MIKROSKOP. Historie Jeden z prvních jednoduchých mikroskopů sestavil v roce 1676 holandský obchodník a vědec Anton van Leeuwenhoek.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "MIKROSKOP. Historie Jeden z prvních jednoduchých mikroskopů sestavil v roce 1676 holandský obchodník a vědec Anton van Leeuwenhoek."

Transkript

1 MIKROSKOPIE E- mailový zpravodaj MIKROSKOP firmy Olympus Journal of Scanning Probe Microscopy (http://www.aspbs.com/jspm.html) Materials Today, 2008, New Microscopy Special Issue

2 MIKROSKOP Historie Jeden z prvních jednoduchých mikroskopů sestavil v roce 1676 holandský obchodník a vědec Anton van Leeuwenhoek. Popis mikroskopu Základem mikroskopu jsou čočky, které tvoří objektiv a okulár. Okuláry a objektivy jsou často výměnné. Zvětšení: asi 50 až Maximální teoretické zvětšení je asi 2000 a to již naráží na fyzikální bariéry kvůli omezení délky světelných vln.

3 MIKROSKOP Obyčejný optický mikroskop se skládá z objektivu, který vytváří převrácený obraz objektu a okuláru, kterým tento obraz pozorujeme jako lupou. Součástí mikroskopu je i zdroj světla s kondenzorem, který zabezpečující optimální osvětlení objektu. Kvalita zobrazení buněk závisí na třech hlavních faktorech: na dostatečném zvětšení obrazu, rozlišovací schopnost mikroskopu a na kontrastu obrazu. Rozlišovací schopnost mikroskopu závisí na numerické apertuře objektivu a kondenzoru a na kvalitě osvětlení preparátu t.j. na optimálním nastavení Koehlerova osvětlení.

4 MIKROSKOP Zvětšení mikroskopu Zvětšení obrazu mikroskopem je dáno zvětšením okulárů a zvětšením objektivu. Okuláry mikroskopu během pokusu neobměňujeme, nejčastěji používáme okuláry zvětšující 20x - 25x. Maximální užitečné zvětšení mikroskopu je však určeno i rozlišovací schopností objektivu. Za podmínek, kdy je minimální vzdálenost dvou rozlišitelných bodů srovnatelná s rozlišovací schopností lidského oka, obraz se nezlepší ani při použití silně zvětšujících okulárů, kdy dostaneme jen rozměrnější obraz bez nových detailů.

5 MIKROSKOP Numerická apertura objektivu Odhad minimální vzdáleností dvou rozlišitelných bodů (Ymin) je dán vztahem: Ymin = konst. ( l /n. sin n) kde l je vlnová délka světla ve vakuu, n je index lomu prostředí před objektivem, a n je polovina vrcholového úhlu kužele paprsků, které mohou vstoupit do objektivu. Veličina (n. sin n ) je tzv. numerická apertura objektivu, NA. U nejkvalitnějších imerzních objektivů bývá NA ~ 1.3 až 1.4. Pro nejkratší vlnové délky viditelného záření ( ~ 400 nm) se pak rozlišovací schopnost těchto objektivů blíží hodnotě 0,17 µm.

6 KONFOKÁLNÍ MIKROSKOP Konfokální mikroskop je druhem optického mikroskopu, jehož výhodou je vyšší rozlišovací schopnost daná detekcí světla pouze z ohniskové roviny mikroskopu. V obecné vědecké mluvě se též mluví o konfokálu. Zásadní rozvoj konec sedmdesátých let Confocal = mající společné ohnisko Známy jsou tyto typy mikroskopu: - rastrující konfokální mikroskop - skenující zařízení zařizuje posun ohniska excitujícího laserového paprsku - konfokální mikroskop s rotujícím diskem - místo skenujícího zařízení obsahuje rotující Nipkowovův kotouč, na kterém je mnoho navzájem oddělených clonek

7 KONFOKÁLNÍ MIKROSKOP (http://www.uib.no/med/avd/iac/staff/olav.bjorkelund/confocal/) Základním prvkem konfokálního skanovacího laserového mikroskopu je skanovací mechanismus který skanuje laserové záření po vzorku (skrz osvětlovací clonku). Fotodetektor detekuje buď odražené, nebo fluorescenční světlo. Malá apertura před detektorem separuje nefokuzované světlo od světla fokuzovaného. Tato apertura umožňuje rovněž separování jednotlivých vrstev snímaného vzorku a tím umožňuje objemovou analýzu.

8 Laserová rastrovací konfokální mikroskopie

9 Laserová rastrovací konfokální mikroskopie

10 Laserová rastrovací konfokální mikroskopie

11 KONFOKÁLNÍ MIKROSKOP Princip rastrovacího konfokálního mikroskopu: Laserový paprsek (intenzivní bodový zdroj světla) je fokusován na clonku, dále prochází objektivem až na vzorek, kde je obraz clonky fokusován do bodu, jehož průměr odpovídá difrakční mezi (rozlišovací mez). Přes stejný objektiv jde zpětně i světlo na vzorku odražené či rozptýlené, případně fluorescence. Sekundární světlo putující zpět prochází opět clonkou, jejiž bodový obraz je s pomocí děliče paprsků lokalizován před fotonásobič, kde.je umístěna druhá konfokální bodová clonka, která filtruje světlo pocházející z oblasti mimo ohniskovou rovinu mikroskopu. Obraz celé zaostřené roviny lze pak získat rastrováním bod po bodu některým z těchto postupů: - rozmítáním laserového paprsku - příčným posuvem vzorku před objektivem - posuvem objektivu nad vzorkem.

12 KONFOKÁLNÍ MIKROSKOP Světelným zdrojem je laserové záření. Konfokální mikroskop poskytuje mimořádně ostrý, kontrastní, vysoce informativní obraz s vysokým rozlišením. Struktury nacházející se nad a pod rovinou fokusace nemají téměř žádný vliv na kvalitu obrazu. Hloubka ostrosti je vždy minimální. Postup měření : buněčné struktury, které chceme pozorovat, obarvíme fluorochromem. Laserový paprsek je zaostřen do zvolené roviny, která buňkou prochází jako imaginární řez.v této zvolené rovině dojde k osvícení preparátu laserovým paprskem a fluorochrom emituje viditelné záření. Získaný obraz je zaznamenán počítačem. Postupnou změnou zaostření je možné získat obraz z více rovin (imaginárních řezů) od vršku až ke spodu buňky. Zde je nejlépe patrný rozdíl proti klasické fluorescenční mikroskopii, kde září fluorochrom ve všech optických rovinách najednou (nelze tedy určit, co je nahoře a co je dole, uprostřed, atd.).

13 KONFOKÁLNÍ MIKROSKOP Pokud následně chceme provést 3D rekonstrukci obrazu, vzdálenosti mezi jednotlivými rovinami snímání by měly být vždy menší než hloubka ostrosti jednotlivých snímků. Po pořízení snímků z více rovin (běžně cca 30-60) se jednotlivé snímky poskládají podle osy z (seřadí nad sebe podle pořadí snímání). Takto získáme pro každý bod pozorovaného objektu konkrétní hodnotu jasu (pro daný fluorochrom). Poté lze měnit libovolně směr/úhel pohledu a tím pádem je možné objekt zobrazit z libovolné strany (zorného úhlu) - dokonce lze objekt zobrazit i z boku nebo zespodu (všechna obrazová data ze všech virtuálních řezů jsou totiž uložena v PC). Vše je znovu vypočítáno pro nově zvolený směr/úhel pohledu (podle obrazových dat ze všech zobrazených vrstev) a následně je vygenerován pohled na objekt z námi zvoleného směru/úhlu. V současné době software již umožňuje také zobrazení 3D perspektivní - tj. takové, kdy bližší části objektu (buňky) se jeví jako větší než části vzdálenější.

14 KONFOKÁLNÍ MIKROSKOP První laserový konfokální rastrovací mikroskop byl vyroben r Pomocí konfokálního mikroskopu se lze zbavit neostrostí v důsledku překrývání se zaostřeného obrazu s rozmazanými obrazy struktur, které se nacházejí mimo zaostřenou rovinu, což je obzvlášť rušivý jev při fluorescenční mikroskopii. Při konfokální mikroskopii je pozorovaný objekt osvětlen bodovým zdrojem, nejčastěji k tomu slouží laserový paprsek fokusovaný na clonku, která je pak objektivem mikroskopu zobrazena na vzorek do bodu o průměru rovnajícím se minimální vzdáleností dvou rozlišitelných bodů. Stejný objektiv pak sbírá světlo vzorkem odražené a rozptýlené, případně fluorescenci.

15 KONFOKÁLNÍ MIKROSKOP Při zpětném průchodu tohoto záření objektivem vznikne další obraz bodové clonky, který je pomocí děliče paprsků lokalizován před fotonásobič. V místě tohoto obrazu se nachází druhá konfokální bodová clonka, která blokuje detekci záření pocházejícího z míst vzorku mimo rovinu právě zaostřenou. Obraz celé této roviny získáme rastrováním bod po bodu. Existují tři různé způsoby rastrování, t.j. cestou rozmítání laserového paprsku nebo příčným posouváním vzorku před objektivem, případně posouváním objektivu před vzorkem. Při rastrování je signál z fotonásobiče registrován počítačem spolu s informací o souřadnicích analyzovaných bodů. Celý soubor těchto dat je pak převeden na obraz pozorovaného vzorku. Tento obraz již díky prostorové filtraci záření dopadajícího na detektor neobsahuje neostré pozadí mimofokálních oblastí vzorky. Konfokální obrazy jsou proto vždy zaostřené a představují optické řezy vzorkem.

16 KONFOKÁLNÍ MIKROSKOP Základním prvkem konfokálního skanovacího laserového mikroskopu je skanovací mechanismus který skanuje laserové záření po vzorku (skrz osvětlovací clonku). Fotodetektor detekuje buď odražené, nebo fluorescenční světlo. Malá apertura před detektorem separuje nefokuzované světlo od světla fokuzovaného. Tato apertura umožňuje rovněž separování jednotlivých vrstev snímaného vzorku a tím umožňuje objemovou analýzu.

17 KONFOKÁLNÍ MIKROSKOP

18 KONFOKÁLNÍ MIKROSKOP Leica TCS SPE - spektrální konfokální mikroskop s velkým rozlišením

19 KONFOKÁLNÍ MIKROSKOP

20 Přednosti konfokální mikroskopie Vysoké axiální rozlišení při vysoké ostrosti obrazu Možnost optických řezů a pozorování průhledných vzorků i pod povrchem Konstrukce trojrozměrných obrazců Bezkontaktní povrchová profilometrie (i málo odrazivých materiálů) Možnost snímání barevného obrazu ve skutečných barvách Možnost pozorování nevodivých materiálů Možnost pozorování porézních materiálů není potřeba vytvoření vakua Možnost použití obrazové analýzy Možnost využití klasických metod světelné mikroskopie (světlé a tmavé pole, nomarského diferenciální kontrast, fázový kontrast, polarizační a fluorescenčnímikroskopie atd.) Možnost pozorování živých exemplářů bez nutnosti jejich usmrcení. Nedochází k degradaci vzorku Jednoduchá výměna vzorků Jednoduchá obsluha Konfokální mikroskopie tvoří článek mezi optickou světelnou mikroskopií a elektronovou řádkovací mikroskopií

21 KONFOKÁLNÍ MIKROSKOP Konfokální obrazy optických řezů vznikají v číselné (digitální) formě a lze je proto dále upravovat všemi běžnými způsoby počítačového zpracování obrazů. Specialitou konfokální mikroskopie je možnost prostorové rekonstrukce mikroskopických objektů, opírající se o několik desítek až stovek optických řezů jedním objektem, postupně snímaných při plynule se měnící hloubce zaostření. Ze souboru optických řezů lze mimo jiné generovat stereoskopické páry zvětšené obrazy celého trojrozměrného objektu viděné pravým a levým okem. Stereoskopické páry skýtají velmi působivé plastické obrazy preparátů. Ze souboru horizontálních řezů lze také rekonstruovat vertikální optické řezy vzorkem. Vertikální řezy se ovšem dají získat i přímým způsobem, vhodnou volbou rastrovacího algoritmu mikroskopu. Další, poměrně nová metoda konfokální mikroskopie spočívá v současném snímání fluorescenčních obrazů pomocí tří fotonásobičů se spektrálními filtry pro modrou, zelenou a červenou barvu. Rekombinací dílčích obrazů v základních barvách získáme optický řez v reálných barvách emitované fluorescence.

22 Konfokální optická mikroskopie (Confocal Optical Microscopy) Materials Characterization, R.W. Cahn Frs, Elsevier, 2005 Optická metoda pro zaznamenávání 3D obrázků s rozlišením rovným nebo větším než mají konvenční optické mikroskopy. Obrázky s vysokým kontrastem jsou vytvářeny z celkového objemu zkoumaného vzorku mnohonásobně tlustšího než je hloubka ohniska čočky mikroskopu. Jsou zaznamenávány 2D obrázky při stejně vzdálených intervalech podél optické osy mikroskopu. Obraz 3 D je rekonstruován digitálně při použití série 2D obrázků. Dojde ke zlepšení kontrastu ve směru z (podél optické osy), ale změna je minimální ve směru x a y. Konfokální mikroskop je skenující zobrazovací systém. Ve většině případů je dopadající světlo fokusováno do bodu a je skenováno v rovině x-y. Vzorek je mechanicky skenován v 2D. Hlavní důvod pro použití konfokálního mikroskopu je v optickém z- segmentování a vytváření 3D.

23 Konfokální optická mikroskopie (Confocal OpticalMicroscopy) Materials Characterization, R.W. Cahn Frs, Elsevieer, 2005 Jsou tři principy skenování : - je použit laser a objekt je osvětlen a obrazy zaznamenány jako bod v čase. 2D skenování je docíleno buď pomocí galvanických zrcátek nebo kombinací akustooptického modulátoru pro rychlé skenování a - používá se rychle rotující disk s velkým počtem děr (konfokální apertury) - Nipkow geometrie. Je osvětlen velký počet bodů vzorku a stejně je detekován velký počet obrazových bodů. Obraz je zaznamenáván většinou CCD kamerou. - skenování podél optické osy (z) změnou pozice objektivu nebo vzorku pomocí krokového motorku

24 Konfokální optická mikroskopie (Confocal OpticalMicroscopy) Materials Characterization, R.W. Cahn Frs, Elsevieer, 2005 Zobrazování Existují dva nejpoužívanější zobrazovací módy : - Epi-iluminační reflexe - Fluorescence Oba módy jsou si podobné až na existenci vlnově selektivních filtrů v osvětlovací a zobrazovací části fluorescenčního módu.

25 Konfokální optická mikroskopie (Confocal OpticalMicroscopy) Materials Characterization, R.W. Cahn Frs, Elsevieer, 2005 Obr 1a. Osvětlující paprsek expanduje z otvoru a část světla je odkloněna na čočku objektivu buď děličem svazku (reflekční mód) nebo dichroickým zrcadlem (fluorescenční mód). Je důležité aby celá apertura objektivu byla světlem pokryta a je pak fokusována na vzorek do difrakčně limitované stopy.

26 Konfokální optická mikroskopie (Confocal OpticalMicroscopy) Materials Characterization, R.W. Cahn Frs, Elsevieer, 2005 Zobrazovací systém - obr. 1b. Světlo se buď odráží od struktury vzorku nebo excituje molekuly barviva dochází k fluorescenční emisi. Odražené nebo emitované světlo je kolektováno čočkou objektivu a je fokusováno v rovině konfokální zobrazovací apertury. Světlo v ohnisku prochází aperturou a je detekováno fotonásobičem. U fluorescenčního módu je za dichroickým zrcadlem umístěn bariérový filtr, který odráží iluminační světlo rozptýlené na zobrazovací dráze nebo světlo přenesené dichroicky (dvoubarevně). Světlo bude vždy generováno v oblasti vzorku mimo hloubku ohniska čočky objektivu. Obraz ohniskového bodu světla generovaného objemem vzorku blíž k objektivové čočce než je fokuzační oblast, tak toto světlo je zobrazeno za rovinou konfokální apertury. Umístěním apertury toto světlo eliminujeme. Na druhé straně, světlo ze vzorku za fokuzační oblastí je fokusováno před aperturou. Většina světla je tudíž eliminována a nedopadne na fotonásobič.

27 FLUOROSCENČNÍ MIKROSKOP V r pozoroval Kohler při mikroskopování s ultrafialovým světlem fluorescenci mnoha preparátů. Fluorescenční mikroskop je mikroskop v němž světlo vycházející z preparátu vzniká fluorescencí buď in situ přítomných přírodních látek (fluorescence primámí), nebo látek na preparát aplikovaných, často fluorochromů (fluorescence sekundární). Fluorescenční mikroskop se používá například ke studiu lokalizace přírodních látek v buňkách, k vitálnímu barvení a v imunocytochemii. První fluorescenční mikroskop s UV excitací vznikl r.1913.

28 FLUOROSCENČNÍ MIKROSKOP Jako zdrojů světla se používá převážně vysokotlakých výbojek plněných rtutí nebo xenonem. Tyto výbojky vydávají velké množství energie svého záření v ultrafialové oblasti. Jejich světlo je poměrně stabilní, výbojky vydrží zářit asi 500 pracovních hodin. Zažehávají se však vysokonapěťovými pulsy, je proto potřeba zapínat je dříve než ostatní elektronické přístroje v aparatuře. Fluorescenční mikroskop je používán k vizualizaci označených buněk, buněčných struktur či molekul a k měření koncentrací iontů uvnitř buněk. Typicky se měří změny koncentrace vápníku v cytoplazmě, které jsou v klidovém stavu udržovány v rozmezí 50 až 200 nm a po stimulaci vstupu vápníku do buňky nebo po jeho uvolnění z intracelulárních zásob stoupají až desetinásobně. Změny ve fluorescenčních vlastnostech sond po navázání iontu jsou registrovány a po porovnání s kalibrační křivkou přepočteny na koncentraci.

29 FLUOROSCENČNÍ MIKROSKOP Intermediární filamenta keratinového typu v buňkách linie BT 20 (karcinom prsu) kultivované in vitro. Nepřímá fluorescence (FITC), jádra (žlutě) dobarvena ethidium bromidem. Mikroskop ICM 405 C, ZEISS, NSR. Zvětšení 1540x. (J. Bártek)

Fluorescenční mikroskopie

Fluorescenční mikroskopie Fluorescenční mikroskopie Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr 1 VYUŽITÍ FLUORESCENCE, PŘÍMÁ FLUORESCENCE, PŘÍMÁ A NEPŘÍMA IMUNOFLUORESCENCE, BIOTIN-AVIDINOVÁ METODA IMUNOFLUORESCENCE

Více

M I K R O S K O P I E

M I K R O S K O P I E Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066

Více

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného

Více

Lupa a mikroskop příručka pro učitele

Lupa a mikroskop příručka pro učitele Obecné informace Lupa a mikroskop příručka pro učitele Pro vysvětlení chodu světelných paprsků lupou a mikroskopem je nutno navázat na znalosti o zrcadlech a čočkách. Hodinová dotace: 1 vyučovací hodina

Více

Elektronová mikroskopie SEM, TEM, AFM

Elektronová mikroskopie SEM, TEM, AFM Elektronová mikroskopie SEM, TEM, AFM Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první

Více

Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát

Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát Michal Veselý, 00 Základní části fotografického aparátu tedy jsou: tělo přístroje objektiv Pochopení funkce běžných objektivů usnadní zjednodušená představa, že objektiv jako celek se chová stejně jako

Více

Metoda Live/Dead aneb využití fluorescenční mikroskopie v bioaugmentační praxi. Juraj Grígel Inovativní sanační technologie ve výzkumu a praxi

Metoda Live/Dead aneb využití fluorescenční mikroskopie v bioaugmentační praxi. Juraj Grígel Inovativní sanační technologie ve výzkumu a praxi Metoda Live/Dead aneb využití fluorescenční mikroskopie v bioaugmentační praxi Juraj Grígel Inovativní sanační technologie ve výzkumu a praxi Co je to vlastně ta fluorescence? Některé látky (fluorofory)

Více

Video mikroskopická jednotka VMU

Video mikroskopická jednotka VMU Video mikroskopická jednotka VMU Série 378 VMU je kompaktní, lehká a snadno instalovatelná mikroskopická jednotka pro monitorování CCD kamerou v polovodičových zařízení. Mezi základní rysy optického systému

Více

Laboratorní úloha č. 6 - Mikroskopie

Laboratorní úloha č. 6 - Mikroskopie Laboratorní úloha č. 6 - Mikroskopie Úkoly měření: 1. Seznamte se s ovládáním stereoskopického mikroskopu, digitálního mikroskopu a fotoaparátu. 2. Studujte pod mikroskopem různé preparáty. Vyberte vhodný

Více

1.1 Zobrazovací metody v optické mikroskopii

1.1 Zobrazovací metody v optické mikroskopii 1 1.1 Zobrazovací metody v optické mikroskopii 1.1.1 Světlé pole Původní metoda optické mikroskopie. Světelný kužel prochází (v procházejícím světle) nebo se odráží (v odrážejícím světle) a vstupuje do

Více

Základy mikroskopie. Úkoly měření: Použité přístroje a pomůcky: Základní pojmy, teoretický úvod: Úloha č. 10

Základy mikroskopie. Úkoly měření: Použité přístroje a pomůcky: Základní pojmy, teoretický úvod: Úloha č. 10 Úloha č. 10 Základy mikroskopie Úkoly měření: 1. Seznamte se základní obsluhou třech typů laboratorních mikroskopů: - biologického - metalografického - stereoskopického 2. Na výše jmenovaných mikroskopech

Více

Odraz světla na rozhraní dvou optických prostředí

Odraz světla na rozhraní dvou optických prostředí Odraz světla na rozhraní dvou optických prostředí Může kulová nádoba naplněná vodou sloužit jako optická čočka? Exponát demonstruje zaostření světla procházejícího skrz vodní kulovou čočku. Pohyblivý světelný

Více

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce

Více

1. Z přiložených objektivů vyberte dva, použijte je jako lupy a změřte jejich zvětšení a zorná pole přímou metodou.

1. Z přiložených objektivů vyberte dva, použijte je jako lupy a změřte jejich zvětšení a zorná pole přímou metodou. 1 Pracovní úkoly 1. Z přiložených objektivů vyberte dva, použijte je jako lupy a změřte jejich zvětšení a zorná pole přímou metodou. 2. Změřte zvětšení a zorná pole mikroskopu pro všechny možné kombinace

Více

Fluorescenční vyšetření rostlinných surovin. 10. cvičení

Fluorescenční vyšetření rostlinných surovin. 10. cvičení Fluorescenční vyšetření rostlinných surovin 10. cvičení Cíl cvičení práce s fluorescenčním mikroskopem detekce vybraných rostlinných surovin Princip nepřímé dvojstupňové IHC s použitím fluorochromu Fluorescenční

Více

R8.1 Zobrazovací rovnice čočky

R8.1 Zobrazovací rovnice čočky Fyzika pro střední školy II 69 R8 Z O B R A Z E N Í Z R C A D L E M A Č O Č K O U R8.1 Zobrazovací rovnice čočky V kap. 8.2 je ke konstrukci chodu světelných paprsků při zobrazování tenkou čočkou použit

Více

FLUORESCENČNÍ MIKROSKOP

FLUORESCENČNÍ MIKROSKOP FLUORESCENČNÍ MIKROSKOP na gymnáziu Pierra de Coubertina v Táboře Pavla Trčková, kabinet Biologie, GPdC Tábor Co je fluorescence Fluorescence je jev spočívající v tom, že některé látky (fluorofory) po

Více

ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY ZLATÝCH A STŘÍBRNÝCH KELTSKÝCH MINCÍ Z BRATISLAVSKÉHO HRADU METODOU SEM-EDX. ZPRACOVAL Martin Hložek

ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY ZLATÝCH A STŘÍBRNÝCH KELTSKÝCH MINCÍ Z BRATISLAVSKÉHO HRADU METODOU SEM-EDX. ZPRACOVAL Martin Hložek / 1 ZPRACOVAL Martin Hložek TMB MCK, 2011 ZADAVATEL PhDr. Margaréta Musilová Mestský ústav ochrany pamiatok Uršulínska 9 811 01 Bratislava OBSAH Úvod Skanovací elektronová mikroskopie (SEM) Energiově-disperzní

Více

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Šablona III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146

Více

VY_32_INOVACE_FY.12 OPTIKA II

VY_32_INOVACE_FY.12 OPTIKA II VY_32_INOVACE_FY.12 OPTIKA II Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Optická čočka je optická soustava dvou centrovaných

Více

25. Zobrazování optickými soustavami

25. Zobrazování optickými soustavami 25. Zobrazování optickými soustavami Zobrazování zrcadli a čočkami. Lidské oko. Optické přístroje. Při optickém zobrazování nemusíme uvažovat vlnové vlastnosti světla a stačí považovat světlo za svazek

Více

Optická (světelná) Mikroskopie pro TM I

Optická (světelná) Mikroskopie pro TM I Optická (světelná) Mikroskopie pro TM I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Typy klasických biologických a polarizačních mikroskopů Přehled součástí

Více

C Mapy Kikuchiho linií 263. D Bodové difraktogramy 271. E Počítačové simulace pomocí programu JEMS 281. F Literatura pro další studium 289

C Mapy Kikuchiho linií 263. D Bodové difraktogramy 271. E Počítačové simulace pomocí programu JEMS 281. F Literatura pro další studium 289 OBSAH Předmluva 5 1 Popis mikroskopu 13 1.1 Transmisní elektronový mikroskop 13 1.2 Rastrovací transmisní elektronový mikroskop 14 1.3 Vakuový systém 15 1.3.1 Rotační vývěvy 16 1.3.2 Difúzni vývěva 17

Více

Nové aplikační možnosti použití rentgenové projekční mikroskopie a mikrotomografie pro diagnostiku předmětů kulturního dědictví

Nové aplikační možnosti použití rentgenové projekční mikroskopie a mikrotomografie pro diagnostiku předmětů kulturního dědictví Nové aplikační možnosti použití rentgenové projekční mikroskopie a mikrotomografie pro diagnostiku předmětů kulturního dědictví Klíma Miloš., Sulovský Petr Přírodovědecká fakulta Masarykovy univerzity

Více

Fluorescenční a konfokální mikroskopie

Fluorescenční a konfokální mikroskopie Fluorescenční a konfokální mikroskopie Hana Sehadová, Biologické centrum AVČR, České Budějovice, 2011 Co je to fluorescence? některé látky (fluorofory) po ozáření (excitaci) světlem jsou schopny absorbovat

Více

Pohledy do Mikrosvěta

Pohledy do Mikrosvěta Pohledy do Mikrosvěta doc. RNDr. František Lednický, CSc. Ústav makromolekulární chemie Akademie věd ČR ledn@imc.cas.cz Abstrakt Na příkladech převážně z oblasti polymerních materiálů je v presentované

Více

Zdroje optického záření

Zdroje optického záření Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon

Více

Laboratorní cvičení z obecné mikrobiologie

Laboratorní cvičení z obecné mikrobiologie MIKROSKOPY Mikroskopická technika je neodmyslitelnou součástí praktické mikrobiologie a mikroskop patří k základnímu vybavení každé laboratoře. 1. Popis zařízení Mikroskop je vlastně soustava čoček o jedné

Více

Praktické cvičení č. 1.

Praktické cvičení č. 1. Praktické cvičení č. 1. Cvičení 1. 1. Všeobecné pokyny ke cvičení, zápočtu a zkoušce Bezpečnost práce 2. Mikroskopie - mikroskop a mikroskopická technika - převzetí pracovních pomůcek - pozorování trvalého

Více

VY_32_INOVACE_06_UŽITÍ ČOČEK_28

VY_32_INOVACE_06_UŽITÍ ČOČEK_28 VY_32_INOVACE_06_UŽITÍ ČOČEK_28 Autor: Mgr. Pavel Šavara Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace Název projektu: Zkvalitnění ICT ve slušovské škole Anotace Materiál (DUM digitální

Více

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ P. Novák, J. Novák Katedra fyziky, Fakulta stavební, České vysoké učení technické v Praze Abstrakt V práci je popsán výukový software pro

Více

ELEKTRONOVÁ MIKROSKOPIE V TEXTILNÍ METROLOGII

ELEKTRONOVÁ MIKROSKOPIE V TEXTILNÍ METROLOGII ELEKTRONOVÁ MIKROSKOPIE V TEXTILNÍ METROLOGII Lidské oko jako optická soustava dvojvypuklá spojka obraz skutečný, převrácený, mozek ho otočí do správné polohy, zmenšený rozlišovací schopnost oka cca 0.25

Více

Optické přístroje. Oko

Optické přístroje. Oko Optické přístroje Oko Oko je orgán živočichů reagující na světlo. Obratlovci a hlavonožci mají jednoduché oči, členovci, kteří mají menší rozměry a jednoduché oko by trpělo difrakčními jevy, mají složené

Více

Zobrazování s využitím prostorového modulátoru světla

Zobrazování s využitím prostorového modulátoru světla Zobrazování s využitím prostorového modulátoru světla Technický seminář Centra digitální optiky vedoucí balíčku (PB4): prof. RNDr. Radim Chmelík, Ph.D. Řešitelské organizace: Pracovní balíček Zobrazování

Více

PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka.

PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka. PSK1-14 Název školy: Autor: Anotace: Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Optické zdroje a detektory Vzdělávací oblast: Informační a komunikační technologie Předmět:

Více

Elektronová mikroskopie a RTG spektroskopie. Pavel Matějka

Elektronová mikroskopie a RTG spektroskopie. Pavel Matějka Elektronová mikroskopie a RTG spektroskopie Pavel Matějka Elektronová mikroskopie a RTG spektroskopie 1. Elektronová mikroskopie 1. TEM transmisní elektronová mikroskopie 2. STEM řádkovací transmisní elektronová

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

Digitální fotografie. Mgr. Milana Soukupová Gymnázium Česká Třebová

Digitální fotografie. Mgr. Milana Soukupová Gymnázium Česká Třebová Digitální fotografie Mgr. Milana Soukupová Gymnázium Česká Třebová Téma sady didaktických materiálů Digitální fotografie I. Číslo a název šablony Číslo didaktického materiálu Druh didaktického materiálu

Více

Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země

Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země strana 2 Co je DPZ Dálkový průzkum je umění rozdělit svět na množství malých barevných čtverečků, se kterými si lze hrát na počítači a odhalovat jejich neuvěřitelný

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Fyzika_7_zápis_7.notebook April 28, 2015

Fyzika_7_zápis_7.notebook April 28, 2015 OPTICKÉ PŘÍSTROJE 1) Optické přístroje se využívají zejména k pozorování: velmi malých těles velmi vzdálených těles 2) Optické přístroje dělíme na: a) subjektivní: obraz je zaznamenáván okem např. lupa,

Více

Optické zobrazení - postup, kterým získáváme optické obrazy bodů a předmětů

Optické zobrazení - postup, kterým získáváme optické obrazy bodů a předmětů Optické soustav a optická zobrazení Přímé vidění - paprsek od zobrazovaného předmětu dopadne přímo do oka Optická soustava - soustava optických prostředí a jejich rozhraní, která mění chod paprsků Optické

Více

Automatický optický pyrometr v systémové analýze

Automatický optický pyrometr v systémové analýze ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ K611 ÚSTAV APLIKOVANÉ MATEMATIKY K620 ÚSTAV ŘÍDÍCÍ TECHNIKY A TELEMATIKY Automatický optický pyrometr v systémové analýze Jana Kuklová, 4 70 2009/2010

Více

Buňky živočichů Iva Dyková

Buňky živočichů Iva Dyková Biologická laboratorní technika Buňky živočichů Iva Dyková Živočišné buňky - pozorování - dokumentace Buňky živočichů buňky rostlin Buňky živočichů zpravidla menší než rostlinné. Průměrná velikost 5-20

Více

ZOBRAZOVÁNÍ ROVINNÝM ZRCADLEM

ZOBRAZOVÁNÍ ROVINNÝM ZRCADLEM ZOBRAZOVÁNÍ ROVINNÝM ZRCADLEM Pozorně se podívejte na obrázky. Kterou rukou si nevěsta maluje rty? Na které straně cesty je automobil ve zpětném zrcátku? Zrcadla jsou vyleštěné, zpravidla kovové plochy

Více

HODNOCENÍ VRYPOVÉ ZKOUŠKY SVĚTELNOU A ŘÁDKOVACÍ ELEKTRONOVOU MIKROSKOPIÍ EVALUATION OF THE SCRATCH TEST BY LIGHT AND SCANNING ELECTRON MICROSCOPY

HODNOCENÍ VRYPOVÉ ZKOUŠKY SVĚTELNOU A ŘÁDKOVACÍ ELEKTRONOVOU MIKROSKOPIÍ EVALUATION OF THE SCRATCH TEST BY LIGHT AND SCANNING ELECTRON MICROSCOPY HODNOCENÍ VRYPOVÉ ZKOUŠKY SVĚTELNOU A ŘÁDKOVACÍ ELEKTRONOVOU MIKROSKOPIÍ EVALUATION OF THE SCRATCH TEST BY LIGHT AND SCANNING ELECTRON MICROSCOPY Martina Sosnová a - sosnova@kmm.zcu.cz. Antonín Kříž a

Více

8 Mikroskopické metody studia struktury a ultrastruktury

8 Mikroskopické metody studia struktury a ultrastruktury 8. Mikroskopické metody 1/9 8 Mikroskopické metody studia struktury a ultrastruktury buněk struktura buňky struktura cytoplazmy cytoskelet imunofluorescenční mikroskopie, fázový kontrast, interferenční

Více

CHARAKTERIZACE MORFOLOGIE POVRCHU (Optický mikroskop, SEM, STM, SNOM, AFM, TEM)

CHARAKTERIZACE MORFOLOGIE POVRCHU (Optický mikroskop, SEM, STM, SNOM, AFM, TEM) CHARAKTERIZACE MORFOLOGIE POVRCHU (Optický mikroskop, SEM, STM, SNOM, AFM, TEM) Morfologie nauka o tvarech. Studium tvaru povrchu vrstev a povlaků (nerovnosti, inkluze, kapičky, hladkost,.). Topologie

Více

Název: Vlastnosti oka, porovnání s fotoaparátem

Název: Vlastnosti oka, porovnání s fotoaparátem Název: Vlastnosti oka, porovnání s fotoaparátem Autor: Mgr. Petr Majer Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Biologie) Tematický celek: Optika

Více

Střední průmyslová škola strojnická Vsetín. Předmět Druh učebního materiálu monitory, jejich rozdělení a vlastnosti

Střední průmyslová škola strojnická Vsetín. Předmět Druh učebního materiálu monitory, jejich rozdělení a vlastnosti Název školy Číslo projektu Autor Střední průmyslová škola strojnická Vsetín CZ.1.07/1.5.00/34.0483 Ing. Martin Baričák Název šablony III/2 Název DUMu 2.13 Výstupní zařízení I. Tematická oblast Předmět

Více

Základní metody světelné mikroskopie

Základní metody světelné mikroskopie Základní metody světelné mikroskopie Brno 2004 2 Předmluva Předkládáme Vám pomocný text o světelných mikroskopech, abychom Vám umožnili alespoň částečně proniknout do tajů, kterými je obestřena funkce

Více

ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptylkách. PaedDr. Jozef Beňuška jbenuska@nextra.sk

ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptylkách. PaedDr. Jozef Beňuška jbenuska@nextra.sk ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptlkách PaedDr. Jozef Beňuška jbenuska@nextra.sk Optická soustava - je soustava optických prostředí a jejich rozhraní, která mění směr chodu světelných

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í LABORATORNÍ PRÁCE Č. 34 MIKROSKOPIE

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í LABORATORNÍ PRÁCE Č. 34 MIKROSKOPIE LABORATORNÍ PRÁCE Č. 34 MIKROSKOPIE PRINCIP V chemické laboratoři se používá k některým stanovením tzv. mikrokrystaloskopie. Jedná se o použití optického mikroskopu při kvalitativních důkazech látek na

Více

Obsah. Historický vývoj Jednotlivé technologie 3D technologie Zobracovací zařízení Budoucnost

Obsah. Historický vývoj Jednotlivé technologie 3D technologie Zobracovací zařízení Budoucnost Radek Lacina Obsah Historický vývoj Jednotlivé technologie 3D technologie Zobracovací zařízení Budoucnost Historie Bratři Lumiérové 1895 patentován kinematograf 35 mm film, 16 fps (převzato od Edisona)

Více

Světlo, které vnímáme, představuje viditelnou část elektromagnetického spektra. V

Světlo, které vnímáme, představuje viditelnou část elektromagnetického spektra. V Kapitola 2 Barvy, barvy, barvičky 2.1 Vnímání barev Světlo, které vnímáme, představuje viditelnou část elektromagnetického spektra. V něm se vyskytují všechny známé druhy záření, např. gama záření či infračervené

Více

Molekulová spektroskopie 1. Chemická vazba, UV/VIS

Molekulová spektroskopie 1. Chemická vazba, UV/VIS Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická

Více

Krafková, Kotlán, Hiessová, Nováková, Nevímová

Krafková, Kotlán, Hiessová, Nováková, Nevímová Krafková, Kotlán, Hiessová, Nováková, Nevímová Optická čočka je optická soustava dvou centrovaných ploch, nejčastěji kulových, popř. jedné kulové a jedné rovinné plochy. Čočka je tvořena z průhledného

Více

Jednoduchý elektrický obvod

Jednoduchý elektrický obvod 21 25. 05. 22 01. 06. 23 22. 06. 24 04. 06. 25 28. 02. 26 02. 03. 27 13. 03. 28 16. 03. VI. A Jednoduchý elektrický obvod Jednoduchý elektrický obvod Prezentace zaměřená na jednoduchý elektrický obvod

Více

Dodatečné informace k zadávacím podmínkám č. 1. Super-rezoluční fluorescenční mikroskopická sestava. v otevřeném řízení

Dodatečné informace k zadávacím podmínkám č. 1. Super-rezoluční fluorescenční mikroskopická sestava. v otevřeném řízení Dodatečné informace k zadávacím podmínkám č. 1 ze dne 28. 4. 2015 k nadlimitní veřejné zakázce na dodávky Super-rezoluční fluorescenční mikroskopická sestava Veřejná zakázka je zadávána dle zákona č. 137/2006

Více

DIGITÁLNÍ FOTOGRAFIE

DIGITÁLNÍ FOTOGRAFIE DIGITÁLNÍ FOTOGRAFIE - princip digitalizace obrazu, části fotoaparátů, ohnisková vzdálenost, expozice, EXIF data, druhy digitálních fotoaparátů Princip vzniku digitální fotografie digitální fotoaparáty

Více

CHARAKTERIZACE MIKROSTRUKTURY OCELÍ POMOCÍ POMALÝCH A VELMI POMALÝCH ELEKTRONŮ

CHARAKTERIZACE MIKROSTRUKTURY OCELÍ POMOCÍ POMALÝCH A VELMI POMALÝCH ELEKTRONŮ CHARAKTERIZACE MIKROSTRUKTURY OCELÍ POMOCÍ POMALÝCH A VELMI POMALÝCH ELEKTRONŮ Aleš LIGAS 1, Jakub PIŇOS 1, Dagmar JANDOVÁ 2, Josef KASL 2, Šárka MIKMEKOVÁ 1 1 Ústav přístrojové techniky AV ČR, v.v.i.,

Více

Světlo. Podstata světla. Elektromagnetické záření Korpuskulární charakter. Rychlost světla. Vlnová délka. Vlnění, foton. c = 1 079 252 848,8 km/h

Světlo. Podstata světla. Elektromagnetické záření Korpuskulární charakter. Rychlost světla. Vlnová délka. Vlnění, foton. c = 1 079 252 848,8 km/h Světlo Světlo Podstata světla Elektromagnetické záření Korpuskulární charakter Vlnění, foton Rychlost světla c = 1 079 252 848,8 km/h Vlnová délka Elektromagnetické spektrum Rádiové vlny Mikrovlny Infračervené

Více

1. Zdroje a detektory optického záření

1. Zdroje a detektory optického záření 1. Zdroje a detektory optického záření 1.1. Zdroje optického záření výkon a jeho časový průběh spektrální charakteristika a její stabilita v čase koherenční vlastnosti 1.1.1. Tepelné zdroje velmi malá

Více

Návrh optické soustavy - Obecný postup

Návrh optické soustavy - Obecný postup Inovace a zvýšení atraktivity studia optiky reg. c.: CZ.1.07/2.2.00/07.0289 Přednášky - Metody Návrhu Zobrazovacích Soustav SLO/MNZS Návrh optické soustavy - Obecný postup Miroslav Palatka Tento projekt

Více

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu. Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.

Více

SKENOVACÍ (RASTROVACÍ) ELEKTRONOVÁ MIKROSKOPIE

SKENOVACÍ (RASTROVACÍ) ELEKTRONOVÁ MIKROSKOPIE SKENOVACÍ (RASTROVACÍ) ELEKTRONOVÁ MIKROSKOPIE Klára Šafářová Centrum pro výzkum nanomateriálů, Olomouc 4.12. Workshop: Mikroskopické techniky SEM a TEM Obsah historie mikroskopie proč právě elektrony

Více

Informační a komunikační technologie. Základy informatiky. 5 vyučovacích hodin. Osobní počítače, soubory s fotografiemi

Informační a komunikační technologie. Základy informatiky. 5 vyučovacích hodin. Osobní počítače, soubory s fotografiemi Výstupový indikátor 06.43.19 Název Autor: Vzdělávací oblast: Vzdělávací obory: Ročník: Časový rozsah: Pomůcky: Projekt Integrovaný vzdělávací systém města Jáchymov - Mosty Digitální fotografie Petr Hepner,

Více

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:

Více

FLUORIMETRICKÉ STANOVENÍ FLUORESCEINU

FLUORIMETRICKÉ STANOVENÍ FLUORESCEINU FLUORIMETRICKÉ STANOVENÍ FLUORESCEINU návod vznikl jako součást bakalářské práce Martiny Vidrmanové Fluorimetrie s využitím spektrofotometru SpectroVis Plus firmy Vernier (http://is.muni.cz/th/268973/prif_b/bakalarska_prace.pdf)

Více

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá

Více

Fotokroužek 2009/2010

Fotokroužek 2009/2010 Fotokroužek 2009/2010 První hodina Úvod do digitální fotografie Druhy fotoaparátů Diskuse Bc. Tomáš Otruba, 2009 Pouze pro studijní účely žáků ZŠ Slovanské náměstí Historie fotografie Za první fotografii

Více

Optika pro studijní obory

Optika pro studijní obory Variace 1 Optika pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Světlo a jeho šíření Optika

Více

Fraktografie lomových ploch za použití konfokálního a řádkovacího elektronového mikroskopu SVOČ FST - 2011

Fraktografie lomových ploch za použití konfokálního a řádkovacího elektronového mikroskopu SVOČ FST - 2011 Fraktografie lomových ploch za použití konfokálního a řádkovacího elektronového mikroskopu SVOČ FST - 2011 Radek Procházka Západočeská univerzita v Plzni Univerzitní 8, 306 14 Plzeň Česká Republika 1.

Více

EXKURZE DO NANOSVĚTA aneb Výlet za EM a SPM. Pracovní listy teoretická příprava

EXKURZE DO NANOSVĚTA aneb Výlet za EM a SPM. Pracovní listy teoretická příprava EXKURZE DO NANOSVĚTA aneb Výlet za EM a SPM Pracovní listy teoretická příprava Úloha 1: První nahlédnutí do nanosvěta Novou část dějin mikroskopie otevřel německý elektroinženýr, laureát Nobelovy ceny

Více

2. Určete frakční objem dendritických částic v eutektické slitině Mg-Cu-Zn. Použijte specializované programové vybavení pro obrazovou analýzu.

2. Určete frakční objem dendritických částic v eutektické slitině Mg-Cu-Zn. Použijte specializované programové vybavení pro obrazovou analýzu. 1 Pracovní úkoly 1. Změřte střední velikost zrna připraveného výbrusu polykrystalického vzorku. K vyhodnocení snímku ze skenovacího elektronového mikroskopu použijte kruhovou metodu. 2. Určete frakční

Více

Pokusy s ultrafialovým a infračerveným zářením

Pokusy s ultrafialovým a infračerveným zářením Pokusy s ultrafialovým a infračerveným zářením ZDENĚK BOCHNÍČEK, JIŘÍ STRUMIENSKÝ Přírodovědecká fakulta MU, Brno Úvod Ultrafialové (UV) a infračervené (IR) záření jsou v elektromagnetickém spektru nejbližšími

Více

Techniky detekce a určení velikosti souvislých trhlin

Techniky detekce a určení velikosti souvislých trhlin Techniky detekce a určení velikosti souvislých trhlin Přehled Byl-li podle obecných norem nebo regulačních směrnic detekovány souvislé trhliny na vnitřním povrchu, musí být následně přesně stanoven rozměr.

Více

Laboratoř charakterizace nano a mikrosystémů: Elektronová mikroskopie

Laboratoř charakterizace nano a mikrosystémů: Elektronová mikroskopie : Jitka Kopecká ÚVOD je užitečný nástroj k pozorování a pochopení nano a mikrosvěta. Nachází své uplatnění jak v teoretickém výzkumu, tak i v průmyslu (výroba polovodičových součástek, solárních panelů,

Více

Ultrazvuková defektoskopie. Vypracoval Jan Janský

Ultrazvuková defektoskopie. Vypracoval Jan Janský Ultrazvuková defektoskopie Vypracoval Jan Janský Základní principy použití vysokých akustických frekvencí pro zjištění vlastností máteriálu a vad typické zařízení: generátor/přijímač pulsů snímač zobrazovací

Více

Hardware. Ukládání dat, úložiště. Mgr. Jan Veverka Střední odborná škola sociální Evangelická akademie

Hardware. Ukládání dat, úložiště. Mgr. Jan Veverka Střední odborná škola sociální Evangelická akademie Hardware Ukládání dat, úložiště Mgr. Jan Veverka Střední odborná škola sociální Evangelická akademie Způsob záznamu informace na PC data existují na PC zakódovaná do dvojkové soustavy = formou hodnot 0

Více

SVĚT MIKROSKOPŮ OPTIKA ZDE SÍDLÍ OPTIKA. NÁŠ TEAM TVOŘÍ 45 PRACOVNÍKŮ V 13700 m 3 PROVOZOVEN

SVĚT MIKROSKOPŮ OPTIKA ZDE SÍDLÍ OPTIKA. NÁŠ TEAM TVOŘÍ 45 PRACOVNÍKŮ V 13700 m 3 PROVOZOVEN SVĚT MIKROSKOPŮ OPTIKA ZDE SÍDLÍ OPTIKA NÁŠ TEAM TVOŘÍ 45 PRACOVNÍKŮ V 13700 m 3 PROVOZOVEN 1 SVĚT MIKROSKOPŮ OPTIKA 2 SVĚT MIKROSKOPŮ OPTIKA SVĚT MIKROSKOPŮ OPTIKA 3 SVĚT MIKROSKOPŮ OPTIKA 4 SVĚT MIKROSKOPŮ

Více

Úvod do počítačové grafiky

Úvod do počítačové grafiky Úvod do počítačové grafiky elmag. záření s určitou vlnovou délkou dopadající na sítnici našeho oka vnímáme jako barvu v rámci viditelné části spektra je člověk schopen rozlišit přibližně 10 milionů barev

Více

I. diskusní fórum. Možnosti zajištění kvality stavby (diagnostická metoda infračervená termografie) VZDĚLÁVACÍ MATERIÁL O DISKUTOVANÉM TÉMATU

I. diskusní fórum. Možnosti zajištění kvality stavby (diagnostická metoda infračervená termografie) VZDĚLÁVACÍ MATERIÁL O DISKUTOVANÉM TÉMATU I. diskusní fórum K projektu Cesty na zkušenou Na téma Možnosti zajištění kvality stavby (diagnostická metoda infračervená termografie) které se konalo dne 30. září 2013 od 12:30 hodin v místnosti H108

Více

Spektroskopie v UV-VIS oblasti. UV-VIS spektroskopie. Roztok KMnO 4. pracuje nejčastěji v oblasti 200-800 nm

Spektroskopie v UV-VIS oblasti. UV-VIS spektroskopie. Roztok KMnO 4. pracuje nejčastěji v oblasti 200-800 nm Spektroskopie v UV-VIS oblasti UV-VIS spektroskopie pracuje nejčastěji v oblasti 2-8 nm lze měřit i < 2 nm či > 8 nm UV VIS IR Ultra Violet VISible Infra Red Roztok KMnO 4 roztok KMnO 4 je červenofialový

Více

Terestrické 3D skenování

Terestrické 3D skenování Jan Říha, SPŠ zeměměřická www.leica-geosystems.us Laserové skenování Technologie, která zprostředkovává nové možnosti v pořizování geodetických dat a výrazně rozšiřuje jejich využitelnost. Metoda bezkontaktního

Více

Spektroskop. Anotace:

Spektroskop. Anotace: Spektroskop Anotace: Je bílé světlo opravdu bílé? Liší se nějak světlo ze zářivky, žárovky, LED baterky, Slunce, UV baterky, výbojek a dalších zdrojů? Vyrobte si jednoduchý finančně nenáročný papírový

Více

Testové otázky za 2 body

Testové otázky za 2 body Přijímací zkoušky z fyziky pro obor PTA K vypracování písemné zkoušky máte k dispozici 90 minut. Kromě psacích potřeb je povoleno používání kalkulaček. Pro úspěšné zvládnutí zkoušky je třeba získat nejméně

Více

Fyzika aplikovaná v geodézii

Fyzika aplikovaná v geodézii Průmyslová střední škola Letohrad Vladimír Stránský Fyzika aplikovaná v geodézii 1 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního rozpočtu

Více

Určení koncentrace proteinu fluorescenční metodou v mikrotitračních destičkách

Určení koncentrace proteinu fluorescenční metodou v mikrotitračních destičkách Určení koncentrace proteinu fluorescenční metodou v mikrotitračních destičkách Teorie Stanovení celkových proteinů Celkové množství proteinů lze stanovit pomocí několika metod; například: Hartree-Lowryho

Více

NATIS s.r.o. Seifertova 4313/10 767 01 Kroměříž T:573 331 563 E:natis@natis.cz www.natis.cz. Videoendoskopy a příslušenství

NATIS s.r.o. Seifertova 4313/10 767 01 Kroměříž T:573 331 563 E:natis@natis.cz www.natis.cz. Videoendoskopy a příslušenství Videoendoskopy a příslušenství Strana 2 Úvod Jsme rádi, že vám můžeme představit katalog videoendoskopů a jejich příslušenství. Přenosné videoendoskopy model V55100 a X55100 s velkým barevným LCD displejem,

Více

Mobilní Ramanův spektrometr Ahura First Defender

Mobilní Ramanův spektrometr Ahura First Defender ČVUT v Praze, Kloknerův ústav, Šolínova 7, Praha 6 Mobilní Ramanův spektrometr Ahura First Defender Příručka Ing. Daniel Dobiáš, Ph.D. Doc. Ing. Tomáš Klečka, CSc. Praha 2009 Anotace Příručka obsahuje

Více

Vlnové vlastnosti světla

Vlnové vlastnosti světla Vlnové vlastnosti světla Odraz a lom světla Disperze světla Interference světla Ohyb (difrakce) světla Polarizace světla Infračervené světlo je definováno jako a) podélné elektromagnetické kmity o frekvenci

Více

Infračervená termografie ve stavebnictví

Infračervená termografie ve stavebnictví Infračervená termografie ve stavebnictví Autor: Ing. Marcela POČINKOVÁ, Ph.D., Ing. Olga RUBINOVÁ, Ph.D. Termografické měření a následná diagnostika je metodou pro bezkontaktní a poměrně rychlý průzkum

Více

Fyzická bezpečnost. Téma: Průmyslová televize - kamerové systémy. Ing. Kamil Halouzka, Ph.D. kamil.halouzka@unob.cz

Fyzická bezpečnost. Téma: Průmyslová televize - kamerové systémy. Ing. Kamil Halouzka, Ph.D. kamil.halouzka@unob.cz Fyzická bezpečnost Téma: Průmyslová televize - kamerové systémy Ing. Kamil Halouzka, Ph.D. kamil.halouzka@unob.cz Operační program Vzdělávání pro konkurenceschopnost Projekt: Vzdělávání pro bezpečnostní

Více

Spektrální charakteristiky optických komponentů

Spektrální charakteristiky optických komponentů Úloha č. 5 pro laserová praktika KFE, FJFI, ČVUT Praha, verze 27.2.2014 Spektrální charakteristiky optických komponentů Úvod V laboratorní praxi často řešíme otázku, jak v experimentu použitý optický prvek

Více

ÚSTAV FYZIKÁLNÍ BIOLOGIE JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH

ÚSTAV FYZIKÁLNÍ BIOLOGIE JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH ÚSTAV FYZIKÁLNÍ BIOLOGIE JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH PŘIHLÁŠKA STUDENTSKÉHO PROJEKTU Projekt Název projektu: Rozptyl primárních elektronů na atomech zalévacího média biologického materiálu

Více

~ II 1. Souprava pro pokusy z :I optiky opliky. Pavel Kflž, Křfž, František Špulák, Katedra fyziky, PF fu JU České Budějovice

~ II 1. Souprava pro pokusy z :I optiky opliky. Pavel Kflž, Křfž, František Špulák, Katedra fyziky, PF fu JU České Budějovice Veletrh nápadů učitelů fyziky Souprava pro pokusy z : optiky opliky Pavel Kflž, Křfž, František Špulák, Katedra fyziky, PF fu JU České Budějovice Seznam součástí číslo kusů název obr.č. 1 1 kyveta 1 2

Více

Školní a rutinní mikroskop CHK2

Školní a rutinní mikroskop CHK2 Školní a rutinní mikroskop CHK2 Tato příručka je určena pro školní a rutinní mikroskop CHK2. Doporučujeme Vám si ji prostudovat dříve, než mikroskop poprvé použijete. Informace uvedené v příručce Vám umožní

Více

PRÁCE S MIKROSKOPEM Praktická příprava mikroskopického preparátu

PRÁCE S MIKROSKOPEM Praktická příprava mikroskopického preparátu PRÁCE S MIKROSKOPEM 1. Praktická příprava mikroskopického preparátu 2. a) Z objektu, jehož část, chceme pozorovat pomocí mikroskopu, musíme nejprve vytvořit mikroskopický preparát. Obr. č. 1 b) Pozorovaný

Více

Název: Odraz a lom světla

Název: Odraz a lom světla Název: Odraz a lom světla Autor: Mgr. Petr Majer Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika, Informatika) Tematický celek: Optika Ročník:

Více