Příprava na 1. čtvrtletní písemku pro třídu 1EB

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Příprava na 1. čtvrtletní písemku pro třídu 1EB"

Transkript

1 Variace 1 Příprava na 1. čtvrtletní písemku pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na

2 1. Číselné obory Číselné obory Přirozená čísla označujeme N Potřebujeme-li přidat nulu, pak označujeme N 0. jedná se o čísla 1, 2, 3, 4,... Nejmenší přirozené číslo je 1. Celá čísla označujeme Z (Opět můžeme vytvářet např. Z +, Z -, či Z 0 +.) tento číselný obor dostaneme, když k přirozeným číslům přidáme čísla opačná a nulu Racionální čísla označujeme Q (Opět můžeme vytvářet např. Q +, Q -, či Q 0 +.) jsou to všechna čísla, která můžeme vyjádřit zlomkem s celočíselným čitatelem i jmenovatelem. Iracionální čísla nemají své označení, protože ho vlastně nepotřebujeme (v obrázku níže jsme pro názornost použili označení I) patří sem např. čísla, 2, 3, apod. Reálná čísla označujeme je R (Opět můžeme vytvářet např. R +, R -, či R 0 +.) jsou to všechna čísla, která můžeme zobrazit na číselné ose Komplexní čísla označujeme je C jsou to čísla, která už nelze zobrazit na jedné číselné ose, ale potřebujeme k tomu dvě na sebe kolmé osy (podobně jako pro zobrazení bodů v rovině). Rovinu, v níž čísla zobrazujeme, nazýváme Gaussovou rovinou. 2. Dělitelnost Dělitelnost čísel 2

3 Dělitel daného čísla je takové číslo, kterým můžeme dané číslo beze zbytku dělit. Prvočísla jsou taková čísla, která mají za dělitele pouze číslo jedna a sama sebe. Čísla, která mají kromě jedničky a sama sebe ještě alespoň jednoho dělitele, se nazývají čísla složená. Příklad 1: Vypište všechny dělitele čísla 12 a čísla je číslo složené (dělitelem je 1, 2, 3, 4, 6, 12) 7 - prvočíslo (dělitelem je pouze 1, 7) Dělitelnost přirozených čísel (znaky dělitelnosti): Dělitelnost číslem 0: "Číslem nula nelze nikdy dělit". Dělitelnost číslem 1: "Číslo je dělitelné číslem jedna vždy" Dělitelnost číslem 2: "Číslo je dělitelné číslem 2, je-li sudé (tj. je-li zakončeno sudou číslicí)". Dělitelnost číslem 3: "Číslo je dělitelné číslem 3, je-li jeho ciferný součet dělitelný třemi". Dělitelnost číslem 4: "Číslo je dělitelné čtyřmi, je-li jeho poslední dvojčíslí dělitelné číslem 4". Dělitelnost číslem 5: "Číslo je dělitelné pěti, končí-li číslicí 5 nebo 0". Dělitelnost číslem 6: "Číslo je dělitelné šesti, je-li dělitelné současně dvěma i třemi". Dělitelnost číslem 7: - znak dělitelnosti existuje, ale je natolik složitý, že je rychlejší se o dělitelnosti čísla sedmičkou přesvědčit pouhým vydělením sedmi. Znak se tedy moc nepoužívá. Dělitelnost číslem 8: "Číslo je dělitelné osmi, je-li jeho poslední trojčíslí dělitelné osmi". Dělitelnost číslem 9: "Číslo je dělitelné devíti, je-li jeho ciferný součet dělitelný devíti". Dělitelnost číslem 10: "Číslo je dělitelné deseti, končí-li číslicí nula". Dělitelnost číslem 11: 3

4 "Číslo je dělitelné jedenácti, je-li rozdíl součtu číslic na sudých pozicích a součtu číslic na lichých pozicích čísla dělitelný jedenácti" Čísla, která mají kromě jedničky ještě alespoň jednoho společného dělitele, se nazývají čísla soudělná. Příklady: 2, 40 15, 60, 36 Čísla, která nemají kromě jedničky žádného společného dělitele, se nazývají čísla nesoudělná. Příklady: 5, 13 11, 15, Znaky dělitelnosti pro vyšší čísla: Lze-li libovolné číslo rozdělit na součin dvou nesoudělných čísel, pak platí, že původní číslo je dělitelné součinem, jeli dělitelné každým činitelem. Příklad 2: Určete, zda čísla 330 a 240 jsou dělitelná patnácti. Číslo 330 je dělitelné třemi i pěti, proto je dělitelné i patnácti. Číslo 240 je dělitelné třemi i pěti, proto je též dělitelné patnácti. 3. Nejmenší společný násobek, největší společný dělitel Nejmenší společný násobek Násobek dvou nebo více čísel je číslo, které lze všemi zadanými čísly beze zbytku vydělit. V praxi často hledáme takové číslo nejmenší a to pak tedy nazýváme nejmenší společný násobek. Postup pro určení nejmenšího společného násobku dvou nebo více čísel: Příklad 1: Určete nejmenší společný násobek čísel 20 a 24: 20 = = = = = čísla, která se opakují v obou rozkladech (nebo alespoň ve dvou rozkladech při více číslech), píšeme pouze jednou, dále do součinu doplníme i zbylá čísla: = 120 Závěr: n(20, 24) = 120 Příklad 2: Určete nejmenší společný násobek čísel 10, 18, = = =

5 n(10, 18, 27) = = 270 Pozn.: Nejmenší společný násobek můžeme určit také pokusem, a to tak, že vezmeme největší ze zadaných čísel a zkoumáme, zda je dělitelné zbývajícími čísly. Pokud ano, jsme hotovi. Pokud ne, bereme postupně dvojnásobek, trojnásobek, atd. největšího čísla a vždy zkoumáme, zda je dělitelný zbývajícími čísly. Jakmile je tato podmínka splněna, jsme hotovi. Největší společný dělitel Dělitel dvou nebo více čísel je číslo, kterým lze všechna zadaná čísla beze zbytku vydělit. V praxi většinou hledáme největší takové číslo a to pak nazýváme největší společný dělitel. Postup pro určení největšího společného dělitele dvou nebo více čísel: Příklad 3: Určete největší společný dělitel čísel 24 a = = čísla, která se opět v rozkladech opakují, píšeme do součinu pouze jednou; další zbylá čísla ale už nepíšeme: 2. 3 = 6 Závěr: D(24, 30) = 6 Pokud máme zadáno více čísel, do výsledného součinu píšeme pouze ta čísla, která se opakují v rozkladech všech čísel. Příklad 4: Určete největší společný dělitel čísel 36, 60 a = = = D(36; 60; 30) = 2. 3 = 6 Závěr: D(36; 60; 30) = 6 4. Číselné výrazy Číselné výrazy, výpočty s reálnými čísly Výraz je matematický zápis, ve kterém se vyskytují čísla (např. 2, 76, 896), proměnné (např. x, y, z), znaky početních operací (např. +, -, :), případně i pomocné znaky (např. závorky). Pokud se ve výrazu nevyskytují proměnné, ale pouze čísla, hovoříme o číselném výrazu. Pozn.: Úpravy číselných výrazů budeme provádět zpaměti, tedy bez použití kalkulačky 5

6 Přehled základních operací s číselnými výrazy 1. Sčítání (odečítání) číselných výrazů členy při sčítání nazýváme sčítanci, výsledek pak součet; při odečítání nazýváme číslo, od něhož odečítáme, menšenec, číslo, které odečítáme, menšitel a výsledek rozdíl při sčítání využíváme vhodně komutativnost, případně asociativnost jedná-li se o složitější čísla, postupujeme odzadu, podobně jako při sčítání (odečítání) písemném - pozor na odpovídající si řády! zlomky sčítáme (odečítáme) tak, že je nejprve převedeme na společného jmenovatele 2. Násobení číselných výrazů členy, které mezi sebou násobíme, nazýváme činitelé, výsledek pak jejich součin opět výhodně využíváme komutativnost nebo asociativnost složitější čísla si vynásobíme formou pomocného výpočtu pod sebe, případně můžeme využít některých dalších pomůcek (např. máme-li číslo vynásobit 25, je vhodné ho vynásobit stem a následně vydělit čtyřmi) násobíme-li desetinná čísla, má výsledek tolik desetinných míst, kolik jich měly všechny činitelé dohromady násobíme-li mezi sebou zlomky, pak součin jejich čitatelů lomíme součinem jejich jmenovatelů Pozn.: U zlomku horní číslo nazýváme čitatel, spodní jmenovatel 3. Dělení číselných výrazů číslo, které dělíme, nazýváme dělenec, číslo, kterým dělíme, nazýváme dělitel a výsledek podíl opět můžeme používat různé triky - např. chceme-li číslo dělit 25, pak ho vydělíme stem a následně vynásobíme čtyřmi dělíme-li mezi sebou desetinná čísla, postupujeme nejprve tak, že výpočet rozšíříme tak, aby v děliteli vymizelo desetinné číslo dělení často vyjadřujeme zlomkem Pozn.: Zlomky můžeme rozšiřovat (tj. můžeme násobit jejich čitatele i jmenovatele stejným číslem různým od nuly), dále je můžeme též krátit (tj. dělit jejich čitatele i jmenovatele stejným číslem různým od nuly). Při rozšiřování nebo krácení zlomků se nemění jejich hodnota. Zlomek je v základním tvaru, pokud už ho nelze dále krátit. dělíme-li mezi sebou dva zlomky, násobíme první zlomek (v nezměněné podobě) převrácenou hodnotou druhého zlomku Pozn.: Převrácenou hodnotu zlomku dostaneme tak, že jeho čitatele nahradíme jmenovatelem a naopak. Pokud u zlomku změníme jen znaménko, dostáváme zlomek opačný. Při této činnosti je jedno, zda napíšeme znaménko do čitatele, do jmenovatele nebo před zlomek. 4. Umocňování číselných výrazů umocňujeme-li desetinné číslo, pak výsledek má tolik desetinných míst, kolik je součin desetinných míst u původního čísla a exponentu mocniny umocňujeme-li číslo, které končí jednou nebo více nulami, pak umocníme tu část čísla, která vznikne po pomyslném odstranění nul a připíšeme tolik nul, kolik je součin jejich původního počtu a čísla v exponentu umocňujeme-li zlomek, pak umocňujeme jeho čitatele i jmenovatele druhé mocniny čísel do 20 musíme znát zpaměti

7 stejně tak musíme znát zpaměti třetí mocniny čísel do Odmocňování číselných výrazů provádíme-li zpaměti (nebo pomocí tabulek) druhou odmocninu desetinného čísla, musíme nejprve číslo upravit tak, aby obsahovalo sudý počet desetinných míst a zároveň toto číslo zapsané bez ohledu na desetinnou čárku bylo v rozmezí od jedné do tisíce. To provedeme tak, že buď přidáme nulu na konec čísla, případně provedeme zaokrouhlení. U výsledku pak přibude polovina desetinných míst z jejich původního počtu. provádíme-li zpaměti (nebo pomocí tabulek) třetí odmocninu desetinného čísla, postupujeme úplně stejně, jen číslo v prvním kroku upravíme tak, aby počet desetinných míst byl násobkem tří. U výsledku pak přibude třetina desetinných míst z jejich původního počtu. jedná-li se o čísla naopak příliš velká (končí jednou nebo více nulami), provedeme zaokrouhlení tak, aby počet nul byl sudé číslo (pro druhou odmocninu) a číslo odpovídající násobku tří (pro třetí odmocninu) a zbytek čísla (po pomyslném oddělení nul) byl z rozmezí od jedné do tisíce. Po odmocnění posuneme desetinnou čárku o tolik míst doprava, kolik je polovina z celkového počtu nul (pro druhou odmocninu) nebo třetina z celkového počtu nul (pro třetí odmocninu) Pokud se v číselném výrazu vyskytují závorky, řešíme je na prvním místě s tím, že v první fázi odstraňujeme závorky kulaté, dále hranaté a nakonec teprve závorky složené. Ukázkové příklady: Příklad 1: Vypočítejte: 7

8 Příklad 2: Vypočtěte: Příklad 3: Vypočtěte: 8

9 Pozn.: Sejdou-li se při úpravě číselného výrazu, pak postupujeme tak, že dvě shodná znaménka nahradíme znaménkem plus a dvě opačná znaménka nahradíme znaménkem minus. 5. Číselné výrazy - procvičovací příklady 1. Vypočtěte 4,396 : (1,3 + 0,27) - 0,95 + 1,15 2. Vypočti Vypočtěte bez použití kalkulátoru: Vypočti 0,322 : 1,4 5. Vypočti Vypočti Vypočti Vypočti

10 9. Vypočti : Vypočti Vypočti Vypočti ( ) + ( ) 13. Vypočtěte: Vypočti Vypočti Vypočti Vypočti Vypočti Vypočti: : (7,8-3,12) 20. Vypočti a výsledek zaokrouhli na dvě desetinná místa Vypočtěte a zaokrouhlete na desítky 35,4-16,8 : 2,4 - (30-25,4)

11 22. Zjednoduš: Vypočti Vypočti Vypočti Vypočti Vypočti Vypočti Vypočti Vypočti

12 31. Vypočti (0,42. 3,5) : 0, Zjednoduš zlomek a potom jej převeď na desetinné číslo zaokrouhlené na tisíciny Vypočti Vypočti Vypočti Vypočti bez zaokrouhlování Vypočítejte číslo a a zapište číslo opačné: 2980 a = (-3). (-0,1) (-4) 38. Vypočti Vypočti 208 : Vypočti číslo b a zapiš jeho převrácenou hodnotu Vypočti Vypočti

13 43. Vypočti Vypočti Vypočti Vypočti : Vypočti Intervaly Intervaly, jejich zápis a znázornění Užití intervalů je široké a setkáme se s nimi nejen při řešení nerovnic. Interval je vlastně jakési rozmezí čísel. Rozdělení intervalů: 1. Uzavřený interval a x b (x je menší nebo rovno b a zároveň větší nebo rovno než a ) - zapisujeme též množinově: x <a; b> Grafickým znázorněním tohoto intervalu je úsečka se svými krajními body. 2. Otevřený interval a < x < b (x je menší než b a zároveň větší než a ) - zapisujeme též množinově: x (a; b) 13

14 Grafickým znázorněním je úsečka bez krajních bodů. Poznámka: Zvláštním případem otevřeného intervalu je celá množina reálných čísel. Grafickým znázorněním je přímka. x (- ; + ) nebo jinak x R 3. Polootevřený (polouzavřený) interval a < x b (x je menší nebo rovno b a zároveň větší než a ) - zapisujeme též množinově: x (a; b> Grafickým znázorněním je úsečka s jedním krajním bodem. Takovýto interval někdy také nazýváme zprava uzavřený interval. Pozn.: Analogicky bychom mohli definovat zleva uzavřený interval. 4. Další typy intervalů x < a x (- ; a) Analogicky by byl interval pro x > a x a x (- ; a> Opět analogicky by vypadal interval pro x a Průnik a sjednocení intervalů S průnikem a sjednocením intervalů se setkáme v praxi například při řešení soustav nerovnic, ale i u některých funkcí - například u funkcí s absolutní hodnotou. Průnik dvou intervalů obsahuje tu část číselné osy, jejíž obsah patří do obou intervalů současně. Příklad 1: Určete průnik intervalů <-3; 5> a <2; 7) 14

15 Při průniku hledáme to, co je oběma intervalům společné, tedy řešením je uzavřený interval <2; 5>. Příklad 2: Určete průnik intervalů (- ; 3) a <0; + ) Společnou částí je v tomto případě zleva uzavřený interval <0; 3). Příklad 3: Určete sjednocení intervalů (-4; 2) a <1; 5) Při sjednocení hledáme to, co patří alespoň do jednoho z intervalů. Řešením je tedy otevřený interval (-4; 5). Příklad 4: Určete sjednocení intervalů (-4; 1) a (2; 4). Řešením je v tomto případě sjednocení (-4; 1) (2; 4). 7. Množiny a operace s nimi Co je množina Množinovými pojmy vyjadřujeme matematické úvahy o skupinách (souhrnech, souborech, oborech) osob, věcí i abstarktních věcí. Společné vlastnosti skupin, oborů, útvarů, souhrnů vyjadřujeme v matematice pomocí základních množinových pojmů: 15

16 Skupina, organizace, obor, útvar - množina Část skupiny, dílčí organizace, podobor, část útvaru - podmnožina Být členem organizace, patří do skupiny, náležet do oboru, patřit do útvaru - být prvkem množiny Skupina bez členů, útvar neobsahující žádný bod, prázdný obor - prázdná množina Množinu lze zadat: výčtem prvků pomocí charakteristické vlastnosti Inkluze a rovnost množin: inkluzi množiny A v množině B zapisujeme A B (čteme též "Množina A je podmnožinou množin B") rovnost množin zapisujeme A = B Každá množina je i podmnožinou sama sebe. Každá prázdná množina je podmnožinou každé množiny. Pozn.: Platí, že A B, jestliže pro každý prvek množiny A platí, že je zároveň i prvkem množiny B. Platí, že A = B, jestliže pro každý prvek množiny A platí, že je i prvkem množiny B a zároveň pro každý prvek množiny B platí, že je i prvkem množiny A. Doplněk množiny: Jsou-li A, U dvě množiny, pro které platí A U, pak existuje množina všech prvků množiny U obsahující prvky, které nepatří do A. Tuto množinu nazveme doplňkem množiny A v množině U (označujeme A ) Průnik a sjednocení množin: Jsou dány množiny A, B, přičemž A B. Množinu všech prvků, které obsahují prvky aspoň jedné z množin A, B nazveme sjednocení množin A, B. Zapisujeme A B. Množinu všech prvků, které patří do množiny A a zároveň i do množiny B, nazýváme průnik množin A, B. Zapisujeme A B. Množiny, které nemají společné prvky, nazýváme disjunktní množiny. Rozdíl množin: Jsou dány množiny A, B, přičemž A B. Množinu všech prvků, které patří do množiny A, ale nepatří do množiny B, nazveme rozdíl množin. Zapisujeme A \ B. Množinové operace často znázorňujeme Vennovými diagramy. Procvičovací úlohy: Nalezněte pomocí Vennových diagramů správně vyznačenou množinu: M = A B C'. Z - základní množina; A, B, C jsou podmnožiny základní množiny. Nalezněte pomocí Vennových diagramů správně vyznačenou množinu: M = (A U B) C'. Z - základní množina; A, B, C jsou podmnožiny základní množiny. 16

17 Nalezněte pomocí Vennových diagramů správně vyznačenou množinu: M = A B' C'. Z - základní množina; A, B, C jsou podmnožiny základní množiny. Nalezněte pomocí Vennových diagramů správně vyznačenou množinu: M = A U (B C'). Z - základní množina; A, B, C jsou podmnožiny základní množiny. Nalezněte pomocí Vennových diagramů správně vyznačenou množinu: M = (A' B') U (A B). Z - základní množina; A, B, C jsou podmnožiny základní množiny. Nalezněte pomocí Vennových diagramů správně vyznačenou množinu: M = (A U B) (C U B). Z - základní množina; A, B, C jsou podmnožiny základní množiny. Mezinárodní konference o teorii množin se účastní celkem 134 matematiků, z nich každý ovládá alespoň jeden z těchto jazyků: ruštinu, francouzštinu, angličtinu. 15 z nich ovládá všechny tři jazyky, angličtinu zná o 28 účastníků více než ruštinu. Těch, kteří ovládají ruštinu a francouzštinu a neznají angličtinu, je pětkrát méně, než těch, kteří znají pouze angličtinu. Účastníků konference, kteří znají jenom ruštinu, je třikrát více než těch, kteří ovládají ruštinu a angličtinu, ale neznají francouzštinu. Těch, kteří znají jenom francouzštinu, je právě tolik, jako těch, kteří ovládají jenom angličtinu. Účastníků, kteří ovládají angličtinu a ruštinu, ale neznají francouzštinu, je o 18 méně než těch, kteří neovládají ruštinu, ale znají francouzštinu a angličtinu. Předseda organizačního výboru mluví všemi třemi jazyky. Ve kterém z nich by měl přednést uvítací projev, aby jej mohlo poslouchat co nejvíce účastníků bez tlumočníka? Z 35 žáků odebírá časopis ABC 8 žáků, časopis VTM 10 žáků. 21 žáků neodebírá žádný z těchto dvou časopisů. Kolik žáků odebírá oba časopisy. 17

18 Obsah 1. Číselné obory 2. Dělitelnost 3. Nejmenší společný násobek, největší společný dělitel 4. Číselné výrazy 5. Číselné výrazy - procvičovací příklady 6. Intervaly 7. Množiny a operace s nimi

M - Příprava na čtvrtletní písemnou práci

M - Příprava na čtvrtletní písemnou práci M - Příprava na čtvrtletní písemnou práci Určeno pro třídu 1ODK. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 3. Reálná čísla

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 3. Reálná čísla Moderní technologie ve studiu aplikované fyziky CZ..07/..00/07.008 3. Reálná čísla RACIONÁLNÍ A IRACIONÁLNÍ ČÍSLA Význačnými množinami jsou číselné množiny. K nejvýznamnějším patří množina reálných čísel,

Více

1. a) Přirozená čísla

1. a) Přirozená čísla jednotky desítky stovky tisíce desetitisíce statisíce miliony 1. a) Přirozená čísla Přirozená čísla jsou nejčastějšími čísly, se kterými se setkáváme v běžném životě. Jejich pomocí zapisujeme počet věcí

Více

Aritmetika s didaktikou II.

Aritmetika s didaktikou II. Katedra matematiky PF UJEP Aritmetika s didaktikou II. KM / 0026 Přednáška 0 Desetinnáčísla O čem budeme hovořit: Budeme definovat desetinnáčísla jako speciální racionálníčísla. Naučíme se poznávat různé

Více

3. Polynomy Verze 338.

3. Polynomy Verze 338. 3. Polynomy Verze 338. V této kapitole se věnujeme vlastnostem polynomů. Definujeme základní pojmy, které se k nim váží, definujeme algebraické operace s polynomy. Diskutujeme dělitelnost polynomů, existenci

Více

5.2.1 Matematika povinný předmět

5.2.1 Matematika povinný předmět 5.2.1 Matematika povinný předmět Učební plán předmětu 1. ročník 2. ročník 3. ročník 6. ročník 7. ročník 8. ročník 9. ročník 4 4+1 4+1 4+1 4+1 4 4 3+1 4+1 Vzdělávací oblast Matematika a její aplikace v

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Znaky dělitelnosti - Procvičování. Dušan Astaloš. samostatná práce, případně skupinová práce

Svobodná chebská škola, základní škola a gymnázium s.r.o. Znaky dělitelnosti - Procvičování. Dušan Astaloš. samostatná práce, případně skupinová práce METODICKÝ LIST DA11 Název tématu: Autor: Předmět: Znaky dělitelnosti - Procvičování Dušan Astaloš Matematika Ročník: 6. Učebnice: Kapitola, oddíl: Metody výuky: Formy výuky: fixační samostatná práce, případně

Více

Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia

Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia - - Konzultce z předmětu MATEMATIKA pro první ročník dálkového studi ) Číselné obor ) Zákldní početní operce procentový počet ) Absolutní hodnot reálného čísl ) Intervl množinové operce ) Mocnin ) Odmocnin

Více

1.2.5 Reálná čísla I. Předpoklady: 010204

1.2.5 Reálná čísla I. Předpoklady: 010204 .2.5 Reálná čísla I Předpoklady: 00204 Značíme R. Reálná čísla jsou čísla, kterými se vyjadřují délky úseček, čísla jim opačná a 0. Každé reálné číslo je na číselné ose znázorněno právě jedním bodem. Každý

Více

11 Soustavy rovnic a nerovnic, Determinanty a Matice

11 Soustavy rovnic a nerovnic, Determinanty a Matice 11 Soustavy rovnic a nerovnic, Determinanty a Matice (r zné typy soustav rovnic a nerovnic, matice druhy matic, operace s maticemi, hodnost matice, inverzní matice, Gaussova elimina ní metoda, determinanty

Více

a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem.

a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem. 1 Matice Definice 1 Matice A typu (m, n) je zobrazení z kartézského součinu {1, 2,,m} {1, 2,,n} do množiny R Matici A obvykle zapisujeme takto: a 1n a 21 a 22 a 2n A =, a m1 a m2 a mn kde a ij R jsou její

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/21.3476 Název materiálu: VY_42_INOVACE_145 Vzdělávací oblast: Matematika a její aplikace Vzdělávací

Více

Úlohy domácího kola kategorie C

Úlohy domácího kola kategorie C 50. ročník Matematické olympiády Úlohy domácího kola kategorie 1. Najděte všechna trojmístná čísla n taková, že poslední trojčíslí čísla n 2 je shodné s číslem n. Student může při řešení úlohy postupovat

Více

Č část četnost. 部 分 频 率 relativní četnost 率, 相 对 频 数

Č část četnost. 部 分 频 率 relativní četnost 率, 相 对 频 数 A absolutní člen 常 量 成 员 absolutní hodnota čísla 绝 对 值 algebraický výraz 代 数 表 达 式 ar 公 亩 aritmetický průměr 算 术 均 数 aritmetika 算 术, 算 法 B boční hrana 侧 棱 boční hrany jehlanu 角 锥 的 侧 棱 boční stěny jehlanu

Více

Matematika - Sekunda Matematika sekunda Výchovné a vzdělávací strategie Učivo ŠVP výstupy

Matematika - Sekunda Matematika sekunda Výchovné a vzdělávací strategie Učivo ŠVP výstupy - Sekunda Matematika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k učení Kompetence pracovní Učivo

Více

SBÍRKA PŘÍKLADŮ PRO OPAKOVÁNÍ NA PŘIJÍMACÍ ZKOUŠKY 2

SBÍRKA PŘÍKLADŮ PRO OPAKOVÁNÍ NA PŘIJÍMACÍ ZKOUŠKY 2 STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNÍ A STAVEBNÍ TÁBOR, KOMENSKÉHO 1670 SBÍRKA PŘÍKLADŮ PRO OPAKOVÁNÍ NA PŘIJÍMACÍ ZKOUŠKY 2 ŠKOLNÍ ROK 2014/2015 Obsah 1 Dělitelnost přirozených čísel... 3 2 Obvody a obsahy

Více

1 Matematické základy teorie obvodů

1 Matematické základy teorie obvodů Matematické základy teorie obvodů Vypracoval M. Košek Toto cvičení si klade možná přemrštěný, možná jednoduchý, cíl dosáhnout toho, aby všichní studenti znali základy matematiky (a fyziky) nutné pro pochopení

Více

c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly.

c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly. 9. Úvod do středoškolského studia - rozšiřující učivo 9.. Další znalosti o trojúhelníku 9... Sinova věta a = sin b = sin c sin Příklad : V trojúhelníku BC platí : c = 0 cm, α = 45 0, β = 05 0. Vypočtěte

Více

Řešení: 20. ročník, 2. série

Řešení: 20. ročník, 2. série Řešení: 20. ročník, 2. série.úloha Předpokládejme, že hledaná cesta existuje. Pak je možné vyrazit z bodu A do bodu D po žluté cestě (obvodu obdélníka). Abychom splnili všechny podmínky zadání, musíme

Více

ŠVP - učební osnovy - Vzdělání pro život - rozšířená výuka matematiky, přírodovědných předmětů a informatiky

ŠVP - učební osnovy - Vzdělání pro život - rozšířená výuka matematiky, přírodovědných předmětů a informatiky 1 Učební osnovy 1.1 Matematika a její aplikace Vzdělávací oblast Matematika a její aplikace v základním vzdělávání je založena především na aktivních činnostech, které jsou typické pro práci s matematickými

Více

1.4.1 Výroky. Předpoklady: Výrok je sdělení, u něhož má smysl otázka, zda je či není pravdivé

1.4.1 Výroky. Předpoklady: Výrok je sdělení, u něhož má smysl otázka, zda je či není pravdivé 1.4.1 Výroky Předpoklady: Výrok je sdělení, u něhož má smysl otázka, zda je či není pradié Číslo π je iracionální. pradiý ýrok Ach jo, zase matika. není ýrok V rozrhu máme deset hodin matematiky týdně.

Více

1.2.7 Druhá odmocnina

1.2.7 Druhá odmocnina ..7 Druhá odmocnina Předpoklady: umocňování čísel na druhou Pedagogická poznámka: Probrat obsah této hodiny není možné ve 4 minutách. Já osobně druhou část (usměrňování) probírám v další hodině, jejíž

Více

2.2.10 Slovní úlohy vedoucí na lineární rovnice I

2.2.10 Slovní úlohy vedoucí na lineární rovnice I Slovní úlohy vedoucí na lineární rovnice I Předpoklady: 0, 06 Pedagogická poznámka: Řešení slovních úloh představuje pro značnou část studentů nejobtížnější část matematiky Důvod je jednoduchý Po celou

Více

Výstupy Učivo Téma. Čas. Základní škola a mateřská škola Hať. Školní vzdělávací program. Průřezová témata, kontexty a přesahy,další poznámky

Výstupy Učivo Téma. Čas. Základní škola a mateřská škola Hať. Školní vzdělávací program. Průřezová témata, kontexty a přesahy,další poznámky provádí pamětné a písemné početní Čísla přirozená Opakování září, říjen operace v oboru přirozených čísel porovnává a uspořádává čísla celá a Čísla celá, racionální racionální, provádí početní operace

Více

MATEMATIKA I VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ NOVOTNÝ ZÁKLADY LINEÁRNÍ ALGEBRY

MATEMATIKA I VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ NOVOTNÝ ZÁKLADY LINEÁRNÍ ALGEBRY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ NOVOTNÝ MATEMATIKA I ZÁKLADY LINEÁRNÍ ALGEBRY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX 2ε, Podpořeno projektem

Více

Matematika. Charakteristika vyučovacího předmětu. Výchovné a vzdělávací strategie pro rozvíjení klíčových kompetencí žáků

Matematika. Charakteristika vyučovacího předmětu. Výchovné a vzdělávací strategie pro rozvíjení klíčových kompetencí žáků Vzdělávací obor: Matematika a její aplikace Matematika Obsahové, časové a organizační vymezení Charakteristika vyučovacího předmětu 1.-2. ročník 4 hodiny týdně 3.-5. ročník 5 hodin týdně Vzdělávací obsah

Více

Základní škola Fr. Kupky, ul. Fr. Kupky 350, 518 01 Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE - 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 9.

Základní škola Fr. Kupky, ul. Fr. Kupky 350, 518 01 Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE - 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 9. 5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 9. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo M9101 provádí početní operace

Více

Daniel Velek Optimalizace 2003/2004 IS1 KI/0033 LS PRAKTICKÝ PŘÍKLAD NA MINIMALIZACI NÁKLADŮ PŘI VÝROBĚ

Daniel Velek Optimalizace 2003/2004 IS1 KI/0033 LS PRAKTICKÝ PŘÍKLAD NA MINIMALIZACI NÁKLADŮ PŘI VÝROBĚ PRAKTICKÝ PŘÍKLAD NA MINIMALIZACI NÁKLADŮ PŘI VÝROBĚ - 1 - Firma zabývající se výrobou světlometů do aut dostala zakázku na výrobu 3 druhů světlometů do aut, respektive do Škody Fabia, Octavia a Superb.

Více

4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů

4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů 4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů Příklad 1: Pracujte v pohledu Shora. Sestrojte kružnici se středem [0,0,0], poloměrem 10 a kružnici

Více

2 Trochu teorie. Tab. 1: Tabulka pˇrepravních nákladů

2 Trochu teorie. Tab. 1: Tabulka pˇrepravních nákladů Klíčová slova: Dopravní problém, Metody k nalezení výchozího ˇrešení, Optimální ˇrešení. Dopravní problém je jednou z podskupin distribuční úlohy (dále ještě problém přiřazovací a obecná distribuční úloha).

Více

SBORNÍK PŘÍKLADŮ Z MATEMATIKY

SBORNÍK PŘÍKLADŮ Z MATEMATIKY SBORNÍK PŘÍKLADŮ Z MATEMATIKY 1. Výrazy a počítání s nimi... 4 1.1. Mocniny s celým exponentem a s racionálním exponentem... 4 1.2 Počítání s odmocninami... 7 1.3 Úpravy algebraických výrazů... 10 2. Rovnice,

Více

2.2.2 Zlomky I. Předpoklady: 020201

2.2.2 Zlomky I. Předpoklady: 020201 .. Zlomky I Předpoklady: 0001 Pedagogická poznámka: V hodině je třeba postupovat tak, aby se ještě před jejím koncem začala vyplňovat tabulka u posledního příkladu 9. V loňském roce jsme si zopakovali

Více

Příloha č. 7. ročník 9. 1h 1x za 14 dní. dotace. nepovinný. povinnost

Příloha č. 7. ročník 9. 1h 1x za 14 dní. dotace. nepovinný. povinnost Příloha č. 7 Seminář z matematiky V učebním plánu 2. druhého stupně se zařazuje nepovinný předmět Seminář z matematiky. V tematickém okruhu Čísla a početní operace na prvním stupni, na který navazuje a

Více

10 je 0,1; nebo taky, že 256

10 je 0,1; nebo taky, že 256 LIMITY POSLOUPNOSTÍ N Á V O D Á V O D : - - Co to je Posloupnost je parta očíslovaných čísel. Trabl je v tom, že aby to byla posloupnost, musí těch čísel být nekonečně mnoho. Očíslovaná čísla, to zavání

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM Vyučovací předmět : Období ročník : Učební texty : Matematika 3. období 7. ročník J.Coufalová : Matematika pro 7.ročník ZŠ (Fortuna) O.Odvárko, J.Kadleček : Sbírka úloh z matematiky pro 7.ročník ZŠ (Prometheus)

Více

VÝUKOVÝ MATERIÁL. Matematika 1. ročník, studijní a učební obory Bez příloh

VÝUKOVÝ MATERIÁL. Matematika 1. ročník, studijní a učební obory Bez příloh Identifikační údaje školy Číslo projektu Číslo a název šablony Autor Tematická oblast Číslo a název materiálu Anotace Vytvořeno 18.5.2013 Určeno pro Přílohy VÝUKOVÝ MATERIÁL Vyšší odborná škola a Střední

Více

matematika vás má it naupravidl

matematika vás má it naupravidl VÝZNAM Algebrický výrz se zvádí intuitivn bez p esn ího vmezení v kolizi s názv dvoj len, troj len, mnoho len. Stále se udr uje fle ná p edstv, e ísl ozn ují mno ství, e jsou zobecn ním vnímné skute nosti.

Více

4 DVOJMATICOVÉ HRY. Strategie Stiskni páku Sed u koryta. Stiskni páku (8, 2) (5, 3) Sed u koryta (10, 2) (0, 0)

4 DVOJMATICOVÉ HRY. Strategie Stiskni páku Sed u koryta. Stiskni páku (8, 2) (5, 3) Sed u koryta (10, 2) (0, 0) 4 DVOJMATICOVÉ HRY Strategie Stiskni páku Sed u koryta Stiskni páku (8, 2) (5, 3) Sed u koryta (10, 2) (0, 0) 125 DVOJMATICOVÁ HRA Je-li speciálně množina hráčů Q = {1, 2} a prostory strategií S 1, S 2

Více

Řešení: Dejme tomu, že pan Alois to vezme popořadě od jara do zimy. Pro výběr fotky z jara má Alois dvanáct možností. Tady není co počítat.

Řešení: Dejme tomu, že pan Alois to vezme popořadě od jara do zimy. Pro výběr fotky z jara má Alois dvanáct možností. Tady není co počítat. KOMBINATORIKA ŘEŠENÉ PŘÍKLADY Příklad 1 Pan Alois dostal od vedení NP Šumava za úkol vytvořit propagační poster se čtyřmi fotografiemi Šumavského národního parku, každou z jiného ročního období (viz obrázek).

Více

Úprava tabulek v MS Word. Centrum pro virtuální a moderní metody a formy vzdělávání na Obchodní akademii T. G. Masaryka, Kostelec nad Orlicí

Úprava tabulek v MS Word. Centrum pro virtuální a moderní metody a formy vzdělávání na Obchodní akademii T. G. Masaryka, Kostelec nad Orlicí Úprava tabulek v MS Word Centrum pro virtuální a moderní metody a formy vzdělávání na Obchodní akademii T. G. Masaryka, Kostelec nad Orlicí Jestli-že chcete uspořádat informace do pravidelných řádků a

Více

TÉMATICKÝ PLÁN OSV. čte, zapisuje a porovnává přirozená čísla do 20, užívá a zapisuje vztah rovnosti a nerovnosti

TÉMATICKÝ PLÁN OSV. čte, zapisuje a porovnává přirozená čísla do 20, užívá a zapisuje vztah rovnosti a nerovnosti TÉMATICKÝ PLÁN MA 1.ročník Očekávaný výstup /dle RVP/ Žák: Konkretizace výstupu, učivo, návrh realizace výstupu PT Číslo a početní operace používá přirozená čísla k modelování reálných situací, počítá

Více

Státní maturita 2011 Maturitní testy a zadání jaro 2011 Matematika: didaktický test - základní úrove obtíºnosti MAMZD11C0T02 e²ené p íklady

Státní maturita 2011 Maturitní testy a zadání jaro 2011 Matematika: didaktický test - základní úrove obtíºnosti MAMZD11C0T02 e²ené p íklady Státní maturita 0 Maturitní testy a zadání jaro 0 Matematika: didaktický test - základní úrove obtíºnosti MAMZDC0T0 e²ené p íklady Autor e²ení: Jitka Vachtová 0. srpna 0 http://www.vachtova.cz/ Obsah Úloha

Více

Číslicová technika 3 učební texty (SPŠ Zlín) str.: - 1 -

Číslicová technika 3 učební texty (SPŠ Zlín) str.: - 1 - Číslicová technika učební texty (SPŠ Zlín) str.: - -.. ČÍTAČE Mnohá logická rozhodnutí jsou založena na vyhodnocení počtu opakujících se jevů. Takovými jevy jsou např. rychlost otáčení nebo cykly stroje,

Více

Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz.

Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz. 7. Shodná zobrazení 6. ročník 7. Shodná zobrazení 7.1. Shodnost geometrických obrazců Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor,

Více

Vyvažování tuhého rotoru v jedné rovině přístrojem Adash 4900 - Vibrio

Vyvažování tuhého rotoru v jedné rovině přístrojem Adash 4900 - Vibrio Aplikační list Vyvažování tuhého rotoru v jedné rovině přístrojem Adash 4900 - Vibrio Ref: 15032007 KM Obsah Vyvažování v jedné rovině bez měření fáze signálu...3 Nevýhody vyvažování jednoduchými přístroji...3

Více

P íklad desetinných ísel : 0,7 1,4 1,5 0,789 128,456

P íklad desetinných ísel : 0,7 1,4 1,5 0,789 128,456 4. Desetinná ísla 4.1. ád desetinného ísla V praktickém život nehovo íme jen o 5 kg jablek, 8 metr, 7 0 C, ale m žeme se setkat s údaji 5,2 kg, 8,5 metru, 7,3 0 C. Vidíme, že vedle celých ísel existují

Více

Školní vzdělávací program pro základní vzdělávání - VLNKA Učební osnovy / Matematika a její aplikace / M

Školní vzdělávací program pro základní vzdělávání - VLNKA Učební osnovy / Matematika a její aplikace / M I. název vzdělávacího oboru: MATEMATIKA (M) II. charakteristika vzdělávacího oboru: a) organizace: Vzdělávací obsah vzdělávacího oboru Matematika je realizován ve všech ročnících základního vzdělávání.

Více

Novinky verzí SKLADNÍK 4.24 a 4.25

Novinky verzí SKLADNÍK 4.24 a 4.25 Novinky verzí SKLADNÍK 4.24 a 4.25 Zakázky standardní přehled 1. Možnosti výběru 2. Zobrazení, funkce Zakázky přehled prací 1. Možnosti výběru 2. Mistři podle skupin 3. Tisk sumářů a skupin Zakázky ostatní

Více

Kód uchazeče ID:... Varianta: 15

Kód uchazeče ID:... Varianta: 15 Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 2013 Kód uchazeče ID:.................. Varianta: 15 1. V únoru byla zaměstnancům zvýšena mzda o 15 % lednové mzdy. Následně

Více

Vyučovací předmět / ročník: Matematika / 5. Učivo

Vyučovací předmět / ročník: Matematika / 5. Učivo Vzdělávací oblast: Matematika a její aplikace Výstupy žáka Vyučovací předmět / ročník: Matematika / 5. ČÍSLO A POČETNÍ OPERACE Zpracoval: Mgr. Dana Štěpánová orientuje se v posloupnosti přirozených čísel

Více

1.7. Mechanické kmitání

1.7. Mechanické kmitání 1.7. Mechanické kmitání. 1. Umět vysvětlit princip netlumeného kmitavého pohybu.. Umět srovnat periodický kmitavý pohyb s periodickým pohybem po kružnici. 3. Znát charakteristické veličiny periodického

Více

MSSF Benefit praktický průvodce pro žadatele v rámci Operačního programu Rozvoj lidských zdrojů

MSSF Benefit praktický průvodce pro žadatele v rámci Operačního programu Rozvoj lidských zdrojů MSSF Benefit praktický průvodce pro žadatele v rámci Operačního programu Rozvoj lidských zdrojů MSSF Benefit dostupnost a instalace MSSF Benefit bude dostupný ke stažení na stránkách www.kr-olomoucky.cz

Více

C) Pojem a znaky - nositelem územní samosprávy jsou územní samosprávné celky, kterými jsou v ČR

C) Pojem a znaky - nositelem územní samosprávy jsou územní samosprávné celky, kterými jsou v ČR Správní právo dálkové studium VIII. Územní samospráva A) Historický vývoj na území ČR - po roce 1918 při vzniku ČSR zpočátku převzala předchozí uspořádání rakousko uherské - samosprávu představovaly obce,

Více

Dělitelnost. pracovní list. Základní škola Zaječí, okres Břeclav Školní 402, 691 05, příspěvková organizace

Dělitelnost. pracovní list. Základní škola Zaječí, okres Břeclav Školní 402, 691 05, příspěvková organizace Dělitelnost pracovní list Název školy: Číslo projektu: Autor: Základní škola Zaječí, okres Břeclav Školní 402, 691 05, příspěvková organizace CZ.1.07/1.4.00/21.1131 Mgr. Lenka Němetzová Datum vytvoření:

Více

Žáci mají k dispozici pracovní list. Formou kolektivní diskuze a výkladu si osvojí grafickou minimalizaci zápisu logické funkce

Žáci mají k dispozici pracovní list. Formou kolektivní diskuze a výkladu si osvojí grafickou minimalizaci zápisu logické funkce Číslo projektu Číslo materiálu Název školy Autor Název Téma hodiny Předmět Ročník /y/ CZ.1.07/1.5.00/34.0394 VY_32_INOVACE_9_ČT_1.09_ grafická minimalizace Střední odborná škola a Střední odborné učiliště,

Více

ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ

ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ Pozemkem se podle 2 písm. a) katastrálního zákona rozumí část zemského povrchu, a to část taková, která je od sousedních částí zemského povrchu (sousedních pozemků)

Více

GEOMETRICKÁ TĚLESA. Mnohostěny

GEOMETRICKÁ TĚLESA. Mnohostěny GEOMETRICKÁ TĚLESA Geometrické těleso je prostorový geometrický útvar, který je omezený (ohraničený), tato hranice mu náleží. Jeho povrch tvoří rovinné útvary a také různé složitější plochy. Geometrická

Více

Kontrolní test Číslicová technika 1/2. 1.Převeďte číslo 87 z desítkové soustavy z= 10 do soustavy dvojkové z=2

Kontrolní test Číslicová technika 1/2. 1.Převeďte číslo 87 z desítkové soustavy z= 10 do soustavy dvojkové z=2 Kontrolní test Číslicová technika 1/2 1.Převeďte číslo 87 z desítkové soustavy z= 10 do soustavy dvojkové z=2 2.převeďte do dvojkové soustavy číslo 0,87 3.Převeďte do osmičkové soustavy z= 8 číslo (92,45)

Více

Český úřad zeměměřický a katastrální vydává podle 3 písm. d) zákona č. 359/1992 Sb., o zeměměřických a katastrálních orgánech, tyto pokyny:

Český úřad zeměměřický a katastrální vydává podle 3 písm. d) zákona č. 359/1992 Sb., o zeměměřických a katastrálních orgánech, tyto pokyny: Český úřad zeměměřický a katastrální POKYNY Č. 44 Českého úřadu zeměměřického a katastrálního ze dne 20.12.2013 č.j. ČÚZK- 25637/2013-22, k zápisu vlastnictví jednotek vymezených podle zákona č. 72/1994

Více

Výchovné a vzdělávací strategie pro rozvoj klíčových kompetencí žáků

Výchovné a vzdělávací strategie pro rozvoj klíčových kompetencí žáků CVIČENÍ Z MATEMATIKY Charakteristika vyučovacího předmětu Obsahové, časové a organizační vymezení Předmět je realizován od 6. ročníku až po 9. ročník po 1 hodině týdně. Výuka probíhá v kmenové učebně nebo

Více

170/2010 Sb. VYHLÁŠKA. ze dne 21. května 2010

170/2010 Sb. VYHLÁŠKA. ze dne 21. května 2010 170/2010 Sb. VYHLÁŠKA ze dne 21. května 2010 o bateriích a akumulátorech a o změně vyhlášky č. 383/2001 Sb., o podrobnostech nakládání s odpady, ve znění pozdějších předpisů Ministerstvo životního prostředí

Více

Variace. Číselné výrazy

Variace. Číselné výrazy Variace 1 Číselné výrazy Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Číselné výrazy Číselné výrazy, výpočty

Více

4. Připoutejte se, začínáme!

4. Připoutejte se, začínáme! 4. Připoutejte se, začínáme! Pojďme si nyní zrekapitulovat základní principy spreadů, které jsme si vysvětlili v předcházejících kapitolách. Řekli jsme si, že klasický spreadový obchod se skládá ze dvou

Více

6. Matice. Algebraické vlastnosti

6. Matice. Algebraické vlastnosti Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 6 Matice Algebraické vlastnosti 1 Algebraické operace s maticemi Definice Bud te A,

Více

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického testu

Více

Poukázky v obálkách. MOJESODEXO.CZ - Poukázky v obálkách Uživatelská příručka MOJESODEXO.CZ. Uživatelská příručka. Strana 1 / 1. Verze aplikace: 1.4.

Poukázky v obálkách. MOJESODEXO.CZ - Poukázky v obálkách Uživatelská příručka MOJESODEXO.CZ. Uživatelská příručka. Strana 1 / 1. Verze aplikace: 1.4. MOJESODEXO.CZ Poukázky v obálkách Verze aplikace: 1.4.0 Aktualizováno: 22. 9. 2014 17:44 Strana 1 / 1 OBSAH DOKUMENTU 1. ÚVOD... 2 1.1. CO JSOU TO POUKÁZKY V OBÁLKÁCH?... 2 1.2. JAKÉ POUKÁZKY MOHOU BÝT

Více

Algoritmizace a programování

Algoritmizace a programování Algoritmizace a programování V algoritmizaci a programování je důležitá schopnost analyzovat a myslet. Všeobecně jsou odrazovým můstkem pro řešení neobvyklých, ale i každodenních problémů. Naučí nás rozdělit

Více

MANUÁL PRO HODNOCENÍ OTEVŘENÝCH TESTOVÝCH ÚLOH MATEMATIKA SADA B (TEST PRO PŘIJÍMACÍ ZKOUŠKY DO 8LETÉHO GYMNÁZIA)

MANUÁL PRO HODNOCENÍ OTEVŘENÝCH TESTOVÝCH ÚLOH MATEMATIKA SADA B (TEST PRO PŘIJÍMACÍ ZKOUŠKY DO 8LETÉHO GYMNÁZIA) PH-M5MBCINT MANUÁL PRO HODNOCENÍ OTEVŘENÝCH TESTOVÝCH ÚLOH MATEMATIKA SADA B (TEST PRO PŘIJÍMACÍ ZKOUŠKY DO 8LETÉHO GYMNÁZIA) 1. TYPY TESTOVÝCH ÚLOH V TESTU První dvě úlohy (1 2) jsou tzv. úzce otevřené

Více

Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Volitelný předmět Matematický seminář ročník 8.

Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Volitelný předmět Matematický seminář ročník 8. Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Volitelný předmět Matematický seminář ročník 8. Výuka matematického semináře bude probíhat jednou týdně v dvouhodinovém bloku.

Více

NÁVRHOVÝ PROGRAM VÝMĚNÍKŮ TEPLA FIRMY SECESPOL CAIRO 3.5.5 PŘÍRUČKA UŽIVATELE

NÁVRHOVÝ PROGRAM VÝMĚNÍKŮ TEPLA FIRMY SECESPOL CAIRO 3.5.5 PŘÍRUČKA UŽIVATELE NÁVRHOVÝ PROGRAM VÝMĚNÍKŮ TEPLA FIRMY SECESPOL CAIRO 3.5.5 PŘÍRUČKA UŽIVATELE 1. Přehled možností programu 1.1. Hlavní okno Hlavní okno programu se skládá ze čtyř karet : Projekt, Zadání, Výsledky a Návrhový

Více

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméno TUREČEK Daniel Datum měření 3..6 Stud. rok 6/7 Ročník. Datum odevzdání 3..7 Stud. skupina 3 Lab.

Více

Databázové a informační systémy

Databázové a informační systémy Databázové a informační systémy 1. Teorie normálních forem Pojem normálních forem se používá ve spojitosti s dobře navrženými tabulkami. Správně vytvořené tabulky splňují 4 základní normální formy, které

Více

Exponenciála matice a její užití. fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu

Exponenciála matice a její užití. fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu 1 Tutoriál č. 3 Exponenciála matice a její užití řešení Cauchyovy úlohy pro lineární systémy užitím fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu 0.1 Exponenciála matice a její užití

Více

348/2005 Sb. ZÁKON ČÁST PRVNÍ

348/2005 Sb. ZÁKON ČÁST PRVNÍ 348/2005 Sb. ZÁKON ze dne 5. srpna 2005 o rozhlasových a televizních poplatcích a o změně některých zákonů Změna: 235/2006 Sb. Změna: 112/2006 Sb. Změna: 304/2007 Sb. Změna: 7/2009 Sb. Změna: 132/2010

Více

Názory na bankovní úvěry

Názory na bankovní úvěry INFORMACE Z VÝZKUMU STEM TRENDY 1/2007 DLUHY NÁM PŘIPADAJÍ NORMÁLNÍ. LIDÉ POKLÁDAJÍ ZA ROZUMNÉ PŮJČKY NA BYDLENÍ, NIKOLIV NA VYBAVENÍ DOMÁCNOSTI. Citovaný výzkum STEM byl proveden na reprezentativním souboru

Více

1.1.11 Poměry a úměrnosti I

1.1.11 Poměry a úměrnosti I 1.1.11 Poměry a úměrnosti I Předpoklady: základní početní operace, 010110 Poznámka: Následující látka bohužel patří mezi ty, kde je nejvíce rozšířené používání samospasitelných postupů, které umožňují

Více

5. cvičení 4ST201_řešení

5. cvičení 4ST201_řešení cvičící. cvičení 4ST201_řešení Obsah: Informace o 1. průběžném testu Pravděpodobnostní rozdělení 1.část Vysoká škola ekonomická 1 1. Průběžný test Termín: pátek 26.3. v 11:00 hod. a v 12:4 v průběhu cvičení

Více

Dů kazové úlohy. Jiří Vaníček

Dů kazové úlohy. Jiří Vaníček Dů kazové úlohy Jiří Vaníček Následující série ú loh je koncipována tak, ž e student nejprve podle předem daného konstrukčního postupu sestrojí konstrukci a v ní podle návodu objeví některý nový poznatek.

Více

Strojní součásti, konstrukční prvky a spoje

Strojní součásti, konstrukční prvky a spoje Strojní součásti, konstrukční prvky a spoje Šroubové spoje Šrouby jsou nejčastěji používané strojní součástí a neexistuje snad stroj, kde by se nevyskytovaly. Mimo šroubů jsou u některých šroubových spojů

Více

MATEMATIKA. Sbírka úloh pro 6. 9. ročník ZŠ praktické Metodika

MATEMATIKA. Sbírka úloh pro 6. 9. ročník ZŠ praktické Metodika MATEMATIKA Sbírka úloh pro 6. 9. ročník ZŠ praktické Metodika ŠKOLA PRO ŽIVOT CZ.1.07/1.2.19/02.0007 Projekt Základní školy Cheb, Kostelní náměstí 14 Obsah učiva 7. ROČNÍK - opakování učiva 6. ročníku

Více

MECHANICKÁ PRÁCE A ENERGIE

MECHANICKÁ PRÁCE A ENERGIE MECHANICKÁ RÁCE A ENERGIE MECHANICKÁ RÁCE Konání práce je podmíněno silovým působením a pohybem Na čem závisí velikost vykonané práce Snadno určíme práci pro případ F s ráci nekonáme, pokud se těleso nepřemísťuje

Více

ROZCVIČKY. (v nižší verzi může být posunuta grafika a špatně funkční některé odkazy).

ROZCVIČKY. (v nižší verzi může být posunuta grafika a špatně funkční některé odkazy). ROZCVIČKY Z MATEMATIKY 8. ROČ Prezentace jsou vytvořeny v MS PowerPoint 2010 (v nižší verzi může být posunuta grafika a špatně funkční některé odkazy). Anotace: Materiál slouží k procvičení základních

Více

Metody řešení matematických úloh I

Metody řešení matematických úloh I Metody řešení matematických úloh I Naďa Stehlíková, Jaroslav Zhouf Předmět Metody řešení matematických úloh I (MŘI) je prvním z řady předmětů zaměřených na základní metody řešení matematických úloh. Jako

Více

4 Vyhodnocení naměřených funkčních závislostí

4 Vyhodnocení naměřených funkčních závislostí 4 Vyhodnocení naměřených funkčních závislostí Kromě měření konstant je častou úlohou měření zjistit, jak nějaká veličina y (závisle proměnná, jinak řečeno funkce) závisí na jiné proměnlivé veličině x (nezávisle

Více

Android Elizabeth. Verze: 1.3

Android Elizabeth. Verze: 1.3 Android Elizabeth Program pro měření mezičasů na zařízeních s OS Android Verze: 1.3 Naposledy upraveno: 12. března 2014 alesrazym.cz Aleš Razým fb.com/androidelizabeth Historie verzí Verze Datum Popis

Více

Pokyny k hodnocení úlohy 1 ZADÁNÍ. nebo NEDOSTATEČNÉ ŘEŠENÍ. nebo CHYBNÉ ŘEŠENÍ. nebo CHYBĚJÍCÍ ŘEŠENÍ 0

Pokyny k hodnocení úlohy 1 ZADÁNÍ. nebo NEDOSTATEČNÉ ŘEŠENÍ. nebo CHYBNÉ ŘEŠENÍ. nebo CHYBĚJÍCÍ ŘEŠENÍ 0 PZK 9 M9-Z-D-PR_OT_ST M9PZD6CT Pokyny k hodnocení Pokyny k hodnocení úlohy BODY ZADÁNÍ Vypočtěte, kolikrát je rozdíl čísel,4 a,7 (v tomto pořadí) menší než jejich součet. (V záznamovém archu je očekáván

Více

Algoritmizace a programování

Algoritmizace a programování Pátek 14. října Algoritmizace a programování V algoritmizaci a programování je důležitá schopnost analyzovat a myslet. Všeobecně jsou odrazovým můstkem pro řešení neobvyklých, ale i každodenních problémů.

Více

Akustika. Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz.

Akustika. Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. Variace 1 Akustika Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. F - Akustika Akustika je nauka o zvuku a

Více

STANOVY SDRUŽENÍ I. NÁZEV SDRUŽENÍ, PRÁVNÍ POSTAVENÍ, PŘEDMĚT ČINNOSTI II. VZNIK ČLENSTVÍ

STANOVY SDRUŽENÍ I. NÁZEV SDRUŽENÍ, PRÁVNÍ POSTAVENÍ, PŘEDMĚT ČINNOSTI II. VZNIK ČLENSTVÍ STANOVY SDRUŽENÍ I. NÁZEV SDRUŽENÍ, PRÁVNÍ POSTAVENÍ, PŘEDMĚT ČINNOSTI 1. Název sdružení: Sdružení rodičů a přátel školy při Gymnáziu Mor. Budějovice 2. Sídlo sdružení: Gymnázium, Moravské Budějovice,

Více

Zásady pro prodej bytů, nebytových prostorů a souvisejících pozemků

Zásady pro prodej bytů, nebytových prostorů a souvisejících pozemků STATUTÁRNÍ MĚSTO OSTRAVA MĚSTSKÝ OBVOD MORAVSKÁ OSTRAVA A PŘÍVOZ ------------------------------------------------------------------------- Zásady pro prodej bytů, nebytových prostorů a souvisejících pozemků

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY NOSNÍKY

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY NOSNÍKY Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 16. ČERVNA 2012 Název zpracovaného celku: NOSNÍKY NOSNÍKY Nosníky jsou zpravidla přímá tělesa (pruty) uloţená na podporách nebo

Více

Tematický plán pro školní rok 2015/16 Předmět: Matematika Vyučující: Mgr. Iveta Jedličková Týdenní dotace hodin: 5 hodin Ročník: pátý

Tematický plán pro školní rok 2015/16 Předmět: Matematika Vyučující: Mgr. Iveta Jedličková Týdenní dotace hodin: 5 hodin Ročník: pátý ČASOVÉ OBDOBÍ Září Říjen KONKRÉTNÍ VÝSTUPY KONKRÉTNÍ UČIVO PRŮŘEZOVÁ TÉMATA Umí zapsat a přečíst čísla do 1 000 000 Porovnává čísla do 1 000 000 Zaokrouhluje čísla na tisíce, desetitisíce, statisíce Umí

Více

Výsledky přijímacích zkoušek

Výsledky přijímacích zkoušek Výsledky přijímacích zkoušek V tomto modulu komise zadává výsledky přijímací zkoušky a navrhuje, zda uchazeče přijmout či nepřijmout včetně odůvodnění. 1. Spuštění modulu "Výsledky přijímacích zkoušek"

Více

7. Domy a byty. 7.1. Charakteristika domovního fondu

7. Domy a byty. 7.1. Charakteristika domovního fondu 7. Domy a byty Sčítání lidu, domů a bytů 2011 podléhají všechny domy, které jsou určeny k bydlení (např. rodinné, bytové domy), ubytovací zařízení určená k bydlení (domovy důchodců, penziony pro důchodce,

Více

metodická příručka DiPo násobení a dělení (čísla 6, 7, 8, 9) násobilkové karty DiPo

metodická příručka DiPo násobení a dělení (čísla 6, 7, 8, 9) násobilkové karty DiPo metodická příručka DiPo násobení a dělení () PLUS násobilkové karty DiPo OlDiPo, spol. s r.o. tř. Svobody 20 779 00 Olomouc telefon: 585 204 055 mobil: 777 213 535 e-mail: oldipo@oldipo.cz web: www.oldipo.cz

Více

Dodatečné informace č. 3 k zadávacím podmínkám

Dodatečné informace č. 3 k zadávacím podmínkám Dodatečné informace č. 3 k zadávacím podmínkám Zakázka: Zadavatel: Evropské domy v krajích stavební úpravy objektu Nový Hluchák budova bez č.p. v areálu Pospíšilova 365, Hradec Králové Královéhradecký

Více

Mezní kalibry. Druhy kalibrů podle přesnosti: - dílenské kalibry - používají ve výrobě, - porovnávací kalibry - pro kontrolu dílenských kalibrů.

Mezní kalibry. Druhy kalibrů podle přesnosti: - dílenské kalibry - používají ve výrobě, - porovnávací kalibry - pro kontrolu dílenských kalibrů. Mezní kalibry Mezními kalibry zjistíme, zda je rozměr součástky v povolených mezích, tj. v toleranci. Mají dobrou a zmetkovou stranu. Zmetková strana je označená červenou barvou. Délka zmetkové části je

Více

MATEMATIKA. Projekt byl podpořen z Evropského sociálního fondu. Praha & EU: Investujeme do vaší budoucnosti

MATEMATIKA. Projekt byl podpořen z Evropského sociálního fondu. Praha & EU: Investujeme do vaší budoucnosti MATEMATIKA pracovní sešit aritmetiky pro 6. ročník s metodickými poznámkami pro učitele Projekt byl podpořen z Evropského sociálního fondu. Praha & EU: Investujeme do vaší budoucnosti Tato publikace byla

Více

TISKOVÁ ZPRÁVA Centrum pro výzkum veřejného mínění Sociologický ústav AV ČR, v.v.i. Jilská 1, Praha 1 Tel./fax: 286 80 129 E-mail: paulina.tabery@soc.cas.cz Názory obyvatel na zadlužení a přijatelnost

Více

Počítání s decibely (není třináctá komnata matematiky)

Počítání s decibely (není třináctá komnata matematiky) očítání s decibely (není třináctá komnata matematiky) Hlavním úkolem decibelů je zjednodušit a zpřehlednit výpočty s nimi prováděné a ne prožívat studentské útrapy u tabule, při písemných pracích a u maturitních

Více