SBÍRKA ÚLOH PRO PŘÍPRAVU NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY NA VŠ EKONOMICKÉHO SMĚRU

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "SBÍRKA ÚLOH PRO PŘÍPRAVU NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY NA VŠ EKONOMICKÉHO SMĚRU"

Transkript

1 SBÍRKA ÚLOH PRO PŘÍPRAVU NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY NA VŠ EKONOMICKÉHO SMĚRU Tento materiál vznikl v rámci realizace projektu: Globální vzdělávání pro udržitelný rozvoj v sítí spolupracujících škol, obce a ekologických sdružení. Reg. číslo CZ.1.07/1.1.00/ Verze 0.,

2 Předmluva Řešení testových úloh a systematické procvičování příslušné látky je klíčem k úspěchu v přijímacích zkouškách patrně u všech testů, matematiku nevyjímaje naopak, v případě matematiky to platí s trochou nadsázky dvojnásob. Problém však často spočívá v nedostatku vhodných úloh. Vysoké školy sice zpravidla na svých webových stránkách nabízejí ke stažení dříve použité testy, nicméně se jedná spíše o ukázky, než o dostatečně obsažné sady úloh. Nakladatelství vydávají nejrůznější tištěné sbírky úloh, často však jde o publikace relativně drahé. Na webu najdeme stránky obsahující sady úloh ke stažení, jejich kvalita však bývá často rozporuplná a rozsah nedostatečný: zpravidla se jedná o doplňkové materiály, které středoškolští pedagogové či lektoři vzdělávacích agentur připravili pro své studenty jako doplněk a dali je k dispozici na svých stránkách. Tato elektronická publikace by měla být první vlaštovkou volně šiřitelnou sbírkou úloh dostatečného rozsahu pokrývající nejčastější typy úloh, které se objevují v přijímacích zkouškách na fakultách ekonomického směru. Sbírka obsahuje sadu 10 kompletních testů, které mohou být využity jak v hodinách matematiky během standardní výuky na SŠ, tak během samostatné přípravy uchazečů doma. Jedná se též o vhodný materiál pro použití v agenturách, které se zabývají přípravou uchazečů na přijímací zkoušky na VŠ. Hodně štěstí (nejen) při přípravě vám přejí autoři.

3 Matematika pro ekonomické fakulty Test EKON01 VŠeweb.cz Instrukce k testu: Z uvedených odpovědí je právě jedna správná Příklady č. 1 až 10 jsou za 5 bodů. Příklady č. 11 až 15 jsou za 10 bodů. 1. Číslo ( ) ( ) je rovno číslu: a) ( ) b) ( ) 18 c) ( d) 1 ) ( 18 ) 0. Zlomek a) 1 b) c) d) je roven:. Číslo log 1 je rovno: 9 a) 1 b) 1 c) 1 d) 1 4. Počet všech x ( π, π ), pro která platí sin x = 6 7 a) b) c) 1 d) 0 1

4 5. V aritmetické posloupnosti platí: a + a 5 = 0 a a 1 + a 4 = 11. Osmý člen této posloupnosti (a 8 ) je roven: a) 1 9 c) 5 d) 6. Imaginární část komplexního čísla z = 1 i i a) i b) i c) d) 1 7. Množina všech reálných čísel, pro která platí nerovnost log 6 (x ) < 0 a) (, ) b) (, 6) c) (, ) d), ) 8. Množina všech reálných čísel, pro která platí nerovnost 8 x + 9 x+1 < 0 a) {0} b) c) {1} d) (, 0) 9. Definiční obor funkce f(x) = x + 9x 8 a) 1, 8 b) ( 1 8, ) c) ( 8 1, ) d) 8, Obecnou rovnici přímky, která je kolmá na přímku p : x + y = 0 a prochází bodem B = [, 1], lze napsat ve tvaru: a) x y + 4 = 0 b) y x + = 0 c) x + y + = 0

5 d) x + y = Počet všech x (π, π), pro která platí 1 sin x cos x = 0, je roven číslu: c) d) 4 1. Množina všech reálných čísel, pro která platí log 1 x 4 > 1 4 a) (0, 8) b) (8, ) c) (0, 4) d) (, 4) 1. Množina všech reálných čísel, pro která platí 9 x x < 1 a) (0, ) b) (, ) c) (, ) \ {0} d) (, ) \ {1} 14. Imaginární část komplexního čísla ( + i 1 )1 5 je rovna číslu: c) i d) Přímka s obecnou rovnicí p : x + 4y + 7 = 0 je tečnou kružnice k se středem S = [, ]. Rovnici kružnice k lze zapsat ve tvaru: a) (x ) + (y ) = 5 b) (x + ) + (y ) = 6 c) (x + ) + (y + ) = 5 d) (x + ) + (y + ) = 5

6 Matematika pro ekonomické fakulty Test VŠeweb.cz 10 Instrukce k testu: Z uvedených odpovědí je právě jedna správná Příklady č. 1 až 10 jsou za 5 bodů. Příklady č. 11 až 15 jsou za 10 bodů. 1. Číslo log 18 8 je rovno číslu: a) 4 9 b) c) 1 d) 1. Číslo ( ) ( 1 11) je rovno číslu: a) 1 b) 0 c) 1 d) ( ). Číslo log 1 81 a) 4 b) c) d) 4 je rovno číslu: 4. Absolutní hodnota čísla 1+7i 4i a) b) 1 c) d) 1 je rovna číslu: 1

7 5. Množina všech reálných čísel x, pro která platí, že log 9 x < 0 je rovna množině: a) b) (0, 9) c) (0, ) d) (0, 1) 6. Množina všech reálných čísel, pro která platí ( 9 4 )x < 0 je rovna množině: a) (, ) b) (, ) c) d) {1} 7. Definiční obor funkce f(x) = 5 x je roven množině: a) 1, 1 b) 5, 5 c) ( 5, 5) d) ( 1, 1) 8. Počet všech reálných kořenů rovnice x = x 4 je roven číslu: c) d) 4 9. V geometrické posloupnosti platí a = 16, q = 1. Čtvrtý člen této geometrické posloupnosti a 4 je roven: a) 4 b) c) 1 d) 1

8 10. Určete x-ovou souřadnici středu kružnice dané rovnicí x +y 10x+4y+8 a) c) d) Počet všech x 0, π, pro která platí 1 + sin x = cos x je roven číslu: c) d) 4 1. Množina všech reálných čísel x, pro která platí log 1 x 7 > 1 a) 4, 10 b) (7, + ) c) ( 7, 4) (4, 7) d) (4, 7) (7, 10) 1. Množina všech reálných čísel x, pro která platí 6 x 4 x > 1, je rovna množině: a) ( 4, 0) (0, 4) b) (0, 4) c) (1, 4) d) (, 4) (4, + ) 14. Imaginární část komplexního čísla ( + i )49 a) b) c) d) 15. Koeficient u x 1 v binomickém rozvoji výrazu ( 1 x x) 11 pro x různé od nuly je roven číslu: a) ( ) 11 b) ( ) 11 c) ( ) 11 d) ( ) 11

9 Matematika pro ekonomické fakulty Test EKON0 VŠeweb.cz Instrukce k testu: Z uvedených odpovědí je právě jedna správná Příklady č. 1 až 10 jsou za 5 bodů. Příklady č. 11 až 15 jsou za 10 bodů. 1. Zkoušející má k dispozici sadu 100 zkušebních úloh. Kolika způsoby lze z této sady vybrat úlohy do písemné zkoušky? a) 5000 b) 4950 c) d) Výraz log 1 65 je roven: 5 a) 1 b) c) 4 d) 4. Menší z kořenů rovnice x 14x + 45 = 0 je druhým členem aritmetické posloupnosti, větší z kořenů jejím čtvrtým členem. Šestý člen této aritmetické posloupnosti je roven: a) 10 1 c) 1 d) 1 4. Hodnota výrazu log ( 1 1 ) je rovna: a) 1 b) 0 c) 1 d) 1 1

10 5. Hodnota reálného čísla x, pro které platí ( 4 5 )x = , je rovna: a) 1 b) 1 c) 1 d) 1 6. Kvadratická rovnice tvaru x + px + q = 0 má jeden kořen i. Součet p + q je roven: a) b) c) 1 d) 0 7. Definiční obor funkce f(x) = x + x 1 je roven množině: a) (, 4, + ) b) (, 4) c) ( 4, ) d) (, 4) (, + ) 8. Poloměr kružnice dané rovnicí x + y 8x + y 19 = 0 je roven číslu: a) 5 b) 5 c) 6 d) 6 9. Množina všech reálných čísel, pro která platí log 7 x 7 > 1 a) (, 0) (14, ) b) (0, 14) c) 0, 14 d) (14, )

11 10. Obecnou rovnici přímky, která je kolmá na přímku p : 4x y + 4 = 0 a prochází bodem B = [1, 1], lze napsat ve tvaru: a) x + 4y + 1 = 0 b) x 4y 1 = 0 c) x + 4y + = 0 d) x 4y + 1 = Imaginární část komplexního čísla z = (1 + i) 1 je rovna číslu: a) b) c) 64 d) Počet všech x 0, π ), pro která platí 4 sin x + sin x = 0, je roven: c) d) 1. Je dána logaritmická funkce f(x) = log t 1 x, kde x je reálná proměnná a t t reálný parametr. Množina všech hodnot parametru t, pro které je funkce f rostoucí, je rovna množině: a) (0, ) b) (, ) c) (, ) d) (1, ) 14. Je dán trojúhelník v rovině o vrcholech A = [1, 1], B = [5, 1] a C = [, 6]. Obecnou rovnici přímky, na které leží těžnice t c lze napsat ve tvaru: a) x y + 1 = 0 b) 6x + y 18 = 0 c) 6x y 18 = 0 d) x + 6y 18 = 0

12 15. Je dáno přirozené číslo n, pro které platí, že počet trojčlenných variací z n prvků je roven dvanáctinásobku počtu dvojčlenných variací z n prvků. Hodnota n je rovna: a) 8 b) 7 c) 14 d) 16 4

13 Matematika pro ekonomické fakulty Test VŠeweb.cz 0 Instrukce k testu: Z uvedených odpovědí je právě jedna správná Příklady č. 1 až 10 jsou za 5 bodů. Příklady č. 11 až 15 jsou za 10 bodů. 1. Výraz log 1 a) 1 b) 0 c) 1 d) 7 je roven číslu:. Číslo ( ( 8 ) + 8 ) je rovno: a) ( ) 9 4 b) ( ) 8 5 c) ( ) 9 d) ( ) 9 1. Reálné číslo z, pro které platí, že log z 9 = náleží do intervalu: a) (, 1) b) ( 1, 0) c) (0, 1) d) (1, ) 4. Absolutní hodnota čísla i 1 i 1 a) 1 c) d) 1

14 5. Množina všech reálných čísel x, která jsou řešeními nerovnice log 9 x < 0, je rovna intervalu: a) (1, + ) b) (0, 9) c) (0, ) d) (0, 1) 6. Množina všech reálných čísel x, která jsou řešeními nerovnice ( 5 )x < 5 a) ( 1, + ) b) (0, + ) c) (1, + ) d) ( 5, + ) 7. Definiční obor funkce f(x) = 56 + x x a) 7, 8 b) 1, 7 c) (7, 8) d) ( 1, 8) 8. Počet všech x (0, π), která jsou řešeními rovnice sin x = 11 1 c) d) 4 je roven: 9. Diference aritmetické posloupnosti a n, pro kterou platí a + a 5 = 17 a a + a 7 = 6 je rovna: a) 1 b) c) d) 4

15 10. Obecnou rovnici přímky, která prochází bodem B = [1, 0] a je kolmá na přímku s rovnicí y = x + lze napsat ve tvaru: a) 4x + 6y 4 = 0 b) 4x + 6y + 4 = 0 c) 4x 6y 4 = 0 d) 4x 6y 4 = Počet všech x 0, π), pro která platí 1 + sin x = cos x je roven: c) d) 1. Množina všech reálných čísel x, pro která platí log 6 5x x a) (, + ) b) (9, + ) c) (, 9) d) (, ) > 1 je rovna: 1. Množina všech reálných čísel x, pro která platí x+ x > 7 je rovna: a) (1, + ) b) ( 1, 1) c) (0, 1 ) d) (0, 1) 14. Imaginární část komplexního čísla ( + i) 6 je rovna: a) 8 b) 8 c) 9 d) Pro které z kladných čísel q je přímka s obecnou rovnicí x y + q = 0 tečnou kružnice s rovnicí x + y 8 = 0: a) b) 4 c) 6 d) 8

16 Matematika pro ekonomické fakulty Test VŠeweb.cz 04 Instrukce k testu: Z uvedených odpovědí je právě jedna správná Příklady č. 1 až 10 jsou za 5 bodů. Příklady č. 11 až 15 jsou za 10 bodů. 1. Číslo 5!7! 10! je rovno: a) 1 6 b) 6 c) 7 d) Mezi kořeny rovnice x 16x + 60 = 0 vložte jedno číslo tak, aby kořeny spolu s vloženým číslem tvořily první tři členy aritmetické posloupnosti. Diference této posloupnosti je rovna: a) 1 b) c) d) 4. Výraz je roven: a) 7 b) 7 c) 7 d) 7 4. Množina všech reálných čísel x, pro která platí log 7 (x 7) 0 je rovna: a) (7, 8 b) (6, 8 c) (0, 1 d) (0, 1) 1

17 5. Kružnice k : x + y 6x + 9y 1 = 0 má střed se souřadnicemi: a) [ 1, ] b) [1, 0] c) [, 0] d) [1, ] 6. Definiční obor funkce f(x) = 11 11x je roven: a) b) {0} c) { 1 11 } d) { 11} 7. Počet všech reálných čísel x (0, π), která splňují sin x = 5 7 je roven: a) 8 b) 4 c) d) 1 8. První člen geometrické posloupnosti a 1 je roven x, druhý je roven x, přičemž x > 0. Kvocient této posloupnosti je roven: a) 1 x b) x c) 1 x d) x 9. Číslo ( 1 ) je rovno: a) 00 b) 6 c) ( ) 1 9 d) ( ) 1

18 10. Reálné číslo x, které splňuje rovnici (1 x ) x = 1 je rovno: a) 1 c) 0 d) Součet prvních pěti členů geometrické posloupnosti s kvocientem q = 1 a prvním členem a 1 = 64 je roven: a) 18 b) 64 c) 40 d) Průsečík přímky p : x = 7t 1, y = t, kde t je reálný parametr, a přímky q : x + y = 0, má souřadnice: a) [10, ] b) [, 5] c) [14, ] d) [4, 10] 1. Množina všech hodnot parametru p, pro který je exponenciální funkce f(x) = ( p p 1 )x klesající, je rovna: a) (1, + ) b) (0, 1) c) (, 0) d) (, 1) 14. Imaginární část komplexního čísla (1 + i) 6 je rovna: a) 8 b) 8 c) 0 d) 1

19 15. Rovnice ( ) n je splněna pro přirozené číslo n rovné: a) b) c) 4 d) 5 ( ) n = 16 4

20 Matematika pro ekonomické fakulty Test VŠeweb.cz 05 Instrukce k testu: Z uvedených odpovědí je právě jedna správná Příklady č. 1 až 10 jsou za 5 bodů. Příklady č. 11 až 15 jsou za 10 bodů. 1. Číslo ( ) ( ) je rovno číslu: c) ( ) 19 1 d) ( ) Zlomek a) 1 b) 6 6 c) d) 6 6 je roven:. Číslo log 1 56 je rovno: 4 a) 1 4 b) 4 c) 1 d) Počet všech x π, π a) b) c) 1 d) 0, pro která platí sin x = 11 1 je roven: 1

21 5. V aritmetické posloupnosti platí: a + a 5 = 7 a a 1 + a = 1. Sedmý člen této posloupnosti (a 7 ) je roven: a) 9 b) 0 c) 1 d) 6 6. Součet imaginární část a reálné části komplexního čísla z = 1 4i i a) b) 1 c) 1 d) 5 je roven: 7. Množina všech reálných čísel, pro která platí nerovnost log (x 6) > 0 je rovna: a) (7, ) b) (6, ) c) (0, 7) d) 7, 8) 8. Množina všech reálných čísel, pro která platí nerovnost 1 x < 0 je rovna: a) {0} b) (, 0) c) {1} d) 9. Definiční obor funkce f(x) = log x + 7x 8 je roven množině: a), 4 b) (, 4) c) (, 4, ) d) 4,

22 10. Obecnou rovnici přímky, která je kolmá na přímku zadanou parametricky x = 7 + t, y = 4 t (t je reálný parametr) a prochází bodem B = [, 1], lze napsat v obecném tvaru jako: a) x y 5 = 0 b) y x + 15 = 0 c) x + y + 1 = 0 d) x + y 1 = Počet všech x (π, π), pro která platí 1 sin x cos x = 0, je roven číslu: c) d) 4 1. Množina všech reálných čísel, pro která platí log 1 x 4 > 1 je rovna: 4 a) (0, 8) b) (8, ) c) (0, 4) d) (, 4) 1. Množina všech reálných čísel, pro která platí 9 x x < 1 je rovna: a) (0, ) b) (, ) c) (, ) \ {0} d) (, ) \ {1} 14. Imaginární část komplexního čísla ( + i 1 )15 je rovna číslu: c) i d) 1

23 15. Přímka s obecnou rovnicí p : x + 4y + 7 = 0 je tečnou kružnice k se středem S = [, ]. Rovnici kružnice k lze zapsat ve tvaru: a) (x ) + (y ) = 5 b) (x + ) + (y ) = 6 c) (x + ) + (y + ) = 5 d) (x + ) + (y + ) = 5 4

24 Matematika pro ekonomické fakulty Test VŠeweb.cz 06 Instrukce k testu: Z uvedených odpovědí je právě jedna správná Příklady č. 1 až 10 jsou za 5 bodů. Příklady č. 11 až 15 jsou za 10 bodů. 1. Pracovnice kontrolního odboru na finančním úřadě má na starosti 80 firem. Kolika způsoby může vybrat náhodně dvě firmy ke kontrole? a) 160 b) 00 c) 6400 d) 60. Výraz log 1 81 je roven: a) 1 b) c) 4 d) 4. Menší z kořenů rovnice x 14x + 40 = 0 je třetím členem aritmetické posloupnosti, větší z kořenů jejím šestým členem. Sedmý člen této aritmetické posloupnosti je roven: a) 9 c) 15 d) 0 4. Hodnota výrazu log 9 ( ) je rovna: c) 1 d) 1 4 1

25 5. Hodnota reálného čísla x, pro které platí ( 5 4 )x = 0, 75, je rovna: a) 1 b) 0 c) 1 d) 1 6. Kvadratická rovnice tvaru x + px + q = 0 ma jeden koren i. Soucet p + q je roven: a) 1 b) 6 c) 19 d) 0 7. Definiční obor funkce f(x) = log (x + x 1) je roven množině: a) (, 4, + ) b) (, 4) c) ( 4, ) d) (, 4) (, + ) 8. Poloměr kružnice dané rovnicí x + y 10x + 10y + 46 = 0 je roven číslu: a) b) 4 c) 16 d) 9. Množina všech reálných čísel x, pro která platí 11 x+ < 11 je rovna: a) b) { 4} c) (, 4 d) 0, 4

26 10. Obecnou rovnici přímky, která je kolmá na přímku p : x y + 6 = 0 a prochází bodem B = [0, 5], lze napsat ve tvaru: a) x + y 10 = 0 b) x y 10 = 0 c) x y 10 = 0 d) x + y + 10 = Imaginární část komplexního čísla z = (i 1) 9 je rovna číslu: a) 4 b) 4 c) 16 d) Počet všech x (0, π), pro která platí cos x sin x + sin x = 1 je roven číslu: c) d) 1. Je dána logaritmická funkce g(x) = log t 4 x, kde x je reálná proměnná, a t 5 t reálný parametr. Množina všech hodnot parametru t, pro které je funkce g rostoucí, je rovna množině: a) (0, 5) b) ( 5, 5) c) (5, ) d) (, 5) 14. Je dán trojúhelník v rovině o vrcholech A = [1, 1], B = [5, 1] a C = [, 6]. Obecnou rovnici přímky, která je kolmá na těžnici t c a prochází vrcholem C lze napsat ve tvaru: a) x + 6y 4 = 0 b) x 6y 18 = 0 c) x + 6y 18 = 0 d) x + y + 4 = 0

27 15. Množina všech reálných čísel x, pro která platí 1 x x < 1, je rovna množině: a) (, 0) (0, ) b) (, ) c) (0, d) (, ) 4

28 Matematika pro ekonomické fakulty Test VŠeweb.cz 07 Instrukce k testu: Z uvedených odpovědí je právě jedna správná Příklady č. 1 až 10 jsou za 5 bodů. Příklady č. 11 až 15 jsou za 10 bodů. 1. Tři čísla tvořící po sobě jdoucí členy aritmetické posloupnosti mají součet 45 a součin 000. Nejmenší z těchto čísel má hodnotu: a) 5 0 c) 15 d) 0 1. Reálné číslo z, pro které platí log z 4 =, je rovno: a) 1 b) 4 c) 1 4 d). Množina všech řešení rovnice sin x = na intervalu (0, π) je rovna: a) b) {0} c) {π} d) {0, π, π} 4. Počet řešení rovnice sin x cos x = 1 v intervalu (0, π) je roven: c) d) 4 1

29 5. Řešení nerovnice x + x 0 náleží do intervalu: a) (, 6 b) 6, 4 c), d) (, + ) 6. Řešením rovnice ( x ) x = 1 16 je číslo: a) 1 b) c) d) 1 7. Definiční obor funkce f(x) = x 7x + 6 je roven: a) 6, + ) b) (, 1 c) 1, 6 d) 1, + ) 8. Počet všech řešení rovnice cos x = 1 z intervalu 0, π je roven: b) c) 4 d) 8 9. Číslo (11 a) c) 1 d) 11 1 ) ( 1 11)

30 10. Absolutní hodnota komplexního čísla i je rovna: a) 8 b) c) 10 d) Vzdálenost průsečíků kružnice k : x + y + 4x y 1 = 0 s osou y je rovna: a) b) 4 c) 6 d) 8 1. Definiční obor f(x) = log 5 (5 x) 9x + je roven intervalu: a) 4, 5) b) ( 4, 5) c) 4, 5) d) 4, 5 1. Množina všech hodnot reálného parametru p, pro které je exponenciální funkce f(x) = ( p p ) rostoucí, je rovna: a) (, ) b) (, 1) c) (, + ) d) (1, ) 14. Počet všech x 0, π, pro která platí sin x = sin x, je roven číslu: c) d) 15. Reálná část komplexního čísla ( + i) 8 je rovna: a) 8 b) 10 c) 1 d) 16

31 Matematika pro ekonomické fakulty Test VŠeweb.cz 08 Instrukce k testu: Z uvedených odpovědí je právě jedna správná Příklady č. 1 až 10 jsou za 5 bodů. Příklady č. 11 až 15 jsou za 10 bodů. 1. V geometrické posloupnosti a n platí, že a 1 = 1 a a =. Člen a 4 je roven: a) 6 b) 6 c) 8 d) 8. Počet řešení nerovnice ( 7 6 )x < 6 7 je roven: b) c) 4 d) 8. Absolutní hodnota komplexního čísla 5i 5 + je rovna: a) 19 b) 9 c) 9 d) Řešením rovnice (6 x ) x = 6 je číslo: c) d) uvedená rovnice nemá řešení 1

32 5. Číslo ( 1 ) je rovno: a) 0 b) 10 c) 00 d) Počet řešení rovnice cos x = 1 v intervalu 0, π je roven: c) d) 7. Pro přirozené číslo n je výraz ( 1+i 1 i )n roven: a) 1 n c) i n d) i n 8. Hodnota výrazu log 1 7 je rovna: a) 1 b) c) 9 d) 9. Počet všech řešení rovnice sin x = 1 11 v intervalu ( π, π) je roven: c) d) 4

33 10. Množina všech řešení nerovnice 11 x + 11 x < 0 je rovna: a) b) (, + ) c) (, 0) d) (0, + ) 11. Průsečík přímek p 1 : x + y 5 = 0 a p : x y 4 = 0 se nachází v: a) prvním kvadrantu b) druhém kvadrantu c) třetím kvadrantu d) čtvrtém kvadrantu 1. Počet všech x 0, π), pro která platí cos x + sin x cos x = 0 je roven: a) 4 b) c) d) 1 1. Množina všech reálných čísel x, pro která platí 1 < log 7 x < je rovna: a) ( 49, 7) (7, 49) b) ( 7, 1) (1, 7) c) ( 7, 0) (0, 7) d) ( 49, 49) 14. Všechna reálná řešení rovnice log 10 x 4 log 10 x + log 10 x = 9 leží v intervalu: a) (100, + ) b) (10, 100) c) (1, 10) d) (0, 1) 15. Reálná řešení rovnice ( 1 4 )x = ( 1 8 )x náleží do intervalu:

34 a) 9, 6 b) ( 6, c) (, 0) d) 0, 4

35 Matematika pro ekonomické fakulty Test VŠeweb.cz 09 Instrukce k testu: Z uvedených odpovědí je právě jedna správná Příklady č. 1 až 10 jsou za 5 bodů. Příklady č. 11 až 15 jsou za 10 bodů. 1. V aritmetické posloupnosti a n platí: a 1 = a a 6 = 17. Člen a je roven: a) b) 5 c) 7 d) 8 1. Počet reálných čísel z, pro která platí log z 9 = 0 je roven: c) d) 4. Počet řešení rovnice sin x + cos x = 1 v intervalu (0, π) je roven: c) d) 4 4. Řešením rovnice (10 x ) x = 100 je číslo: c) d) 10 1

36 5. Řešení nerovnice x + x náleží do intervalu: a) (, 6) b) 6, 4) c) 4, ) d), 6. Hodnota komplexního čísla 7i 16 i 8 + 5i 6 je rovna: a) 4 b) 4 c) i d) 4i 7. Počet řešení rovnice (n + 1)! = n! je roven: c) d) 4 8. Kružnice k : x + y 8x 6y + 1 = 0 má poloměr: a) 1 b) c) d) 4 9. Definičním oborem funkce f(x) = log (x x + 10) je roven: a) b) (, + ) c) (, 0 d) 0, + )

37 10. Číslo ( ) ( 1 1 ) 11 c) ( ) 1 7 d) ( ) Množina všech reálných čísel x, pro která platí x 1, a) ( 4, 4) b) ( 4, 1 c) 1, 4) d) ( 4, 1 1, 4) 1. Množina všech reálných čísel x, pro která platí 1 < 4 x < 4, je rovna: a) (1, ) \ {} b) (1, ) c) (, + ) d) (, 1) 1. Množina všech hodnot parametru q, pro které má přímka p : y = x + q právě dva společné body s kružnicí k : x + y = 8, je rovna: a) ( 4, 4) b) (, ) c) (4, + ) d) (, + ) 14. Reálná část komplexního čísla (1 + i) je rovna: a) 8 b) 1 6 c) d) Součet x-ové a y-ové souřadnice průsečíku kružnice k : x +y y 4 = 0 a přímky p : x + y 7 = 0 má souřadnice: a) [ 1, ] b) [ 1, ] c) [1, ] d) [1, ]

38 Zdroje [1] Testy Matematika na ekonomické VŠ Petr Koranda, Josef Štefl. Fregment, 008. [] Testy přijímacího řízení Matematika (Vysoká škola ekonomická v Praze). Dostupné na (verze z ) [] Testy použité na přijímacích zkouškách v minulých obdobích. (Mendelova univerzita v Brně). Dostupné na ch (verze z ) [4] Ukázka vzorových testů (Česká zemědělská univerzita v Praze). Dostupné na r=4054&i=4090 (verze z ) Na tuto elektronickou publikaci navazují další učební materiály vystavené na webu: Kolektiv autorů, vydáno , vydavatel Gymnázium Globe, s.r.o.

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY Daniel Nechvátal :: maturitní otázky z matematiky 008 :: MOCNINY A ODMOCNINY ) Zjednodušte následující výrazy a určete, pro které hodnoty proměnných mají smysl a) ( ) ( ) [ ] ( ) ( ) [ ] : n n n n b) [

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

Sbírka úloh z matematiky

Sbírka úloh z matematiky Střední průmyslová škola a Střední odborné učiliště, Trutnov, Školní 101 Sbírka úloh z matematiky v rámci projektu královéhradeckého kraje zavádění inovativních metod výuky pomocí ICT v předmětu matematika

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Informace k jednotlivým zkouškám na jednotlivých oborech:

Informace k jednotlivým zkouškám na jednotlivých oborech: Informace k jednotlivým zkouškám na jednotlivých oborech: Obor Obchodní akademie 63-41-M/004 1. Praktická maturitní zkouška Praktická maturitní zkouška z odborných předmětů ekonomických se skládá z obsahu

Více

Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 příspěvková organizace sídlo: 612 00 Brno, Křižíkova 11

Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 příspěvková organizace sídlo: 612 00 Brno, Křižíkova 11 Témata k ústní maturitní zkoušce z předmětu Účetnictví profilové části maturitní zkoušky Školní rok 2012/2013 třída: 4.T 1. Legislativní úprava účetnictví 2. Účetní dokumentace 3. Manažerské účetnictví

Více

Alternace 2012/13 ALTERNACE MATEMATIKA 4. ROČNÍK 2012/13

Alternace 2012/13 ALTERNACE MATEMATIKA 4. ROČNÍK 2012/13 ALTERNACE MATEMATIKA 4. ROČNÍK 01/13-1- Obsah Posloupnosti... 4 Aritmetická posloupnost... 5 Geometrická posloupnost... 6 Geometrické řady... 7 Finanční matematika... 8 Vektor, operace s vektory... 9 Vzdálenosti

Více

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn! MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací

Více

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1.

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1. Eponenciální rovnice Eponenciální rovnice jsou rovnice, ve kterých se neznámá vsktuje v eponentu. Řešíme je v závislosti na tpu rovnice několika základními metodami. A. Metoda převedení na stejný základ

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

Obor vzdělání: 23 45 L/01 Platnost: 1.9.2010 Název ŠVP: Mechanik seřizovač Forma vzdělání: denní MATEMATIKA

Obor vzdělání: 23 45 L/01 Platnost: 1.9.2010 Název ŠVP: Mechanik seřizovač Forma vzdělání: denní MATEMATIKA Obor vzdělání: 23 45 L/01 Platnost: 1.9.2010 Název ŠVP: Mechanik seřizovač Forma vzdělání: denní MATEMATIKA Ročník: 1 Počet hodin celkem: 3 hod/týden = 99 Rozpis výsledků vzdělávání a učiva Výsledky vzdělávání

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

Informace k jednotlivým zkouškám na jednotlivých oborech:

Informace k jednotlivým zkouškám na jednotlivých oborech: Informace k jednotlivým zkouškám na jednotlivých oborech: I. Obor Ekonomické lyceum 78-42-M/002 1. Práce s obhajobou z ekonomiky nebo společenských věd: Témata pro práci s obhajobou budou žáci zpracovávat

Více

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011 MATEMATIKA pro 1. ročníky tříletých učebních oborů Trojúhelník Ing. Miroslav Čapek srpen 2011 Projekt Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.10/03.0021 je spolufinancován

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

SOUHRNNÝ PŘEHLED nově vytvořených / inovovaných materiálů v sadě

SOUHRNNÝ PŘEHLED nově vytvořených / inovovaných materiálů v sadě SOUHRNNÝ PŘEHLED nově vytvořených / inovovaných materiálů v sadě Název projektu Zlepšení podmínek vzdělávání SZŠ Číslo projektu CZ.1.07/1.5.00/34.0358 Název školy Střední zdravotnická škola, Turnov, 28.

Více

Funkce, funkční závislosti Lineární funkce

Funkce, funkční závislosti Lineární funkce Funkce, funkční závislosti Lineární funkce Obsah: Definice funkce Grafické znázornění funkce Konstantní funkce Lineární funkce Vlastnosti lineárních funkcí Lineární funkce - příklady Zdroje Z Návrat na

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce)

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce) Předmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: LOKÁLNÍ EXTRÉMY LOKÁLNÍ EXTRÉMY (maimum a minimum funkce) Lokální etrémy jsou body, v nichž funkce

Více

Definiční obor funkce, obor hodnot funkce. Funkce. Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště. Digitální učební materiály, 2012-14

Definiční obor funkce, obor hodnot funkce. Funkce. Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště. Digitální učební materiály, 2012-14 Funkce Definiční obor funkce, obor hodnot funkce Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště Digitální učební materiály, 01-14 Obsah 1 Definiční obor funkce příklady na určení oboru hodnot funkce

Více

11.1 Jedna rovnice pro jednu neznámou

11.1 Jedna rovnice pro jednu neznámou 52. ešení rovnic Mathcad je schopen řešit i velmi složité rovnice, kdy hledaná neznámá je obsažena současně v několika různých funkcích apod.. Jedna rovnice pro jednu neznámou.. Funkce root Před vlastním

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVDC0T03 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit

Více

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů Úterý 8. ledna Cabri program na rýsování program umožňuje rýsování základních geometrických útvarů, měření délky úsečky, velikosti úhlu, výpočet obvodů a obsahů. Je vhodný pro rýsování geometrických míst

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Deskriptivní geometrie

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

1. VÝROKOVÁ LOGIKA. a) b) c) d) e) f) g) h) i) j) k) l)

1. VÝROKOVÁ LOGIKA. a) b) c) d) e) f) g) h) i) j) k) l) 1. VÝROKOVÁ LOGIKA 1. Negujte výroky s kvantifikátory, výroky g j a jejich negace zapište i symbolicky a) Alespoň 5 dnů bude pršet. b) Úloha má právě 2 řešení. c) Žádný z předmětů mě nebaví. d) Nejvýše

Více

Okruhy profilových předmětů maturitní zkoušky třída 4. A, školní rok 2014/2015. Ekonomika

Okruhy profilových předmětů maturitní zkoušky třída 4. A, školní rok 2014/2015. Ekonomika Okruhy profilových předmětů maturitní zkoušky třída 4. A, školní rok 2014/2015 Ekonomika 1. Management 2. Oběžný majetek 3. Finanční trh 4. Bankovní soustava ČR 5. Marketing 6. Podnikání základ tržní ekonomiky

Více

MATEMATIKA Přijímací zkoušky na ČVUT

MATEMATIKA Přijímací zkoušky na ČVUT Kolektiv MATEMATIKA Přijímací zkoušky na ČVUT Praha 200 Vydavatelství ČVUT Lektoři: doc. RNDr. Čeněk Zlatník, CSc. doc. RNDr. Ludmila Machačová, CSc. Jaroslav Černý, Růžena Černá, František Gemperle, Vladimíra

Více

6.06. Matematika - MAT

6.06. Matematika - MAT 6.06. Matematika - MAT Obor: 36-47-M/01 Stavebnictví Forma vzdělávání: denní Počet hodin týdně za dobu vzdělávání: 12 Platnost učební osnovy: od 1.9.2008 1) Pojetí vyučovacího předmětu a) Cíle vyučovacího

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

1. Definiční obor funkce dvou proměnných

1. Definiční obor funkce dvou proměnných Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou

Více

Podmínky přijetí ke studiu v univerzitním studijním programu. Aplikované vědy a technologie

Podmínky přijetí ke studiu v univerzitním studijním programu. Aplikované vědy a technologie Podmínky přijetí ke studiu v univerzitním studijním programu Aplikované vědy a technologie pro akademický rok 2015/2016 V akademickém roce 2015/2016 budou na VŠB-TU Ostrava otevřeny: bakalářský program

Více

Předmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace.

Předmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace. Matematika Charakteristika vyučovacího předmětu Předmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace. Výuka matematiky přispívá k pochopení kvantitativních a prostorových vztahů reálného

Více

Obsah ZÁKLADNÍ INFORMACE...4 OČEKÁVANÉ VĚDOMOSTI A DOVEDNOSTI...5 TÉMATICKÉ OKRUHY...6 TEST 1 ZADÁNÍ...10 TEST 1 TABULKA S BODOVÝM HODNOCENÍM...

Obsah ZÁKLADNÍ INFORMACE...4 OČEKÁVANÉ VĚDOMOSTI A DOVEDNOSTI...5 TÉMATICKÉ OKRUHY...6 TEST 1 ZADÁNÍ...10 TEST 1 TABULKA S BODOVÝM HODNOCENÍM... Obsah ZÁKLADNÍ INFORMACE...4 OČEKÁVANÉ VĚDOMOSTI A DOVEDNOSTI...5 TÉMATICKÉ OKRUHY...6 TEST 1 ZADÁNÍ...10 TEST 1 TABULKA S BODOVÝM HODNOCENÍM... TEST 1 ŘEŠENÍ...5 TEST ZADÁNÍ...40 TEST TABULKA S BODOVÝM

Více

PŘEDMĚT: MATEMATIKA Školní výstupy Učivo Průřezová témata Poznámky, přesahy

PŘEDMĚT: MATEMATIKA Školní výstupy Učivo Průřezová témata Poznámky, přesahy PŘEDMĚT: MATEMATIKA ROČNÍK: PRVNÍ/KVINTA Školní výstupy Učivo Průřezová témata Poznámky, přesahy Žák určuje číselný obor daného čísla (N, Z, Q, R) a rozlišuje základní vlastnosti číselných oborů pracuje

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Základní cvičení z matematiky,

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu matematika a ve volitelných předmětech Deskriptivní geometrie,

Více

II. Nástroje a metody, kterými ověřujeme plnění cílů

II. Nástroje a metody, kterými ověřujeme plnění cílů MATEMATIKA Gymnázium PORG Libeň PORG Libeň je reálné gymnázium se všeobecným zaměřením, matematika je tedy na PORGu pilotním předmětem vyučovaným celých osm let. I. Cíle výuky Naši studenti jsou připravováni

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Matematika Ekonomické lyceum. Celkový počet vyučovacích hodin za studium: 396(12) od 1.9.2009 počínaje 1.ročníkem

Matematika Ekonomické lyceum. Celkový počet vyučovacích hodin za studium: 396(12) od 1.9.2009 počínaje 1.ročníkem 7.15 Pojetí vyučovacího předmětu matematika Název vyučovacího předmětu: Matematika Obor vzdělání: Ekonomické lyceum Forma vzdělání: denní Celkový počet vyučovacích hodin za studium: 396(12) Platnost: od

Více

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ FUNKCE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE DO ROZVOJE

Více

Maturitní okruhy z matematiky pro školní rok 2005-2006

Maturitní okruhy z matematiky pro školní rok 2005-2006 MATURITA 005-006 Gymnázium V.Hlavatého, Louny, Poděbradova 66 0.9.005 Maturitní okruhy z matematiky pro školní rok 005-006 Třída 8.A/8,.A/ V.Zlatohlávek, B. Naer. Úpravy výrazů v matematice.... Rovnice

Více

1. 1 P Ř I R O Z E N Á Č Í S L A 1. 2 D Ě L I T E L N O S T 1. 3 P R V O Č Í S L O A Č Í S L O S L O Ž E N É

1. 1 P Ř I R O Z E N Á Č Í S L A 1. 2 D Ě L I T E L N O S T 1. 3 P R V O Č Í S L O A Č Í S L O S L O Ž E N É 1. Č Í S E L N É O B O R Y 1. 1 P Ř I R O Z E N Á Č Í S L A Přirozená čísla (definice, značení, množinový zápis) Číslice (cifry 0 9) Číslo (rozvinutý resp. zkrácený zápis přirozeného čísla v desítkové

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti ILUSTRAČNÍ DIDAKTICKÝ TEST MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST Didaktický test obsahuje 0 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky:

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Analytická geometrie. Hyperbola VY_32_INOVACE_M0119.

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Analytická geometrie. Hyperbola VY_32_INOVACE_M0119. Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

Ministerstvo školství, mládeže a tělovýchovy KATALOG POŽADAVKŮ K MATURITNÍ ZKOUŠCE MATEMATIKA 1

Ministerstvo školství, mládeže a tělovýchovy KATALOG POŽADAVKŮ K MATURITNÍ ZKOUŠCE MATEMATIKA 1 Ministerstvo školství, mládeže a tělovýchovy KATALOG POŽADAVKŮ K MATURITNÍ ZKOUŠCE MATEMATIKA ZKOUŠKA ZADÁVANÁ MINISTERSTVEM ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Zpracoval: ÚIV CENTRUM PRO ZJIŠŤOVÁNÍ VÝSLEDKŮ

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

MATEMATIKA 2 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! Krok za krokem k nové maturitě Maturita nanečisto 2006

MATEMATIKA 2 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! Krok za krokem k nové maturitě Maturita nanečisto 2006 Krok za krokem k nové maturitě Maturita nanečisto 006 MAACZMZ06DT MATEMATIKA didaktický test Testový sešit obsahuje 0 úloh. Na řešení úloh máte 10 minut. Úlohy řešte v testovém sešitu. Odpovědi pište do

Více

4.2.15 Funkce kotangens

4.2.15 Funkce kotangens 4..5 Funkce kotangens Předpoklady: 44 Pedagogická poznámka: Pokud nemáte čas, doporučuji nechat tuto hodinu studentům na domácí práci. Nedá se na tom nic zkazit a v budoucnu to není nikde příliš potřeba.

Více

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10.

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10. MA. cvičení průběh funkce Lukáš Pospíšil,202 Průběh funkce Pod úkolem vyšetřete průběh funkce budeme rozumět nalezení všech kvalitativních vlastností zadané funkce - tedy bude potřeba zjistit o funkci

Více

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol. ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro gymnázia Vzdělávací oblast: Matematika a její aplikace Tematický okruh: Závislosti

Více

1. ABSOLUTNÍ HODNOTA. : y= 4. Je dán trojúhelník ABC, A[-3; 4], B[-1; -2], C[3; 6]. Vypočítejte velikosti všech výšek.

1. ABSOLUTNÍ HODNOTA. : y= 4. Je dán trojúhelník ABC, A[-3; 4], B[-1; -2], C[3; 6]. Vypočítejte velikosti všech výšek. . ABSOLUTNÍ HODNOTA definice absolutní hodnoty reálného čísla a geometrická interpretace, definice absolutní hodnoty komplexního čísla a geometrická interpretace, vzdálenost bodu od přímky (v rovině i

Více

GONIOMETRICKÉ FUNKCE

GONIOMETRICKÉ FUNKCE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol GONIOMETRICKÉ

Více

Pravidla pro hodnocení a klasifikaci v jednotlivých předmětech a seminářích

Pravidla pro hodnocení a klasifikaci v jednotlivých předmětech a seminářích Pravidla pro hodnocení a klasifikaci v jednotlivých předmětech a seminářích Povinností žáka je napsat seminární práci nejpozději ve 3.ročníku (septima) v semináři (dle zájmu žáka). Práce bude ohodnocena

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Deskriptivní geometrie

Více

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1 Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1 Funkce pro UO 1 Co je to matematická funkce? Mějme dvě množiny čísel. Množinu A a množinu B, které jsou neprázdné. Jestliže přiřadíme

Více

Programy na PODMÍNĚNÝ příkaz IF a CASE

Programy na PODMÍNĚNÝ příkaz IF a CASE Vstupy a výstupy budou vždy upraveny tak, aby bylo zřejmé, co zadáváme a co se zobrazuje. Není-li určeno, zadáváme přirozená čísla. Je-li to možné, používej generátor náhodných čísel vysvětli, co a jak

Více

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh Výstupy žáka ZŠ Chrudim, U Stadionu Je schopen vypočítat druhou mocninu a odmocninu nebo odhadnout přibližný výsledek Určí druhou mocninu a odmocninu pomocí tabulek a kalkulačky Umí řešit úlohy z praxe

Více

5.2.2 Matematika - 2. stupeň

5.2.2 Matematika - 2. stupeň 5.2.2 Matematika - 2. stupeň Charakteristika předmětu Obsahové, časové a organizační vymezení předmětu: Vyučovací předmět Matematika na 2. stupni školy navazuje svým vzdělávacím obsahem na předmět Matematika

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor Číslo projektu CZ.1.07/1.5.00/34.0743 Název škol Moravské gmnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika. Funkce. Definice funkce, graf funkce. Tet a příklad.

Více

TÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA

TÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA Matematika ročník TÉMA G5 VÝSTUP 5.1 Teorie množin, provádí správně operace s množinami, výroková logika množiny vyžívá při řešení úloh; pracuje správně s výroky, užívá správně logické spojky a kvantifikátory;

Více

Splněno ANO/NE/hodnota

Splněno ANO/NE/hodnota část 1 - software pro přípravu interaktivních výukových hodin postavený na aktivní účasti žáků základní specifikace: autorský objektově orientovaný výukový software v českém jazyce s implementovanou galerií

Více

UČEBNÍ OSNOVA PŘEDMĚTU

UČEBNÍ OSNOVA PŘEDMĚTU UČEBNÍ OSNOVA PŘEDMĚTU MATEMATIKA Název školního vzdělávacího programu: Název a kód oboru vzdělání: Celkový počet hodin za studium (rozpis učiva): Zedník 36-67-H/01 Zedník 1. ročník = 66 hodin/ročník (2

Více

Cvičení 1 Elementární funkce

Cvičení 1 Elementární funkce Cvičení Elementární funkce Příklad. Najděte definiční obor funkce f = +. + = + =, = D f =,. Příklad. Najděte definiční obor funkce f = 3. 3 3 = > 3 3 + =, 3, 3 = D f =, 3, 3. ± 3 = Příklad 3. Nalezněte

Více

MĚSÍC MATEMATIKA GEOMETRIE

MĚSÍC MATEMATIKA GEOMETRIE 3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek

Více

Příloha č. 1 KATALOG POŽADAVKŮ PRO NEPOVINNOU ZKOUŠKU PROFILOVÉ ČÁSTI MATURITNÍ ZKOUŠKY ZE STŘEDOŠKOLSKÉ MATEMATIKY MATEMATIKA+

Příloha č. 1 KATALOG POŽADAVKŮ PRO NEPOVINNOU ZKOUŠKU PROFILOVÉ ČÁSTI MATURITNÍ ZKOUŠKY ZE STŘEDOŠKOLSKÉ MATEMATIKY MATEMATIKA+ Příloha č. 1 KATALOG POŽADAVKŮ PRO NEPOVINNOU ZKOUŠKU PROFILOVÉ ČÁSTI MATURITNÍ ZKOUŠKY ZE STŘEDOŠKOLSKÉ MATEMATIKY MATEMATIKA+ 2 Úvod Účel a obsah katalogu Katalog požadavků výběrové nepovinné zkoušky

Více

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna 16. Trojúhelník, Mnohoúhelník, Kružnice (typy trojúhelníků a jejich vlastnosti, Pythagorova věta, Euklidovy věty, čtyřúhelníky druhy a jejich vlastnosti, kružnice obvodový a středový, úsekový úhel, vzájemná

Více

URČI HODNOTU VÝRAZU. A) Urči hodnotu výrazu 3 2 5 VYPOČÍTEJ 3 2 5 = 6 5 = 1. B) Urči hodnotu výrazu 4( x + 3) pro x = -1

URČI HODNOTU VÝRAZU. A) Urči hodnotu výrazu 3 2 5 VYPOČÍTEJ 3 2 5 = 6 5 = 1. B) Urči hodnotu výrazu 4( x + 3) pro x = -1 URČI HODNOTU VÝRAZU Kolik to je? A) Urči hodnotu výrazu 3 2 5 VYPOČÍTEJ 3 2 5 = 6 5 = 1 určit (vy)počítat dosadit hodnota výrazu (urči) (vypočítej) (dosaď) B) Urči hodnotu výrazu 4( x + 3) pro x = -1 DOSAĎ

Více

Vzdělávací předmět: Seminář z matematiky. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení předmětu 5.10.

Vzdělávací předmět: Seminář z matematiky. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení předmětu 5.10. 5.10. Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Matematika a její aplikace Matematika a její aplikace Seminář z matematiky Charakteristika vyučovacího předmětu Vyučovací předmět Seminář z

Více

PLANIMETRIE. Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04

PLANIMETRIE. Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04 PLANIMETRIE Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04 OPVK 1.5 EU peníze středním školám CZ.1.07/1.500/34.0116 Modernizace výuky na učilišti Název školy Název šablony Předmět Tematický celek

Více

MATURITNÍ ZKOUŠKA ve školním roce 2014/2015

MATURITNÍ ZKOUŠKA ve školním roce 2014/2015 MATURITNÍ ZKOUŠKA ve školním roce 2014/2015 Maturitní zkouška se skládá ze společné části a profilové části. 1. Společná část maturitní zkoušky Dvě povinné zkoušky a) český jazyk a literatura b) cizí jazyk

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A středa 19. listopadu 2014, 11:20 13:20 ➊ (8 bodů) Rozhodněte o stejnoměrné konvergenci řady n 3 n ( ) 1 e xn2 x 2 +n 2 na množině A = 0, + ). ➋

Více

Matematika. Až zahájíš práci, nezapomeò:

Matematika. Až zahájíš práci, nezapomeò: 9. TØÍDA PZ 2012 9. tøída I MA D Matematika Až zahájíš práci, nezapomeò: každá úloha má jen jedno správné øešení úlohy mùžeš øešit v libovolném poøadí test obsahuje 30 úloh na 60 minut sleduj bìhem øešení

Více

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

KATALOG POŽADAVKŮ ZKOUŠEK SPOLEČNÉ ČÁSTI MATURITNÍ ZKOUŠKY

KATALOG POŽADAVKŮ ZKOUŠEK SPOLEČNÉ ČÁSTI MATURITNÍ ZKOUŠKY KATALOG POŽADAVKŮ ZKOUŠEK SPOLEČNÉ ČÁSTI MATURITNÍ ZKOUŠKY platný od školního roku 2014/2015 MATEMATIKA Zpracoval: CENTRUM PRO ZJIŠŤOVÁNÍ VÝSLEDKŮ VZDĚLÁVÁNÍ Schválil: Ministerstvo školství, mládeže a

Více

Sférická trigonometrie v matematické geografii a astronomii

Sférická trigonometrie v matematické geografii a astronomii Sférická trigonometrie v matematické geografii a astronomii Mgr. Hana Lakomá, Ph.D., Mgr. Veronika Douchová 00 Tento učební materiál vznikl v rámci grantu FRVŠ F1 066. 1 Základní pojmy sférické trigonometrie

Více