VLASTNOSTI KAPALIN. Část 2. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA
|
|
- Zdeněk Bláha
- před 8 lety
- Počet zobrazení:
Transkript
1 HYDROMECHANIKA LASTNOSTI KAPALIN Část 2 Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA
2 lastnosti kapalin: Molekulární stavba hmoty Příklad Makroskopická částice Síly působící na element kapaliny Stavové veličiny Stlačitelnost Teplotní roztažnost iskozita Povrchové napětí Tlak nasycených par Absorbce plynů v kapalinách Konec
3 Molekulární stavba hmoty: zájemné silové působení dvou molekul Příklad průběhu vzájemného silového působení dvou molekul v závislosti na vzdálenosti x
4 Molekulární stavba hmoty: Pevné krystalické látky - zachovávají tvar a objem, mají velký odpor proti zvětšení, nebo zmenšení rozměrů, vzdálenost molekul je Xo, molekuly kmitají kolem rovnovážných poloh. Kapaliny - zachovávají objem, a tvar podle nádoby, tvoří hladinu, vzdálenost molekul, řádově stejná jako u tuhých těles, přenos tepla je složitější, chaotický pohyb pozoroval Brown. Plyny - netvoří hladinu, snadno mění objem, jsou rozpínavé, maximálně vyplňují prostor, velké vzdálenosti molekul, molekuly se pohybují velkou rychlostí všemi směry.
5 Makroskopická částice Makroskopická částice (elementární objem, fyzikální částice) - zahrnuje určitý počet molekul, na jedné straně dostatečně velký (N>>), ale na z druhé strany zanedbatelný vůči celkovému počtu molekul tělesa. Makroskopický systém (kontinuum) - se skládá z makroskopických částic, které zcela vyplňují zvolený objem jsou od sebe odděleny myšlenými povrchy DS.
6 Síly působící na kapalinu Hmotnostní síly (v případě nestlačitelné kapaliny - objemové) - závisí na hmotnosti makroskopické částice. Síly působené vnějším polem F P - tíhová síla, odstředivá síla F G m g nější pole Slíly působící na makroskopickou částici Hmotnostní setrvačné síly Plošné Setrvačná síla F S F SE m a Plošné síly F DS - jsou úměrné velikosti plochy df S T S T S d S F ds T S - vektor napětí ds
7 Stavové veličiny Tlak (p) - Silový účinek molekul na jednotku plochy, resp. tlak je síla působící na jednotku plochy ve směru normály. (Pa N.m -2 kg.m -.s -2.) Teplota (T) - Je to veličina intenzivní (neaditivní) stejně jako tlak a hustota nezávisí na rozměrech tělesa. Jednotka (t[ C] - stupeň Celsiův, T[ K] - stupeň Kelvinův (absolutní teplota) [ K ] t [ C ] 273, 5 T + Měrná hmotnost (hustota) (r) - Předpokládáme, že hmotnost makroskopické částice je úměrná objemu pak, dm ρ( x, y, z)d. (, y,z) Homogenní látky - r je nezávislé na poloze makroskopické částice ρ x dm d
8 lastnosti kapalin: Hustota Stlačitelnost Teplotní roztažnost - viz stavové veličiny - schopnost zmenšovat objem při zvýšení vnějšího tlaku - součinitel stlačitelnosti Modul stlačitelnosti - převrácená hodnota součinitele stlačitelnosti Rychlost zvuku iskozita Povrchové napětí - rychlost kterou se šíří tlakové rozruchy v daném médiu - schopnost látek zvětšovat svůj objem se vzrůstající teplotou - odpor kapaliny proti pohybu částic - s touto vlastností souvisí kapilarita Tlak nasycených par- souvisí to s kavitací Absorbce plynů - rozpouštění plynů v kapalině
9 Stlačitelnost: Stlačitelnost ( p) - schopnost zmenšovat objem při zvýšení vnějšího tlaku - součinitel stlačitelnosti d. d dp ( p ) 0 + p0 d ( p ) p0 dp 0 ( p p ) ( δ p) 0 0δ 0 0 δ d dp 0!Pozor!
10 Stlačitelnost: Modlul objemové stlačitelnosti K - převrácená hodnota součinitele stlačitelnosti. K δ dp d [ Pa] Má podobný význam, jako modul pružnosti E, pro vodu je jeho hodnota K [Pa]. Mění se, jak v závislosti na teplotě, tak tlaku. Rychlost zvuku c - je to rychlost kterou se šíří tlakové vlny v mediu. m ρ. dm dρ. + ρ.d 0 K dp d ρ dp dρ c K ρ dp dρ
11 Teplotní roztažnost: Roztažnost ( t) - (γ) schopnost měnit objem se změnou teploty. (Předpokládáme, že děj probíhá za konstantní ho tlaku). d + dt ( t ) 0 t 0 d ( t ) t 0 dt 0 ( t t ) ( + γ t) γ 0 0 γ d dt 0!Pozor!
12 iskozita iskozita - odpor částic kapaliny při přesouvání. Tento odpor je výjádřen tečným napětím t. τ df τ ds První formulaci uvedl v roce 687 anglický fyzik Isaac Newton. Uvedl ji pro laminární proudění. τ µ dc dn iskozita - Tečné napětí, je úměrné změně rychlosti ve směru kolmém na rychlost. iskozita se dá také vysvětlit na základě kinetické teorie tekutin. Předávání hybností molekul.
13 iskozita Dynamická iskozita µ µ τ dv dn Pa s kg m s Kinematická viskozita ν - pro jednodušší počítání. ν µ ρ m 2 s Newtonstké kapaliny- Dynamická viskozita je konstantní (Př. oda a ostatní běžné kapaliny). nenewtonské kapaliny-iskozita není konstantní, je závislá na tečném napětí, nebo na změně rychlosti ve směru kolmém na směr rychlosti. (Př. hydrosměsi, krev, tečení plastů, různá maziva.)
14 Povrchové napětí Povrchové napětí - je to energie vrstvy molekul kapaliny E pn na rozhraní s jinou látkou vztažená na jednotku plochy rozhraní. σ E S pn pn J m 2 2 m kg 2 s m 2 Rozhraní kapaliny s jinou látkou se jeví jako potaženo velmi tenkou a napjatou vrstvou. Příčinou povrchového napětí jsou síly působící mezi molekulami kapaliny. N m σ F pn l N m
15 Povrchové napětí Účinky povrchového napětí se projeví : vzlínáním u stěn nádoby, v kapiláře stoupáním, nebo klesáním sloupce kapaliny vůči hladině, při rozprašování kapaliny - tvorba kuliček, zúžení paprsku kapaliny a jeho rozpad, tvorba bublin v kapalině - kavitace, při vytváření vln na hladině, má významný vliv na tvorbu hladinových vírů s přisáváním vzduchu, umožňuje pohyb vodoměrek po hladině.
16 Povrchové napětí zlínání u stěn nádoby je způsobeno tím, že na element kapaliny, který je na hladině u stěny působí tři povrchová napětí. σ T σ TK + σ K. cosϕ cos ϕ σ T σ σ K TK
17 Povrchové napětí Problém: Jaký je tlak v kapce vody, ve tvaru koule, vzhledem k okolnímu tlaku? p p i p e F p p.s p. π. R 2 p. π.r 2 σ.l σ.2. π.r p 2. σ R
18 Povrchové napětí Problém: Jakto, že kapalina v úzké trubičce - kapiláře vystoupí nad nebo pod úroveň okolní kapaliny?
19 Povrchové napětí O jakou výšku h tedy vystoupí, nebo klesne kapalina v kapiláře? F G L. σ.cos ϕ 2. π.r. σ. cos ϕ F G. ρ.g π.r 2.h. ρ. g π.r 2.h. ρ.g 2. π.r. σ. cos ϕ Z toho můžeme vyjádřit h h 2. σ.cos ϕ R. ρ.g
20 Tlak nasycených par p v Jaký bude minimální tlak nad hladinou kapaliny za konstantní teploty? Za normální teploty tedy při T20 C je p v 700 Pa v
21 Absorbce plynů v kapalinách Objem plynu který může kapalina o objemu k pojmout záleží pouze na teplotě. Podmínka! Kapalina nesmí s plynem chemicky reagovat. Rozpustnost plynu v kapalině α k Přepočet objemu vzduchu na teplotu t0 C. Gay-Lussacův vztah: 0 t ) 0 + γ(t Absorbční součinitel: α 0 k k + γt α + γt
22 Příklad: Zadání: álcová nádrž na zásobu pitné vody je naplněna vodou a uzavřena. ( Dm, H3m) nejvyšším místě nádrže je umístěn tlakoměr a teploměr. Hodnoty na tlakoměru a teploměru byly v ranních hodinách p p a 0,MPa, t 2 C. Nádrž byla vystavena slunečnímu záření a odpoledne stoupla teplota vody na t 230 C. Určete o kolik se změnil tlak v nádobě. lastnosti vody: modul objemové pružnosti K2, Pa součinitel teplotní roztažnosti pro rozsahy (0-20) C g, K - (20-30) C g2, K - Zanedbejte poddajnost nádoby.
23 Řešení: Celý proces probíhající současně, rozdělíme do následujících kroků: Počáteční stav: Ohřev za konstantního tlaku na teplotu t 2 (kvůli součiniteli teplotní roztažnosti): Ohřev za konstantního tlaku na teplotu t 2 : Stlačení za konstantní teploty na tlak p 2 : Objem: Tlak: p p p p 2 Teplota: t t 2 t 2 t 2
Úvod. K141 HYAR Úvod 0
Úvod K141 HYAR Úvod 0 FYZIKA MECHANIKA MECH. TEKUTIN HYDRAULIKA HYDROSTATIKA HYDRODYNAMIKA Mechanika tekutin zabývá se mechanickými vlastnostmi tekutin (tj. silami v tekutinách a prouděním tekutin) poskytuje
1141 HYA (Hydraulika)
ČVUT v Praze, fakulta stavební katedra hydrauliky a hydrologie (K141) Přednáškové slidy předmětu 1141 HYA (Hydraulika) verze: 09/2008 K141 FSv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D.
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Modelování termohydraulických jevů 3.hodina Hydraulika Ing. Michal Kabrhel, Ph.D. Letní semestr 008/009 Pracovní materiály pro výuku předmětu.
Vlastnosti kapalin. Povrchová vrstva kapaliny
Struktura a vlastnosti kapalin Vlastnosti kapalin, Povrchová vrstva kapaliny Jevy na rozhraní pevného tělesa a kapaliny Kapilární jevy, Teplotní objemová roztažnost Vlastnosti kapalin Kapalina - tvoří
KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník
KAPALINY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Kapaliny Krátkodosahové uspořádání molekul. Molekuly kmitají okolo rovnovážných poloh. Při zvýšení teploty se zmenšuje doba setrvání v rovnovážné
Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:
Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie
Mechanika kontinua. Mechanika elastických těles Mechanika kapalin
Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování
BIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D.
BIOMECHANIKA 8, Disipativní síly II. (Hydrostatický tlak, hydrostatický vztlak, Archimédův zákon, dynamické veličiny, odporové síly, tvarový odpor, Bernoulliho rovnice, Magnusův jev) Studijní program,
STRUKTURA A VLASTNOSTI KAPALIN
STRUKTURA A VLASTNOSTI KAPALIN Struktura kapalin je něco mezi plynem a pevnou látkou Částice kmitají ale mohou se také přemísťovat Zvýšením teploty se a tím se zvýší tekutost kapaliny Malé vzdálenosti
4. Kolmou tlakovou sílu působící v kapalině na libovolně orientovanou plochu S vyjádříme jako
1. Pojem tekutiny je A) synonymem pojmu kapaliny B) pojmem označujícím souhrnně kapaliny a plyny C) synonymem pojmu plyny D) označením kapalin se zanedbatelnou viskozitou 2. Příčinou rozdílné tekutosti
PROCESY V TECHNICE BUDOV 2
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 2 (1.část) Dagmar Janáčová, Hana Charvátová Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského
Mechanika tekutin. Tekutiny = plyny a kapaliny
Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita
Počítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok -
Počítačová dynamika tekutin (CFD) Základní rovnice - laminární tok - Základní pojmy 2 Tekutina nemá vlastní tvar působením nepatrných tečných sil se částice tekutiny snadno uvedou do pohybu (výjimka některé
Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu
Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ.1.07/2.2.00/28.0326 PROJEKT
Hydromechanické procesy Fyzikální vlastnosti tekutin
Hydromechanické procesy Fyzikální vlastnosti tekutin M. Jahoda Zařazení mechaniky tekutin 2 Obecná mechanika Mechanika kontinua Mechanika tuhých těles Mechanika tekutin Mechanika zemin Hydromechanika (kapaliny)
Mechanika tekutin je nauka o rovnováze a makroskopickém pohybu tekutin a o jejich působení na tělesa do ní ponořená či jí obtékaná.
Mechanika tekutin je nauka o rovnováze a makroskopickém pohybu tekutin a o jejich působení na tělesa do ní ponořená či jí obtékaná. Popisuje chování tekutin makroskopickými veličinami, které jsou definovány
Teoretické otázky z hydromechaniky
Teoretické otázky z hydromechaniky 1. Napište vztah pro modul pružnosti kapaliny (+ popis jednotlivých členů a 2. Napište vztah pro Newtonův vztah pro tečné napětí (+ popis jednotlivých členů a 3. Jaká
MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy
KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda
KAPALINY Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vlastnosti molekul kapalin V neustálém pohybu Ve stejných vzdálenostech, nejsou ale vázány Působí na sebe silami: odpudivé x přitažlivé Vlastnosti kapalin
6. Mechanika kapalin a plynů
6. Mechanika kapalin a plynů 1. Definice tekutin 2. Tlak 3. Pascalův zákon 4. Archimedův zákon 5. Rovnice spojitosti (kontinuity) 6. Bernoulliho rovnice 7. Fyzika letu Tekutiny: jejich rozdělení, jejich
Mechanika tekutin. Hydrostatika Hydrodynamika
Mechanika tekutin Hydrostatika Hydrodynamika Hydrostatika Kapalinu považujeme za kontinuum, můžeme využít předchozí úvahy Studujeme kapalinu, která je v klidu hydrostatika Objem kapaliny bude v klidu,
Struktura a vlastnosti kapalin
Struktura a vlastnosti kapalin (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 24. listopadu 2010 Obsah Povrchová vrstva Jevy na rozhraní Kapilární tlak Kapilární jevy Objemová roztažnost
Základní pojmy a jednotky
Základní pojmy a jednotky Tlak: p = F S [N. m 2 ] [kg. m. s 2. m 2 ] [kg. m 1. s 2 ] [Pa] (1) Hydrostatický tlak: p = h. ρ. g [m. kg. m 3. m. s 2 ] [kg. m 1. s 2 ] [Pa] (2) Převody jednotek tlaku: Bar
Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid
Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid Mezi krystalické látky patří: a) grafit b) diamant c) jantar d) modrá skalice Mezi krystalické látky patří: a) rubín
2 Jevy na rozhraní Kapilární tlak Kapilární jevy Objemová roztažnost kapalin 7
Obsah Obsah 1 Povrchová vrstva 1 2 Jevy na rozhraní 3 2.1 Kapilární tlak........................... 4 2.2 Kapilární jevy........................... 5 3 Objemová roztažnost kapalin 7 1 Povrchová vrstva
ÚVOD DO TERMODYNAMIKY
ÚVOD DO TERMODYNAMIKY Termodynamika: Nauka o obecných zákonitostech, kterými se se řídí transformace CELKOVÉ energie makroskopických systémů v její různé formy. Je založena na výsledcích experimentílních
Připravil: Roman Pavlačka, Markéta Sekaninová Hydrostatika
Připravil: Roman Pavlačka, Markéta Sekaninová Hydrostatika OPVK CZ.1.07/2.2.00/28.0220, "Inovace studijních programů zahradnických oborů s důrazem na jazykové a odborné dovednosti a konkurenceschopnost
Fyzikální vlastnosti tekutin. M. Jahoda
MECHANIKA TEKUTIN Fyzikální vlastnosti tekutin M. Jahoda Zařazení mechaniky tekutin 2 Obecná mechanika Mechanika kontinua Mechanika tuhých těles Mechanika tekutin Mechanika zemin Hydromechanika (kapaliny)
Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
34_Mechanické vlastnosti kapalin... 2 Pascalův zákon _Tlak - příklady _Hydraulické stroje _PL: Hydraulické stroje - řešení...
34_Mechanické vlastnosti kapalin... 2 Pascalův zákon... 2 35_Tlak - příklady... 2 36_Hydraulické stroje... 3 37_PL: Hydraulické stroje - řešení... 4 38_Účinky gravitační síly Země na kapalinu... 6 Hydrostatická
Hydromechanické procesy Hydrostatika
Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice
Příloha-výpočet motoru
Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala
4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul
Fyzika 20 Otázky za 2 body. Celsiova teplota t a termodynamická teplota T spolu souvisejí známým vztahem. Vyberte dvojici, která tento vztah vyjadřuje (zaokrouhleno na celá čísla) a) T = 253 K ; t = 20
Mechanika kapalin a plynů
Mechanika kapalin a plynů Petr Pošta pposta@karlin.mff.cuni.cz 24. listopadu 2010 Obsah Tekutiny Tlak Tlak v kapalině vyvolaný vnější silou Tlak v kapalině vyvolaný tíhovou silou Tlak v kapalině vyvolaný
3.3 Částicová stavba látky
3.3 Částicová stavba látky Malé (nejmenší) částice látky očekávali nejprve filozofové (atomisté) a nazvali je atomy (z řeckého atomos = nedělitelný) starověké Řecko a Řím. Mnohem později chemici zjistili,
Přehled základních fyzikálních veličin užívaných ve výpočtech v termomechanice. Autor Ing. Jan BRANDA Jazyk Čeština
Identifikátor materiálu: ICT 2 41 Registrační číslo projektu CZ.1.07/1.5.00/34.0796 Název projektu Vzděláváme pro život Název příjemce podpory SOU plynárenské Pardubice název materiálu (DUM) Mechanika
Část 3. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič, MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA
HYDROMECHANIKA HYDROSTATIKA základní zákon hdrostatik Část 3 Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič, MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA Hdrostatika - obsah Základn
Mol. fyz. a termodynamika
Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli
, Brno Připravil: Tomáš Vítěz Petr Trávníček. Úvod do předmětu
7..03, Brno Připravil: Tomáš Vítěz Petr Trávníček Mechanika tekutin Úvod do předmětu strana Mechanika tekutin Zabývá se podmínkami rovnováhy kapalin a plynu v klidu, zákonitostmi pohybu kapalin a plynu,
5b MĚŘENÍ VISKOZITY KAPALIN POMOCÍ PADAJÍCÍ KULIČKY
Laboratorní cvičení z předmětu Reologie potravin a kosmetických prostředků 5b MĚŘENÍ VISKOZITY KAPALIN POMOCÍ PADAJÍCÍ KULIČKY 1. TEORIE: Měření viskozity pomocí padající kuličky patří k nejstarším metodám
Měření povrchového napětí
Měření povrchového napětí Úkol : 1. Změřte pomocí kapilární elevace povrchové napětí daných kapalin při dané teplotě. 2. Změřte pomocí kapkové metody povrchové napětí daných kapalin při dané teplotě. Pomůcky
Cvičení Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí (
Cvičení 11 1. Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí ( σxx τ xy τ xy σ yy ) (a) Najděte vyjádření tenzoru napětí v soustavě souřadnic pootočené v rovině xy o
Tlak v kapalinách a plynech Vztlaková síla Prodění kapalin a plynů
Mechanika tekutin Tlak v kapalinách a plynech Vztlaková síla Prodění kapalin a plynů Vlastnosti kapalin a plynů Tekutiny = kapaliny + plyny Ideální kapalina - dokonale tekutá - bez vnitřního tření - zcela
Molekulová fyzika a termika:
Molekulová fyzika a termika: 1. Měření teploty: 2. Délková roztažnost a Objemová roztažnost látek 3. Bimetal 4. Anomálie vody 5. Částicová stavba látek, vlastnosti látek 6. Atomová hmotnostní konstanta
U218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. ! t 2 :! Stacionární děj, bez vnitřního zdroje, se zanedbatelnou viskózní disipací
VII. cená konvekce Fourier Kirchhoffova rovnice T!! ρ c p + ρ c p u T λ T + µ d t :! (g d + Q" ) (VII 1) Stacionární děj bez vnitřního zdroje se zanedbatelnou viskózní disipací! (VII ) ρ c p u T λ T 1.
Měření teplotní roztažnosti
KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření teplotní roztažnosti Úvod Zvyšování termodynamické teploty
1141 HYA (Hydraulika)
ČVUT v Praze, fakulta stavební katedra hydrauliky a hydrologie (K4) Přednáškové slidy předmětu 4 HYA (Hydraulika) verze: 09/008 K4 Fv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu pdf souborů
PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -2.
PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -. Řešené příklady z hydrodynamiky 1) Příklad užití rovnice kontinuity Zadání: Vodorovným
CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI
CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI Stojící povrch, Pohybující se povrch Příklad č. 1: Vodorovný volný proud vody čtvercového průřezu o straně 25 cm dopadá kolmo na rovinnou desku. Určete velikost
6. Jaký je výkon vařiče, který ohřeje 1 l vody o 40 C během 5 minut? Měrná tepelná kapacita vody je W)
TEPLO 1. Na udržení stále teploty v místnosti se za hodinu spotřebuje 4,2 10 6 J tepla. olik vody proteče radiátorem ústředního topení za hodinu, jestliže má voda při vstupu do radiátoru teplotu 80 ºC
Fyzika - Sexta, 2. ročník
- Sexta, 2. ročník Fyzika Výchovné a vzdělávací strategie Kompetence komunikativní Kompetence k řešení problémů Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence
Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova
1 Rozložení, distribuce tepla Teplota je charakteristika tepelného stavu hmoty je to stavová veličina, charakterizující termodynamickou rovnováhu systému. Teplo vyjadřuje kinetickou energii částic. Teplota
DUM č. 12 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia
projekt GML Brno Docens DUM č. 12 v sadě 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia Autor: Vojtěch Beneš Datum: 03.05.2014 Ročník: 1. ročník Anotace DUMu: Kapaliny, změny skupenství Materiály
Základy molekulové fyziky a termodynamiky
Základy molekulové fyziky a termodynamiky Molekulová fyzika je částí fyziky, která zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného silového působení částic, z nichž jsou
TERMOMECHANIKA 15. Základy přenosu tepla
FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí Prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 15. Základy přenosu tepla OSNOVA 15. KAPITOLY Tři mechanizmy přenosu tepla Tepelný
Molekulová fyzika a termika. Přehled základních pojmů
Molekulová fyzika a termika Přehled základních pojmů Kinetická teorie látek Vychází ze tří experimentálně ověřených poznatků: 1) Látky se skládají z částic - molekul, atomů nebo iontů, mezi nimiž jsou
Autokláv reaktor pro promíchávané vícefázové reakce
Vysoká škola chemicko technologická v Praze Ústav organické technologie (111) Autokláv reaktor pro promíchávané vícefázové reakce Vypracoval : Bc. Tomáš Sommer Předmět: Vícefázové reaktory (prof. Ing.
U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze
U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze Seminář z PHH 3. ročník Fakulta strojní ČVU v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Seminář z PHH - eplo U218 Ústav procesní
Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace měření průtoku 17.SPEC-t.4 ZS 2015/2016 2015 - Ing. Václav Rada, CSc. Další pokračování o principech měření Průtok je určen střední
VLASTNOSTI VLÁKEN. 3. Tepelné vlastnosti vláken
VLASNOSI VLÁKEN 3. epelné vlastnosti vláken 3.. Úvod epelné vlastnosti vláken jsou velice důležité, neboť jsou rozhodující pro volbu vhodných parametrů zpracování i použití vláken. Závisí na chemickém
3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky
3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -
Zařízení: Rotační viskozimetr s příslušenstvím, ohřívadlo s magnetickou míchačkou, teploměr, potřebné nádoby a kapaliny (aspoň 250ml).
Úvod Pro ideální tekutinu předpokládáme, že v ní neexistují smyková tečná napětí. Pro skutečnou tekutinu to platí pouze v případě, že tekutina se nepohybuje. V případě, že tekutina proudí a její jednotlivé
Dynamická viskozita oleje (Pa.s) Souřadný systém (proč)?
Viskozimetr kužel-deska S pomocí rotačního viskozimetru s uspořádáním kužel-deska, viz obrázek, byla měřena dynamická viskozita oleje. Při použití kužele o průměru 40 mm, který se otáčel úhlovou rychlostí
Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO
1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu
Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti
Vlastnosti a zkoušení materiálů Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze
Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory
Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední
Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje);
Newtonovy pohybové zákony: Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje); předpokládáme soustředění hmoty tělesa a všech
ZÁKLADY STAVEBNÍ FYZIKY
ZÁKLADY STAVEBNÍ FYZIKY Doc.Ing.Václav Kupilík, CSc. První termodynamická věta představuje zákon o zachování energie. Podle tohoto zákona nemůže energie samovolně vznikat nebo zanikat, ale může se pouze
U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze
Seminář z PHTH 3. ročník Fakulta strojní ČVUT v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Přenos tepla 2 Mechanismy přenosu tepla Vedení (kondukce) Fourierův zákon homogenní izotropní prostředí
Práce, energie a další mechanické veličiny
Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních
LOGO. Molekulová fyzika
Molekulová fyzika Molekulová fyzika Molekulová fyzika vysvětluje fyzikální jevy na základě znalosti jejich částicové struktury. Jejím základem je kinetická teorie látek (KTL). KTL obsahuje tři tvrzení:
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. = (pascal) tlak je skalár!!! F p = =
MECHANIKA TEKUTIN I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í Tekutiny zahrnují kapaliny a plyny. Společnou vlastností tekutin je, že částice mohou být snadno od sebe odděleny (nemají vlastní
CELKOVÉ OPAKOVÁNÍ UČIVA + ZÁPIS DO ŠKOLNÍHO SEŠITU část 03 VNITŘNÍ ENERGIE, TEPLO.
CELKOVÉ OPAKOVÁNÍ UČIVA + ZÁPIS DO ŠKOLNÍHO SEŠITU část 03 VNITŘNÍ ENERGIE, TEPLO. 01) Složení látek opakování učiva 6. ročníku: Všechny látky jsou složeny z částic nepatrných rozměrů (tj. atomy, molekuly,
Návrh: volba druhu vodiče pro dané prostředí pro dané podmínky. způsob ů uložení vodiče stanovení průřezu vodiče pro určitý výkon při daném uložení
Hlavní zásady pro dimenzování Radek Procházka (xprocha1@el.cvut.cz) Elektrické instalace nízkého napětí 007/08 Obecně Návrh: volba druhu vodiče pro dané prostředí pro dané podmínky způsob ů uložení vodiče
Dynamika. Dynamis = řecké slovo síla
Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při
Fyzika kapalin. Hydrostatický tlak. ρ. (6.1) Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné.
Fyzika kapalin Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné. Plyny nemají stálý tvar ani stálý objem, jsou velmi snadno stlačitelné. Tekutina je společný název pro kapaliny
Maturitní témata fyzika
Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený
Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83
Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice
Látkové množství n poznámky 6.A GVN
Látkové množství n poznámky 6.A GVN 10. září 2007 charakterizuje látky z hlediska počtu částic (molekul, atomů, iontů), které tato látka obsahuje je-li v tělese z homogenní látky N částic, pak látkové
LOGO. Struktura a vlastnosti kapalin
Struktura a vlastnosti kapalin Povrchová vrstva kapaliny V přírodě velmi často pozorujeme, že se povrch kapaliny, např. vody, chová jako pružná blána, která unese např. hmyz Vysvětlení: Molekuly kapaliny
N_SFB. Stavebně fyzikální aspekty budov. Přednáška č. 3. Vysoká škola technická a ekonomická V Českých Budějovicích
Vysoká škola technická a ekonomická V Českých Budějovicích N_ Stavebně fyzikální aspekty budov Přednáška č. 3 Přednášky: Ing. Michal Kraus, Ph.D. Cvičení: Ing. Michal Kraus, Ph.D. Garant: prof. Ing. Ingrid
102FYZB-Termomechanika
České vysoké učení technické v Praze Fakulta stavební katedra fyziky 102FYZB-Termomechanika Sbírka úloh (koncept) Autor: Doc. RNDr. Vítězslav Vydra, CSc Poslední aktualizace dne 20. prosince 2018 OBSAH
BIOMECHANIKA. 9, Energetický aspekt pohybu člověka. (Práce, energie pohybu člověka, práce pohybu člověka, zákon zachování mechanické energie, výkon)
BIOMECHANIKA 9, Energetický aspekt pohybu člověka. (Práce, energie pohybu člověka, práce pohybu člověka, zákon zachování mechanické energie, výkon) Studijní program, obor: Tělesná výchovy a sport Vyučující:
1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu
1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,
Příklady z teoretické mechaniky pro domácí počítání
Příklady z teoretické mechaniky pro domácí počítání Doporučujeme spočítat příklady za nejméně 30 bodů. http://www.physics.muni.cz/~tomtyc/mech-prik.ps http://www.physics.muni.cz/~tomtyc/mech-prik.pdf 1.
Termomechanika cvičení
KATEDRA ENERGETICKÝCH STROJŮ A ZAŘÍZENÍ Termomechanika cvičení 1. cvičení Ing. Michal Volf / 18.02.2019 Informace o cvičení Ing. Michal Volf Email: volfm@kke.zcu.cz Konzultace: po vzájemné dohodě prezentace
VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Termika VY_32_INOVACE_0301_0212 Teplotní roztažnost látek. Fyzika 2. ročník, učební obory Bez příloh
VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632
3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9
Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................
Praktikum I Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. XIX Název: Pád koule ve viskózní kapalině Pracoval: Matyáš Řehák stud.sk.: 16 dne:
Vybrané technologie povrchových úprav. Základy vakuové techniky Doc. Ing. Karel Daďourek 2006
Vybrané technologie povrchových úprav Základy vakuové techniky Doc. Ing. Karel Daďourek 2006 Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova
VÝUKOVÝ MATERIÁL Ing. Yvona Bečičková Tematická oblast. Termika Číslo a název materiálu VY_32_INOVACE_0301_0220 Anotace
VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632
Rozumíme dobře Archimedovu zákonu?
Rozumíme dobře Archimedovu zákonu? BOHUMIL VYBÍRAL Přírodovědecká fakulta Univerzity Hradec Králové K formulaci Archimedova zákona Archimedův zákon platí za podmínek, pro které byl odvozen, tj. že hydrostatické
5. Stavy hmoty Kapaliny a kapalné krystaly
a kapalné krystaly Vlastnosti kapalin kapalných krystalů jako rozpouštědla Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti kapaliny nestálé atraktivní interakce (kohezní síly) mezi molekulami,
Měření prostupu tepla
KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření prostupu tepla Úvod Prostup tepla je kombinovaný případ
Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině.
Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině. Přehled proudění Vazkost - nevazké - vazké (newtonské, nenewtonské) Stlačitelnost - nestlačitelné (kapaliny
Senzory průtoku tekutin
Senzory průtoku tekutin Průtok - hmotnostní - objemový - rychlostní Druhy proudění - laminární parabolický rychlostní profil - turbulentní víry Způsoby měření -přímé: dávkovací senzory, čerpadla -nepřímé:
MOLEKULOVÁ FYZIKA A TERMODYNAMIKA
MOLEKULOVÁ FYZIKA A TERMODYNAMIKA 4. TEPLO, TEPLOTA, TEPELNÁ VÝMĚNA Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. TEPLO Teplo je míra změny vnitřní energie, kterou systém vymění při styku s jiným
Mechanika tekutin Tekutost Nemají stálý tvar pružné při změně objemu stlačitelné Kapaliny stálý objem, málo stlačitelné volnou hladinu Plyny nemají
Mechanika tekutin FyzikaII základní pojmy Mechanika tekutin studuje podmínky rovnováhy a zákonitosti pohybu kapalin, plynů a pevných těles do nich ponořených Vlastnosti: Částice tekutiny jsou od sebe ve
Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn
Termodynamika materiálů Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Důležité konstanty Standartní podmínky Avogadrovo číslo N A = 6,023.10