla. vzduch n 1 v 1. n 2. v 2. Předpoklady: 5101, 5102 5..3 Lom světla Předpoklady: 50, 50 Pokus s mincí a miskou: Opřu bradu o stůl a pozoruji minci v misce. Paprsky odražené od mince se šíří přímočaře ke mně, miska jim nesmí překážet v cestě. Posunu misku

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

Praktická úloha celostátního kola 48.ročníku FO

Praktická úloha celostátního kola 48.ročníku FO 1 Praktická úloha celostátního kola 48.ročníku FO Pomůcky: dvě různé pružiny o neznámých tuhostech k 1 a k 2, k 1 < k 2,dvě závaží o hmotnostech m 1 = 0,050 kg a m 2 = 0,100 kg, kladka o známé hmotnosti

Více

(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m

(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m . Když od neznámého čísla odečtete 54, výsledek vydělíte 3 a následně přičtete 6, získáte číslo 9. Jaká je hodnota tohoto neznámého čísla? (A) 0 (B) 03 (C) 93 (D) 89 2. Na úsečce SV, jejíž délka je 3 cm,

Více

BIOMECHANIKA. 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti)

BIOMECHANIKA. 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti) BIOMECHANIKA 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti) Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin

Více

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Molekulová fyzika, termika 2. ročník, sexta 2 hodiny týdně Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Více

Měření modulů pružnosti G a E z periody kmitů pružiny

Měření modulů pružnosti G a E z periody kmitů pružiny Měření modulů pružnosti G a E z periody kmitů pružiny Online: http://www.sclpx.eu/lab2r.php?exp=2 V tomto experimentu vycházíme z pojetí klasického pokusu s pružinovým oscilátorem. Z periody kmitů se obvykle

Více

Mechanické vlastnosti kapalin hydromechanika

Mechanické vlastnosti kapalin hydromechanika Mechanické vlastnosti kapalin hydromechanika Vlastnosti kapalných látek nemají vlastní tvar, mění tvar podle nádoby jsou tekuté, dají se přelévat jejich povrch je vodorovný se Zemí jsou téměř nestlačitelné

Více

SBÍRKA PŘÍKLADŮ ZE ZÁKLADŮ FYZIKY

SBÍRKA PŘÍKLADŮ ZE ZÁKLADŮ FYZIKY VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE FAKULTA CHEMICKO-INŽENÝRSKÁ SBÍRKA PŘÍKLADŮ ZE ZÁKLADŮ FYZIKY Doc. Ing. Jaroslav Hofmann, CSc. PRAHA 009 Hofmann J.: Sbírka příkladů ze Základů fyziky VŠCHT

Více

7. Na těleso o hmotnosti 10 kg působí v jednom bodě dvě navzájem kolmé síly o velikostech 3 N a 4 N. Určete zrychlení tělesa. i.

7. Na těleso o hmotnosti 10 kg působí v jednom bodě dvě navzájem kolmé síly o velikostech 3 N a 4 N. Určete zrychlení tělesa. i. Newtonovy pohybové zákony 1. Síla 60 N uděluje tělesu zrychlení 0,8 m s-2. Jak velká síla udělí témuž tělesu zrychlení 2 m s-2? BI5147 150 N 2. Těleso o hmotnosti 200 g, které bylo na začátku v klidu,

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_2_Kinematika hmotného bodu Ing. Jakub Ulmann 2 Kinematika hmotného bodu Nejstarším odvětvím fyziky,

Více

9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km.

9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km. 9. Astrofyzika 9.1 Uvažujme hvězdu, která je ve vzdálenosti 4 parseky od sluneční soustavy. Určete: a) jaká je vzdálenost této hvězdy vyjádřená v kilometrech, b) dobu, za kterou dospěje světlo z této hvězdy

Více

Dynamika. Síla a její účinky na těleso Newtonovy pohybové zákony Tíhová síla, tíha tělesa a síly brzdící pohyb Dostředivá a odstředivá síla

Dynamika. Síla a její účinky na těleso Newtonovy pohybové zákony Tíhová síla, tíha tělesa a síly brzdící pohyb Dostředivá a odstředivá síla Dynamika Síla a její účinky na těleso Newtonovy pohybové zákony Tíhová síla, tíha tělesa a síly brzdící pohyb Dostředivá a odstředivá síla Dynamika studuje příčiny pohybu těles (proč a za jakých podmínek

Více