Definiční obor funkce, obor hodnot funkce. Funkce. Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště. Digitální učební materiály,

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Definiční obor funkce, obor hodnot funkce. Funkce. Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště. Digitální učební materiály, 2012-14"

Transkript

1 Funkce Definiční obor funkce, obor hodnot funkce Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště Digitální učební materiály, 01-14

2 Obsah 1 Definiční obor funkce příklady na určení oboru hodnot funkce příklady k procvičení H f

3 Definiční obor funkce množina všech hodnot, kterých nabývá proměnná x dané funkce jde o podmnožinu reálných čísel. tuto množinu označujeme D, dolním indexem je název funkce např. u funkce f zápisem D f, nebo pro funkci g zápisem D g apod.

4 Příklady určení definičního oboru uvedených funkcí Určete definiční obor funkce f 1 : f 1 (x) = x + 3x 1 Řešení: předpis funkce f 1 není v množině R nijak omezen. Tedy D f1 = R

5 Příklady určení definičního oboru uvedených funkcí Určete definiční obor funkce f 1 : f 1 (x) = x + 3x 1 Řešení: předpis funkce f 1 není v množině R nijak omezen. Tedy D f1 = R

6 Příklady určení definičního oboru uvedených funkcí Určete definiční obor funkce f : f (x) = x + 4x 6 Řešení: předpis funkce f je omezen odmocňovanými výrazy a lomeným výrazem. Musí platit, že x + 0, tj. x a současně 4x 6 > 0, tj. x > 3 ( ). Tedy 3 D f9 =, +.

7 Příklady určení definičního oboru uvedených funkcí Určete definiční obor funkce f : f (x) = x + 4x 6 Řešení: předpis funkce f je omezen odmocňovanými výrazy a lomeným výrazem. Musí platit, že x + 0, tj. x a současně 4x 6 > 0, tj. x > 3 ( ). Tedy 3 D f9 =, +.

8 Příklady k procvičení Definiční obor funkce Určete definiční obor následujících funkcí g 1 až g 4 g 1 (x) = x + 1 x 3 g (x) = x + 1 g 3 (x) = x 3x + x + g 4 (x) = x

9 Řešení příkladů na určení definičního oboru funkcí g 1 (x) = x + 1 g 1 (x) = x + 1 x 3 x 3 předpis funkce g 1 je 10 omezen lomeným výrazem. Musí platit, že x 3. Tedy D g1 = R

10 Řešení příkladů na určení definičního oboru funkcí g 1 (x) = x + 1 g 1 (x) = x + 1 x 3 x 3 předpis funkce g 1 je 10 omezen lomeným výrazem. Musí platit, že x 3. Tedy D g1 = R

11 Řešení příkladů na určení definičního oboru funkcí g (x) = x + 1 x 3 předpis funkce g je omezen odmocninou. Musí platit, že x. Tedy D g = ; + ) g (x) = x + 4 4

12 Řešení příkladů na určení definičního oboru funkcí g (x) = x + 1 x 3 předpis funkce g je omezen odmocninou. Musí platit, že x. Tedy D g = ; + ) g (x) = x + 4 4

13 Řešení příkladů na určení definičního oboru funkcí 1 g 3 (x) = x 3x + předpis funkce g 3 je omezen lomeným výrazem a odmocninou. Musí platit, že x + 3x > 0. Tedy D g3 = ( ; 1) (; + ) g 3 (x) = x 3x + 4

14 Řešení příkladů na určení definičního oboru funkcí 1 g 3 (x) = x 3x + předpis funkce g 3 je omezen lomeným výrazem a odmocninou. Musí platit, že x + 3x > 0. Tedy D g3 = ( ; 1) (; + ) g 3 (x) = x 3x + 4

15 Řešení příkladů na určení definičního oboru funkcí x + g 4 (x) = x předpis funkce g 4 je omezen lomeným výrazem a odmocninou. Musí platit, že x x + x 0. Tedy D g 4 = ( ; (; + ) g 4 (x) = 10 5 x + x 5 5

16 Řešení příkladů na určení definičního oboru funkcí x + g 4 (x) = x předpis funkce g 4 je omezen lomeným výrazem a odmocninou. Musí platit, že x x + x 0. Tedy D g 4 = ( ; (; + ) g 4 (x) = 10 5 x + x 5 5

17 Definiční obor funkce příklady na určení oboru hodnot funkce příklady k procvičení H f řešení příkladů na procvičení H f množina čísel přiřazených danou funkcí číslům z definičního oboru jde o podmnožinu reálných čísel. tuto množinu označujeme H, dolním indexem je název funkce např. u funkce f zápisem H f, nebo pro funkci g zápisem H g apod.

18 příklady na určení oboru hodnot funkce příklady k procvičení H f řešení příkladů na procvičení H f Příklad určení hodnot uvedené funkce Je dána funkce g(x) = 3x + 1. Vypočítejte: g(1), g(a) + g(), g(a + ), g(b ), [g(b)]. Řešení: Za x dosazujeme výrazy ze závorek. Tedy g(1) = 4, g(a) + g() = 3a , tj. 3a Podobně g(a + ) = 3a + 1a + 13, g(b ) = 3b a nakonec [g(b)] = (3b + 1) = 9b 4 + 6b + 1.

19 příklady na určení oboru hodnot funkce příklady k procvičení H f řešení příkladů na procvičení H f Příklad určení hodnot uvedené funkce Je dána funkce g(x) = 3x + 1. Vypočítejte: g(1), g(a) + g(), g(a + ), g(b ), [g(b)]. Řešení: Za x dosazujeme výrazy ze závorek. Tedy g(1) = 4, g(a) + g() = 3a , tj. 3a Podobně g(a + ) = 3a + 1a + 13, g(b ) = 3b a nakonec [g(b)] = (3b + 1) = 9b 4 + 6b + 1.

20 příklady na určení oboru hodnot funkce příklady k procvičení H f řešení příkladů na procvičení H f Příklady určení oboru hodnot uvedené funkce Je dána funkce f (x) = x + x 30. Rozhodněte, zda existuje x R tak, aby platilo: 1 f (x) = 5 f (x) = f (x) = 11 3 Řešení: Je nutné zjistit, zda rovnice v nichž za f (x) dosadíme příslušnou hodnotu mají řešení. Tedy:

21 příklady na určení oboru hodnot funkce příklady k procvičení H f řešení příkladů na procvičení H f Příklady určení oboru hodnot uvedené funkce Je dána funkce f (x) = x + x 30. Rozhodněte, zda existuje x R tak, aby platilo: 1 f (x) = 5 f (x) = f (x) = 11 3 Řešení: Je nutné zjistit, zda rovnice v nichž za f (x) dosadíme příslušnou hodnotu mají řešení. Tedy:

22 příklady na určení oboru hodnot funkce příklady k procvičení H f řešení příkladů na procvičení H f Příklady určení oboru hodnot uvedené funkce 1 pro f (x) = 5 získáme rovnici 5 = x + x 30 Řešení: x 1 =, x = 5 pro f (x) = 100 získáme rovnici 100 = x + x 30 Řešení: nemá v R řešení 3 pro f (x) = 11 3 získáme rovnici 11 3 Řešení: x 1 = 9 + 3, x = 13 3 = x + x 30

23 příklady na určení oboru hodnot funkce příklady k procvičení H f řešení příkladů na procvičení H f Příklady určení oboru hodnot uvedené funkce 1 pro f (x) = 5 získáme rovnici 5 = x + x 30 Řešení: x 1 =, x = 5 pro f (x) = 100 získáme rovnici 100 = x + x 30 Řešení: nemá v R řešení 3 pro f (x) = 11 3 získáme rovnici 11 3 Řešení: x 1 = 9 + 3, x = 13 3 = x + x 30

24 Příklad k procvičení Definiční obor funkce příklady na určení oboru hodnot funkce příklady k procvičení H f řešení příkladů na procvičení H f Je dána funkce h : y = x + 1 x. 1 Rozhodněte, která z následujících čísel, 5, 0, 5, 1 patří do oboru hodnot funkce h. Určete všechna čísla m R tak, aby platilo: h(m) = h( 3)

25 příklady na určení oboru hodnot funkce příklady k procvičení H f řešení příkladů na procvičení H f Řešení příkladu z oboru hodnot funkce h : y = x + 1 x 1 Čísla ; 5 ; 5 leží v oboru hodnot funkce h. Číslo m musí mít hodnotu ±

26 Příloha Seznam použité literatury Seznam použité literatury I PETÁKOVÁ, Jindra. Matematika: příprava k maturitě a přijímacím zkouškám na vysoké školy. 1. vyd. Praha: Prometheus, 1998, 303 s. Učebnice pro střední školy (Prometheus). ISBN POLÁK, Josef. Středoškolská matematika v úlohách I: příprava k maturitě a k přijímacím zkouškám na vysoké školy. 1. vyd. Praha: Prometheus, 1996, 344 s. Učebnice pro střední školy (Prometheus). ISBN

GONIOMETRICKÉ FUNKCE

GONIOMETRICKÉ FUNKCE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol GONIOMETRICKÉ

Více

FUNKCE NEPŘÍMÁ ÚMĚRNOST A LINEÁRNÍ LOMENÁ FUNKCE

FUNKCE NEPŘÍMÁ ÚMĚRNOST A LINEÁRNÍ LOMENÁ FUNKCE 1 Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol FUNKCE

Více

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol ÚLOHY

Více

OPERACE S KOMBINAČNÍMI ČÍSLY A S FAKTORIÁLY, KOMBINACE

OPERACE S KOMBINAČNÍMI ČÍSLY A S FAKTORIÁLY, KOMBINACE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol OPERACE

Více

SINOVÁ A KOSINOVÁ VĚTA VZORCE PRO OBSAH TROJÚHELNÍKU

SINOVÁ A KOSINOVÁ VĚTA VZORCE PRO OBSAH TROJÚHELNÍKU Projekt ŠLONY N GVM Gymnázium Velké Meziříčí registrační číslo projektu: Z.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol SINOVÁ KOSINOVÁ

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Analytická geometrie. Hyperbola VY_32_INOVACE_M0119.

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Analytická geometrie. Hyperbola VY_32_INOVACE_M0119. Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Slovní úlohy III Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Čerm_20a

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Slovní úlohy II Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Čerm_19a

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1.

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1. Eponenciální rovnice Eponenciální rovnice jsou rovnice, ve kterých se neznámá vsktuje v eponentu. Řešíme je v závislosti na tpu rovnice několika základními metodami. A. Metoda převedení na stejný základ

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

Kombinatorika, základní kombinatorická pravidla, pravidlo součtu, pravidlo součinu

Kombinatorika, základní kombinatorická pravidla, pravidlo součtu, pravidlo součinu Škola: Gymnázium, Brno, Slovanské náměstí 7 Šablona: Název projektu: Číslo projektu: Autor: Tematická oblast: Název DUMu: Kód: III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Inovace výuky na GSN

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor002 Vypracoval(a),

Více

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce)

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce) Předmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: LOKÁLNÍ EXTRÉMY LOKÁLNÍ EXTRÉMY (maimum a minimum funkce) Lokální etrémy jsou body, v nichž funkce

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.0/1.5.00/4.018 Šablona III/ Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY INOVACE_Hor015 Vypracoval(a), dne Mgr.

Více

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT

CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Autor Mgr. Lenka Střelcová Tematický celek Posloupnosti Cílová skupina 3. ročník SŠ Anotace Materiál má podobu výkladového a pracovního listu s úlohami, pomocí nichž si žáci osvojí a procvičí využití geometrické

Více

FINANČNÍ MATEMATIKA- ÚVĚRY

FINANČNÍ MATEMATIKA- ÚVĚRY Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ.1.07/1.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol FINANČNÍ MATEMATIKA-

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 2 3 x. a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 6; x = 13 28 = 1 7 a jeho hodnotu pro x = 2

a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 2 3 x. a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 6; x = 13 28 = 1 7 a jeho hodnotu pro x = 2 Obsah Definiční obory výrazů s proměnnou... Zápisy výrazů...3 Sčítání a odčítání mnohočlenů...4 Násobení mnohočlenů...5 Dělení mnohočlenů...7 Rozklad mnohočlenů na součin vytýkání...9 Rozklad mnohočlenů

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Funkce, funkční závislosti Lineární funkce

Funkce, funkční závislosti Lineární funkce Funkce, funkční závislosti Lineární funkce Obsah: Definice funkce Grafické znázornění funkce Konstantní funkce Lineární funkce Vlastnosti lineárních funkcí Lineární funkce - příklady Zdroje Z Návrat na

Více

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ FUNKCE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE DO ROZVOJE

Více

16. DEFINIČNÍ OBORY FUNKCÍ

16. DEFINIČNÍ OBORY FUNKCÍ 6 DEFINIČNÍ OBORY FUNKCÍ 6 Urči definiční obor funkce 7 46 0 7 46 = 0 46 ± 5, = = 7; = 4 7 D ( f ) = ( ; 7 ; ) 7 f : y = 7 46 Funkce odmocnina je definována pro kladná reálná čísla a pro nulu Problematické

Více

DĚLITEL A NÁSOBEK DIGITÁLNÍ UČEBNÍ MATERIÁL VY_32_INOVACE_TR_01-20_MA-6. autor Hana Trundová. vzdělávací oblast MATEMATIKA A JEJÍ APLIKACE

DĚLITEL A NÁSOBEK DIGITÁLNÍ UČEBNÍ MATERIÁL VY_32_INOVACE_TR_01-20_MA-6. autor Hana Trundová. vzdělávací oblast MATEMATIKA A JEJÍ APLIKACE Základní škola, Šlapanice, okres Brno-venkov, příspěvková organizace Masarykovo nám. 1594/16, 664 51 Šlapanice www.zsslapanice.cz MODERNÍ A KONKURENCESCHOPNÁ ŠKOLA reg. č.: CZ.1.07/1.4.00/21.2389 DĚLITEL

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1 Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1 Funkce pro UO 1 Co je to matematická funkce? Mějme dvě množiny čísel. Množinu A a množinu B, které jsou neprázdné. Jestliže přiřadíme

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Křížové pravidlo Používá se pro výpočet poměru hmotnostních dílů dvou výchozích roztoků jejichž smícháním vznikne nový roztok. K výpočtu musí

Více

STŘEDOŠKOLSKÁ MATEMATIKA

STŘEDOŠKOLSKÁ MATEMATIKA STŘEDOŠKOLSKÁ MATEMATIKA MOCNINY, ODMOCNINY, ALGEBRAICKÉ VÝRAZY VŠB Technická univerzita Ostrava Ekonomická fakulta 006 Mocniny, odmocniny, algebraické výrazy http://moodle.vsb.cz/ 1 OBSAH 1 Informace

Více

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 5 íé= Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1..00/1.759 Název DUM: Skládání sil Název

Více

MO-ME-N-T MOderní MEtody s Novými Technologiemi

MO-ME-N-T MOderní MEtody s Novými Technologiemi Projekt: Reg.č.: Operační program: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Škola: Hotelová škola, Vyšší odborná škola hotelnictví a turismu

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

HYPOTÉČNÍ ÚVĚRY. Finanční matematika 13

HYPOTÉČNÍ ÚVĚRY. Finanční matematika 13 HYPOTÉČNÍ ÚVĚRY Finanční matematika 13 Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_Něm13

Více

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují.

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. .. Funkce, definiční obor funkce Předpoklady: 03 Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. Uděláme si na tabuli jenom krátký seznam: S = a, y = x, s = vt, výška lidí v

Více

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky.

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky. Výrzy Výrz je druh mtemtického zápisu, který obshuje konstnty, proměnné, symboly mtemtických opercí, závorky. Příkldy výrzů: + výrz obshuje pouze konstnty číselný výrz x výrz obshuje konstntu ( proměnnou

Více

2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I

2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I .. Kreslení grafů funkcí metodou dělení definičního oboru I Předpoklady: 01, 08 Opakování: Pokud jsme při řešení nerovnic potřebovali vynásobit nerovnici výrazem, nemohli jsme postupovat pro všechna čísla

Více

Derive 5 / Derive 6 ŘEŠENÍ VYBRANÝCH ÚLOH Z MATEMATIKY. Úlohy pro ZŠ

Derive 5 / Derive 6 ŘEŠENÍ VYBRANÝCH ÚLOH Z MATEMATIKY. Úlohy pro ZŠ Derive 5 / Derive 6 ŘEŠENÍ VYBRANÝCH ÚLOH Z MATEMATIKY Úlohy pro ZŠ Existuje tisíce cest jak používat CAS (systémy počítačové algebry) pro vyučování, dobré i špatné. Špatné nebo, lépe, nevhodné přístupy

Více

Funkce. Definiční obor a obor hodnot

Funkce. Definiční obor a obor hodnot Funkce Definiční obor a obor hodnot Opakování definice funkce Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny všech reálných čísel R, přiřazuje právě jedno reálné

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

6. Lineární (ne)rovnice s odmocninou

6. Lineární (ne)rovnice s odmocninou @06 6. Lineární (ne)rovnice s odmocninou rovnice Když se řekne s odmocninou, znamená to, že zadaná rovnice obsahuje neznámou pod odmocninou. není (ne)rovnice s odmocninou neznámá x není pod odmocninou

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Digitální učební materiál

Digitální učební materiál Projekt: Digitální učební materiál Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

Seznam učebnic pro 1. ročník čtyřletého studia a pro 5. ročník osmiletého studia škol. rok. 2014/15

Seznam učebnic pro 1. ročník čtyřletého studia a pro 5. ročník osmiletého studia škol. rok. 2014/15 Gymnázium, Dašická 1083, Pardubice Seznam učebnic pro 1. ročník čtyřletého studia a pro 5. ročník osmiletého studia škol. rok. 2014/15. 1. Český jaz.: 1/ Sochrová: Český jazyk v kostce pro SŠ, Fragment

Více

Gymnázium Vysoké Mýto učebnice pro primu

Gymnázium Vysoké Mýto učebnice pro primu Seznam učebnic pro školní rok 2015 2016 Gymnázium Vysoké Mýto učebnice pro primu Čítanka pro 6. ročník ZŠ (SP) pro 6. ročník ZŠ (SP) Project 2 (OUP) Občanská výchova Občanská výchova, Rodinná výchova pro

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

JAK SPOČÍTAT VÝPLATU. Finanční matematika 20

JAK SPOČÍTAT VÝPLATU. Finanční matematika 20 JAK SPOČÍTAT VÝPLATU Finanční matematika 20 Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu

Více

Seznam učebnic pro 1. ročník čtyřletého studia a pro 5. ročník osmiletého studia škol. rok. 2015/16

Seznam učebnic pro 1. ročník čtyřletého studia a pro 5. ročník osmiletého studia škol. rok. 2015/16 Gymnázium, Dašická 1083, Pardubice Seznam učebnic pro 1. ročník čtyřletého studia a pro 5. ročník osmiletého studia škol. rok. 2015/16. 1. Český jaz.: 1/ Sochrová: Český jazyk v kostce pro SŠ, Fragment

Více

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka íé= Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1..00/1.79 Název DUM: Hydrostatický tlak

Více

Podmínky přijetí ke studiu v univerzitním studijním programu. Aplikované vědy a technologie

Podmínky přijetí ke studiu v univerzitním studijním programu. Aplikované vědy a technologie Podmínky přijetí ke studiu v univerzitním studijním programu Aplikované vědy a technologie pro akademický rok 2015/2016 V akademickém roce 2015/2016 budou na VŠB-TU Ostrava otevřeny: bakalářský program

Více

CZ.1.07/1.5.00/34.0880 Digitální učební materiály www.skolalipa.cz. III/ 2- Inovace a zkvalitnění výuky prostřednictvím ICT

CZ.1.07/1.5.00/34.0880 Digitální učební materiály www.skolalipa.cz. III/ 2- Inovace a zkvalitnění výuky prostřednictvím ICT Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková

Více

Seznam učebnic pro 1. ročník čtyřletého studia a pro 5. ročník osmiletého studia škol. rok. 2011/12

Seznam učebnic pro 1. ročník čtyřletého studia a pro 5. ročník osmiletého studia škol. rok. 2011/12 Gymnázium, Dašická 1083, Pardubice Seznam učebnic pro 1. ročník čtyřletého studia a pro 5. ročník osmiletého studia škol. rok. 2011/12. 1. Český jaz.: 1/ Sochrová: Český jazyk v kostce pro SŠ, Fragment

Více

UČEBNICE + POMŮCKY 2015/2016 PRIMA. učebnice v elektronické podobě + ostatní materiály dodá škola

UČEBNICE + POMŮCKY 2015/2016 PRIMA. učebnice v elektronické podobě + ostatní materiály dodá škola PRIMA Občanská výchova učebnice v elektronické podobě (FRAUS) Pracovní sešit k ČJ pro ZŠ a víceletá gymnázia, 6. ročník (FRAUS - nová generace) /papírová podoba/ Český jazyk přehled učiva ZŠ (J. Melichar,

Více

Sbírka. úloh z matematiky. pro 2. ročník. tříletých učebních oborů

Sbírka. úloh z matematiky. pro 2. ročník. tříletých učebních oborů Sbírka úloh z matematik pro. ročník tříletých učebních oborů Jméno: Třída: Obsah Výraz Člen výrazu Absolutní hodnota Sčítání a odčítání výrazů 6 Násobení výrazů 6 Dělení výrazů jednočlenem 8 Vtýkání před

Více

Učebnice do primy 2014/15

Učebnice do primy 2014/15 Učebnice do primy Hudební výchova učebnice v elektronické podobě (FRAUS) pracovní sešit - Český jazyk 6 pro ZŠ a VG (nová generace) PS (FRAUS) /papírová podoba/ Český jazyk přehled učiva ZŠ (J. Melichar,

Více

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma: Elektřina a magnetismus Autor: Název: Datum vytvoření: 9. 1. 2014

Více

Seznamy učebnic pro první ročníky Gymnázia Vítězslava Nováka Jindřichův Hradec ve školním roce 2013/2014

Seznamy učebnic pro první ročníky Gymnázia Vítězslava Nováka Jindřichův Hradec ve školním roce 2013/2014 Seznamy učebnic pro první ročníky Gymnázia Vítězslava Nováka Jindřichův Hradec ve školním roce 2013/2014 Legenda: Červená barva: povinná, bude využívaná při hodinách. Černá barva: základní pro daný předmět,

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor Číslo projektu CZ.1.07/1.5.00/34.0743 Název škol Moravské gmnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika. Funkce. Definice funkce, graf funkce. Tet a příklad.

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Kondenzátor, kapacita VY_32_INOVACE_F0213. Fyzika

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Kondenzátor, kapacita VY_32_INOVACE_F0213. Fyzika Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

Algebraické výrazy pro učební obory

Algebraické výrazy pro učební obory Variace 1 Algebraické výrazy pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Algebraické výrazy

Více

UČEBNICE PRO 6. TŘÍDU

UČEBNICE PRO 6. TŘÍDU Hošnová, Styblík Český jazyk 6 Soukal Čítanka 6 Hutchinson Project English 2 (3. vydání) (část) Německý jazyk (Klett) Motta Wir neu 1 (část) UČEBNICE PRO 6. TŘÍDU Nováková, Kolmanová a kol. Le francais

Více

2.1.17 Parametrické systémy lineárních funkcí II

2.1.17 Parametrické systémy lineárních funkcí II .1.17 Parametrické sstém lineárních funkcí II Předpoklad: 11 Pedagogická poznámka: Celá hodina vznikla na základě jednoho příkladu ze sbírk úloh od Jindr Petákové. S příkladem mělo několik generací studentů

Více

SOUHRNNÝ PŘEHLED nově vytvořených / inovovaných materiálů v sadě

SOUHRNNÝ PŘEHLED nově vytvořených / inovovaných materiálů v sadě SOUHRNNÝ PŘEHLED nově vytvořených / inovovaných materiálů v sadě Název projektu Zlepšení podmínek vzdělávání SZŠ Číslo projektu CZ.1.07/1.5.00/34.0358 Název školy Střední zdravotnická škola, Turnov, 28.

Více

Seznam učebnic. - O. Odvárko: Sbírka úloh pro gymnázia Funkce (nakl. Prometheus), 97,- Kč

Seznam učebnic. - O. Odvárko: Sbírka úloh pro gymnázia Funkce (nakl. Prometheus), 97,- Kč Matematika Seznam učebnic Povinné ve všech ročnících - F. Janeček: Sbírka úloh pro SŠ výrazy, rovnice, nerovnice a jejich soustavy (nakl. Prometheus), 123,- Kč - J. Petáková: Matematika příprava k maturitě

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

Seznam učebnic pro 1. ročník čtyřletého studia a pro 5. ročník osmiletého studia škol. rok. 2009/10

Seznam učebnic pro 1. ročník čtyřletého studia a pro 5. ročník osmiletého studia škol. rok. 2009/10 Gymnázium, Dašická 1083, Pardubice Seznam učebnic pro 1. ročník čtyřletého studia a pro 5. ročník osmiletého studia škol. rok. 2009/10. 1. Český jaz.: 1/ Sochrová: Cvičení z českého jazyka v kostce pro

Více

ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647

ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647 ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647 Název vzdělávacího materiálu: VY_32_INOVACE_HRAVĚ18 Soutěž celá čísla, poměr, úměra, lomené výrazy, geometrie

Více

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose 3. Celá čísla 6. ročník 3. Celá čísla 3.1. Vymezení pojmu celé číslo Ve své dosavadní praxi jste se setkávali pouze s přirozenými čísly. Tato čísla určovala konkrétní počet (6 jablek, 7 kilogramů jablek,

Více

Seznam učebnic pro školní rok 2015/2016. Prima

Seznam učebnic pro školní rok 2015/2016. Prima Seznam učebnic pro školní rok 2015/2016 Prima On: Ze: Český jazyk pro zákl. školu a víceletá gymnázia 6, Fraus 2003, Krausová, Teršová Čítanka školní materiály English Plus 1, 2 objednávka přes školu v

Více

69-41-L/52 Vlasová kosmetika,

69-41-L/52 Vlasová kosmetika, Informace nástavbového studia oboru vzdělání 69-41-L/52 Vlasová kosmetika, denní formy vzdělávání Vážení rodiče, Vážení studenti, zasíláme Vám základní informace, které se týkají materiálního zabezpečení

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita lll.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Pracovní list pro téma lll.2.6 Zpracování textu

Více

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh Výstupy žáka ZŠ Chrudim, U Stadionu Je schopen vypočítat druhou mocninu a odmocninu nebo odhadnout přibližný výsledek Určí druhou mocninu a odmocninu pomocí tabulek a kalkulačky Umí řešit úlohy z praxe

Více

64-41-L/51 Podnikání,

64-41-L/51 Podnikání, Informace nástavbového studia oboru vzdělání 64-41-L/51 Podnikání, dálková formy vzdělávání Vážení studenti, zasíláme Vám základní informace, které se týkají materiálního zabezpečení nástavbového studia

Více

Seznam učebnic pro školní rok 2014/2015. Prima

Seznam učebnic pro školní rok 2014/2015. Prima Seznam učebnic pro školní rok 2014/2015 Prima On: Ze: Český jazyk pro zákl. školu a víceletá gymnázia 6, Fraus 2003, Krausová, Teršová Čítanka 6, Soukal Josef, SPN Praha English Plus 1, 2 objednávka přes

Více

ϵ = b a 2 n a n = a, pak b ϵ < a n < b + ϵ (2) < ϵ, což je spor, protože jsme volili ϵ = b a

ϵ = b a 2 n a n = a, pak b ϵ < a n < b + ϵ (2) < ϵ, což je spor, protože jsme volili ϵ = b a MA 6. cvičení výpočet limit posloupností Lukáš Pospíšil,202 Malý (ale pěkný) důkaz na úvod V dnešním cvičení se naučíme počítat jednoduché limity, nicméně by na začátek bylo vhodné ukázat, že to co hledáme,

Více

Seznamy učebnic pro první ročníky Gymnázia Vítězslava Nováka Jindřichův Hradec ve školním roce 2013/2014

Seznamy učebnic pro první ročníky Gymnázia Vítězslava Nováka Jindřichův Hradec ve školním roce 2013/2014 Seznamy učebnic pro první ročníky Gymnázia Vítězslava Nováka Jindřichův Hradec ve školním roce 2013/2014 Legenda: Červená barva: povinná, bude využívaná při hodinách. Černá barva: základní pro daný předmět,

Více

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina Reálná čísla Iracionální číslo je číslo vyjádřené ve tvaru nekonečného desetinného rozvoje, ve kterém se nevyskytuje žádná perioda. Při počítání je potřeba iracionální číslo vyjádřit zaokrouhlené na určitý

Více

Výukový materiál zpracován v rámci operačního projektu. EU peníze školám. Registrační číslo projektu: CZ.1.07/1.5.00/34.0512

Výukový materiál zpracován v rámci operačního projektu. EU peníze školám. Registrační číslo projektu: CZ.1.07/1.5.00/34.0512 Výukový materiál zpracován v rámci operačního projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0512 Střední škola ekonomiky, obchodu a služeb SČMSD Benešov, s.r.o. EKONOMIKA Dlouhodobý

Více

Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami

Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika)

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

STAVEBNÍ SPOŘENÍ. Finanční matematika 8

STAVEBNÍ SPOŘENÍ. Finanční matematika 8 STAVEBNÍ SPOŘENÍ Finanční matematika 8 Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_Něm08

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy

Více

Sešit pro laboratorní práci z chemie

Sešit pro laboratorní práci z chemie Sešit pro laboratorní práci z chemie téma: Roztoky výpočty koncentrací autor: MVDr. Alexandra Gajová vytvořeno při realizaci projektu: Inovace školního vzdělávacího programu biologie a chemie registrační

Více

Digitální učební materiál

Digitální učební materiál Projekt: Digitální učební materiál Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

Lambda-Tercie. fyzika

Lambda-Tercie. fyzika Lambda-Tercie Oxenden, C. et al. New English File Elementary MULTIPACK B (dokončíme), a New English File Pre-Intermediate MULTIPACK A, Oxford: OUP, 2005 Zeměpis světa 1 (Holeček, Janský, Tlach), Nakladatelství

Více

1. Vypočítejte: 775522 : 11. 2. Základní čtvercová síť má délky strany čtverců 1 cm. Určete obsah vyznačeného obrazce, odpověď zdůvodněte.

1. Vypočítejte: 775522 : 11. 2. Základní čtvercová síť má délky strany čtverců 1 cm. Určete obsah vyznačeného obrazce, odpověď zdůvodněte. Z A D Á N Í Gymnázium Ohradní Praha 4 / 5. třída / 03-04 / 1. kolo 1. Vypočítejte: 775522 : 11 2. Základní čtvercová síť má délky strany čtverců 1 cm. Určete obsah vyznačeného obrazce, odpověď zdůvodněte.

Více

MANUÁL. Výukových materiálů. Matematický kroužek 8.ročník MK2

MANUÁL. Výukových materiálů. Matematický kroužek 8.ročník MK2 MANUÁL Výukových materiálů Matematický kroužek 8.ročník MK2 Vypracovala: Mgr. Jana Kotvová 2014 Číslo hodiny: 1 Téma: Celá čísla, přednost matematických operací Očekávané výstupy: žáci počítají jednoduché

Více

6.PRAVOÚHLÁ SOUSTAVA SOUŘADNIC, PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST

6.PRAVOÚHLÁ SOUSTAVA SOUŘADNIC, PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST 6.PRAVOÚHLÁ SOUSTAVA SOUŘADNIC, PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST Zde je třeba pečlivě nastudovat teorii, ohledně obou funkci, jejich znázorňování a Důležitou roli přirozeně hraje metoda trojčlenky, kterou je třeba

Více

ÚČTOVÁNÍ ZDRAVOTNÍHO POJIŠTĚNÍ PODNIKU

ÚČTOVÁNÍ ZDRAVOTNÍHO POJIŠTĚNÍ PODNIKU ÚČTOVÁNÍ ZDRAVOTNÍHO POJIŠTĚNÍ PODNIKU Název školy Obchodní akademie, Vyšší odborná škola a Jazyková škola s právem státní jazykové zkoušky Uherské Hradiště Název DUMu VY_32_INOVACE_UCE1408 Autor Ing.

Více

ZÁKLADNÍ POZNATKY Z MATEMATIKY

ZÁKLADNÍ POZNATKY Z MATEMATIKY ZÁKLADNÍ POZNATKY Z MATEMATIKY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

Matematika - 6. ročník

Matematika - 6. ročník Matematika - 6. ročník Učivo Výstupy Kompetence Průřezová témata Metody a formy Přirozená čísla - zápis čísla v desítkové soustavě - zaokrouhlování - zobrazení na číselné ose - početní operace v oboru

Více

CZ.1.07/1.5.00/34.0880 Digitální učební materiály www.skolalipa.cz. III/ 2- Inovace a zkvalitnění výuky prostřednictvím ICT

CZ.1.07/1.5.00/34.0880 Digitální učební materiály www.skolalipa.cz. III/ 2- Inovace a zkvalitnění výuky prostřednictvím ICT Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více