HALAS liga online. 18. a 21. kvìtna 2012 logika kolo 2
|
|
- Hana Zemanová
- před 9 lety
- Počet zobrazení:
Transkript
1 8. a. kvìtna logika kolo seznam úloh a obodování èas na øešení: minut. Cesta mezi ètverci... body. Cesta mezi ètverci... bodù. abyrint... bodù. abyrint...8 body. Tykadla a tetromina... bodù. Tykadla a tetromina... bodù. Nesousledné japonské souèty... bodù 8. Nesousledné japonské souèty...9 bodù 9. Násobení...9 bodù. Násobení... bodù. Korál... body. Korál... bodù. Easy as ABC... body. Easy as ABC... bodù. Had... bodù. Had... bodù. Tetradílky... body 8. Pentadílky... bodù 9. Pyramida... bodù. Pyramida...9 bodù maximální mo ný zisk: bodù HAAS
2 Jak zapsat odpovìdi (viz booklet!):. a. Cesta mezi ètverci a = pole obsazená ètverci, èíslo odpovídá velikosti ètverce = pole, kde se cesta lomí I = pole, kde jde cesta pøímo. a 8. Nesousl. jap. souèty a 9 = pole obsazená èísly X = prázdné pole. a. Easy as ABC písmeno = pole obsazené písmenem X = prázdné pole 9. a. Pyramida. a. abyrint X = prázdné nebo èerné pole J = pole se zrcadlem / = pole se zrcadlem \ 9. a. Násobení èíslo = pole obsazená èísly X = prázdné pole bez mezer. a. Had S = pole obsazené hadem X = prázdné pole. a. Tykadla a tetromina èíslo = pole obsazené tímto èíslem nebo tykadlem, které z tohoto èísla vychází O,, T, N, I = pole, kde le í tetromino. a. Korál C = pole obsazené korálem X = prázdné pole. a 8. T-dílky a p-dílky O, I, T,, J, S, Z = tetromina X, P, F, Z, T, V, U, I, W, Y, N, = pentomina (nula) = prázdné (èerné) pole HAAS 8. a..
3 . a. Cesta mezi ètverci Umístìte do obrazce ètverce tak, aby se vzájemnì nedotýkaly ani rohem. Do zbytku obrazce zakreslete uzavøenou køivku, která prochází všemi neobsazenými políèky a sama sebe se nedotýká ani se neprotíná. Cesta vede pouze vodorovnì nebo svisle mezi støedy sousedních políèek. Seznam pou itých ètvercù je daný. Èísla okolo obrazce pak udávají poèet ètvercù které zasahují do daného øádku nebo sloupce. x x x x x 8. a..
4 . a. abyrint Zakreslete do obrazce diagonální zrcadla. Jednou šipkou je naznaèen vstup paprsku do obrazce. Po odrazu od zrcadel musí paprsek vystupovat z obrazce v místì druhé šipky. Paprsek se musí odrazit od ka dého zrcadla právì jednou.azrcadla se nesmìjí vzájemnì dotýkat. Poèet jednotlivých zrcadel v øádcích a sloupcích je uveden na okrajích obrazce. Pøes èerná pole nesmí paprsek procházet a..
5 . a. Tykadla a tetromina Umístìte do obrazce tetromina tak, aby se vzájemnì nedotýkala a to ani rohem. Seznam tetromin je u ka dého obrazce uveden. Tetromina se mohou otáèet i pøevracet. Poté vyøešte ve zbytku obrazce úlohu tykadla. Ka dé z èísel pøedstavuje tvoreèka, ze kterého mohou vybíhat tykadla ve vodorovném nebo svislém smìru. Èíslo odpovídá souètu délek všech tìchto tykadel (bez políèka s èíslem). Tetromina nesmìjí být v polích s èísly. V ka dém poli, kde není ani tetromino ani èíslo musí být právì jedno tykadlo. N 8 N T O T I 8. a..
6 . a 8. Nesousledné japonské souèty Doplòte do obrazce èísla od do N, kde N je velikost obrazce. Èísla se nesmìjí opakovat v øádcích ani sloupcích. Èísla na okrajích udávají souèty skupin èísel v daném øádku nebo sloupci. Skupiny musejí být od sebe oddìlené alespoò jednou mezerou. Souèty jsou zapsané v poøadí, ve kterém se v daném øádku nebo sloupci vyskytují. Navíc se nesmìjí v polích sousedících stranou vyskytnout dvì èísla, která se liší o a
7 9. a. Násobení Doplòte do obrazce èísla z daného seznamu, ka dé právì jednou. Poèet èísel v ka dém øádku i sloupci musí být stejný. Èísla kolem obrazce udávají souèin èísel v daném øádku nebo sloupci. V èerných polích nesmìjí být ádná èísla. a a a..
8 . a. Korál Zakreslete do obrazce korál. Korál je tvoøen políèky, která jsou navzájem vodorovnì nebo svisle propojena. Korál se nesmí sám sebe dotýkat a to ani rohem a ádná z oblastí x políèka není celá pokrytá korálem. Èísla na okrajích obrazce udávají velikosti jednotlivých èástí korálu v daném sloupci èi øádku. Tyto èásti jsou v dy oddìleny alespoò jedním prázdným políèkem a jejich délky nejsou nutnì uvedeny v poøadí, v jakém se v øádku èi sloupci vyskytují. 8. a..
9 . a. Easy as ABC Zapište do obrazce uvedená písmena tak, aby se ka dé z nich vyskytovalo v ka dém sloupci i øádku právì jednou. Nìkterá políèka pøitom zùstanou prázdná. Na okrajích obrazce je pak uvedeno, které písmeno je z daného smìru vidìt jako první. O O M O U C A C C O C A C U A O M O U C B C C O A C U U O A B C B Písmena CMOU Písmena ABC 8. a..
10 . a. Had Zakreslete do obrazce hada, tedy souvislou øadu políèek, které spolu sousedí stranou. Had se sám sebe nedotýká a to ani rohem. Èísla na okrajích obrazce udávají poèet políèek, kterými had v daném øádku nebo sloupci prochází. Hlava a ocas hada jsou zadány a..
11 . a 8. Tetradílky a pentadílky Umístìte pøedlo ené dílky do møí ky tak, aby se vzájemnì nepøekrývaly. Bílé otvory musí sednout na vyznaèené kolíèky. Ve vìtší úloze mù ete dílky i pøevracet, v menší pouze otáèet. X P N Z O T S I J Z F T V I U W Y 8. a..
12 9. a. Pyramida Doplòte do pyramidy èísla od do 9. Pro èísla platí následující pravidla: Ka dé èíslo od druhé øady výš je buï souètem nebo rozdílem dvou èísel, která jsou pod ním a se kterými sousedí spodní stranou. Všechna èísla, která se na øádku opakují jsou oznaèena šedým podkladem. V ka dé úloze se navíc nesmìjí èísla opakovat ani na dvou vyznaèených šikmých liniích. Pro ostatní šikmé linie neplatí ádné pravidlo. èísla a 9 9 èísla a a..
Ukázkové úlohy (booklet)
Ukázkové úlohy (booklet).com .COM Klasika Do ka dého políèka vepište jednu èíslici od 1 do 9 tak, aby se èíslice neopakovaly v ádném øádku, sloupci ani v ádném z devíti vyznaèených menších ètvercù. 3 4
HALAS liga online. 18. a 21. kvìtna Booklet. HALAS liga HALAS. sudokualogika.cz SUDOKUCUP.COM
8. a. kvìtna Booklet 8. a. kvìtna sudoku kolo seznam úloh a obodování èas na øešení: minut A. Klasické sudoku x... body A. Klasické sudoku x... body A. Klasické sudoku 9x9...7 bodù B. Diagonální sudoku
AdComTech. ggrafický manuál
ggrafický manuál 0.1 TIRÁŽ A OBSAH Tiráž GRAFICKÝ MANUÁL ADCOMTECH Autor manuálu: Ladislav Dejdar Autor znaèky: Ladislav Dejdar Obsah 0.1 Tiráž a obsah 0.2 Úvod a pravidla pro užívání manuálu Znaèka 1.1
M-10. AU = astronomická jednotka = vzdálenost Země-Slunce = přibližně 150 mil. km. V následující tabulce je závislost doby
M-10 Jméno a příjmení holka nebo kluk * Třída Datum Škola AU = astronomická jednotka = vzdálenost Země-Slunce = přibližně 150 mil. km V následující tabulce je závislost doby a/au T/rok oběhu planety (okolo
ÚVOD DO HRY PRINCIP HRY
Počet hráčů: 2-6 Věk: od 6 let Délka hry: cca 20 min. Obsah: 66 hracích karet: 45 karet s čísly (hodnota 0 8 čtyřikrát, hodnota 9 devětkrát), 21 speciálních karet (9 karet Výměna, 7 karet Špehuj, 5 karet
Lineární algebra. Vektorové prostory
Lineární algebra Vektorové prostory Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu:
Rostislav Horčík. 13. října 2006
3. přednáška Rostislav Horčík 13. října 2006 1 Lineární prostory Definice 1 Lineárním prostorem nazýváme každou neprázdnou množinu L, na které je definováno sčítání + : L L L a násobení reálným číslem
Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.
Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.b Co je množinou středů všech kružnic v rovině, které prochází
Habermaaß-hra 5657A /4796N. Maják v obležení
CZ Habermaaß-hra 5657A /4796N Maják v obležení Maják v obležení Kooperativní hra pro 2 až 4 strážce majáku ve věku od 4 do 99 let. Zahrnuje soutěžní variantu. Autoři: Carmen & Thorsten Löpmann Ilustrace:
Dopravní úloha. Jiří Neubauer. Katedra ekonometrie FEM UO Brno
Přednáška č. 9 Katedra ekonometrie FEM UO Brno Distribuční úlohy Budeme se zabývat 2 typy distribučních úloh dopravní úloha přiřazovací problém Dopravní úloha V dopravním problému se v typickém případě
MS Word 2007 REVIZE DOKUMENTU A KOMENTÁŘE
MS Word 2007 REVIZE DOKUMENTU A KOMENTÁŘE 1 ZAPNUTÍ SLEDOVÁNÍ ZMĚN Pokud zapnete funkci Sledování změn, aplikace Word vloží značky tam, kde provedete mazání, vkládání a změny formátu. Na kartě Revize klepněte
1) Vypočítej A) 32 B) 44 C) 48 D) 56. 2) Urči číslo, které se skrývá za A ve výpočtu: 8 5 A) 12 B) 13 C) 14 D) 15
Varianta A 4 4 4 4 4 4 4 4 1) Vypočítej A) 32 B) 44 C) 48 D) 56 2) Urči číslo, které se skrývá za A ve výpočtu: 8 5 20 120 A. A) 12 B) 13 C) 14 D) 15 3) Najdi největší a nejmenší trojciferné číslo skládající
Ozobot aktivita lov velikonočních vajíček
Ozobot aktivita lov velikonočních vajíček Autor: Ozobot Publikováno dne: 9. března 2016 Popis: Tato hra by měla zábavnou formou procvičit programování ozokódů. Studenti mají za úkol pomoci Ozobotovi najít
{ } 9.1.9 Kombinace II. Předpoklady: 9108. =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce.
9.1.9 Kombinace II Předpoklady: 9108 Př. 1: Je dána pěti prvková množina: M { a; b; c; d; e} =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce. Vypisujeme
3.2.4 Podobnost trojúhelníků II
3..4 odobnost trojúhelníků II ředpoklady: 33 ř. 1: Na obrázku jsou nakresleny podobné trojúhelníky. Zapiš jejich podobnost (aby bylo zřejmé, který vrchol prvního trojúhelníku odpovídá vrcholu druhého trojúhelníku).
Vítězslav Bártl. prosinec 2013
VY_32_INOVACE_VB09_ČaP Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, vzdělávací obor, tematický okruh, téma Anotace Vítězslav
MATERIÁL NA JEDNÁNÍ Zastupitelstva města Doksy
MATERIÁL NA JEDNÁNÍ Zastupitelstva města Doksy Jednání zastupitelstva města dne: 08. 04. 2015 Věc: Odměny uvolněným a neuvolněným členům zastupitelstva a další odměny Předkládá: Ing. Eva Burešová, starostka
UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin
Business Contact Manager Správa kontaktů pro tisk štítků
Business Contact Manager Správa kontaktů pro tisk štítků 1 Obsah 1. Základní orientace v BCM... 3 2. Přidání a správa kontaktu... 4 3. Nastavení filtrů... 5 4. Hromadná korespondence... 6 5. Tisk pouze
Účetní případ MD D DOTACE OD ZŘIZOVATELE. Neinvestiční dotace (1/12, čtvrtletní platby, mimořádné platby) předpis 34611 6911x úhrada 221 34611
DOTACE OD ZŘIZOVATELE Neinvestiční dotace (1/12, čtvrtletní platby, mimořádné platby) předpis 34611 6911x úhrada 221 34611 časové rozlišení dotace (příjem letos, výnos v dalším roce) 34611 3848 vratka
Návod na sestavení naháněcí ohrady
Návod na sestavení naháněcí ohrady Obj. č: 3552 ECONOMY 3509 STANDARD 3547 STANDARD+ 3510 STANDARD KOMPLET ECONOMY STANDARD STANDARD+ STANDARD KOMPLET Díly pro základní naháněcí ohradu 3521 1x Posuvné
Posouzení únosnosti svaru se provádí podle zásad pružnosti a pevnosti v nebezpečném průřezu.
Svarové spoje Posouzení únosnosti svaru se provádí podle zásad pružnosti a pevnosti v nebezpečném průřezu. Vybrané druhy svarů a jejich posouzení dle EN ČSN 1993-1-8. Koutový svar -T-spoj - přeplátovaný
10.1.13 Asymptoty grafu funkce
.. Asmptot grafu funkce Předpoklad:, Asmptot grafu už známe kreslili jsme si je jako přímk, ke kterým se graf funkce přibližuje. Nakreslení asmptot, pak umožňuje přesnější kreslení grafu. Například u hperbol
Jednofázový alternátor
Jednofázový alternátor - 1 - Jednofázový alternátor Ing. Ladislav Kopecký, 2007 Ke generování elektrického napětí pro energetické účely se nejčastěji využívá dvou principů. Prvním z nich je indukce elektrického
Kapitola 1.8.3 strana 28 Oznaèení v pravé èásti obrázku 15. Chyba je i u dotisku. Obrázek 15 Fréza pravotoèivá obrábí v rùzných polohách zadanou kontu
OPRAVENKA ke knize: CNC: Obrábìcí stroje a jejich programování 1. vydání + dotisk obj. èíslo: 140865 cena: 199 Kè ISBN: 978-80-7300-207-7 Pøestože jsme knize vìnovali mimoøádnou péèi, odhalili jsme po
Orientovaná úseka. Vektory. Souadnice vektor
Vektory, operace s vektory Ž3 Orientovaná úseka Mjme dvojici bod A, B (na pímce, v rovin nebo prostoru), které spojíme a vznikne tak úseka. Pokud budeme rozlišovat, zda je spojíme od A k B nebo od B k
Numerická integrace. 6. listopadu 2012
Numerická integrace Michal Čihák 6. listopadu 2012 Výpočty integrálů v praxi V přednáškách z matematické analýzy jste se seznámili s mnoha metodami výpočtu integrálů. V praxi se ale poměrně často můžeme
2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková
.. Funkce a jejich graf.. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné je taková binární relace z množin R do množin R, že pro každé R eistuje nejvýše jedno R, pro které [, ] f.
3. Slimák lezl na strom 10m vysoký. Přes den vylezl 4m ale v noci vždycky sklouzl o 3m. Za kolik dní dosáhl vrcholu stromu?
Logické úlohy 1. Katka přišla k Janě, která krmila na dvoře drůbež. Katka se ptala: Víš, kolik máte kuřat, kolik housat a kolik kachňat? Jana odpověděla: Vím, a ty si to vypočítej: dohromady máme 90hlav.
E-ZAK. metody hodnocení nabídek. verze dokumentu: 1.1. 2011 QCM, s.r.o.
E-ZAK metody hodnocení nabídek verze dokumentu: 1.1 2011 QCM, s.r.o. Obsah Úvod... 3 Základní hodnotící kritérium... 3 Dílčí hodnotící kritéria... 3 Metody porovnání nabídek... 3 Indexace na nejlepší hodnotu...4
IRACIONÁLNÍ ROVNICE. x /() 2 (umocnění obou stran rovnice na druhou) 2x 4 9 /(-4) (ekvivalentní úpravy) Motivace: Teorie: Řešené úlohy:
IRACIONÁNÍ ROVNICE Motivace: V řadě matematických úloh je nutno ovládat práci s odmocninami a rovnicemi, které obsahují neznámou pod odmocninou, mj. při vyjádření neznámé z technických vzorců. Znalosti
Definice 6.2.1. z = f(x,y) vázané podmínkou g(x,y) = 0 jsou z geometrického hlediska lokálními extrémy prostorové křivky k, Obr. 6.2.1. Obr. 6.2.
Výklad Dalším typem extrémů, kterým se budeme zabývat jsou tzv. vázané extrémy. Hledáme extrémy nějaké funkce vzhledem k předem zadaným podmínkám. Definice 6.2.1. Řekneme, že funkce f : R n D f R má v
B Kvantitativní test. Semestrální práce TUR. Novotný Michal novotm60@fel.cvut.cz
B Kvantitativní test Semestrální práce TUR Novotný Michal novotm60@fel.cvut.cz OBSAH 1. Úvod... 2 1.1. Předmět testování... 2 1.2. Cílová skupina... 2 2. Testování... 2 2.1. Nulová hypotéza... 2 2.2. Metoda
Spojky NPX. Z tabulky 1 na str. 247, vyberte koeficient provozu, který je vhodný pro pou ití
Z tabulky 1 na str. 247, vyberte koeficient provozu, který je vhodný pro pou ití Vynásobte p íkon ízeného stroje, v, koeficientem provozu, z kroku 1) k získání plánovaného výkonu. Pokud p íkon stroje neznáte,
Změnu DPH na kartách a v ceníku prací lze provést i v jednotlivých modulech.
Způsob změny DPH pro rok 2013 Verze 2012.34 a vyšší Úvod Vzhledem k tomu, že dnes 23.11.2012 nikdo netuší, zda od 1.1.2013 bude DPH snížená i základní 17.5% nebo 15% a 21%, bylo nutné všechny programy
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice
(k 1)x k + 1. pro k 1 a x = 0 pro k = 1.
. Funkce dvou a více proměnných. Úvod. Určete definiční obor funkce a proveďte klasifikaci bodů z R vzhledem k a rozhodněte zda je množina uzavřená či otevřená. Určete a načrtněte vrstevnice grafu funkce
Pohyb v listu. Řady a posloupnosti
Pohyb v listu. Řady a posloupnosti EU peníze středním školám Didaktický učební materiál Anotace Označení DUMU: VY_32_INOVACE_IT4.05 Předmět: IVT Tematická oblast: Microsoft Office 2007 Autor: Ing. Vladimír
1. Kruh, kružnice. Mezi poloměrem a průměrem kružnice platí vztah : d = 2. r. Zapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r.
Kruh, kružnice, válec 1. Kruh, kružnice 1.1. Základní pojmy Kružnice je množina bodů mající od daného bodu stejnou vzdálenost. Daný bod označujeme jako střed kružnice. Stejnou vzdálenost nazýváme poloměr
DVOUPOTRUBNÍ DÁVKOVAČ DD
DVOUPOTRUBNÍ DÁVKOVAČ DD POUŽITÍ Dávkovače DD (DDB, DDC) jsou mazacím prvkem dvoupotrubního mazacího systému, který slouží k dávkování maziva do jednotlivých mazaných míst. Dávkovače jsou aplikovány pro
VY_62_INOVACE_VK53. Datum (období), ve kterém byl VM vytvořen Květen 2012 Ročník, pro který je VM určen
VY_62_INOVACE_VK53 Jméno autora výukového materiálu Věra Keselicová Datum (období), ve kterém byl VM vytvořen Květen 2012 Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace 9. ročník
VÝZNAMOVÉ POMĚRY MEZI VH
Základní škola, Šlapanice, okres Brno-venkov, příspěvková organizace Masarykovo nám. 1594/16, 664 51 Šlapanice www.zsslapanice.cz MODERNÍ A KONKURENCESCHOPNÁ ŠKOLA reg. č.: CZ.1.07/1.4.00/21.2389 VÝZNAMOVÉ
Digitální učební materiál
Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_3_12 ŠVP Podnikání RVP 64-41-L/51
Výrazy lze též zavést v nečíselných oborech, pak konstanty označuji jeden určitý prvek a obor proměnné není množina čísel.
Výrazy. Rovnice a nerovnice. Výraz je matematický pojem používaný ve školské matematice. Prvním druhem matematických ů jsou konstanty. Konstanty označují právě jedno číslo z množiny reálných čísel. Například
Polodokreslovka křížovka (časový limit 15 minut)
Polodokreslovka křížovka (časový limit 15 minut) V obrazci nejsou vyznačené dělící linky mezi slovy. Je třeba je doplnit, přičemž rozmístění těchto linek v obrazci je symetrické. A B C D E F G H I 1 2
Zeměpisná olympiáda 2012
Zeměpisná olympiáda 2012 Kategorie B Krajské kolo Název a adresa školy: Kraj: Jméno a příjmení: Třída: Praktická část autorské řešení Pomůcky: psací potřeby Čas: 45 minut Datová hranice se mění Datum:..
( ) 4.2.13 Slovní úlohy o společné práci I. Předpoklady: 040212. Sepiš postup na řešení příkladů o společné práci.
.. Slovní úlohy o společné práci I Předpoklady: 00 Př. : Sepiš postup na řešení příkladů o společné práci. Ze zadání si určíme jakou část práce vykonali účastníci za jednotku času. Vyjádříme si jakou část
Analytická geometrie (3. - 4. lekce)
Analytická geometrie (3. - 4. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 16. června 2011 Příklad 1 Příklad 1. Algebraicky
KVADRATICKÉ ROVNICE A NEROVNICE (početní a grafická řešení)
KVADRATICKÉ ROVNICE A NEROVNICE (početní a grafická řešení) KVADRATICKÉ ROVNICE (početně) Teorie: Kvadratická rovnice o jedné neznámé se nazývá každá taková rovnice, kterou lze ekvivalentními úpravami
Optika. VIII - Seminář
Optika VIII - Seminář Op-1: Šíření světla Optika - pojem Historie - dva pohledy na světlo ČÁSTICOVÁ TEORIE (I. Newton): světlo je proud částic VLNOVÁ TEORIE (Ch.Huygens): světlo je vlnění prostředí Dělení
HALAS liga online. 26. a 29. øíjna 2012 Logika Kolo 2
liga 6. a 9. øíjna 0 Logika Kolo seznam úloh a obodování èas na øešení: 90 minut. Mezi stìnami... bodù. Mezi stìnami...6 bodù. Mezi stìnami... bodù. Vnitøní mrakodrapy...0 bodù. Vnitøní mrakodrapy... bodù
Externí zařízení Uživatelská příručka
Externí zařízení Uživatelská příručka Copyright 2009 Hewlett-Packard Development Company, L.P. Informace uvedené v této příručce se mohou změnit bez předchozího upozornění. Jediné záruky na produkty a
Karty externích médií Uživatelská příručka
Karty externích médií Uživatelská příručka Copyright 2009 Hewlett-Packard Development Company, L.P. Logo SD je obchodní známka příslušného vlastníka. Informace uvedené v této příručce se mohou změnit bez
Montáž plastového okapového systému Gamrat
Montáž plastového okapového systému Gamrat Montáž systému je velmi jednoduchá, protože spojky, rohy, čela, ústí svod mají západku a gumové těsnění. K troubám a žlabem se připevňují pomocí zacvaknutí. Předpokladem
Rozklad nabídkové ceny servisních služeb ve znění II. opatření k nápravě ze dne 1. 11. 2012
Příloha č. 5 Servisní smlouvy Rozklad nabídkové ceny servisních ve znění II. opatření k nápravě ze dne 1. 11. 2012 Část P2_5 1 Obsah 1 OBSAH... 2 2 INSTRUKCE... 3 3 ZÁVAZNÝ FORMULÁŘ PRO ROZKLAD NABÍDKOVÉ
Druhá mocnina. Druhá odmocnina. 2.8.5 Druhá odmocnina. Předpoklady: 020804. V této hodině jsou kalkulačky zakázány.
.8.5 Druhá odmocnina Předpoklady: 0080 V této hodině jsou kalkulačky zakázány. Druhá mocnina nám umožňuje určit z délky strany plochu čtverce. Druhá mocnina 1 1 9 11 81 11 délky stran čtverců obsahy čtverců
PŘÍLOHA č. 2B PŘÍRUČKA IS KP14+ PRO OPTP - ŽÁDOST O ZMĚNU
PŘÍLOHA č. 2B PRAVIDEL PRO ŽADATELE A PŘÍJEMCE PŘÍRUČKA IS KP14+ PRO OPTP - ŽÁDOST O ZMĚNU OPERAČNÍ PROGRAM TECHNICKÁ POMOC Vydání 1/7, platnost a účinnost od 04. 04. 2016 Obsah 1 Změny v projektu... 3
Nyní jste jedním z oněch kouzelníků CÍL: Cílem hry je zničit soupeřovy HERNÍ KOMPONENTY:
Vytvořili Odet L Homer a Roberto Fraga Velikonoční ostrov je tajemný ostrov v jižním Pacifiku. Jeho původní obyvatelé již před mnoha lety zmizeli a jediné, co po nich zůstalo, jsou obří sochy Moai. Tyto
Příručka pro práci s dataloggerem Labquest 2. Zapínání a domácí obrazovka
Příručka pro práci s dataloggerem Labquest 2 Obsah: 1. Zapínaní a domácí obrazovka 2. Senzory a obrazovka aktuální hodnota 3. Sběr dat a obrazovka graf 4. Vkládání a výpočet dat - obrazovka tabulka 5.
Věty o pravoúhlém trojúhelníku. Vztahy pro výpočet obvodu a obsahu. Eukleidova věta o výšce. Druhá mocnina výšky k přeponě je rovna součinu
Věty o pravoúhlém trojúhelníku Eukleidova věta o výšce. Druhá mocnina výšky k přeponě je rovna součinu b v a obou úseků přepony: v 2 = c a c b c b c a Eukleidova věta o odvěsně A c B Druhá mocnina délky
Klientský formát POHLEDÁVKY platný od 23. 11. 2012
Klientský formát POHLEDÁVKY platný od 23. 11. 2012 1/5 1 Úvod 1.1 Účel dokumentu Účelem tohoto dokumentu je popis formátu POHLEDAVKA a požadovaných validací při IMPORTu dat ve vazbě na návazné účetní SW
Dutý plastický trojúhelník by Gianelle
Dutý plastický trojúhelník by Gianelle Připravíme si rokajl dle našeho výběru pro začátek nejlépe dvě barvy jedné velikosti Já používám korálky Miyuki Delica v tmavě červené barvě, matné s AB úpravou na
KAPITOLA 3.4 NEBEZPEČNÉ VĚCI BALENÉ V OMEZENÝCH MNOŽSTVÍCH
KAPITOLA 3.4 NEBEZPEČNÉ VĚCI BALENÉ V OMEZENÝCH MNOŽSTVÍCH 3.4.1 Všeobecná ustanovení 3.4.1.1 Obaly použité v souladu s 3.4.3 až 3.4.6 musí odpovídat pouze všeobecným ustanovením pododdílů 4.1.1.1, 4.1.1.2
Ceny tepelné energie od roku 2012. Stanislav Večeřa
Ceny tepelné energie od roku 2012 Stanislav Večeřa Obsah prezentace Úpravy podmínek pro kalkulaci a sjednání cen tepelné energie v cenovém rozhodnutí ERÚ k cenám tepelné energie s účinností od 1. ledna
2.7.15 Rovnice s neznámou pod odmocninou I
.7.15 Rovnice s neznámou pod odmocninou I Předpoklady: 711, 71 Pedagogická poznámka: Látka této hodiny vyžaduje tak jeden a půl vyučovací hodiny, pokud nepospícháte můžete obětovat hodiny dvě a nechat
( ) 2.5.7 Neúplné kvadratické rovnice. Předpoklady: 020501
..7 Neúplné kvadratické rovnice Předpoklady: Pedagogická poznámka: Tato hodina patří mezi vzácné výjimky, kdy naprostá většina studentů skončí více než pět minut před zvoněním. Nechávám je dělat něco jiného
Univerzita Tomáše Bati ve Zlíně
Univerzita Tomáše Bati ve líně LABORATORNÍ CVIČENÍ ELEKTROTECHNIKY A PRŮMYSLOVÉ ELEKTRONIKY Název úlohy: pracovali: Měření činného výkonu střídavého proudu v jednofázové síti wattmetrem Petr Luzar, Josef
3. Ve zbylé množině hledat prvky, které ve srovnání nikdy nejsou napravo (nevedou do nich šipky). Dát do třetí
DMA Přednáška Speciální relace Nechť R je relace na nějaké množině A. Řekneme, že R je částečné uspořádání, jestliže je reflexivní, antisymetrická a tranzitivní. V tom případě značíme relaci a řekneme,
Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM
Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: Název projektu školy: Šablona III/2: CZ.1.07/1.5.00/34.0536 Výuka s ICT na SŠ obchodní České
Jakub Juránek. 1.64 Určete počet kvádru, jejichž velikosti hran jsou přirozená čísla nejvýše rovná deseti. Kolik je v tomto počtu krychlí?
Jakub Juránek UČO 393110 1.64 Určete počet kvádru, jejichž velikosti hran jsou přirozená čísla nejvýše rovná deseti. Kolik je v tomto počtu krychlí? Kvádr a b c, a, b, c {1, 2,..., 10} a b c = c a b -
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.4 Prvky elektronických obvodů Kapitola
Vícetabulková databáze. Vztahy mezi tabulkami
Vícetabulková databáze Vztahy mezi tabulkami Proč vícetabulková? OsCislo Jmeno Prijmeni Obor K06000 Jan Adámek K06001 Klára Brendová K06033 Tomáš Cikler Obor studijního programu B6208 Název Kód (KKOV)
SEZNAM PŘÍLOH. Příloha č. 1 Dohoda o individuální hmotné odpovědnosti podle 252 zákoníku práce 114
SEZNAM PŘÍLOH Příloha č. 1 Dohoda o individuální hmotné odpovědnosti podle 252 zákoníku práce 114 Příloha č. 2 Dohoda o společné hmotné odpovědnosti podle 252 zákoníku práce.. 116 Příloha č. 3 Upozornění
Pracovní list vzdáleně ovládaný experiment. Obr. 1: Schéma sériového RLC obvodu, převzato z [3].
Pracovní list vzdáleně ovládaný experiment Střídavý proud (SŠ) Sériový obvod RLC Fyzikální princip Obvod střídavého proudu může mít současně odpor, indukčnost i kapacitu. Pokud jsou tyto prvky v sérii,
Goniometrie trigonometrie
Goniometrie trigonometrie Goniometrie se zabývá funkcemi sinus, kosinus, tangens, kotangens (goniometrické funkce). V tomto článku se budeme zabývat trigonometrií (součást goniometrie) používáním goniometrických
2.6.4 Lineární lomené funkce s absolutní hodnotou
.6. Lineární lomené funkce s absolutní hodnotou Předpoklady: 60, 603 Pedagogická poznámka: Hlavním cílem hodiny je nácvik volby odpovídajícího postupu. Proto je dobré nechat studentům chvíli, aby si metody
Poruchy modul pro rychlé hlášení poruch z provozu.
Poruchy modul pro rychlé hlášení poruch z provozu. Účelem tohoto programu je sbírat data o poruchách a nedostatcích v činnosti strojů a zařízení a jednak je zapisovat přímo do programu evidence údržby,
Soutìž pro mládež v øešení sudoku a logických úloh. Praha, 13. ledna 2013. Kolo 2
Soutìž pro mládež v øešení sudoku a logických úloh Praha,. ledna Kolo. Kropki b. Had b. Obdélníky b. Mrakodrapy b. Hitori b. Magnety b. Skládaèka b. Easy as b. Spojovaèka b. Easy as b. Spojovaèka b. Ohrádka
Třetí sazba DPH 10% v programech Stravné a MSklad pokročilé nastavení
Pro koho je tento návod určen Tento návod je určen pro uživatele, kteří používají: program MSklad s modulem Účtování skladu nebo přenáší faktury do programu Účtárna. program Stravné 4.45 a nižší s modulem
Kótování oblouků, děr, koulí, kuželů, jehlanů, sklonu a sražených hran
Kótování oblouků, děr, koulí, kuželů, jehlanů, sklonu a sražených hran 1. Kótování oblouků veškeré oblouky kružnic se kótují poloměrem a jedním z těchto rozměrů: - středovým úhlem - délkou tětivy - délkou
DMX512 PC Control Stručný návod k použití programu Verze 1.0 Copyright 2007 Dokumentace: Ing. Jaroslav Nušl
Stručný návod k použití programu Verze 1.0 Copyright 2007 Dokumentace: Ing. Jaroslav Nušl Obsah Obsah Nastavení programu... 3 Příklady... 3 Přidávání a ubíraní hlasitosti pomocí DMX kanálu 3 a 4... 3 Přehrání
ZADÁNÍ: ÚVOD: SCHÉMA:
ZADÁNÍ: ) U daného síťového transformátoru vyhodnoťte osciloskopickou metodou ze zobrazení hysterezní smyčky hlavní magnetické vlastnosti jádra - H MAX,H 0,B r při B MAX T. 2) Ze zjištěného průběhu hysterezní
Jan Březina. Technical University of Liberec. 17. března 2015
TGH03 - stromy, ukládání grafů Jan Březina Technical University of Liberec 17. března 2015 Kružnice - C n V = {1, 2,..., n} E = {{1, 2}, {2, 3},..., {i, i + 1},..., {n 1, n}, {n, 1}} Cesta - P n V = {1,
Taky si zkuste promyslet, která zobrazení jsou afinní: to které zobrazí přímku jako rovinu? Nebo snad to které zobrazí rovinu jako přímku?
Afinní zobrazenní Úmluva Symbolem V (popř V ) budu vždy značit nějaký vektorový prostor, symbolem A (popř A ) pak vždy afinní bodový prostor, zdvojená písmena (např A, B, C, ) značí vždy matice Definice
VYHLÁŠENÍ NOMINACÍ PRO VOLBY DO PSP A EP
PŘEDKLÁDÁ VYPRACOVALI PAVEL SEVERA JAROSLAV POLÁČEK, LENKA KOUDELKOVÁ NÁVRH USNESENÍ VÝKONNÝ VÝBOR VYHLAŠUJE NOMINACE PRO VOLBY DO PSP A EP DLE DOKUMENTU VYHLÁŠENÍ NOMINACÍ PRO VOLBY DO PSP A EP. 87-2-
Modul účetnictví: Kontrolní výkaz DPH (SK) Podklady ke školení
Modul účetnictví: Kontrolní výkaz DPH (SK) Podklady ke školení 7.10.2015 Denková Barbora, DiS. Datum tisku 7.10.2015 2 Modul účetnictví: Kontrolní výkaz DPH (SK) Modul u c etnictví : Kontrolní vý kaz DPH
ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec
ISŠT Mělník Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace CZ.1.07/1.5.00/34.0061 VY_32_ INOVACE_C.1.15 Integrovaná střední škola technická Mělník, K učilišti 2566,
Mistrovství České republiky v logických úlohách
Mistrovství České republiky v logických úlohách Blok 1 - Logický mixer 10:00-11:40 Řešitel 1 Praha 013 Mrakodrapy 3 Heywake 4 Rybáři 5 Dvojblok Pentomina 7 Nádraží 8 Slalom 9 Plot 10 Kriskros 11 Cesta
2.3.19 Grafické řešení soustav lineárních rovnic a nerovnic
.3.19 Grafické řešení soustav lineárních rovnic a nerovnic Předpoklad: 307, 311 Př. 1: Vřeš soustavu rovnic + =. Pokud se také o grafické řešení. = 5 Tak jednoduchou soustavu už jsme dlouho neměli: + =
Prostorové indexační techniky. Zdeněk Kouba
Prostorové indexační techniky Zdeněk Kouba Geografické informační systémy Data strukturovaná Relační databáze Dotazy SQL Data nestrukturovaná Mapové podklady rastrová data Geometrické objekty vektorová
Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba
Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba Petr Pošta Text pro soutěžící FO a ostatní zájemce o fyziku 2 1. úloha Obrázek 1.1 ukazuje pevný, homogenní míč poloměru R. Před pádem na
Verze 1.0. Český překlad: M.H. & Kuningas
Verze 1.0 Suomussalmi ( 1/38) 16.prosince 1939 Osa: 6 karet a hraje první Spojenci: 4 karty Spojenci utrpí náhlou smrt v okamžiku, kdy Osa ovládne 3 městské hexy. Odznak na finské lyžařské jednotky. (Jednotky
Novinky v programu Majetek 2.06
Novinky v programu Majetek 2.06 Možnost použít zvětšené formuláře program Majetek 2.06 je dodávám s ovládacím programem ProVIS 1.58, který umožňuje nastavit tzv. Zvětšené formuláře. Znamená to, že se formuláře
Logické řízení výšky hladiny v nádržích
Popis úlohy: Spojené nádrže tvoří dohromady regulovanou soustavu. Přívod vody do nádrží je zajišťován čerpady P1a, P1b a P3 ovládaných pomocí veličin u 1a, u 1b a u 3, snímání výšky hladiny je prováděno
( ) ( ) 7.2.2 Sčítání vektorů. Předpoklady: 7201
7.. Sčítání ektorů Předpoklady: 70 Pedagogická poznámka: Stdenti ětšino necítí potřeb postpoat při definici sčítání ektorů (obecně při zaádění jakékoli operace) tak striktně, jak yžadje matematika. Upozorňji
Vzdělávací obor: Prvouka
VZDĚLÁVACÍ OBLAST : Člověk a jeho svět Vzdělávací obor: Prvouka Tematický okruh / učivo: Lidé a věci. ČP 16-DUM č. 6 Ka Autor: Marta Kasalová Název: Oblečení Anotace: Na pracovním listě se žáci naučí rozlišovat
2.4.11 Nerovnice s absolutní hodnotou
.. Nerovnice s absolutní hodnotou Předpoklady: 06, 09, 0 Pedagogická poznámka: Hlavním záměrem hodiny je, aby si studenti uvědomili, že se neučí nic nového. Pouze používají věci, které dávno znají, na
ECB-PUBLIC ROZHODNUTÍ EVROPSKÉ CENTRÁLNÍ BANKY (EU) 2015/[XX*] ze dne 10. dubna 2015 (ECB/2015/17)
CS ECB-PUBLIC ROZHODNUTÍ EVROPSKÉ CENTRÁLNÍ BANKY (EU) 2015/[XX*] ze dne 10. dubna 2015 o celkové výši ročních poplatků za dohled za první období placení poplatku a za rok 2015 (ECB/2015/17) RADA GUVERNÉRŮ
2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA 7 M7PZD16C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový