Předmět: Matematika. Charakteristika vyučovacího předmětu:

Rozměr: px
Začít zobrazení ze stránky:

Download "Předmět: Matematika. Charakteristika vyučovacího předmětu:"

Transkript

1 Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Deskriptivní geometrie I, Deskriptivní geometrie II, Matematický seminář, Seminář z matematiky I (pro vyšší úroveň obtížnosti státní maturitní zkoušky) (od se nenabízí), Seminář z matematiky II (pro zájemce o vyšší matematiku) (od Diferenciální a integrální počet), Finanční matematika a bankovnictví (od ), Maturitní strategie pro matematiku, Cvičení z matematiky (od ). Předmět: Matematika Charakteristika vyučovacího předmětu: Obsahové vymezení Matematika výrazně rozvíjí logické a abstraktní myšlení žáků. Výuka gymnaziální matematiky vede k tvůrčímu a samostatnému myšlení formou řešení úloh, které jsou následně potřebné pro odborné řešení problémů z praxe (statistická zpracování dat, finanční matematika, prostorová představivost, vědecký výzkum). Předmět matematika je řazen jako povinný předmět ve všech třech zaměřeních do čtyř ročníků, ovšem s různou hodinovou dotací vymezenou konkrétním učebním plánem. Ve třetím a čtvrtém ročníku budou žákům nabídnuty jednoleté volitelné předměty v rozsahu dvou hodin týdně, jejichž náplň souvisí se vzdělávacími oblastmi Matematika a její aplikace, Člověk a příroda (Fyzika), Informatika a informační a komunikační technologie. Výuka probíhá ve třídách, z celkového počtu hodin jsou všechny třídy v jedné hodině děleny na dvě skupiny. Výuka může být doplněna ročníkovými pracemi, odbornými exkurzemi, odbornými dny. Výchovné a vzdělávací strategie vedoucí k rozvoji Kompetence k učení: učitel žáka vede ke studiu a orientování se v odborné literatuře učitel žáka vede ke tvořivému zpracování získaných informací učitel žáka vede k samostatnému řešení problémů učitel žáka vede k hledání originálních způsobů řešení učitel žáka vede k různé prezentaci výsledků řešení (písemné, grafické, počítačové) Kompetence k řešení problémů: učitel žáka vede k analýze problému a matematizaci reálné situace učitel žáka vede k hledání různých postupů řešení a výběru optimálního způsobu řešení učitel žáka vede k hledání kontrolních mechanismů, s jejichž pomocí usuzuje na správnost závěrů řešení učitel žáka vede k využívání dostupných technologií (kalkulačka, počítač) při získávání potřebných informací Kompetence komunikativní: učitel žáka vede ke správnému formulování odborných dotazů učitel žáka vede k preciznímu využívání matematických symbolů a grafických značek učitel žáka vede k formálně správnému odbornému vyjadřování při písemném i mluveném projevu Kompetence sociální a personální: ŠVP (od , změny k , ) Stránka: 1

2 učitel žáka vede k aktivní spolupráci s učitelem i žáky v pracovním týmu Kompetence občanské: učitel žáka vede k respektování názorů spolužáků a učitele, k tolerování schopností ostatních žáků Kompetence k podnikavosti: učitel žáka cíleně vede k rozvoji osobních předpokladů v souvislosti s budoucím profesním zaměřením zařazením některých partií matematiky (například finanční matematika, statistika) učitel žáka připravuje na řešení a rozhodování v situacích, které jsou v životě dnešních lidí zcela běžné hypotéky, pojištění, daně, spoření učitel vede žáka k zapojení do předmětových olympiád a soutěží, čímž je mu umožněno srovnání v konkurenci s jeho vrstevníky Výstupy ŠVP Učivo téma Konkretizace Průřezová témata, souvislosti, metody čte a zapisuje tvrzení v symbolickém jazyce matematiky užívá správně logické spojky a kvantifikátory rozliší definici a větu, rozliší předpoklad a závěr věty rozliší správný a nesprávný úsudek vytváří hypotézy, zdůvodňuje jejich pravdivost a nepravdivost, vyvrací nesprávná tvrzení zdůvodňuje svůj postup a ověřuje správnost řešení problému užívá vlastnosti dělitelnosti přirozených čísel operuje s intervaly, aplikuje geometrický význam absolutní hodnoty provádí operace s mocninami a odmocninami, upravuje číselné výrazy odhaduje výsledky numerických výpočtů a efektivně je provádí, účelně využívá kalkulátor upravuje efektivně výrazy s proměnnými, určuje definiční obor výrazu rozkládá mnohočleny na součin vytýkáním a užitím vzorců, aplikuje tuto dovednost I. ZÁKLADNÍ POZNATKY Z MATEMATIKY Množiny Výroková logika Základní typy množin, určení, operace Intervaly Výrok a jeho negace Složené výroky (konjunkce, disjunkce, implikace, ekvivalence) a jejich negace Kvantifikované výroky a jejich negace Definice, věty, důkazy (Hu*, Př-4, Pg-3) Číselné obory Přirozená, celá, racionální a reálná čísla Druhá a třetí odmocnina, jednoduché operace s odmocninami Absolutní hodnota reálného čísla Zavedení a základní vlastnosti komplexních čísel, operace s komplexními čísly, absolutní hodnota komplexního čísla (Hu*, Př-3, Pg-3) Geometrické znázornění komplexních čísel, goniometrický tvar, Moivreova věta ŠVP (od , změny k , ) Stránka: 2

3 při řešení rovnic a nerovnic řeší lineární a kvadratické rovnice a nerovnice, řeší soustavy rovnic, v jednodušších případech diskutuje řešitelnost nebo počet řešení rozlišuje ekvivalentní a neekvivalentní úpravy geometricky interpretuje číselné, algebraické a funkční vztahy, graficky znázorňuje řešení rovnic, nerovnic a jejich soustav analyzuje a řeší problémy, v nichž aplikuje řešení lineárních a kvadratických rovnic a jejich soustav Elementární teorie čísel Mocniny Výrazy s proměnnými mnohočleny, lomené výrazy, výrazy s mocninami a odmocninami II. ROVNICE A NEROVNICE (Hu*, Př-3, Pg-3) Řešení kvadratických rovnic s reálnými koeficienty v oboru komplexních čísel (Hu*, Př-3, Pg-3) Řešení kvadratických rovnic s komplexními koeficienty, binomických rovnic v oboru komplexních čísel Zápisy přirozených čísel, násobek a dělitel čísla, znaky dělitelnosti, prvočísla, čísla složená, největší společný dělitel, nejmenší společný násobek (průběžně) Mocniny s přirozeným, celým a racionálním exponentem Mocniny s reálným exponentem Odmocniny: definice n-té odmocniny, počítání s odmocninami Sčítání, násobení a dělení mnohočlenů, rozklad mnohočlenů Krácení, rozšiřování, sčítání, násobení a dělení lomených výrazů Vyjádření neznámé ze vzorce (průběžně) Lineární rovnice a nerovnice s jednou neznámou Lineární rovnice, lineární nerovnice, rovnice s neznámou ve jmenovateli Grafické řešení lineárních rovnic a nerovnic Slovní úlohy ŠVP (od , změny k , ) Stránka: 3

4 Soustavy lineárních nerovnic Lineární rovnice a nerovnice s více neznámými a jejich soustavy Kvadratická rovnice a nerovnice Rovnice vyšších stupňů Některé rovnice a nerovnice, které lze převést na kvadratické a lineární Lineární rovnice se dvěma neznámými Soustavy lineárních rovnic se dvěma a více neznámými Grafické řešení soustav lineárních rovnic a nerovnic Neúplná a obecná kvadratická rovnice (diskriminant, kořeny) Vztahy mezi kořeny a koeficienty Grafické řešení kvadratické rovnice Kvadratická nerovnice Grafické řešení kvadratické nerovnice Řešení rovnic vyšších stupňů Rovnice a nerovnice v součinovém a podílovém tvaru Rovnice a nerovnice s absolutními hodnotami Rovnice s neznámou pod odmocninou Nerovnice s neznámou pod odmocninou Soustavy lineárních a kvadratických rovnic s více neznámými (Hu-3, Př-3, Pg-3) Použití substituce Slovní úlohy ŠVP (od , změny k , ) Stránka: 4

5 (průběžně) Rovnice a nerovnice s parametry Logaritmické a exponenciální rovnice a nerovnice Lineární a kvadratické rovnice s parametrem (Hu-1*, Př-1, Pg-1) Lineární a kvadratické nerovnice s parametrem Logaritmické a exponenciální rovnice Logaritmické a exponenciální nerovnice (Hu*, Př+Pg ) Řešení aplikačních úloh fyzika, chemie řeší reálné problémy s kombinatorickým podtextem (charakterizuje možné případy, vytváří model pomocí kombinatorických skupin a určuje jejich počet) využívá kombinatorické postupy při výpočtu pravděpodobnosti, upravuje výrazy s faktoriály a kombinačními čísly diskutuje a kriticky hodnotí statistické informace a daná statistická sdělení volí a užívá vhodné statistické metody k analýze a zpracování dat (využívá výpočetní techniku) reprezentuje graficky soubory dat, čte a interpretuje tabulky, diagramy a grafy, rozlišuje rozdíly v zobrazení obdobných souborů vzhledem k jejich odlišným charakteristikám Goniometrické rovnice a nerovnice III. KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Faktoriál, kombinační čísla a jejich vlastnosti Kombinatorika elementární kombinatorické úlohy, variace, permutace a kombinace bez opakování Permutace, variace a kombinace s opakováním Binomická věta Goniometrické rovnice Goniometrické nerovnice (Hu*, Př+Pg ) Faktoriál, kombinační čísla, Pascalův trojúhelník, výrazy s faktoriály (Hu-3, Př-3, Pg-1) Rovnice s faktoriály (Př-3, Pg-1) Kombinatorické pravidlo součtu a součinu, variace, permutace a kombinace bez opakování, variace s opakováním (Hu-3, Př-3, Pg-1) Permutace s opakováním (Př-3,Pg-1) Binomická věta (Hu-3, Př-3, Pg-1) Řešení aplikačních úloh fyzika Pravděpodobnost Náhodný jev a jeho pravděpodobnost, pravděpodobnost sjednocení a průniku jevů, nezávislost jevů ŠVP (od , změny k , ) Stránka: 5

6 (Hu-3, Př-3, Pg-2) Statistika Statistický soubor a jeho charakteristiky (vážený aritmetický průměr, medián, modus, percentil, kvartil, směrodatná a mezikvartilová odchylka) (Hu-3, Př-3,Pg-2) Práce s daty, analýza a zpracování dat v různých reprezentacích načrtne grafy požadovaných funkcí (zadaných jednoduchým funkčním předpisem) a určí jejich vlastnosti formuluje a zdůvodňuje vlastnosti studovaných funkcí a posloupností využívá poznatky o funkcích při řešení rovnic a nerovnic, při určování kvantitativních vztahů aplikuje vztahy mezi hodnotami exponenciálních, logaritmických a goniometrických funkcí a vztahy mezi těmito funkcemi modeluje závislosti reálných dějů pomocí známých funkcí řeší aplikační úlohy s využitím poznatků o funkcích a posloupnostech interpretuje z funkčního hlediska složené úrokování, aplikuje exponenciální funkci a geometrickou posloupnost ve finanční matematice IV. FUNKCE Obecné poznatky o funkcích pojem funkce, definiční obor a obor hodnot, graf funkce Vlastnosti funkcí Lineární funkce Funkce absolutní hodnota Definice funkce, jednoznačnost přiřazení, definiční obor, obor hodnot, graf funkce Monotónnost funkce (funkce rostoucí a klesající, funkce prostá), sudá a lichá funkce, omezená funkce, maximum a minimum funkce, periodická funkce Lineární funkce: definice, vlastnosti, graf lineární funkce a jeho využití při řešení rovnic, nerovnic a jejich soustav, speciální případy lineární funkce přímá úměrnost a konstantní funkce Funkce absolutní hodnota, lineární funkce s absolutními hodnotami, jejich grafy a vlastnosti Využití při řešení slovních úloh Kvadratická funkce Kvadratická funkce: její vlastnosti, graf a jeho využití při řešení rovnic a nerovnic Kvadratické funkce s absolutními hodnotami (Hu*, Př-2, Pg-2) Lineární lomená funkce Lineární lomená funkce: definice, vlastnosti a grafy, nepřímá úměrnost ŠVP (od , změny k , ) Stránka: 6

7 Lineární lomená funkce s absolutními hodnotami (Př-2, Pg-2) Mocninné funkce, funkce druhá odmocnina Exponenciální a logaritmické funkce Goniometrické funkce, vztahy mezi goniometrickými funkcemi Trigonometrie sinová a kosinová věta; trigonometrie pravoúhlého a obecného trojúhelníka Posloupnost určení a vlastnosti posloupností, aritmetická a geometrická posloupnost Mocninné funkce s přirozeným a celým exponentem Inverzní funkce, funkce druhá odmocnina Předpis inverzní funkce Exponenciální funkce: definice, graf a vlastnosti Logaritmická funkce: definice, graf a vlastnosti, logaritmus a věty o logaritmech Grafy funkcí s absolutními hodnotami (Hu*, Př+Pg ) Goniometrické funkce: orientovaný úhel, definice, graf, vlastnosti Grafy funkcí s absolutními hodnotami (Hu*, Př+Pg ) Goniometrické vzorce Trigonometrie, sinová, kosinová věta Další trigonometrické věty (Př-2, Pg-2) Pojem posloupnosti, jejich zadání a vlastnosti (Hu-4,Př-4,Pg-4) Aritmetická a geometrická posloupnost, finanční matematika Aplikace v praxi Využití ve finanční matematice ŠVP (od , změny k , ) Stránka: 7

8 (Hu-4,Př-4,Pg-4) Limita posloupnosti, nekonečná geometrická řada používá geometrické pojmy, zdůvodňuje a využívá vlastnosti geometrických útvarů v rovině a v prostoru, na základě vlastností třídí útvary určuje vzájemnou polohu lineárních útvarů, vzdálenosti a odchylky využívá náčrt při řešení rovinného nebo prostorového problému v úlohách početní geometrie aplikuje funkční vztahy, trigonometrii a úpravy výrazů, pracuje s proměnnými a iracionálními čísly řeší polohové a nepolohové konstrukční úlohy užitím všech bodů dané vlastnosti, pomocí shodných zobrazení a pomocí konstrukce na základě výpočtu zobrazí ve volné rovnoběžné projekci hranol a jehlan, sestrojí a zobrazí rovinný řez těchto těles řeší planimetrické a stereometrické problémy motivované praxí užívá různé způsoby analytického vyjádření přímky v rovině (geometrický význam koeficientů) řeší analyticky polohové a metrické úlohy o lineárních útvarech v rovině využívá charakteristické vlastnosti kuželoseček k určení analytického vyjádření z analytického vyjádření (z osové nebo vrcholové rovnice) určí základní údaje o kuželosečce řeší analyticky úlohy na vzájemnou polohu přímky a kuželosečky V. PLANIMETRIE, STEREOMETRIE A ANALYTICKÁ GEOMETRIE PLANIMETRIE Rovinné útvary Konstrukční úlohy Zobrazení v rovině STEREOMETRIE Úvod do stereometrie Polohové vlastnosti Geometrické útvary v rovině: přímka, polorovina, úhel, dvojice úhlů (Hu-1, Př-1, Pg-2) Trojúhelník, shodnost a podobnost trojúhelníků; mnohoúhelníky (Hu-1, Př-1, Pg-2) Kružnice, kruh, úhly v kružnici (Hu-1, Př-1, Pg-2) Obvody a obsahy rovinných útvarů (Hu-1, Př-1, Pg-2) Euklidovy a Pythagorova věta (Hu-1, Př-1, Pg-2) Množiny bodů dané vlastnosti, jednoduché geometrické konstrukce, konstrukce trojúhelníků, čtyřúhelníků (Hu-1, Př-1, Pg-3) Konstrukce na základě výpočtu (Hu-1, Př-1, Pg-3) Shodná zobrazení: osová a středová souměrnost, posunutí, otočení, konstrukční úlohy (Hu-2, Př-1, Pg-3) Stejnolehlost, konstrukční úlohy (Hu-2, Př-1, Pg-2) Volné rovnoběžné promítání, tělesa (Hu-4, Př-2, Pg-4) Základní polohové vlastnosti bodů, přímek a rovin, řezy těles ŠVP (od , změny k , ) Stránka: 8

9 (Hu-4, Př-2, Pg-4) uvede vlastnosti funkcí (rostoucí, klesající, omezená, sudá, lichá, periodická, maximum, minimum) formuluje a zdůvodňuje vlastnosti studovaných funkcí řeší aplikační úlohy s využitím znalostí o funkcích načrtne grafy požadovaných funkcí porovná obsahy známých rovinných útvarů porovná objemy známých rotačních těles Metrické vlastnosti Tělesa ANALYTICKÁ GEOMETRIE Analytická geometrie úvod Analytická geometrie v rovině Analytická geometrie v prostoru Kuželosečky VI. DIFERENCIÁLNÍ POČET A INTEGRÁLNÍ POČET Spojitost a limita funkce Derivace a jejich aplikace Odchylky přímek a rovin, vzdálenosti bodů, přímek a rovin (Hu-4, Př-2, Pg-4) Objemy a povrchy těles (Hu-4, Př-2, Pg-4) Soustava souřadnic, vzdálenost bodů, vektory v rovině a operace s nimi (Hu-3, Př-3, Pg-2) Souřadnice, vektory v prostoru a operace s nimi (Př-3, Pg-2) Vyjádření přímky v rovině, vzájemná poloha přímek v rovině (Hu-3, Př-3, Pg-3) Vyjádření přímky a roviny v prostoru, polohové a metrické úlohy v prostoru (Př-3, Pg-4) Kružnice, elipsa, hyperbola a parabola analytické vyjádření a vlastnosti (Hu-3, Př-3, Pg-3) Vzájemná poloha kuželosečky a přímky (Hu-3, Př-3, Pg-3) Spojitost funkce, limita funkce v bodě, limita funkce v nevlastním bodě, užití limity funkce (asymptoty, tečny) Derivace funkce, užití derivací při vyšetřování průběhu funkce, průběh funkce, užití diferenciálního počtu ŠVP (od , změny k , ) Stránka: 9

10 Integrální počet a jeho užití Pojem primitivní funkce, základní vzorce, integrační metody (metoda per partes, substituční metoda, rozklad na parciální zlomky) Určitý integrál, jeho výpočet, užití integrálního počtu (výpočet obsahu rovinného útvaru a objemu rotačních těles) * Matematický seminář Seminář z matematiky I (pro vyšší úroveň obtížnosti státní maturitní zkoušky) Seminář z matematiky II (pro zájemce o vyšší matematiku) Předmět: Deskriptivní geometrie I Předmět Deskriptivní geometrie je řazen jako jednoletý volitelný předmět ve třetím a čtvrtém ročníku ve třídách všech tří zaměření v rozsahu dvou hodin týdně. Výstupy ŠVP Učivo téma Konkretizace Průřezová témata, souvislosti, metody Kótované promítání Mongeova projekce Polohové úlohy Zobrazení bodu a přímky Rovina, hlavní a spádové přímky roviny Úlohy v obecné rovině Zobrazení bodu a přímky Rovina, hlavní a spádové přímky Otáčení roviny do průmětny Třetí průmětna Rovnoběžné roviny Průsečnice rovin Průnik přímky s rovinou Průsek trojúhelníků Kolmost přímek a rovin ŠVP (od , změny k , ) Stránka: 10

11 Metrické úlohy Tělesa Odchylka přímek Odchylka rovin Odchylka přímky a roviny Vzdálenost bodu od roviny Vzdálenost bodu od přímky Vzdálenost rovnoběžných rovin Hranoly Řez hranolu rovinou Jehlany Řez jehlanu rovinou Průsečík přímky s tělesem Předmět: Deskriptivní geometrie II Předmět Deskriptivní geometrie II je řazen jako jednoletý volitelný předmět ve čtvrtém ročníku ve třídách všech tří zaměření v rozsahu dvou hodin týdně. Je určen pouze pro žáky, kteří absolvovali volitelný předmět Deskriptivní geometrie I. Výstupy ŠVP Učivo téma Konkretizace Průřezová témata, souvislosti, metody Kuželosečky elipsa, hyperbola, parabola Rotační tělesa rotační válec, rotační kužel koule a kulová plocha Pravoúhlá axonometrie Ohniskové definice, vlastnosti Tečna ke kuželosečce Konstrukce ze zadaných prvků Zobrazení válce a kužele Tečná rovina válce a kužele Průsečík přímky s válcovou a kuželovou plochou Rovinné řezy válcové a kuželové plochy Plášť válce a kužele a jeho rozvinutí Tečná rovina a rovinný řez koule Průsečíky přímky s kulovou plochou Zadání axonometrický trojúhelník Základní úlohy a metrické vlastnosti ŠVP (od , změny k , ) Stránka: 11

12 Zobrazení těles a jejich řezů Předmět: Matematický seminář Předmět Matematický seminář je řazen jako jednoletý volitelný předmět ve čtvrtém ročníku ve třídách humanitního zaměření v rozsahu dvou hodin týdně. Výstupy Učivo téma Konkretizace Průřezová témata, souvislosti, metody Rovnice s parametrem Grafy funkcí s absolutními hodnotami Lineární a kvadratické rovnice s parametrem Grafy kvadratických, lineárních lomených, exponenciálních a logaritmických funkcí s absolutními hodnotami Exponenciální, logaritmické a goniometrické nerovnice Komplexní čísla Systematizace matematiky OPAKOVÁNÍ UČIVA ROČNÍKU Zavedení a základní vlastnosti komplexních čísel, operace s komplexními čísly, absolutní hodnota komplexního čísla Geometrické znázornění komplexních čísel, goniometrický tvar, Moivreova věta Řešení kvadratických rovnic s reálnými koeficienty v oboru komplexních čísel Definice, věty, důkazy Procvičování a prohlubování souvislostí Příprava k profilové maturitní zkoušce Předmět: Seminář z matematiky I (pro vyšší úroveň obtížnosti státní maturitní zkoušky) Vzhledem ke zrušení vyšší úrovně obtížnosti společné části státní maturitní zkoušky z matematiky se tento seminář od žákům nenabízí. ŠVP (od , změny k , ) Stránka: 12

13 Předmět Seminář z matematiky I je řazen jako jednoletý volitelný předmět ve čtvrtém ročníku ve třídách všech tří zaměření v rozsahu dvou hodin týdně. Výstupy Učivo téma Konkretizace Průřezová témata, souvislosti, metody Další rovnice a nerovnice Rovnice a nerovnice s parametrem Grafy funkcí s absolutními hodnotami Inverzní funkce Exponenciální, logaritmické a goniometrické nerovnice Limita posloupnosti a nekonečná geometrická řada Rovnice vyšších stupňů Nerovnice s neznámou pod odmocninou Binomické rovnice Kvadratické rovnice s komplexními koeficienty Lineární a kvadratické rovnice a nerovnice s parametrem Grafy exponenciálních a logaritmických funkcí s absolutními hodnotami Předpis inverzní funkce Testování státní maturity Předmět: Seminář z matematiky II (pro zájemce o vyšší matematiku) (od se užívá název Diferenciální a integrální počet) Předmět Seminář z matematiky II (od Diferenciální a integrální počet) je řazen jako jednoletý volitelný předmět ve čtvrtém ročníku (od ve třetím i čtvrtém ročníku) ve třídách přírodovědného a programátorského zaměření v rozsahu dvou hodin týdně. Výstupy Učivo téma Konkretizace Průřezová témata, souvislosti, metody DIFERENCIÁLNÍ A INTEGRÁLNÍ POČET Spojitost a limita funkce Spojitost funkce, limita funkce v bodě, limita funkce v nevlastním bodě, užití limity funkce (asymptoty, tečny) ŠVP (od , změny k , ) Stránka: 13

14 Derivace a jejich aplikace Integrální počet a jeho užití Derivace funkce, užití derivací při vyšetřování průběhu funkce, průběh funkce, užití diferenciálního počtu Pojem primitivní funkce, základní vzorce, integrační metody (metoda per partes, substituční metoda, rozklad na parciální zlomky) Určitý integrál, jeho výpočet, užití integrálního počtu (výpočet obsahu rovinného útvaru a objemu rotačních těles) Předmět: Finanční matematika a bankovnictví (nabízen od ) Předmět Finanční matematika a bankovnictví je řazen jako jednoletý volitelný předmět ve třetím a čtvrtém ročníku ve třídách všech tří zaměření v rozsahu dvou hodin týdně. Výstupy ŠVP Učivo téma Konkretizace Průřezová témata, souvislosti, metody Časová hodnota peněz Úročení a diskontování Spoření Umořování dluhu Dluhopisy a jejich ohodnocování Měření rizika investice Finanční trh, bankovní soustava Bankovní produkty Měnová politika, měnové kurzy Jednoduché, složené a smíšené úročení Krátkodobé, dlouhodobé a kombinované Úročení bankovních produktů, RPSN Člověk a svět práce: Finance, finanční gramotnost ŠVP (od , změny k , ) Stránka: 14

15 Předmět: Maturitní strategie pro matematiku (nabízen od ) Předmět Maturitní strategie pro matematiku je řazen jako jednoletý volitelný předmět ve čtvrtém ročníku ve třídách všech tří zaměření v rozsahu dvou hodin týdně. Výstupy ŠVP Učivo téma Konkretizace Průřezová témata, souvislosti, metody Číselné množiny Algebraické výrazy Rovnice Nerovnice Funkce Posloupnosti Kombinatorika, pravděpodobnost, statistika Planimetrie Stereometrie Analytická geometrie Příprava k řešení otevřených i uzavřených úloh, nácvik strategie při psaní testů Didaktické testy Předmět: Cvičení z matematiky (nabízen od ) Předmět Cvičení z matematiky je řazen jako jednoletý volitelný předmět ve čtvrtém ročníku ve třídách přírodovědného a programátorského zaměření v rozsahu dvou hodin týdně a je povinný pro žáky, kteří chtějí konat profilovou maturitní zkoušku z matematiky. Výstupy Učivo téma Konkretizace Průřezová témata, souvislosti, metody Další rovnice a nerovnice Rovnice a nerovnice s parametrem Rovnice vyšších stupňů Nerovnice s neznámou pod odmocninou Binomické rovnice Kvadratické rovnice s komplexními koeficienty Lineární a kvadratické rovnice a nerovnice s parametrem ŠVP (od , změny k , ) Stránka: 15

16 Grafy funkcí s absolutními hodnotami Inverzní funkce Grafy exponenciálních a logaritmických funkcí s absolutními hodnotami Předpis inverzní funkce Exponenciální, logaritmické a goniometrické nerovnice Limita posloupnosti a nekonečná geometrická řada OPAKOVÁNÍ UČIVA ROČNÍKU Procvičování a prohlubování souvislostí Příprava k profilové maturitní zkoušce ŠVP (od , změny k , ) Stránka: 16

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu matematika a ve volitelných předmětech Deskriptivní geometrie,

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Základní cvičení z matematiky,

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Deskriptivní geometrie

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: Studijní obor: Aplikovaná chemie Učební osnova předmětu Matematika Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika. 4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti

Více

MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011

MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 1. Výroková logika a teorie množin Výrok, pravdivostní hodnota výroku, negace výroku; složené výroky(konjunkce, disjunkce, implikace, ekvivalence);

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky 1. Lineární rovnice a nerovnice a) Rovnice a nerovnice s absolutní hodnotou absolutní hodnota reálného čísla definice, geometrický význam, srovnání řešení rovnic s abs. hodnotou

Více

Dodatek č. 3 ke školnímu vzdělávacímu programu. Technické lyceum. (platné znění k 1. 9. 2009)

Dodatek č. 3 ke školnímu vzdělávacímu programu. Technické lyceum. (platné znění k 1. 9. 2009) Střední průmyslová škola Jihlava tř. Legionářů 72/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Technické lyceum (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje

Více

3.4.1. Tabulace učebního plánu

3.4.1. Tabulace učebního plánu 3.4.1. Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět: MATEMATIKA Ročník: Kvinta, 1. ročník Tématická Číselné obory Druhy čísel (N, Z, Q, R, I) - prezentuje přehled číselných oborů Mocniny

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

Cvičení z matematiky - volitelný předmět

Cvičení z matematiky - volitelný předmět Vyučovací předmět : Období ročník : Učební texty : Cvičení z matematiky - volitelný předmět 3. období 9. ročník Sbírky úloh, Testy k přijímacím zkouškám, Testy Scio, Kalibro aj. Očekávané výstupy předmětu

Více

5.2 Vzdělávací oblast - Matematika a její aplikace 5.2.1 Matematika 5.2.2 Cvičení z matematiky

5.2 Vzdělávací oblast - Matematika a její aplikace 5.2.1 Matematika 5.2.2 Cvičení z matematiky 5.2 Vzdělávací oblast - Matematika a její aplikace 5.2.1 Matematika 5.2.2 Cvičení z matematiky Ročník 2. Hodinová dotace Matematika 3 3 3 2 Cvičení z matematiky 0 0 R (2) R (2) Vyučovací předmět Matematika

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009)

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009) Střední průmyslová škola Jihlava tř. Legionářů 1572/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Strojírenství (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

TÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA

TÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA Matematika ročník TÉMA G5 VÝSTUP 5.1 Teorie množin, provádí správně operace s množinami, výroková logika množiny vyžívá při řešení úloh; pracuje správně s výroky, užívá správně logické spojky a kvantifikátory;

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

PŘEDMĚT: MATEMATIKA Školní výstupy Učivo Průřezová témata Poznámky, přesahy

PŘEDMĚT: MATEMATIKA Školní výstupy Učivo Průřezová témata Poznámky, přesahy PŘEDMĚT: MATEMATIKA ROČNÍK: PRVNÍ/KVINTA Školní výstupy Učivo Průřezová témata Poznámky, přesahy Žák určuje číselný obor daného čísla (N, Z, Q, R) a rozlišuje základní vlastnosti číselných oborů pracuje

Více

Předmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace.

Předmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace. Matematika Charakteristika vyučovacího předmětu Předmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace. Výuka matematiky přispívá k pochopení kvantitativních a prostorových vztahů reálného

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM Vyučovací předmět : Období ročník : Učební texty : Matematika 3. období 9. ročník J.Coufalová : Matematika pro 9.ročník ZŠ (Fortuna) Očekávané výstupy předmětu Na konci 3. období základního vzdělávání

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

Pythagorova věta Pythagorova věta slovní úlohy

Pythagorova věta Pythagorova věta slovní úlohy Vyučovací předmět: Matematika Ročník: 8. Vzdělávací obsah Očekávané výstupy z RVP ZV Školní výstupy Učivo provádí početní operace v oboru celých a racionálních čísel, užívá ve výpočtech druhou mocninu

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Vyučovací předmět: CVIČENÍ Z MATEMATIKY. A. Charakteristika vyučovacího předmětu.

Vyučovací předmět: CVIČENÍ Z MATEMATIKY. A. Charakteristika vyučovacího předmětu. Vyučovací předmět: CVIČENÍ Z MATEMATIKY A. Charakteristika vyučovacího předmětu. a) Obsahové, časové a organizační vymezení předmětu Základem vzdělávacího obsahu předmětu Cvičení z matematiky je vzdělávací

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy

Více

Školní vzdělávací program

Školní vzdělávací program Školní vzdělávací program Obor: 7941K/81, Gymnázium všeobecné ( osmileté ) Obor: 7941/41, Gymnázium všeobecné ( čtyřleté ) Učební osnovy pro vyšší stupeň osmiletého gymnázia a čtyřleté gymnázium Vzdělávací

Více

Učební osnova předmětu matematika. Pojetí vyučovacího předmětu

Učební osnova předmětu matematika. Pojetí vyučovacího předmětu Učební osnova předmětu matematika Obor vzdělání: 23 41 M/01 Strojírenství, 2 41 M/01 Elektrotechnika Délka a forma studia: 4 roky denní studium Celkový počet týdenních hodin za studium: 12 Platnost: od

Více

Předpokládané znalosti žáka 1. stupeň:

Předpokládané znalosti žáka 1. stupeň: Předpokládané znalosti žáka 1. stupeň: ČÍSLO A POČETNÍ OPERACE používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje

Více

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr Matematika - 6. ročník Provádí početní operace v oboru desetinná čísla racionálních čísel - čtení a zápis v desítkové soustavě F užití desetinných čísel - čte a zapisuje desetinná čísla - zaokrouhlování

Více

Matematika prostřednictvím projektově orientovaného studia pro 1. ročník gymnázia

Matematika prostřednictvím projektově orientovaného studia pro 1. ročník gymnázia Plán volitelného předmětu Matematika prostřednictvím projektově orientovaného studia pro 1. ročník gymnázia 1. Charakteristika vyučovacího předmětu Volitelný předmět matematika, který je realizován prostřednictvím

Více

Volitelné předměty Matematika a její aplikace

Volitelné předměty Matematika a její aplikace Vzdělávací oblast : Vyučovací předmět: Volitelné předměty Matematika a její aplikace Cvičení z matematiky Charakteristika předmětu: Vzdělávací obsah: Základem vzdělávacího obsahu předmětu Cvičení z matematiky

Více

6.06. Matematika - MAT

6.06. Matematika - MAT 6.06. Matematika - MAT Obor: 36-47-M/01 Stavebnictví Forma vzdělávání: denní Počet hodin týdně za dobu vzdělávání: 12 Platnost učební osnovy: od 1.9.2008 1) Pojetí vyučovacího předmětu a) Cíle vyučovacího

Více

Vzdělávací předmět: Seminář z matematiky. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení předmětu 5.10.

Vzdělávací předmět: Seminář z matematiky. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení předmětu 5.10. 5.10. Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Matematika a její aplikace Matematika a její aplikace Seminář z matematiky Charakteristika vyučovacího předmětu Vyučovací předmět Seminář z

Více

2 MATEMATIKA A JEJÍ APLIKACE UČEBNÍ OSNOVY

2 MATEMATIKA A JEJÍ APLIKACE UČEBNÍ OSNOVY 2 MATEMATIKA A JEJÍ APLIKACE UČEBNÍ OSNOVY 2. 2 Cvičení z matematiky Časová dotace 7. ročník 1 hodina 8. ročník 1 hodina 9. ročník 1 hodina Charakteristika: Předmět cvičení z matematiky doplňuje vzdělávací

Více

Podmínky pro hodnocení žáka v předmětu matematika

Podmínky pro hodnocení žáka v předmětu matematika Podmínky pro hodnocení žáka v předmětu matematika Společné ustanovení pro všechny třídy čtyřletého studia a 5. až 8. ročníku osmiletého studia: Žákům bude vyučujícími umožněno doplnit chybějící klasifikaci

Více

Matematika-průřezová témata 6. ročník

Matematika-průřezová témata 6. ročník Matematika-průřezová témata 6. ročník OSV 1: OSV 2 žák umí správně zapsat desetinnou čárku, orientuje se na číselné ose celých čísel, dovede rozpoznat základní geometrické tvary a tělesa, žák správně používá

Více

Matematika prostřednictvím projektově orientovaného studia pro 3. ročník gymnázia

Matematika prostřednictvím projektově orientovaného studia pro 3. ročník gymnázia Plán volitelného předmětu Matematika prostřednictvím projektově orientovaného studia pro 3. ročník gymnázia 1. Charakteristika vyučovacího předmětu Volitelný předmět matematika, který je realizován prostřednictvím

Více

6.7 Matematika. 6.7.1 Charakteristika vyučovacího předmětu

6.7 Matematika. 6.7.1 Charakteristika vyučovacího předmětu 6.7 Matematika 6.7.1 Charakteristika vyučovacího předmětu Obsahové vymezení předmětu: Vyučovací předmět Matematika je zařazen jako povinný ve všech ročnících čtyřletého studia. Patří do vzdělávací oblasti

Více

Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 příspěvková organizace sídlo: 612 00 Brno, Křižíkova 11

Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 příspěvková organizace sídlo: 612 00 Brno, Křižíkova 11 Témata k ústní maturitní zkoušce z předmětu Účetnictví profilové části maturitní zkoušky Školní rok 2012/2013 třída: 4.T 1. Legislativní úprava účetnictví 2. Účetní dokumentace 3. Manažerské účetnictví

Více

EKOLOGIE A ŽIVOTNÍ PROSTŘEDÍ

EKOLOGIE A ŽIVOTNÍ PROSTŘEDÍ Přílohy školního vzdělávacího programu EKOLOGIE A ŽIVOTNÍ PROSTŘEDÍ - inovace platné od 1.9.2011 Střední průmyslová škola keramická a sklářská Karlovy Vary adresa: nám. 17.listopadu 12, 360 05 Karlovy

Více

Reálné gymnázium a základní škola města Prostějova 5.5 Učební osnovy: Matematika

Reálné gymnázium a základní škola města Prostějova 5.5 Učební osnovy: Matematika Podle těchto učebních osnov se vyučuje ve třídách 1.N a 2.N šestiletého gymnázia od školního roku 2013/2014. Zpracování osnov předmětu Matematika koordinoval Mgr. Petr Spisar Časová dotace : Nižší gymnázium:

Více

5. 6 Matematika. Charakteristika vyučovacího předmětu

5. 6 Matematika. Charakteristika vyučovacího předmětu Charakteristika vyučovacího předmětu 5. 6 Matematika Výuka matematiky na gymnáziu rozvíjí a prohlubuje pochopení kvantitativních a prostorových vztahů reálného světa, utváří kvantitativní gramotnost žáků

Více

Matematika. Celkový počet vyučovacích hodin za studium: 396(12) od 1.9.2009 počínaje 1.ročníkem

Matematika. Celkový počet vyučovacích hodin za studium: 396(12) od 1.9.2009 počínaje 1.ročníkem 6.15 Pojetí vyučovacího předmětu matematika Název vyučovacího předmětu: Matematika Obor vzdělání Gymnázium Forma vzdělání: denní Celkový počet vyučovacích hodin za studium: 396(12) Platnost: od 1.9.2009

Více

Vzdělávací obor matematika

Vzdělávací obor matematika "Cesta k osobnosti" 6.ročník Hlavní okruhy Očekávané výstupy dle RVP ZV Metody práce (praktická cvičení) obor navázání na již zvládnuté ročník 1. ČÍSLO A Žák používá početní operace v oboru de- Dělitelnost

Více

Matematika - 6. ročník

Matematika - 6. ročník Matematika - 6. ročník Učivo Výstupy Kompetence Průřezová témata Metody a formy Přirozená čísla - zápis čísla v desítkové soustavě - zaokrouhlování - zobrazení na číselné ose - početní operace v oboru

Více

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika, II. stupeň

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika, II. stupeň Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika, II. stupeň 1/Charakteristika vyučovacího předmětu a) obsahové vymezení Předmět je rozdělen na základě OVO v RVP ZV na čtyři

Více

Obor vzdělání: 23 45 L/01 Platnost: 1.9.2010 Název ŠVP: Mechanik seřizovač Forma vzdělání: denní MATEMATIKA

Obor vzdělání: 23 45 L/01 Platnost: 1.9.2010 Název ŠVP: Mechanik seřizovač Forma vzdělání: denní MATEMATIKA Obor vzdělání: 23 45 L/01 Platnost: 1.9.2010 Název ŠVP: Mechanik seřizovač Forma vzdělání: denní MATEMATIKA Ročník: 1 Počet hodin celkem: 3 hod/týden = 99 Rozpis výsledků vzdělávání a učiva Výsledky vzdělávání

Více

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Vyučovací předmět:matematika

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Vyučovací předmět:matematika 7. Matematika 313 Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Vyučovací předmět:matematika 1. Charakteristika vyučovacího předmětu a) Obsahové, časové a organizační

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (13 15 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (13 15 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (13 15 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14.června

Více

MOCNINY A ODMOCNINY. Standardy: M-9-1-01 M-9-1-02 PYTHAGOROVA VĚTA. Standardy: M-9-3-04 M-9-3-01

MOCNINY A ODMOCNINY. Standardy: M-9-1-01 M-9-1-02 PYTHAGOROVA VĚTA. Standardy: M-9-3-04 M-9-3-01 matematických pojmů a vztahů, k poznávání základě těchto vlastností k určování a zařazování pojmů matematického aparátu Zapisuje a počítá mocniny a odmocniny racionálních čísel Používá pro počítání s mocninami

Více

Školní výstupy Učivo Průřezová témata, přesahy, poznámky. Školní výstupy Učivo Průřezová témata, přesahy, poznámky

Školní výstupy Učivo Průřezová témata, přesahy, poznámky. Školní výstupy Učivo Průřezová témata, přesahy, poznámky Gymnázium Rumburk (vyšší stupeň osmiletého gymnázia a čtyřleté gymnázium v Rumburku) Předmět:Matematika Charakteristika vyučovacího předmětu 1. Obsahové, časové a organizační vymezení Předmět vzniká Matematika

Více

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0. Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,

Více

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Školní rok 2013/2014 Mgr. Lenka Mateová Kapitola Téma (Učivo) Znalosti a dovednosti (výstup)

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 7. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace provádí početní operace v oboru celých a racionálních čísel zaokrouhluje, provádí odhady

Více

Vzdělávací oblast: MATEMATIKA A JEJÍ APLIKACE Vyučovací předmět: MATEMATIKA Ročník: 7.

Vzdělávací oblast: MATEMATIKA A JEJÍ APLIKACE Vyučovací předmět: MATEMATIKA Ročník: 7. Vzdělávací oblast: MATEMATIKA A JEJÍ APLIKACE Vyučovací předmět: MATEMATIKA Ročník: 7. Výstupy dle RVP Školní výstupy Učivo žák: v oboru celých a racionálních čísel; využívá ve výpočtech druhou mocninu

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

5.2.2 Matematika - 2. stupeň

5.2.2 Matematika - 2. stupeň 5.2.2 Matematika - 2. stupeň Charakteristika předmětu Obsahové, časové a organizační vymezení předmětu: Vyučovací předmět Matematika na 2. stupni školy navazuje svým vzdělávacím obsahem na předmět Matematika

Více

Gymnázium Jiřího Ortena, Kutná Hora. volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie, Komplexní čísla Třída: 3. ročník Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor Volné rovnoběžné promítání Zobrazí ve volném rovnoběžném

Více

Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Kapitola Téma (Učivo) Znalosti a dovednosti (výstup) Průřezová témata, projekty

Více

MATEMATICKÝ SEMINÁŘ (volitelný a nepovinný předmět)

MATEMATICKÝ SEMINÁŘ (volitelný a nepovinný předmět) MATEMATICKÝ SEMINÁŘ (volitelný a nepovinný předmět) Charakteristika vyučovacího předmětu Obsahové vymezení Vzdělání v matematickém semináři je zaměřeno na: užití matematiky v reálných situacích osvojení

Více

II. Nástroje a metody, kterými ověřujeme plnění cílů

II. Nástroje a metody, kterými ověřujeme plnění cílů MATEMATIKA Gymnázium PORG Libeň PORG Libeň je reálné gymnázium se všeobecným zaměřením, matematika je tedy na PORGu pilotním předmětem vyučovaným celých osm let. I. Cíle výuky Naši studenti jsou připravováni

Více

Číslo hodiny. Označení materiálu. 1. Mnohočleny. 25. Zlomky. 26. Opakování učiva 7. ročníku. 27. Druhá mocnina, odmocnina, Pythagorova věta

Číslo hodiny. Označení materiálu. 1. Mnohočleny. 25. Zlomky. 26. Opakování učiva 7. ročníku. 27. Druhá mocnina, odmocnina, Pythagorova věta 1. Mnohočleny 2. Rovnice rovné nule 3. Nerovnice různé od nuly 4. Lomený výraz 5. Krácení lomených výrazů 6. Rozšiřování lomených výrazů 7. Sčítání lomených výrazů 8. Odčítání lomených výrazů 9. Násobení

Více

vzdělávací oblast vyučovací předmět ročník zodpovídá MATEMATIKA A JEJÍ APLIKACE MATEMATIKA 8. MARKUP Druhá mocnina a odmocnina FY Tabulky, kalkulátor

vzdělávací oblast vyučovací předmět ročník zodpovídá MATEMATIKA A JEJÍ APLIKACE MATEMATIKA 8. MARKUP Druhá mocnina a odmocnina FY Tabulky, kalkulátor Výstupy žáka ZŠ Chrudim, U Stadionu Učivo obsah Mezipředmětové vztahy Metody + formy práce, projekty, pomůcky a učební materiály ad. Učební materiály (využívány průběžně): Poznámky Umí provádět operace

Více

11.1.1 Přehled středoškolské matematiky

11.1.1 Přehled středoškolské matematiky .. Přehled středoškolské matematiky Předpoklady: Pedagogická poznámka: Opakovací díl učebnice je zamýšlen jako shrnutí středoškolské matematiky a tedy buď příprava na státní maturitu vyšší úrovně, nebo

Více

Informace k jednotlivým zkouškám na jednotlivých oborech:

Informace k jednotlivým zkouškám na jednotlivých oborech: Informace k jednotlivým zkouškám na jednotlivých oborech: Obor Obchodní akademie 63-41-M/004 1. Praktická maturitní zkouška Praktická maturitní zkouška z odborných předmětů ekonomických se skládá z obsahu

Více

Obchodní akademie, Náchod, Denisovo nábřeží 673

Obchodní akademie, Náchod, Denisovo nábřeží 673 Název vyučovacího předmětu: MATEMATIKA (MAT) Obor vzdělání: 63-41-M/02 Obchodní akademie Forma vzdělání: denní Celkový počet vyučovacích hodin za studium: 328 (10 hodin týdně) Platnost: od 1.9.2009 počínaje

Více

5.2.1. Matematika pro 2. stupeň

5.2.1. Matematika pro 2. stupeň 5.2.1. Matematika pro 2. stupeň Charakteristika vyučovacího předmětu 2. stupeň Obsahové, časové a organizační vymezení Předmět matematika se vyučuje jako samostatný předmět v 6., 8. a 9. ročníku 4 hodiny

Více

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy

Více

-Zobrazí čísla a nulu na číselné ose

-Zobrazí čísla a nulu na číselné ose Dodatek k ŠVP č. 38 Výstupy matematika 6. ročník doplnění standardů RVP 6. ročník ŠVP 6.ročník Učivo Matematika Doplnění podle standardů Žák provádí početní operace v oboru celých a racionálních čísel

Více

Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ.04.1.03/3.2.15.2/0292

Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ.04.1.03/3.2.15.2/0292 Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ.04.1.03/3.2.15.2/0292 Název předmětu: Vyrovnávací kurz z matematiky Zabezpečující ústav: Ústav

Více

UČEBNÍ OSNOVA PŘEDMĚTU

UČEBNÍ OSNOVA PŘEDMĚTU UČEBNÍ OSNOVA PŘEDMĚTU MATEMATIKA Název školního vzdělávacího programu: Název a kód oboru vzdělání: Celkový počet hodin za studium (rozpis učiva): Management ve stavebnictví 63-41-M/001 Ekonomika a podnikání

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

POŽADAVKY pro přijímací zkoušky z MATEMATIKY

POŽADAVKY pro přijímací zkoušky z MATEMATIKY TU v LIBERCI FAKULTA MECHATRONIKY POŽADAVKY pro přijímací zkoušky z MATEMATIKY Tematické okruhy středoškolské látky: Číselné množiny N, Z, Q, R, C Body a intervaly na číselné ose Absolutní hodnota Úpravy

Více

7.14 Pojetí vyučovacího předmětu matematika. Název vyučovacího Matematika

7.14 Pojetí vyučovacího předmětu matematika. Název vyučovacího Matematika 7.14 Pojetí vyučovacího předmětu matematika Název vyučovacího předmětu: Matematika Obor vzdělání: Cestovní ruch Forma vzdělání: denní Celkový počet vyučovacích hodin za studium: 396(12) Platnost: od 1.9.2009

Více

MATEMATIKA. 6. 9. ročník Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení

MATEMATIKA. 6. 9. ročník Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení MATEMATIKA 6. 9. ročník Charakteristika vyučovacího předmětu Obsahové, časové a organizační vymezení Obsah vyučovacího předmětu Matematika je totožný s obsahem vyučovacího oboru Matematika a její aplikace.

Více

Učitelství 1. stupně ZŠ tématické plány předmětů matematika

Učitelství 1. stupně ZŠ tématické plány předmětů matematika Učitelství 1. stupně ZŠ tématické plány předmětů matematika Povinné předměty: Matematika I aritmetika (KMD/MATE1) 2 Matematika 3 aritmetika s didaktikou (KMD/MATE3) 3 Matematika 5 geometrie (KMD/MATE5)

Více

Matematika a její aplikace Cvičení z matematiky

Matematika a její aplikace Cvičení z matematiky Vzdělávací oblast : Vyučovací předmět : Matematika a její aplikace Cvičení z matematiky Charakteristika vyučovacího Cílové zaměření vzdělávací oblasti Vzdělávání v dané vzdělávací oblasti směřuje k utváření

Více

Standardy ČJ - 2.stupeň - přehled

Standardy ČJ - 2.stupeň - přehled Standardy ČJ - 2.stupeň - přehled ČJL-9-1-01 Žák odlišuje ve čteném nebo slyšeném textu fakta od názorů a hodnocení, ověřuje fakta pomocí otázek nebo porovnáváním s dostupnými informačními zdroji - 9.r.

Více

Matematika Ekonomické lyceum. Celkový počet vyučovacích hodin za studium: 396(12) od 1.9.2009 počínaje 1.ročníkem

Matematika Ekonomické lyceum. Celkový počet vyučovacích hodin za studium: 396(12) od 1.9.2009 počínaje 1.ročníkem 7.15 Pojetí vyučovacího předmětu matematika Název vyučovacího předmětu: Matematika Obor vzdělání: Ekonomické lyceum Forma vzdělání: denní Celkový počet vyučovacích hodin za studium: 396(12) Platnost: od

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 6. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace zaokrouhluje, provádí odhady s danou přesností, účelně využívá kalkulátor porovnává

Více

MATEMATIKA Charakteristika vyučovacího předmětu

MATEMATIKA Charakteristika vyučovacího předmětu MATEMATIKA Charakteristika vyučovacího předmětu Matematika se vyučuje ve všech ročnících. V primě a sekundě je vyučováno 5 hodin týdně, v tercii a kvartě 4 hodiny týdně. Předmět je tedy posílen o 2 hodiny

Více