UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE

Rozměr: px
Začít zobrazení ze stránky:

Download "UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE"

Transkript

1 MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu (reg. č. CZ.1.7/2.2./28.21) za přispění finančních prostředků EU a státního rozpočtu České republik. Mgr. Radka SMÝKALOVÁ, Ph.D. smk@seznam.cz

2 MT MATEMATIKA Užití derivací, průběh funkce 2 Monotónnost funkce. Lokální etrém Vztah mezi směrnicí tečn v bodě (f ( )) a monotónností funkce v bodě Jestliže tečna funkce f() v bodě roste (f ( ) > ), pak roste v bodě i funkce f(). Jestliže tečna funkce f() v bodě klesá (f ( ) < ), pak klesá v bodě i funkce f(). Jestliže je tečna funkce f() v bodě konstantní (f ( ) = ), pak se v bodě mění nebo nemění monotónnost funkce f(). f() 1 2 f() 1 1 f() f() 4

3 MT MATEMATIKA Užití derivací, průběh funkce 3 Změna monotónnosti v bodech, kde funkce f() není definovaná V bodech, kde funkce f() není definovaná, se mění nebo nemění monotónnost funkce f(). = 1 = 1/ = 2 = 1/ 2 = tan = cot π π π π VĚTA (Vztah mezi monotónností v bodě a monotónností na intervalu). Funkce je rostoucí na otevřeném intervalu právě tehd, kdž je rostoucí v každém bodě tohoto intervalu. Funkce je klesající na otevřeném intervalu právě tehd, kdž je klesající v každém bodě tohoto intervalu.

4 MT MATEMATIKA Užití derivací, průběh funkce 4 VĚTA (Vztah mezi derivací funkce na intervalu a monotónností na intervalu). Nechť má funkce f() derivaci na otevřeném intervalu (má derivaci v každém bodě intervalu). Pak jestližef () > pro každézintervalu, pak jef() na intervalu rostoucí jestližef () < pro každézintervalu, pak jef() na intervalu klesající DEFINICE (Lokální etrém - lokální maimum a minimum). Nechť je funkce f() v bodě definovaná. Řekneme, že funkce má v tomto bodě lokální maimum, jestliže pro každé z rzího okolí bodu platí f( ) f() lokální minimum, jestliže pro každé z rzího okolí bodu platí f( ) f()

5 MT MATEMATIKA Užití derivací, průběh funkce 5 VĚTA (Vztah mezi lokálními etrém v bodě a derivací v bodě ). Nechť má funkce f() v bodě lokální etrém a nechť eistuje derivace funkce v bodě f ( ). Pak f ( ) =. DEFINICE (Stacionární bod). Bod, pro který platí, že f ( ) =, se nazývá stacionární bod. (Je to tzv. podezřelý bod z etrému - bude nebo nebude zde lokální etrém.)

6 MT MATEMATIKA Užití derivací, průběh funkce 6 Postup při zjišťování monotónnosti funkce = f() a etrémů funkce Vpočítáme derivaci funkce = f () Vpočítáme, v jakých bodech je derivace rovna nule - stacionární bod. (Jsou to bod, kde se může měnit monotónnost, ted zde funkce může mít lokální etrém.) = Pokud je = zlomek, vpočítáme i nulové bod jmenovatele, jelikož znaménko zlomku závisí i na znaménku jmenovatele!!! Vpočítáme, v jakých bodech funkce není definovaná. (Jsou to bod, kde se může měnit monotónnost.)

7 MT MATEMATIKA Užití derivací, průběh funkce 7 Nalezené bod vznačíme na číselné ose. (Bod, kde f() není definovaná budou v prázdném kolečku.) Získáme tak několik intervalů. Z každého intervalu si zvolíme libovolný bod a dosadíme do derivace. Kdž vjde kladné číslo, v celém intervalu funkce roste, kdž vjde záporné číslo, v celém intervalu funkce klesá. V bodech, kde je funkce definovaná a mění se zde monotónnost, má funkce lokální etrém. Změna + na je maimum. Změna na + je minimum. Kdž má funkce v bodě etrém, jeho souřadnice na funkci jsou[,f( )]. Ted -ovou souřadnici vpočítáme dosazením do předpisu funkce, čímž vpočítáme funkční hodnotu v bodě.

8 MT MATEMATIKA Užití derivací, průběh funkce 8 Konvenost, konkávnost. Inflení bod DEFINICE (Konvenost, konkávnost ). Funkce f() má v bodě derivaci. Pak je konvení v bodě, jestliže pro všechna z rzího okolí bodu leží graf funkce f() nad tečnou sestrojenou ke grafu funkce f() v bodě. Ted f() > f ( ) ( )+f( ) konkávní v bodě, jestliže pro všechna z rzího okolí bodu leží graf funkce f() pod tečnou sestrojenou ke grafu funkce f() v bodě. Ted f() < f ( ) ( )+f( ) f() f() f() f()

9 MT MATEMATIKA Užití derivací, průběh funkce 9 konvení (konkávní) na otevřeném intervalu, jestliže je konvení (konkávní) v každém jeho bodě VĚTA (Vztah konvenosti a konkávnosti s druhou derivací v bodě ) Nechť má funkce f() druhou derivaci v bodě. Je-li f ( ) >, pak je funkce f() konvení v bodě f ( ) <, pak je funkce f() konkávní v bodě VĚTA (Vztah konvenosti a konkávnosti s druhou derivací na intervalu) Nechť má funkce f() druhou derivaci na otevřeném intervalu. Je-li f () > pro každé z intervalu, pak je funkce f() konvení na intervalu f () < pro každé z intervalu, pak je funkce f() konkávní na intervalu

10 MT MATEMATIKA Užití derivací, průběh funkce 1 DEFINICE (Inflení bod) Bod na funkci, ve kterém eistuje ke grafu funkce právě jedna tečna a graf funkce v něm přechází z konveit do konkávit (nebo naopak), tj. z jedné stran tečn na druhou, se nazývá inflení bod. Funkce f() může mít inflení bod v takovém bodě, kde f ( ) = f() f() f ( ) neeistuje f()

11 MT MATEMATIKA Užití derivací, průběh funkce 11 Postup při zjišťování konvenosti, konkávnosti a infleních bodů funkce f() Vpočítáme druhou derivaci funkce = f () Vpočítáme, v jakých bodech je druhá derivace rovna nule. (Jsou to bod, kde se může měnit konvenost na konkávnost (nebo naopak), ted zde funkce může mít inflení bod.) Pokud je = = zlomek, vpočítáme i nulové bod jmenovatele, jelikož znaménko zlomku závisí i na znaménku jmenovatele!!! Vpočítáme, v jakých bodech funkce není definovaná. (Jsou to bod, kde se může měnit konvenost na konkávnost (nebo naopak).)

12 MT MATEMATIKA Užití derivací, průběh funkce 12 Nalezené bod vznačíme na číselné ose. (Bod, kde f() není definovaná budou v prázdném kolečku.) Získáme tak několik intervalů. Z každého intervalu si zvolíme libovolný bod a dosadíme do druhé derivace. Kdž vjde kladné číslo, v celém intervalu je funkce konvení, kdž vjde záporné číslo, v celém intervalu je funkce konkávní. V bodech, kde je funkce definovaná a mění se zde konvenost na konkávnost (nebo naopak), má funkce inflení bod. Kdž je inflení bod funkce, jeho souřadnice na funkci jsou [,f( )]. Ted -ovou souřadnici vpočítáme dosazením do předpisu funkce, čímž vpočítáme funkční hodnotu v bodě.

13 MT MATEMATIKA Užití derivací, průběh funkce 13 Asmptot funkce DEFINICE (Asmptota funkce). Asmptota funkce je přímka, ke které se funkce f() nekonečně blíží. = = = : = : = : = 1 : = : = 1 se směrnicí - přímka, která je lineární funkce = a+b. Může být pouze v nevlastních bodech ±. bez směrnice - přímka kolmá na osu, ted to není funkce. Může být pouze v bodech nespojitosti - většinou v bodech, kde funkce není definovaná.

14 MT MATEMATIKA Užití derivací, průběh funkce 14 VĚTA (Asmptota se směrnicí). Přímka, která je lineární funkce = a+b, je asmptota se směrnicí grafu funkce f() v nebo v, právě kdž a = lim f() R, b = lim (f() a ) R nebo f() a = lim R, b = lim (f() a ) R VĚTA (Asmptota bez směrnice). Přímka =, která je kolmá na osu, je asmptota bez směrnice grafu funkce f(), právě kdž v bodě, ve kterém f() není definovaná, nastane alespoň jeden z případů: lim f() =, lim f() =, lim + f() =, lim + f() =

15 MT MATEMATIKA Užití derivací, průběh funkce 15 Průběh funkce Ze zadaného předpisu funkce = f() postupně počítáme různé vlastnosti funkce a na závěr nakreslíme její graf. Postup při všetřování průběhu funkce = f() Definiční obor Znaménko funkce, neboli kde je funkce nad osou a kde je pod osou, neboli kde je funkce kladná a kde záporná. Průsečík s osou a osou Parita - sudá, lichá, ani jedno, obojí Monotónnost a lokální etrém - pomocí první derivace Konvenost, konkávnost a inflení bod - pomocí druhé derivace Asmptot se směrnicí a bez směrnice - pomocí limit Graf

16 MT MATEMATIKA Užití derivací, průběh funkce 16 Příklad. Všetřete průběh funkce: 1. = 3 3 Řešení. Postupně počítáme vlastnosti funkce a na závěr nakreslíme graf. Definiční obor: D(f) = R Znaménko funkce (f() > kladná, f() < záporná): 3 3 > 3 3 < (3 2 ) > (3 2 ) < ( 3 )( 3+) > ( 3 )( 3+) < Nulové bod:, 3, Kladná: (, 3) (, 3) Záporná: ( 3,) ( 3, ) 3

17 MT MATEMATIKA Užití derivací, průběh funkce 17 Průsečík s osou ( = ), průsečík s osou ( = ): = = = 3 3 = 3 3 = (3 2 ) = = ( 3 )( 3+) S osou : [,],[ 3,],[ 3,] S osou : [,] Parita - sudá (f() = f( )), lichá (f() = f( )), ani jedno, obojí f() = 3 3 f() = 3 3 f( ) = 3( ) ( ) 3 [f( )] = [ 3+ 3] f( ) = 3 ( 3 ) = 3+ 3 f( ) = 3 3 f() f( ) f() = f( ) Není sudá, je lichá.

18 MT MATEMATIKA Užití derivací, průběh funkce 18 Monotónnost a lokální etrém - pomocí první derivace = (3 3 ) = (3) ( 3 ) = 3() 3 2 = Nulové bod: 1, 1 = = 3(1 2 ) = 3(1 )(1+) = ց ր ց Roste: ( 1,1) Klesá: (, 1) (1, ) V bodě = 1 je lokální minimum a v bodě = 1 je lokální maimum. Lokální minimim: f( 1) = 3 ( 1) ( 1) 3 = 2. Souřadnice [ 1, 2]. Lokální maimum: f(1) = = 2. Souřadnice [1,2].

19 MT MATEMATIKA Užití derivací, průběh funkce 19 Konvenost, konkávnost a inflení bod - pomocí druhé derivace = (3 3 2 ) = (3) (3 2 ) = 3( 2 ) = 3 2 = 6 Nulové bod: Konvení: (,) Konkávní: (, ) + = 6 = = Inflení bod je =. Inflení bod: f() = 3 3 =. Souřadnice [,].

20 MT MATEMATIKA Užití derivací, průběh funkce 2 Asmptot se směrnicí a bez směrnice - pomocí limit se směrnicí = a+b : a = lim = lim = lim f() = = = lim 2 = : a = lim = = lim = lim f() = = = = lim 2 = a / R Asmptota v neeistuje. a / R Asmptota v neeistuje. Ani v jednom případě nemá smsl počítat b.

21 MT MATEMATIKA Užití derivací, průběh funkce 21 bez směrnice - hledáme v bodech, kde funkce f() není definovaná Graf Definiční obor funkce D(f) = R. Nejsou bod, kde bchom hledali asmptotu. Asmptot bez směrnice neeistují

22 MT MATEMATIKA Užití derivací, průběh funkce 22 Cvičení = = = 2 2 1

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin

Více

2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková

2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková .. Funkce a jejich graf.. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné je taková binární relace z množin R do množin R, že pro každé R eistuje nejvýše jedno R, pro které [, ] f.

Více

10.1.13 Asymptoty grafu funkce

10.1.13 Asymptoty grafu funkce .. Asmptot grafu funkce Předpoklad:, Asmptot grafu už známe kreslili jsme si je jako přímk, ke kterým se graf funkce přibližuje. Nakreslení asmptot, pak umožňuje přesnější kreslení grafu. Například u hperbol

Více

PRŮBĚH FUNKCE - CVIČENÍ

PRŮBĚH FUNKCE - CVIČENÍ MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA PRŮBĚH FUNKCE - CVIČENÍ Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny

Více

Lokální a globální extrémy funkcí jedné reálné proměnné

Lokální a globální extrémy funkcí jedné reálné proměnné Lokální etrémy Globální etrémy Použití Lokální a globální etrémy funkcí jedné reálné proměnné Nezbytnou teorii naleznete Breviáři vyšší matematiky (odstavec 1.). Postup při hledání lokálních etrémů: Lokální

Více

Učební dokument FUNKCE. Vyšetřování průběhu funkce. Mgr. Petra MIHULOVÁ. 4.roč.

Učební dokument FUNKCE. Vyšetřování průběhu funkce. Mgr. Petra MIHULOVÁ. 4.roč. Učební dokument FUNKCE Vyšetřování průběhu funkce Mgr. Petra MIHULOVÁ.roč. Evropský sociální fond Praha a EU Investujeme do vaší budoucnosti Vyš etř ová ní přů be hů fůnkce á šeštřojení její ho gřáfů Určování

Více

Obsah. x y = 1 + x 2... 3 y = 3x + 1... 49. y = 2(x2 x + 1) (x 1) 2 101. x 3. y = x2 + 1 x 2 1... 191. y =... 149

Obsah. x y = 1 + x 2... 3 y = 3x + 1... 49. y = 2(x2 x + 1) (x 1) 2 101. x 3. y = x2 + 1 x 2 1... 191. y =... 149 Průběh funkce Robert Mařík 26. září 28 Obsah y = 1 2............................. y = 1............................. 49 y = 2(2 1).......................... ( 1) 2 11 y =............................. 149

Více

(k 1)x k + 1. pro k 1 a x = 0 pro k = 1.

(k 1)x k + 1. pro k 1 a x = 0 pro k = 1. . Funkce dvou a více proměnných. Úvod. Určete definiční obor funkce a proveďte klasifikaci bodů z R vzhledem k a rozhodněte zda je množina uzavřená či otevřená. Určete a načrtněte vrstevnice grafu funkce

Více

Definice 6.2.1. z = f(x,y) vázané podmínkou g(x,y) = 0 jsou z geometrického hlediska lokálními extrémy prostorové křivky k, Obr. 6.2.1. Obr. 6.2.

Definice 6.2.1. z = f(x,y) vázané podmínkou g(x,y) = 0 jsou z geometrického hlediska lokálními extrémy prostorové křivky k, Obr. 6.2.1. Obr. 6.2. Výklad Dalším typem extrémů, kterým se budeme zabývat jsou tzv. vázané extrémy. Hledáme extrémy nějaké funkce vzhledem k předem zadaným podmínkám. Definice 6.2.1. Řekneme, že funkce f : R n D f R má v

Více

Průběh (jednorozměrné) funkce

Průběh (jednorozměrné) funkce Průběh (jednorozměrné) unkce Úlohy na vyšetřování průběhu unkcí (jedno i vícerozměrných) patří k poměrně častým úlohám dierenciálního počtu. V tomto krátkém tetu se omezím pouze na jednorozměrné unkce,

Více

2.3.19 Grafické řešení soustav lineárních rovnic a nerovnic

2.3.19 Grafické řešení soustav lineárních rovnic a nerovnic .3.19 Grafické řešení soustav lineárních rovnic a nerovnic Předpoklad: 307, 311 Př. 1: Vřeš soustavu rovnic + =. Pokud se také o grafické řešení. = 5 Tak jednoduchou soustavu už jsme dlouho neměli: + =

Více

Lineární algebra. Vektorové prostory

Lineární algebra. Vektorové prostory Lineární algebra Vektorové prostory Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu:

Více

KVADRATICKÉ ROVNICE A NEROVNICE (početní a grafická řešení)

KVADRATICKÉ ROVNICE A NEROVNICE (početní a grafická řešení) KVADRATICKÉ ROVNICE A NEROVNICE (početní a grafická řešení) KVADRATICKÉ ROVNICE (početně) Teorie: Kvadratická rovnice o jedné neznámé se nazývá každá taková rovnice, kterou lze ekvivalentními úpravami

Více

Funkce Vypracovala: Mgr. Zuzana Kopečková

Funkce Vypracovala: Mgr. Zuzana Kopečková Funkce Vypracovala: Mgr. Zuzana Kopečková Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace žáků ke studiu technických předmětů OP

Více

Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY

Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY INDIVIDUÁLNÍ VÝUKA Matematika METODIKA Soustavy rovnic Mgr. Marie Souchová květen 2011 Tato část učiva následuje po kapitole Rovnice. Je rozdělena do částí

Více

2.6.4 Lineární lomené funkce s absolutní hodnotou

2.6.4 Lineární lomené funkce s absolutní hodnotou .6. Lineární lomené funkce s absolutní hodnotou Předpoklady: 60, 603 Pedagogická poznámka: Hlavním cílem hodiny je nácvik volby odpovídajícího postupu. Proto je dobré nechat studentům chvíli, aby si metody

Více

Řešení: ( x = (1 + 2t, 2 5t, 2 + 3t, t); X = [1, 2, 2, 0] + t(2, 5, 3, 1), přímka v E 4 ; (1, 2, 2, 0), 0, 9 )

Řešení: ( x = (1 + 2t, 2 5t, 2 + 3t, t); X = [1, 2, 2, 0] + t(2, 5, 3, 1), přímka v E 4 ; (1, 2, 2, 0), 0, 9 ) . Vyjádřete koeficienty vektoru (, 8, 9) vzhledem k následující bázi vektorového prostoru V : (,, 5), (,, ), (5,, ). [,, ].. Určete všechny hodnoty parametru u, pro které vektor a patří do vektorového

Více

2.8.8 Kvadratické nerovnice s parametrem

2.8.8 Kvadratické nerovnice s parametrem .8.8 Kvadratické nerovnice s arametrem Předoklady: 806 Pedagogická oznámka: Z hlediska orientace v tom, co studenti očítají, atří tato hodina určitě mezi nejtěžší během celého středoškolského studia. Proto

Více

MONOTÓNNOST FUNKCE. Nechť je funkce f spojitá v intervalu I a nechť v každém vnitřním bodě tohoto intervalu existuje derivace f ( x)

MONOTÓNNOST FUNKCE. Nechť je funkce f spojitá v intervalu I a nechť v každém vnitřním bodě tohoto intervalu existuje derivace f ( x) 11.+12. přednáška S výjimkou velmi jednoduchých unkcí (lineární, parabolické) potřebujeme k vytvoření názorné představy o unkci a k načrtnutí jejího grau znát další inormace o unkci (intervaly monotónnosti,

Více

Výrazy lze též zavést v nečíselných oborech, pak konstanty označuji jeden určitý prvek a obor proměnné není množina čísel.

Výrazy lze též zavést v nečíselných oborech, pak konstanty označuji jeden určitý prvek a obor proměnné není množina čísel. Výrazy. Rovnice a nerovnice. Výraz je matematický pojem používaný ve školské matematice. Prvním druhem matematických ů jsou konstanty. Konstanty označují právě jedno číslo z množiny reálných čísel. Například

Více

Rostislav Horčík. 13. října 2006

Rostislav Horčík. 13. října 2006 3. přednáška Rostislav Horčík 13. října 2006 1 Lineární prostory Definice 1 Lineárním prostorem nazýváme každou neprázdnou množinu L, na které je definováno sčítání + : L L L a násobení reálným číslem

Více

derivace až do řádu n včetně. Potom existuje právě jeden polynom nejvýše n-tého stupně, který je aproximací funkce f v bodě x

derivace až do řádu n včetně. Potom existuje právě jeden polynom nejvýše n-tého stupně, který je aproximací funkce f v bodě x 11+12 přednáška Některé aplikace derivací 1Věta o aproximaci unkce Nechť je libovolná unkce,která má v nějakém okolí bodu x derivace až do řádu n včetně Potom existuje právě jeden polynom nejvýše n-tého

Více

1 Průběh funkce. Pomůcka pro cvičení: 1. semestr Bc studia Průběh funkce - ruční výpočet

1 Průběh funkce. Pomůcka pro cvičení: 1. semestr Bc studia Průběh funkce - ruční výpočet Pomůcka pro cvičení:. semestr Bc studia Průběh funkce - ruční výpočet Průběh funkce balíček: plots Při vyšetřování průběhu funkce využijte dosavadních příkazů z Maple, které znáte. Nové příkazy budou postupně

Více

LIMITA FUNKCE, SPOJITOST FUNKCE

LIMITA FUNKCE, SPOJITOST FUNKCE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA LIMITA FUNKCE, SPOJITOST FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin

Více

DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO

DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem

Více

Numerická integrace. 6. listopadu 2012

Numerická integrace. 6. listopadu 2012 Numerická integrace Michal Čihák 6. listopadu 2012 Výpočty integrálů v praxi V přednáškách z matematické analýzy jste se seznámili s mnoha metodami výpočtu integrálů. V praxi se ale poměrně často můžeme

Více

Diferenciální počet funkcí jedné proměnné

Diferenciální počet funkcí jedné proměnné Diferenciální počet funkcí jedné proměnné 1 Diferenciální počet funkcí jedné proměnné - Úvod Diferenciální počet funkcí jedné proměnné - úvod V přírodě se neustále dějí změny. Naší snahou je nalézt příčiny

Více

4. R O V N I C E A N E R O V N I C E

4. R O V N I C E A N E R O V N I C E 4. R O V N I C E A N E R O V N I C E 4.1 F U N K C E A J E J Í G R A F Funkce (definice, značení) Způsoby zadání funkce (tabulka, funkční předpis, slovní popis, graf) Definiční obor funkce (definice, značení)

Více

(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f.

(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f. I. Funkce dvou a více reálných proměnných 5. Lokální extrémy. Budeme uvažovat funkci f = f(x 1, x 2,..., x n ), která je definovaná v otevřené množině G R n. Řekneme, že funkce f = f(x 1, x 2,..., x n

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

FUNKCE, ZÁKLADNÍ POJMY

FUNKCE, ZÁKLADNÍ POJMY MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA FUNKCE, ZÁKLADNÍ POJMY Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného

Více

Druhá mocnina. Druhá odmocnina. 2.8.5 Druhá odmocnina. Předpoklady: 020804. V této hodině jsou kalkulačky zakázány.

Druhá mocnina. Druhá odmocnina. 2.8.5 Druhá odmocnina. Předpoklady: 020804. V této hodině jsou kalkulačky zakázány. .8.5 Druhá odmocnina Předpoklady: 0080 V této hodině jsou kalkulačky zakázány. Druhá mocnina nám umožňuje určit z délky strany plochu čtverce. Druhá mocnina 1 1 9 11 81 11 délky stran čtverců obsahy čtverců

Více

1. a) Lineární rovnice a nerovnice s absolutní hodnotou. b) Skalární součin vektorů, úhel dvou vektorů, kolmost a rovnoběžnost vektorů.

1. a) Lineární rovnice a nerovnice s absolutní hodnotou. b) Skalární součin vektorů, úhel dvou vektorů, kolmost a rovnoběžnost vektorů. . a) Lineární rovnice a nerovnice s absolutní hodnotou. b) Skalární součin vektorů, úhel dvou vektorů, kolmost a rovnoběžnost vektorů. A.: Řeš v R : 4 B.: Vypočti velikosti vnitřních úhlů v trojúhelníku

Více

2.7.15 Rovnice s neznámou pod odmocninou I

2.7.15 Rovnice s neznámou pod odmocninou I .7.15 Rovnice s neznámou pod odmocninou I Předpoklady: 711, 71 Pedagogická poznámka: Látka této hodiny vyžaduje tak jeden a půl vyučovací hodiny, pokud nepospícháte můžete obětovat hodiny dvě a nechat

Více

Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia

Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia - - Konzultce z předmětu MATEMATIKA pro první ročník dálkového studi ) Číselné obor ) Zákldní početní operce procentový počet ) Absolutní hodnot reálného čísl ) Intervl množinové operce ) Mocnin ) Odmocnin

Více

2.4.11 Nerovnice s absolutní hodnotou

2.4.11 Nerovnice s absolutní hodnotou .. Nerovnice s absolutní hodnotou Předpoklady: 06, 09, 0 Pedagogická poznámka: Hlavním záměrem hodiny je, aby si studenti uvědomili, že se neučí nic nového. Pouze používají věci, které dávno znají, na

Více

c ÚM FSI VUT v Brně 20. srpna 2007

c ÚM FSI VUT v Brně 20. srpna 2007 20. srpna 2007 1. f = 3 12 2. f = 2 e 3. f = ln Příklad 1. Nakreslete graf funkce f() = 3 12 Příklad 1. f = 3 12 Nejprve je třeba určit definiční obor. Výraz je vždy definován. Příklad 1. f = 3 12 f =

Více

FUNKCE, ZÁKLADNÍ POJMY

FUNKCE, ZÁKLADNÍ POJMY MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA FUNKCE, ZÁKLADNÍ POJMY Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného

Více

Kód uchazeče ID:... Varianta: 15

Kód uchazeče ID:... Varianta: 15 Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 2013 Kód uchazeče ID:.................. Varianta: 15 1. V únoru byla zaměstnancům zvýšena mzda o 15 % lednové mzdy. Následně

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_3_12 ŠVP Podnikání RVP 64-41-L/51

Více

{ } Ox ( 0) 4.2. Konvexnost, konkávnost, inflexe. Definice Obr. 52. Poznámka. nad tečnou

{ } Ox ( 0) 4.2. Konvexnost, konkávnost, inflexe. Definice Obr. 52. Poznámka. nad tečnou Konvenost, konkávnost, inflee 4.. Konvenost, konkávnost, inflee Definice 4... Nechť eistuje f ( ), D f. Řekneme, že funkce f ( ) je v bodě konkávní, jestliže eistuje { } O ( ) tak, že platí D : O( )\ f(

Více

Hra a hry. Václav Vopravil. Teorie kombinatorických her se zabývá abstraktními hrami dvou hráčů. Hra je definována R },

Hra a hry. Václav Vopravil. Teorie kombinatorických her se zabývá abstraktními hrami dvou hráčů. Hra je definována R }, Hra a hry Václav Vopravil Úvod 1 Kombinatorické hry Teorie kombinatorických her se zabývá abstraktními hrami dvou hráčů. Hra je definována pomocí jednodušších her, tj. jako uspořádaná dvojice množin her.

Více

( ) 2.5.7 Neúplné kvadratické rovnice. Předpoklady: 020501

( ) 2.5.7 Neúplné kvadratické rovnice. Předpoklady: 020501 ..7 Neúplné kvadratické rovnice Předpoklady: Pedagogická poznámka: Tato hodina patří mezi vzácné výjimky, kdy naprostá většina studentů skončí více než pět minut před zvoněním. Nechávám je dělat něco jiného

Více

Analytická geometrie (3. - 4. lekce)

Analytická geometrie (3. - 4. lekce) Analytická geometrie (3. - 4. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 16. června 2011 Příklad 1 Příklad 1. Algebraicky

Více

ÚVOD DO HRY PRINCIP HRY

ÚVOD DO HRY PRINCIP HRY Počet hráčů: 2-6 Věk: od 6 let Délka hry: cca 20 min. Obsah: 66 hracích karet: 45 karet s čísly (hodnota 0 8 čtyřikrát, hodnota 9 devětkrát), 21 speciálních karet (9 karet Výměna, 7 karet Špehuj, 5 karet

Více

4 Soustavy lineárních rovnic

4 Soustavy lineárních rovnic 4 Soustavy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic, to znamená několika lineárními rovnicemi, které musí být současně splněny. 4.1 Základní pojmy Definice Soustavu

Více

IRACIONÁLNÍ ROVNICE. x /() 2 (umocnění obou stran rovnice na druhou) 2x 4 9 /(-4) (ekvivalentní úpravy) Motivace: Teorie: Řešené úlohy:

IRACIONÁLNÍ ROVNICE. x /() 2 (umocnění obou stran rovnice na druhou) 2x 4 9 /(-4) (ekvivalentní úpravy) Motivace: Teorie: Řešené úlohy: IRACIONÁNÍ ROVNICE Motivace: V řadě matematických úloh je nutno ovládat práci s odmocninami a rovnicemi, které obsahují neznámou pod odmocninou, mj. při vyjádření neznámé z technických vzorců. Znalosti

Více

M-10. AU = astronomická jednotka = vzdálenost Země-Slunce = přibližně 150 mil. km. V následující tabulce je závislost doby

M-10. AU = astronomická jednotka = vzdálenost Země-Slunce = přibližně 150 mil. km. V následující tabulce je závislost doby M-10 Jméno a příjmení holka nebo kluk * Třída Datum Škola AU = astronomická jednotka = vzdálenost Země-Slunce = přibližně 150 mil. km V následující tabulce je závislost doby a/au T/rok oběhu planety (okolo

Více

Derivace a průběh funkce.

Derivace a průběh funkce. Derivace a průběh funkce. Robert Mařík 14. října 2008 Obsah 1 Základní myšlenky. 2 2 Přesné věty a definice 10 3 Okolí nevlastních bodů. 16 4 Sestrojení grafu funkce. 19 1 Základní myšlenky. y x Uvažujme

Více

Pravoúhlá axonometrie - řezy hranatých těles

Pravoúhlá axonometrie - řezy hranatých těles Pravoúhlá axonometrie - řezy hranatých těles KG - L MZLU v Brně ZS 2008 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS 2008 1 / 41 Příklad (Řez šikmého hranolu) Sestrojte řez šikmého

Více

Jan Březina. Technical University of Liberec. 17. března 2015

Jan Březina. Technical University of Liberec. 17. března 2015 TGH03 - stromy, ukládání grafů Jan Březina Technical University of Liberec 17. března 2015 Kružnice - C n V = {1, 2,..., n} E = {{1, 2}, {2, 3},..., {i, i + 1},..., {n 1, n}, {n, 1}} Cesta - P n V = {1,

Více

Definice a vlastnosti funkcí

Definice a vlastnosti funkcí Definice a vlastnosti funkcí Učební text pro druhý ročník (sextu) gymnázia V tomto textu jsou definovány základní, obecné pojmy týkající se funkcí. Součástí textu nejsou (velmi důležité!) obrázky; ty si

Více

2.7.2 Mocninné funkce se záporným celým mocnitelem

2.7.2 Mocninné funkce se záporným celým mocnitelem .7. Mocninné funkce se záporným celým mocnitelem Předpoklady: 70 Mocninné funkce se záporným celým mocnitelem: znamená? 3 y = = = = 3 y y y 3 = ; = ; = ;.... Co to Pedagogická poznámka: Nechávám studenty,

Více

6 Extrémy funkcí dvou proměnných

6 Extrémy funkcí dvou proměnných Obsah 6 Extrémy funkcí dvou proměnných 2 6.1 Lokálníextrémy..... 2 6.2 Vázanélokálníextrémy.... 4 6.2.1 Metodyhledánívázanýchlokálníchextrémů..... 5 6.2.2 Přímédosazení..... 5 6.2.3 Lagrangeovametoda.....

Více

Sekvenční obvody. S R Q(t+1) 0 0? 0 1 0 1 0 1 1 1 Q(t)

Sekvenční obvody. S R Q(t+1) 0 0? 0 1 0 1 0 1 1 1 Q(t) Sekvenční obvody Pokud hodnoty výstupů logického obvodu závisí nejen na okamžitých hodnotách vstupů, ale i na vnitřním stavu obvodu, logický obvod se nazývá sekvenční. Sekvenční obvody mění svůj vnitřní

Více

Fyzikální praktikum 3 - úloha 7

Fyzikální praktikum 3 - úloha 7 Fyzikální praktikum 3 - úloha 7 Operační zesilovač, jeho vlastnosti a využití Teorie: Operační zesilovač je elektronická součástka využívaná v měřící, regulační a výpočetní technice. Ideální model má nekonečně

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základ matematik pro FEK 7. přednáška Blanka Šedivá KMA zimní semestr 06/07 Blanka Šedivá (KMA) Základ matematik pro FEK zimní semestr 06/07 / 5 Jednostranné limit Definice: Vlastní limita ve vlastním

Více

7. DIFERENCIÁLNÍ POČET FUNKCÍ DVOU PROMĚNNÝCH... 83. 7.1. Definiční oblasti... 83 Úlohy k samostatnému řešení... 83

7. DIFERENCIÁLNÍ POČET FUNKCÍ DVOU PROMĚNNÝCH... 83. 7.1. Definiční oblasti... 83 Úlohy k samostatnému řešení... 83 Sbírka úloh z matematik 7 DIFERENCIÁLNÍ POČET FUNKCÍ DVOU PROMĚNNÝCH 8 7 Definiční oblasti 8 Úloh k samostatnému řešení 8 7 Parciální derivace 8 Úloh k samostatnému řešení 8 7 Tečná rovina a normála 8

Více

Řetězovka (catenary)

Řetězovka (catenary) Řetězovka (catenary) Robert Mařík jaro 2014 Tento text je tištěnou verzí prezentací dostupných z http://user.mendelu.cz/marik/am. Řetězovka - křivka lan a řetězů prověšených vlastní vahou Budeme se zajímat

Více

IV.7. Potenciální vektorové pole

IV.7. Potenciální vektorové pole E. Brožíková, M. Kittlerová, F. Mráz: Sbírka příkladů z Matematik II (16 IV.7. Poteniální vektorové pole Vektorové pole f (U,V,W se nazývá poteniální pole v oblasti G E 3, jestliže eistuje skalární funke

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor013 Vypracoval(a),

Více

DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO - CVIČENÍ

DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO - CVIČENÍ MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO - CVIČENÍ Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně LDF)

Více

Exponenciální funkce, rovnice a nerovnice

Exponenciální funkce, rovnice a nerovnice Eonenciální funkce, rovnice a nerovnice Mamut s korovou omáčkou (Eonenciální funkce) a) AN b) NE c) NE d) AN e) NE f) NE g) AN h) NE a), b), c) d) e) f) e+ b - - - D( f )=R H( f )=( ) P neeistuje P [ ]

Více

M - Rovnice - lineární a s absolutní hodnotou

M - Rovnice - lineární a s absolutní hodnotou Rovnice a jejich ekvivalentní úpravy Co je rovnice Rovnice je matematický zápis rovnosti dvou výrazů. př.: x + 5 = 7x - M - Rovnice - lineární a s absolutní hodnotou Písmeno zapsané v rovnici nazýváme

Více

Matematika pro 9. ročník základní školy

Matematika pro 9. ročník základní školy Matematika pro 9. ročník základní školy Řešení Ćíselné výrazy 1. Prvočíslo je přirozené číslo, které je beze zbytku dělitelné právě dvěma různými přirozenými čísly, a to číslem jedna a sebou samým (tedy

Více

Spojování systémů. Kladná a záporná zpětná vazba.

Spojování systémů. Kladná a záporná zpětná vazba. Spojování systémů. Kladná a záporná zpětná vazba. Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 11. přednáška

Více

Derivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace

Derivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace Derivace funkce Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Směrnice přímk Derivace a její geometrický význam 3 Definice derivace 4 Pravidla a vzorce pro derivování 5 Tečna a normála 6 Derivace

Více

= musíme dát pozor na: jmenovatel 2a, zda je a = 0 výraz pod odmocninou, zda je > 0, < 0, = 0 (pak je jediný kořen)

= musíme dát pozor na: jmenovatel 2a, zda je a = 0 výraz pod odmocninou, zda je > 0, < 0, = 0 (pak je jediný kořen) .8.7 Kvadratické rovnice s parametrem Předpoklady: 507, 803 Pedagogická poznámka: Na první pohled asi každého zarazí, že takřka celá hodina je psána jako příklady a studenti by ji měli vypracovat samostatně.

Více

FUNKCE, ZÁKLADNÍ POJMY - CVIČENÍ

FUNKCE, ZÁKLADNÍ POJMY - CVIČENÍ MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA FUNKCE, ZÁKLADNÍ POJMY - CVIČENÍ Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny

Více

( x ) 2 ( ) 2.5.4 Další úlohy s kvadratickými funkcemi. Předpoklady: 2501, 2502

( x ) 2 ( ) 2.5.4 Další úlohy s kvadratickými funkcemi. Předpoklady: 2501, 2502 .5. Další úlohy s kvadratickými funkcemi Předpoklady: 50, 50 Pedagogická poznámka: Tato hodina patří mezi ty méně organizované. Společně řešíme příklad, při dalším počítání se třída rozpadá. Já řeším příklady

Více

Orientovaná úseka. Vektory. Souadnice vektor

Orientovaná úseka. Vektory. Souadnice vektor Vektory, operace s vektory Ž3 Orientovaná úseka Mjme dvojici bod A, B (na pímce, v rovin nebo prostoru), které spojíme a vznikne tak úseka. Pokud budeme rozlišovat, zda je spojíme od A k B nebo od B k

Více

Taky si zkuste promyslet, která zobrazení jsou afinní: to které zobrazí přímku jako rovinu? Nebo snad to které zobrazí rovinu jako přímku?

Taky si zkuste promyslet, která zobrazení jsou afinní: to které zobrazí přímku jako rovinu? Nebo snad to které zobrazí rovinu jako přímku? Afinní zobrazenní Úmluva Symbolem V (popř V ) budu vždy značit nějaký vektorový prostor, symbolem A (popř A ) pak vždy afinní bodový prostor, zdvojená písmena (např A, B, C, ) značí vždy matice Definice

Více

Limita a spojitost LDF MENDELU

Limita a spojitost LDF MENDELU Limita a spojitost Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu

Více

Řešení lineárních a kvadratických funkcí v prostředí programu GeoGebra

Řešení lineárních a kvadratických funkcí v prostředí programu GeoGebra Řešení lineárních a kvadratických funkcí v prostředí programu GeoGebra Lineární a kvadratické rovnice jsou součástí velké množiny rovnic. Jejich uplatnění je často velmi praktické, a proto je pojmu rovnice

Více

INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY

INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY FUNKCÍ DVOU PROMĚNNÝCH Robert Mařík 2. října 2009 Obsah z = x 4 +y 4 4xy + 30..................... 3 z = x 2 y 2 x 2 y 2........................ 18 z = y ln(x 2 +y)..........................

Více

f( x) x x 4.3. Asymptoty funkce Definice lim f( x) =, lim f( x) =, Jestliže nastane alespoň jeden z případů

f( x) x x 4.3. Asymptoty funkce Definice lim f( x) =, lim f( x) =, Jestliže nastane alespoň jeden z případů 3 Výklad Definice 3 Jestliže nastane alespoň jeden z případů lim =, lim =, + + lim =, lim =, kde ( D ), pak říkáme, že přímka = je asymptotou funkce f() v bodě f Jestliže lim ( k q) =, resp lim ( k q)

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/4.080 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/ Inovace a zkvalitnění výuky prostřednictvím

Více

Trh výrobků a služeb chování spotřebitele

Trh výrobků a služeb chování spotřebitele Trh výrobků a služeb chování Doc. Ing. Jana Kortárová, h.d. Užitečnost Užitečnost (U) vjadřuje míru uspokojení potřeb. (Celková užitečnost TU, Mezní užitečnost MU) ΔTU - ordinální kategorie MU = Δ Gossenov

Více

7) Intervaly konvexnosti a konkávnosti. 8) Inflexe, inflexní body grafu funkce. 9) Asymptoty grafu funkce. 10) Sestrojení grafu funkce.

7) Intervaly konvexnosti a konkávnosti. 8) Inflexe, inflexní body grafu funkce. 9) Asymptoty grafu funkce. 10) Sestrojení grafu funkce. Přednáška č. 12 Vyšetřování průběhu funkce a užití extrémů funkcí Jiří Fišer 11. prosince 2009 Jiří Fišer (KMA, PřF UP Olomouc) KMA MMAN1 Přednáška č. 12 11. prosince 2009 1 / 18 Průběh funkce O vyšetřování

Více

titul před titul za rodné číslo datum narození (nebylo-li přiděleno rodné číslo)

titul před titul za rodné číslo datum narození (nebylo-li přiděleno rodné číslo) Návrh na vklad do katastru nemovitostí podle 4 zákona č. 265/1992 Sb. Spisová značka Určeno: Katastrálnímu úřadu pro Katastrální pracoviště vyplní katastrální úřad I. Údaje o účastnících řízení fyzických

Více

5.2.3 Kolmost přímek a rovin I

5.2.3 Kolmost přímek a rovin I 5.2.3 Kolmost římek rovin I ředokldy: 5202 vě římky jsou k soě kolmé rávě tehdy, když jejich odchylk je 90. Nvzájem kolmé mohou ýt i mimoěžky. vě úsečky jsou kolmé, rávě když leží n kolmých římkách. íšeme:

Více

2.7.1 Mocninné funkce s přirozeným mocnitelem

2.7.1 Mocninné funkce s přirozeným mocnitelem .7. Mocninné funkce s přirozeným mocnitelem Předpoklad: 0 Pedagogická poznámka: K následujícím třem hodinám je možné přistoupit dvěma způsob. Já osobně doporučuji postupovat podle učebnice. V takovém případě

Více

Externí zařízení Uživatelská příručka

Externí zařízení Uživatelská příručka Externí zařízení Uživatelská příručka Copyright 2009 Hewlett-Packard Development Company, L.P. Informace uvedené v této příručce se mohou změnit bez předchozího upozornění. Jediné záruky na produkty a

Více

DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO

DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

[ 5;4 ]. V intervalu 1;5 je funkce rostoucí (její první derivace je v tomto intervalu

[ 5;4 ]. V intervalu 1;5 je funkce rostoucí (její první derivace je v tomto intervalu 1..1 Průběh funkce III (prohnutí Předpoklad: 111 Pedagogická poznámka: Při poctivém probírání b tato látka zabrala dvě celé vučovací hodin. Studenti z toho nebudou příliš nadšení, je zde příliš mnoho definic

Více

( ) ( ) 7.2.2 Sčítání vektorů. Předpoklady: 7201

( ) ( ) 7.2.2 Sčítání vektorů. Předpoklady: 7201 7.. Sčítání ektorů Předpoklady: 70 Pedagogická poznámka: Stdenti ětšino necítí potřeb postpoat při definici sčítání ektorů (obecně při zaádění jakékoli operace) tak striktně, jak yžadje matematika. Upozorňji

Více

2.1.13 Funkce rostoucí, funkce klesající I

2.1.13 Funkce rostoucí, funkce klesající I .1.13 Funkce rostoucí, funkce klesající I Předpoklad: 111 Pedagogická poznámka: Následující příklad je dobrý na opakování. Můžete ho studentům zadat na čas a ten kdo ho nestihne nebo nedokáže vřešit, b

Více

4.6.6 Složený sériový RLC obvod střídavého proudu

4.6.6 Složený sériový RLC obvod střídavého proudu 4.6.6 Složený sériový LC obvod střídavého proudu Předpoklady: 41, 4605 Minulá hodina: odpor i induktance omezují proud ve střídavém obvodu, nemůžeme je však sčítat normálně, ale musíme použít Pythagorovu

Více

Goniometrie trigonometrie

Goniometrie trigonometrie Goniometrie trigonometrie Goniometrie se zabývá funkcemi sinus, kosinus, tangens, kotangens (goniometrické funkce). V tomto článku se budeme zabývat trigonometrií (součást goniometrie) používáním goniometrických

Více

Edita Kolářová ÚSTAV MATEMATIKY

Edita Kolářová ÚSTAV MATEMATIKY Přípravný kurs z matematik Edita Kolářová ÚSTAV MATEMATIKY Přípravný kurs z matematik 1 Obsah 1 Přehled použité smbolik 3 Základní pojm matematické logik a teorie množin 4.1 Element matematické logik.........................

Více

SMĚŠOVACÍ KALORIMETR -tepelně izolovaná nádoba s míchačkou a teploměrem, která je naplněná kapalinou

SMĚŠOVACÍ KALORIMETR -tepelně izolovaná nádoba s míchačkou a teploměrem, která je naplněná kapalinou KALORIMETRIE Kalorimetr slouží k měření tepla, tepelné kapacity, případně měrné tepelné kapacity Kalorimetrická rovnice vyjadřuje energetickou bilanci při tepelné výměně mezi kalorimetrem a tělesy v kalorimetru.

Více

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 3. Reálná čísla

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 3. Reálná čísla Moderní technologie ve studiu aplikované fyziky CZ..07/..00/07.008 3. Reálná čísla RACIONÁLNÍ A IRACIONÁLNÍ ČÍSLA Význačnými množinami jsou číselné množiny. K nejvýznamnějším patří množina reálných čísel,

Více

( ) ( ) ( ) 2 ( ) 2.7.16 Rovnice s neznámou pod odmocninou II. Předpoklady: 2715

( ) ( ) ( ) 2 ( ) 2.7.16 Rovnice s neznámou pod odmocninou II. Předpoklady: 2715 .7.6 Rovnice s neznámou pod odmocninou II Předpoklady: 75 Př. : Vyřeš rovnici y + + y = 4 y + + y = 4 / ( y + + y ) = ( 4) y + + 4 y + y + 4 y = 6 5y + 4 y + y = 8 5y + 4 y + y = 8 - v tomto stavu nemůžeme

Více

AMU1 Monitorování bezpečného života letounu (RYCHLÝ PŘEHLED)

AMU1 Monitorování bezpečného života letounu (RYCHLÝ PŘEHLED) 20. Července, 2009 AMU1 Monitorování bezpečného života letounu (RYCHLÝ PŘEHLED) ZLIN AIRCRAFT a.s. Oddělení Výpočtů letadel E-mail: safelife@zlinaircraft.eu AMU1 Monitorování bezpečného života letounu

Více

MĚŘENÍ NÁKLADŮ, VÝKONNOSTI

MĚŘENÍ NÁKLADŮ, VÝKONNOSTI Konference ČSSI, Praha 24.5.2013 MĚŘENÍ NÁKLADŮ, VÝKONNOSTI A KVALITY SLUŽEB VEŘEJNÉ SPRÁVY CÍLE, PŘÍLEŽITOSTI A HROZBY Jiří Voříšek ČSSI vorisek@vse.cz Motto konference Občané a firmy očekávají od veřejné

Více

Základy počítačové grafiky

Základy počítačové grafiky Základy počítačové grafiky Prezentace přednášek Ústav počítačové grafiky a multimédií Téma přednášky Textury 3D objektů Motto Objekty v reálném světě nejsou plastikové koule plující v prostoru kolem nás!

Více

( ) 2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I. Předpoklady: 2401, 2208

( ) 2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I. Předpoklady: 2401, 2208 .. Kreslení grafů funkcí metodou dělení definičního oboru I Předpoklady: 01, 08 Opakování: Pokud jsme při řešení nerovnic potřebovali vynásobit nerovnici výrazem, nemohli jsme postupovat pro všechna čísla

Více

7. Silně zakřivený prut

7. Silně zakřivený prut 7. Silně zakřivený prut 2011/2012 Zadání Zjistěte rozložení napětí v průřezu silně zakřiveného prutu namáhaného ohybem analyticky a experimentálně. Výsledky ověřte numerickým výpočtem. Rozbor Pruty, které

Více

EXPONENCIÁLNÍ A LOGARITMICKÁ FUNKCE

EXPONENCIÁLNÍ A LOGARITMICKÁ FUNKCE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol EXPONENCIÁLNÍ

Více

Kvadratické rovnice pro učební obory

Kvadratické rovnice pro učební obory Variace 1 Kvadratické rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jkaékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické

Více