Část 3. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič, MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Část 3. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič, MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA"

Transkript

1 HYDROMECHANIKA HYDROSTATIKA základní zákon hdrostatik Část 3 Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič, MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA Hdrostatika - obsah Základn hdrostatik Definice hdrostatického problému Orientace ploch Příklad kde je vužívána hdrostatika v prai Šíření tlaku v kapalině - Pascalův zákon Eulerova rovnice hdrostatik - rovnice rovnováh Přírůstek tlaku v kapalině, tlakové ploch, hladina Aplikace hdrostatických zákonů Nestlačitelná kapalina za působení zemské tíže. Stlačitelná kapalina za působení zemské tíže. Hdraulický lis Hdrostatika v relativním prostoru Konec 1

2 Hdrostatika Čím se budeme v hdrostatice zabývat? V hdrostatice se budeme zabývat kapalinou, která je v klidu. To je kapalinou, jejíž částice se nepohbují vůči sobě a vůči stěnám nádob. Síl působící na element kapalin. Hmotnostní síl (Objemové síl) Gravitační síla Setrvačná síla df G df SE = g ρ = A ρ dv dv Plošné síl pouze ve směru normál k ploše - není tam vzájemný pohb. Orientace ploch???? d S F = p ds n = n = Poznámka Orientace ploch aneb plocha jako vektor a její složk ( n, n, n ) = ( cosϕ, sin ϕ, ) S = a b S = a b n S S n + n + nz = 1 = a b n = a b cosϕ = a b n = a b sin ϕ Sz = a b nz = a b = z

3 Příklad z prae Hdraulický píst na ovládání rozváděcích lopatek turbín. Příklad z prae Rozváděcí lopatk oběžného kola kaplanov turbín 3

4 Příklad z prae Příklad z prae 4

5 Příklad z prae Příklad z prae 5

6 Hdrostatika-Pascalův zákon : Je-li kapalina v hdrostatické rovnováze pak se tlak v kapalině šíři všemi směr stejně. Silová rovnováha ve směru p p d dz = p dl dz sin α S = p S p = p = p = p z : p p Blaise Pascal ( ) d dz = p dl dz cos α S = p S Hdrostatika-Eulerova rovnice hdrostatik Euler Leonardo ( ) Eulerova rovnice hdrostatik vjadřuje rovnováhu sil působících na makroskopickou částici, za předpokladu, že kapalina se nachází hdrostatické rovnováze Odvození: 6

7 Hdrostatika-Eulerova rovnice hdrostatik Ve složkách: ve směru : ve směru : ve směru z: Vektorově: 1 p A = ρ 1 p A = ρ 1 p A z = ρ z 1 A grad(p) = ρ Hdrostatika-Přírůstek tlaku v kapalině Přírůstek tlaku můžeme vjádřit obecně platnou diferenciální rovnicí: dp = grad( p).dl Eulerova rovnice hdrostatik (ERHS) 1 A grad(p) = ρ Po dosazení z ERHS dostaneme obecnou diferenciální rovnici funkce tlaku dp = ρa. dl Integrací pak dostáváme funkci tlaku p = ( A.d + A.d A.dz) ρa.dl = ρ + l l z 7

8 Hdrostatika-Tlakové hladin Tlaková hladina je plocha, kde je tlak konstantní. Platí pro ni tato diferenciální rovnice: ρa. dl = Objemové zrchlení (objemová jednotková síla) je na tlakovou hladinu kolmé A dl Konkrétní tlakovou hladinu dostaneme z tlakové funkce. p = ( A.d + A.d A.dz) ρa.dl = ρ + l Dosadíme konkrétní tlak l z Co je to hladina? Hdrostatika-Přírůstek tlaku v kapalině Nestlačitelná kapalina v klidu za působení zemské tíže Přírůstek tlaku můžeme vjádřit již zmiňovanou rovnicí: dp = ρ Adl dp ( ; g ; ) ( d ; d ; dz) A dl Po integraci = ρ gd p = ρ g + C Okrajové podmínk = p = p p = p + ρ gh = ρ gh p h 8

9 Hdrostatika-Přírůstek tlaku v kapalině Nestlačitelná kapalina v klidu za působení zemské tíže Jak to bude vpadat, kdž budeme mít dvě kapalin, které se vzájemně nebudou mísit? p = p + ρ1 g h 1 + ρ g h = ρ g h + ρ g h ph 1 1 Hdrostatika-Přírůstek tlaku v kapalině Stlačitelná kapalina v klidu za působení zemské tíže Musíme nejdříve vjádřit závislost hustot na tlaku. Vcházíme ze vztahu při definici modulu objemové pružnosti: d ρ = ρ dp K Předpoklad K=konst. Po integraci, s uvážením okrajové podmínk že pro p=p, ρ= ρ ρ = ρ p p K e Přírůstek tlaku je dán diferenciální rovnicí dp = ρ g d = ρ p p K e dp = ρ g d g d e p p K 9

10 Hdrostatika-Přírůstek tlaku v kapalině Stlačitelná kapalina v klidu za působení zemské tíže Tuto rovnici budeme integrovat: p p K K e = ρ g + C S uvážením okrajové podmínk že pro = je p=p, dostaneme výsledný vztah: ρ p = p K ln 1 g h K Zkusme srovnat tlak vod v hloubce 1 m bez uvažování stlačitelnost a s uvažováním stlačitelnosti. Modul objemové stlačitelnosti při t= C, K=, a) nestlačitelná kapalina ph = 1 Pa = 1 MPa b) stlačitelná kapalina ph = Pa = 1, 146 MPa Rozdíl je 1 46,5 Pa to odpovídá hloubce,1 m Rozdíl při m odpovídá tlaku 8,5 m vodníhosloupce Hdrostatika-Pascalův zákon a hdraulický lis U hdraulických lisů můžeme hmotnostní síl zanedbat vůči silám plošným. O S F << F Předpokládáme-li že ρ = konst., pak Eulerova rovnice hdrostatik má tvar: grad (p) = Ztoho vplývá, že p= konst. Pak platí: F S 1 p = = 1 S F = F1 S F S 1 1

11 Hdrostatika - Relativní prostor rovnoměrně zrchlený/zpomalený ve vodorovném směru rovnoměrně zrchlený/zpomalený ve svislém směru Rotující nádoba Hdrostatika - Relativní prostor Rovnoměrně zrchlený/zpomalený ve vodorovném směru dp = ρ Adl ( ; g ; ) ( d ; d ; dz) A a dl 11

12 Hdrostatika - Relativní prostor Rovnoměrně zrchlený/zpomalený ve svislém směru dp = ρ A dl Adl ( ; ± a g ; ) ( d ; d ; dz) Hdrostatika relativní prostor rotující nádoba Nádoba je v klidu. Známe: poloměr R, výšku hladin v nádobě h, výšku nádob H v 1

13 Hdrostatika relativní prostor rotující nádoba Nádoba rotuje konstantní úhlovou rchlostí. Známe: úhlovou rchlost w Hledáme: tvar hladin, vztah pro určení tlaku v nádobě. Hdrostatika relativní prostor rotující nádoba Vcházíme ze vztahu pro přírůstek tlaku v kapalině dp = ρ A dl ( rω, g) A dl( dr, d) 13

14 Hdrostatika relativní prostor rotující nádoba Vcházíme ze vztahu pro přírůstek tlaku v kapalině dp = ρ A dl ( rω, g) A dl( dr, d) Po dosazení a integraci ( rω dr ) p = ρ gd r ω p = ρ ρ g + C Hdrostatika relativní prostor rotující nádoba Vcházíme ze vztahu pro přírůstek tlaku v kapalině dp = ρ A dl ( rω, g) A dl( dr, d) Po dosazení a integraci ( rω dr ) p = ρ gd r ω p = ρ ρ g + C Jak určíme integrační konstantu? 14

15 Hdrostatika relativní prostor rotující nádoba r ω p = ρ ρ g + C Určení integrační konstant C. Víme že pro platí r = = p = p a Hdrostatika relativní prostor rotující nádoba r ω p = ρ ρ g + C Určení integrační konstant C. Víme že pro platí r = = p = p a pak C = p + ρ g a 15

16 Hdrostatika relativní prostor rotující nádoba r ω p = ρ ρ g + C Určení integrační konstant C. Víme že pro platí r = = p = p a pak C = p + ρ g a a ted r ω p = pa + ρ + ρ g ( ) Hdrostatika relativní prostor rotující nádoba Jak určíme velikost? Určíme ho z rovnosti objemů. 16

17 Hdrostatika relativní prostor rotující nádoba Nejdříve určíme objem V I V = π.r.h Hdrostatika relativní prostor rotující nádoba Nejdříve určíme objem V I V I = π.r.h Objem V II V II R π = r ω g rdϕdr = R ω g πr 17

18 Hdrostatika relativní prostor rotující nádoba Nejdříve určíme objem V I V I = π.r.h Objem V II V II R π = r ω g rdϕdr = R ω g πr Srovnáním dostaneme h = R ω 4 g = h h = h R ω 4 g Hdrostatika relativní prostor rotující nádoba Dále platí: H = R ω g =.h 18

19 Hdrostatika relativní prostor rotující nádoba Výsledná rovnice pro přírůstek tlaku v rotující nádobě ted je: ω R p = pa + ρ r + ρ g Rovnice hladin pak je = h ω + ρ r.g R ( h ) 19

CVIČENÍ č. 3 STATIKA TEKUTIN

CVIČENÍ č. 3 STATIKA TEKUTIN Rovnováha, Síly na rovinné stěny CVIČENÍ č. 3 STATIKA TEKUTIN Příklad č. 1: Nákladní automobil s cisternou ve tvaru kvádru o rozměrech H x L x B se pohybuje přímočarým pohybem po nakloněné rovině se zrychlením

Více

Měření povrchového napětí kapaliny z kapilární elevace

Měření povrchového napětí kapaliny z kapilární elevace Měření povrchového napětí kapaliny z kapilární elevace Problém A. Změřit povrchové napětí destilované vody. B. Změřit povrchové napětí lihu. C. Stanovení nejistot změřených veličin. Předpokládané znalosti

Více

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity Tlumené kmit V praxi téměř vžd brání pohbu nějaká brzdicí síla, jejíž původ je v třecích silách mezi reálnými těles. Matematický popis těchto sil bývá dosti komplikovaný. Velmi často se vsktuje tzv. viskózní

Více

Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I. Mechanika hmotného bodu

Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I. Mechanika hmotného bodu Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I Mechanika hmotného bodu Autor: Kateřina Kárová Text vznikl v rámci bakalářské práce roku 2006. Návod na práci s

Více

K přednášce NUFY028 Teoretická mechanika prozatímní učební text, verze 01 10. Spojitá prostředí: rovnice struny Leoš Dvořák, MFF UK Praha, 2014

K přednášce NUFY028 Teoretická mechanika prozatímní učební text, verze 01 10. Spojitá prostředí: rovnice struny Leoš Dvořák, MFF UK Praha, 2014 K přednášce NUFY8 Teoretická mechanika prozatímní učební text, verze 1 1 Spojitá prostředí: rovnice strun Leoš Dvořák, MFF UK Praha, 14 Spojitá prostředí: rovnice strun Dosud jsme se zabývali pohbem soustav

Více

1141 HYA (Hydraulika)

1141 HYA (Hydraulika) ČVUT v Praze, fakulta stavební katedra hydrauliky a hydrologie (K4) Přednáškové slidy předmětu 4 HYA (Hydraulika) verze: 09/008 K4 Fv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu pdf souborů

Více

Věra Keselicová. duben 2013

Věra Keselicová. duben 2013 VY_52_INOVACE_VK53 Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace Věra Keselicová duben 2013 7. ročník

Více

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ HYDRODYNAMIKA

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ HYDRODYNAMIKA DOPLŇKOVÉ TEXTY BB0 PAVEL CHAUER INTERNÍ MATERIÁL FAT VUT V BRNĚ HYDRODYNAMIKA Obsah Úod... Průtok kapaliny... Ronice kontinuity... 3 Energie proudící kapaliny... 3 Objemoá hustota energie... 3 Bernoulliho

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

Technická univerzita v Liberci. cvičebnice k předmětu MECHANIKA TEKUTIN

Technická univerzita v Liberci. cvičebnice k předmětu MECHANIKA TEKUTIN Technická univerzita v Liberci Fakulta mechatroniky a mezioborových inženýrských studií cvičebnice k předmětu MECHANIKA TEKUTIN J. ŠEMBERA Katedra modelování procesů Liberec 00 Obsah Úvod 5 Příklady ke

Více

Euklidovský prostor Stručnější verze

Euklidovský prostor Stručnější verze [1] Euklidovský prostor Stručnější verze definice Eulidovského prostoru kartézský souřadnicový systém vektorový součin v E 3 vlastnosti přímek a rovin v E 3 a) eprostor-v2, 16, b) P. Olšák, FEL ČVUT, c)

Více

Rotující kotouče Drahomír Rychecký Drahomír Rychecký Rotující kotouče

Rotující kotouče Drahomír Rychecký Drahomír Rychecký Rotující kotouče Nabídka Kotouče bez otvoru Obecná úloha zde Volný kotouč zde Kotouč zatížený tahovým napětím na vnějším poloměru zde Kotouče s otvorem Obecná úloha zde Volný kotouč zde Kotouč zatížený tahovým napětím

Více

2 MECHANICKÉ VLASTNOSTI SKLA

2 MECHANICKÉ VLASTNOSTI SKLA 2 MECHANICKÉ VLASTNOSTI SKLA Pevnost skla reprezentující jeho mechanické vlastnosti nejčastěji bývá hlavním parametrem jeho využití. Nevýhodou skel je jejich poměrně nízká pevnost v tahu a rázu (pevnost

Více

VLASTNOSTI KAPALIN. Část 2. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA

VLASTNOSTI KAPALIN. Část 2. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA HYDROMECHANIKA LASTNOSTI KAPALIN Část 2 Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA lastnosti kapalin: Molekulární stavba hmoty Příklad

Více

Vedení tepla v MKP. Konstantní tepelné toky. Analogické úlohám statiky v mechanice kontinua

Vedení tepla v MKP. Konstantní tepelné toky. Analogické úlohám statiky v mechanice kontinua Vedení tepla v MKP Stacionární úlohy (viz dále) Konstantní tepelné toky Analogické úlohám statiky v mechanice kontinua Nestacionární úlohy (analogické dynamice stavebních konstrukcí) 1 Základní rovnice

Více

2.3 Tlak v kapalině vyvolaný tíhovou silou... 4. 2.4 Tlak ve vzduchu vyvolaný tíhovou silou... 5

2.3 Tlak v kapalině vyvolaný tíhovou silou... 4. 2.4 Tlak ve vzduchu vyvolaný tíhovou silou... 5 Obsah 1 Tekutiny 1 2 Tlak 2 2.1 Tlak v kapalině vyvolaný vnější silou.............. 3 2.2 Tlak v kapalině vyvolaný tíhovou silou............. 4 2.3 Tlak v kapalině vyvolaný tíhovou silou............. 4

Více

Měřicí a řídicí technika Bakalářské studium 2007/2008. odezva. odhad chování procesu. formální matematický vztah s neznámými parametry

Měřicí a řídicí technika Bakalářské studium 2007/2008. odezva. odhad chování procesu. formální matematický vztah s neznámými parametry MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

2.8 Zobecnění vztahů mezi zatížením a vnitřními silami prutu (rovinný prut zatížený v rovině) df x =f x.ds df z =f z.ds. M+dM x. ds=r.dϕ.

2.8 Zobecnění vztahů mezi zatížením a vnitřními silami prutu (rovinný prut zatížený v rovině) df x =f x.ds df z =f z.ds. M+dM x. ds=r.dϕ. .8 Zobecnění vtahů mei atížením a vnitřními silami prutu (rovinný prut atížený v rovině) µ x N V M dm µ df df x =R. MdM x NdN VdV Náhradní břemena: df x = x. df =. dm µ =µ. Obecný rovinný prut: spojité

Více

Diplomová práce. Sbírka úloh z mechaniky kontinua PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO KATEDRA TEORETICKÉ FYZIKY. Vypracoval: Michal Kolář

Diplomová práce. Sbírka úloh z mechaniky kontinua PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO KATEDRA TEORETICKÉ FYZIKY. Vypracoval: Michal Kolář PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO KATEDRA TEORETICKÉ FYZIKY Diplomová práce Sbírka úloh z mechaniky kontinua Vypracoval: Michal Kolář studující V. ročníku obor M F studijní rok 00/003 Vedoucí

Více

Obr.94. Tečná reakce T r musí být menší nebo rovna třecí síle F t

Obr.94. Tečná reakce T r musí být menší nebo rovna třecí síle F t 7.3 Odpory při valení Valení je definováno tak, že dotykové body valícího se tělesa a podložky jsou v relativním klidu. Je zaručeno příkladně tak, že těleso omotáme dvěma vlákny, která jsou upevněna na

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004 PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 003 004 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO M 0030 Vyjádřete jedním desetinným číslem (4 ½ 4 ¼ ) (4 ½ + 4 ¼ ) Správné řešení: 0,5 Zjednodušte výraz : ( 4)

Více

MECHANIKA KAPALIN A PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

MECHANIKA KAPALIN A PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D07_Z_OPAK_M_Mechanika_kapalin_a_plynu_T Člověk a příroda Fyzika Mechanika kapalin

Více

Pomůcka pro demonstraci dynamických účinků proudu kapaliny

Pomůcka pro demonstraci dynamických účinků proudu kapaliny Pomůcka pro demonstraci dynamických účinků proudu kapaliny Energie proudící vody je lidmi využívána již několik tisíciletí. Základní otázkou vždy bylo, kolik energie lze z daného zdroje využít. Úkolem

Více

Kapka kapaliny na hladině kapaliny

Kapka kapaliny na hladině kapaliny JEVY NA ROZHRANÍ TŘÍ PROSTŘEDÍ Kapka kapaliny na hladině kapaliny Na hladinu (viz obr. 11) kapaliny (1), nad níž je plynné prostředí (3), kápneme kapku jiné kapaliny (2). Vzniklé tři povrchové vrstvy (kapalina

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_368 Jméno autora: Třída/ročník: Mgr. Alena Krejčíková

Více

Edita Kolářová ÚSTAV MATEMATIKY

Edita Kolářová ÚSTAV MATEMATIKY Přípravný kurs z matematik Edita Kolářová ÚSTAV MATEMATIKY Přípravný kurs z matematik 1 Obsah 1 Přehled použité smbolik 3 Základní pojm matematické logik a teorie množin 4.1 Element matematické logik.........................

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Měření Poissonovy konstanty vzduchu. Abstrakt

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Měření Poissonovy konstanty vzduchu. Abstrakt FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 4: Měření dutých objemů vážením a kompresí plynu Datum měření: 23. 10. 2009 Měření Poissonovy konstanty vzduchu Jméno: Jiří Slabý Pracovní skupina: 1 Ročník

Více

15 MECHANIKA IDEÁLNÍCH TEKUTIN. Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny

15 MECHANIKA IDEÁLNÍCH TEKUTIN. Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny 125 15 MECHANIKA IDEÁLNÍCH TEKUTIN Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny Na rozdíl od pevných látek, které zachovávají při pohybu svůj tvar, setkáváme se v přírodě s látkami, které

Více

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ APLIKOVANÁ FYZIKA MODUL 4 PŘENOS TEPLA

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ APLIKOVANÁ FYZIKA MODUL 4 PŘENOS TEPLA VYSOKÉ UČENÍ ECHNICKÉ V BRNĚ FAKULA SAVEBNÍ PAVEL SCHAUER APLIKOVANÁ FYZIKA MODUL 4 PŘENOS EPLA SUDIJNÍ OPORY PRO SUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU SUDIA Recenzoval: Prof. RNDr. omáš Ficker, CSc.

Více

POHYBY TĚLESA V ODPORUJÍCÍM PROSTŘEDÍ

POHYBY TĚLESA V ODPORUJÍCÍM PROSTŘEDÍ POHYBY TĚLESA V ODPORUJÍCÍM PROSTŘEDÍ Studijní text pro řešitele FO, kat. B Ivo Volf, Přemysl Šedivý Úvod Základní zákon klasické mechaniky, zákon síly, který obvykle zapisujeme vetvaru F= m a, (1) umožňuje

Více

Teorie měření a regulace

Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace měření tlaku - 2 17.SPEC-t.3. ZS 2015/2016 2015 - Ing. Václav Rada, CSc. MĚŘENÍ TEORIE A PRINCIPY T- MaR Další pokračování podrobněji

Více

Akustika. Rychlost zvukové vlny v v prostředí s hustotou ρ a modulem objemové pružnosti K

Akustika. Rychlost zvukové vlny v v prostředí s hustotou ρ a modulem objemové pružnosti K zvuk každé mechanické vlnění v látkovém prostředí, které je schopno vyvolat v lidském uchu sluchový vjem akustika zabývá se fyzikálními ději spojenými se vznikem zvukového vlnění, jeho šířením a vnímáním

Více

Příklady - rovnice kontinuity a Bernouliho rovnice

Příklady - rovnice kontinuity a Bernouliho rovnice DUM Základy přírodních věd DUM III/2-T3-20 Téma: Mechanika tekutin a rovnice kontinuity Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý Příklady Příklady - rovnice kontinuity a Bernouliho

Více

, Brno Připravil: Tomáš Vítěz Petr Trávníček. Úvod do předmětu

, Brno Připravil: Tomáš Vítěz Petr Trávníček. Úvod do předmětu 7..03, Brno Připravil: Tomáš Vítěz Petr Trávníček Mechanika tekutin Úvod do předmětu strana Mechanika tekutin Zabývá se podmínkami rovnováhy kapalin a plynu v klidu, zákonitostmi pohybu kapalin a plynu,

Více

ŠROUBOVÝ A PROSTOROVÝ POHYB ROTAČNĚ SYMETRICKÉHO TĚLESA

ŠROUBOVÝ A PROSTOROVÝ POHYB ROTAČNĚ SYMETRICKÉHO TĚLESA ŠROUBOVÝ A PROSTOROVÝ POHYB ROTAČNĚ SYMETRICKÉHO TĚLESA Zpracoval Doc. RNDr. Zdeněk Hlaváč, CSc Pojem šroubového pohybu Šroubový pohyb je definován jako pohyb, jejž lze ve vhodném referenčním bodě rozložit

Více

Řešené úlohy ze statistické fyziky a termodynamiky

Řešené úlohy ze statistické fyziky a termodynamiky Řešené úlohy ze statistické fyziky a termodynamiky Statistická fyzika. Uvažujme dvouhladinový systém, např. atom s celkovým momentem hybnosti h v magnetickém ) ) poli. Bázové stavy označme = a =, první

Více

AKUSTICK E JEVY V KONTINU ICH Petr Hora 30. kvˇ etna 2001

AKUSTICK E JEVY V KONTINU ICH Petr Hora 30. kvˇ etna 2001 AKUSTICKÉ JEVY V KONTINUÍCH Petr Hora 30. května 2001 Tento text obsahuje sylabus přednášek z předmětu Akustické jevy v kontinuích (AJK), který se přednáší na Fakultě aplikovaných věd Západočeské univerzity

Více

Clemův motor vs. zákon zachování energie

Clemův motor vs. zákon zachování energie Clemův motor vs. zákon zachování energie (c) Ing. Ladislav Kopecký, 2009 V učebnicích fyziky se traduje, že energii nelze ani získat z ničeho, ani ji zničit, pouze ji lze přeměnit na jiný druh. Z této

Více

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0 Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud

Více

Inovace předmětů studijních programů strojního inženýrství v oblasti teplotního namáhání

Inovace předmětů studijních programů strojního inženýrství v oblasti teplotního namáhání Grantový projekt FRVŠ MŠMT č.97/7/f/a Inovace předmětů studijních programů strojního inženýrství v obasti tepotního namáhání Některé apikace a ukázky konkrétních řešení tepeného namáhání těes. Autorky:

Více

TEKUTINOVÉ POHONY. Pneumatické (medium vzduch) Hydraulické (medium kapaliny s příměsí)

TEKUTINOVÉ POHONY. Pneumatické (medium vzduch) Hydraulické (medium kapaliny s příměsí) TEKUTINOVÉ POHONY TEKUTINOVÉ POHONY Pneumatické (medium vzduch) Hydraulické (medium kapaliny s příměsí) Přednosti: dobrá realizace přímočarých pohybů dobrá regulace síly, která je vyvozena motorem (píst,

Více

3 - Hmotnostní bilance filtrace a výpočet konstant filtrační rovnice

3 - Hmotnostní bilance filtrace a výpočet konstant filtrační rovnice 3 - Hmotnostní bilance filtrace a výpočet konstant filtrační rovnice I Základní vztahy a definice iltrace je jedna z metod dělení heterogenních směsí pevná fáze tekutina. Směs prochází pórovitým materiálem

Více

12/40 Zdroj kmitů budí počátek bodové řady podle vztahu u(o, t) = 2.10 3 m. 14/40 Harmonické vlnění o frekvenci 500 Hz a amplitudě výchylky 0,25 mm

12/40 Zdroj kmitů budí počátek bodové řady podle vztahu u(o, t) = 2.10 3 m. 14/40 Harmonické vlnění o frekvenci 500 Hz a amplitudě výchylky 0,25 mm Vlnění a akustika 1/40 Zdroj kmitů budí počátek bodové řady podle vztahu u(o, t) =.10 3 m, 5π s 1 t. Napište rovnici vlnění, které se šíří bodovou řadou v kladném smyslu osy x rychlostí 300 m.s 1. c =

Více

Měření kinematické a dynamické viskozity kapalin

Měření kinematické a dynamické viskozity kapalin Úloha č. 2 Měření kinematické a dynamické viskozity kapalin Úkoly měření: 1. Určete dynamickou viskozitu z měření doby pádu kuličky v kapalině (glycerinu, roztoku polysacharidu ve vodě) při laboratorní

Více

FYZIKÁLNÍ CHEMIE I: 2. ČÁST

FYZIKÁLNÍ CHEMIE I: 2. ČÁST Univerzita J. E. Purkyně v Ústí nad Labem Přírodovědecká fakulta FYZIKÁLNÍ CHEMIE I: 2. ČÁST KCH/P401 Ivo Nezbeda Ústí nad Labem 2013 1 Obor: Klíčová slova: Anotace: Toxikologie a analýza škodlivin, Chemie

Více

Identifikátor materiálu: ICT 1 16

Identifikátor materiálu: ICT 1 16 Identifikátor materiálu: ICT 1 16 Registrační číslo projektu Náze projektu Náze příjemce podpory náze materiálu (DUM) Anotace Autor Jazyk Očekáaný ýstup Klíčoá sloa Druh učebního materiálu Druh interaktiity

Více

plynu, Měření Poissonovy konstanty vzduchu

plynu, Měření Poissonovy konstanty vzduchu Úloha 4: Měření dutých objemů vážením a kompresí plynu, Měření Poissonovy konstanty vzduchu FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 2.11.2009 Jméno: František Batysta Pracovní skupina: 11 Ročník

Více

Určování výměr Srážka mapového listu Výpočet objemů Dělení pozemků

Určování výměr Srážka mapového listu Výpočet objemů Dělení pozemků Geodézie přednáška 9 Určování výměr Srážka mapového listu Výpočet objemů Dělení pozemků Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.: 545134015 Určování výměr určování

Více

Pokud uvažujeme v dynamice tekutin nestlačitelné proudění, lze si vystačit pouze s rovnicí kontinuity a hybnostními rovnicemi. Pokud je ale uvažováno

Pokud uvažujeme v dynamice tekutin nestlačitelné proudění, lze si vystačit pouze s rovnicí kontinuity a hybnostními rovnicemi. Pokud je ale uvažováno Stlačitelnost je schopnost látek zmenšovat svůj objem při zvyšování tlaku, přičemž hmotnost sledované látky se nezmění. To znamená, že se mění hustota dané látky. Stlačitelnost lze také charakterizovat

Více

Základy rádiové navigace

Základy rádiové navigace Základy rádiové navigace Obsah Definice pojmů Způsoby navigace Principy rádiové navigace Pozemské navigační systémy Družicové navigační systémy Definice pojmů Navigace Vedení prostředku po stanovené trati

Více

3.2 Rovnice postupné vlny v bodové řadě a v prostoru

3.2 Rovnice postupné vlny v bodové řadě a v prostoru 3 Vlny 3.1 Úvod Vlnění můžeme pozorovat například na vodní hladině, hodíme-li do vody kámen. Mechanické vlnění je děj, při kterém se kmitání šíří látkovým prostředím. To znamená, že například zvuk, který

Více

Mechanika zemin I 3 Voda v zemině

Mechanika zemin I 3 Voda v zemině Mechanika zemin I 3 Voda v zemině 1. Vliv vody na zeminy; kapilarita, bobtnání... 2. Proudění vody 3. Měření hydraulické vodivosti 4. Efektivní napětí MZ1_3 November 9, 2012 1 Vliv vody na zeminy DRUHY

Více

4. Kolmou tlakovou sílu působící v kapalině na libovolně orientovanou plochu S vyjádříme jako

4. Kolmou tlakovou sílu působící v kapalině na libovolně orientovanou plochu S vyjádříme jako 1. Pojem tekutiny je A) synonymem pojmu kapaliny B) pojmem označujícím souhrnně kapaliny a plyny C) synonymem pojmu plyny D) označením kapalin se zanedbatelnou viskozitou 2. Příčinou rozdílné tekutosti

Více

Řešení úloh 1. kola 49. ročníku fyzikální olympiády. Kategorie C

Řešení úloh 1. kola 49. ročníku fyzikální olympiády. Kategorie C Řešení úloh kola 49 ročníku fyzikální olympiády Kategorie C Autořiúloh:IČáp6),JJírů5),Kapoun),IVolf3)aPŠedivý,7) 4 úloha převzata z oskevské regionální FO 6 a) Celkovýpohybtělískasestávázvolnéhopádupodobu

Více

Měření hladiny intenzity a spektrálního složení hluku hlukoměrem

Měření hladiny intenzity a spektrálního složení hluku hlukoměrem Měření hladiny intenzity a spektrálního složení hluku hlukoměrem Problém A. V režimu váhového filtru A změřit závislost hladiny akustické intenzity LdB [ ] vibrační sirény na napětí UV [ ] napájecího zdroje.

Více

Mechanika hornin. Přednáška 2. Technické vlastnosti hornin a laboratorní zkoušky

Mechanika hornin. Přednáška 2. Technické vlastnosti hornin a laboratorní zkoušky Mechanika hornin Přednáška 2 Technické vlastnosti hornin a laboratorní zkoušky Mechanika hornin - přednáška 2 1 Dělení technických vlastností hornin 1. Základní popisné fyzikální vlastnosti 2. Hydrofyzikální

Více

MOLEKULOVÁ FYZIKA KAPALIN

MOLEKULOVÁ FYZIKA KAPALIN MOLEKULOVÁ FYZIKA KAPALIN Struktura kapalin Povrchová vrstva kapaliny Povrchová energie, povrchová síla, povrchové napětí Kapilární tlak Kapilarita Prof. RNDr. Emanuel Svoboda, CSc. STRUKTURA KAPALIN Tvoří

Více

Fyzikální praktikum 1

Fyzikální praktikum 1 Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #9 Základní experimenty akustiky Jméno: Ondřej Finke Datum měření: 3.11.014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) V domácí přípravě spočítejte,

Více

Fyzikální korespondenční seminář MFF UK

Fyzikální korespondenční seminář MFF UK Úloha V.E... gumipuk 8 bodů; průměr 4,40; řešilo 25 studentů Závaží o hmotnosti m na gumičce délk l 0 je zavěšeno v pevném bodě o souřadnicích = = 0 a = 0. Z os, která je horizontálně, závaží pouštíme.

Více

STATICKÝ VÝPOČET: PŘESTUPNÍ UZEL HULVÁKY 1.ETAPA: obj. SO 01 Sociální zařízení MHD obj. SO 02 Veřejné WC

STATICKÝ VÝPOČET: PŘESTUPNÍ UZEL HULVÁKY 1.ETAPA: obj. SO 01 Sociální zařízení MHD obj. SO 02 Veřejné WC -1- STATICKÝ VÝPOČET: PROJEKTOVÁ DOKUMENTACE PRO REALIZACI PŘESTUPNÍ UZEL HULVÁKY 1.ETAPA: obj. SO 01 Sociální zařízení MHD obj. SO 0 Veřejné WC A) SVISLÉ ZATÍŽENÍ STŘECHY: SKLON: 9 o ; sin 0,156; cos

Více

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve

Více

6.3. Lineární diferenciální rovnice druhého řádu s konstantními koeficienty

6.3. Lineární diferenciální rovnice druhého řádu s konstantními koeficienty H VRBENSKÁ J BĚLOHLÁVKOVÁ 63 Lineární diferenciální rovnice druhého řádu s onstantními oeficienty 631 Definice Definice Lineární diferenciální rovnicí druhého řádu s onstantními oeficienty nazýváme rovnici

Více

KALOVÁ ČERPADLA PRO ČERPÁNÍ SUSPENZÍ

KALOVÁ ČERPADLA PRO ČERPÁNÍ SUSPENZÍ Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní KALOVÁ ČERPADLA PRO ČERPÁNÍ SUSPENZÍ Studijní opora Prof.Ing. Jaroslav Janalík, CSc Ostrava 011 Tyto studijní materiály vznikly za finanční

Více

Proč funguje Clemův motor

Proč funguje Clemův motor - 1 - Proč funguje Clemův motor Princip - výpočet - konstrukce (c) Ing. Ladislav Kopecký, 2004 Tento článek si klade za cíl odhalit podstatu funkce Clemova motoru, provést základní výpočty a navrhnout

Více

PROCESY V TECHNICE BUDOV cvičení 3, 4

PROCESY V TECHNICE BUDOV cvičení 3, 4 UNIVERZITA TOMÁŠE ATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE UDOV cvičení 3, 4 část Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní materiál vznikl za finanční podpory Evropského

Více

Elektroakustické a elektromechanické měniče s elektrickým polem

Elektroakustické a elektromechanické měniče s elektrickým polem Elektroakustické a elektromechanické měniče s elektrickým polem Elektroakustické a elektromechanické měniče Zařízení pro přeměnu energie elektromagnetického pole na energii pole akustického nebo naopak

Více

1141 HYA (Hydraulika)

1141 HYA (Hydraulika) ČVUT v Praze, fakulta stavební katedra hydrauliky a hydrologie (K141) Přednáškové slidy předmětu 1141 HYA (Hydraulika) verze: 09/2008 K141 FSv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu

Více

Zadání. stereometrie. 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK =3 AK ; M EH; HM =3 EM.

Zadání. stereometrie. 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK =3 AK ; M EH; HM =3 EM. STEREOMETRIE Zadání 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK = AK ; M EH; HM = EM ) Sestrojte řez pravidelného čtyřbokého jehlanu ABCDV rovinou KLM; K AB; BK = AK ; L CD; DL = CL ; M

Více

Rotační skořepiny, tlakové nádoby, trubky. i Výpočet bez chyb. ii Informace o o projektu?

Rotační skořepiny, tlakové nádoby, trubky. i Výpočet bez chyb. ii Informace o o projektu? Rotační skořepiny, tlakové nádoby, trubky i Výpočet bez chyb. ii Informace o o projektu? Kapitola vstupních parametrů 1. Výběr materiálu a nastavení jednotek 1.1 Jednotky výpočtu 1.2 Materiál SI Units

Více

(3) Zvolíme pevné z a sledujme dráhu, kterou opisuje s postupujícím časem koncový bod vektoru E v rovině z = konst. Upravíme vztahy (2) a (3)

(3) Zvolíme pevné z a sledujme dráhu, kterou opisuje s postupujícím časem koncový bod vektoru E v rovině z = konst. Upravíme vztahy (2) a (3) Učební tet k přednášce UFY1 Předpokládejme šíření rovinné harmonické vln v kladném směru os z. = i + j kde i, j jsou jednotkové vektor ve směru os respektive a cos ( ) ω ϕ t kz = + () = cos( ωt kz+ ϕ )

Více

Řešení úloh 1. kola 52. ročníku fyzikální olympiády. Kategorie B Autořiúloh:M.Jarešová(5),P.Šedivý(1,4),J.Thomas(2,3,7), K.RauneraP.Šedivý(6).

Řešení úloh 1. kola 52. ročníku fyzikální olympiády. Kategorie B Autořiúloh:M.Jarešová(5),P.Šedivý(1,4),J.Thomas(2,3,7), K.RauneraP.Šedivý(6). Řešení úloh 1. kola 52. očníku fyzikální olympiády. Kategoie B Autořiúloh:M.Jaešová(5),P.Šedivý(1,4),J.Thomas(2,3,7), K.auneaP.Šedivý(6). 1.a) Potože se tyč otáčí velmi pomalu, můžeme každou její polohu

Více

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u)

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u) Diferenciální počet příklad 1 Dokažte, že funkce F, = n f 2, kde f je spojitě diferencovatelná funkce, vhovuje vztahu + 2 = nf ; 0 Řešení: Označme u = 2. Pak je F, = n fu a platí Podle vět o derivaci složené

Více

Podle skupenského stavu stýkajících se objemových fází: kapalina / plyn (l/g) - povrch kapalina / kapalina (l/l) tuhá látka / plyn (s/g) - povrch

Podle skupenského stavu stýkajících se objemových fází: kapalina / plyn (l/g) - povrch kapalina / kapalina (l/l) tuhá látka / plyn (s/g) - povrch Fáze I Fáze II FÁZOVÁ ROZHRANÍ a koloidy kolem nás z mikroskopického, molekulárního hlediska Fáze I Fáze II z makroskopického hlediska Podle skupenského stavu stýkajících se objemových fází: kapalina /

Více

Projekty do předmětu MF

Projekty do předmětu MF Univerzita Palackého v Olomouci Přírodovědecká fakulta Katedra optiky ZÁVĚREČNÁ PRÁCE Projekty do předmětu MF Vypracoval: Miroslav Mlynář E-mail: mlynarm@centrum.cz Studijní program: B1701 Fyzika Studijní

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

F n = F 1 n 1 + F 2 n 2 + F 3 n 3.

F n = F 1 n 1 + F 2 n 2 + F 3 n 3. Plošný integrál Několik pojmů Při našich úvahách budeme často vužívat skalární součin dvou vektorů. Platí F n F n cos α, kde α je úhel, který svírají vektor F a n. Vidíme, že pokud je tento úhel ostrý,

Více

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 4. Komplexní čísla

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 4. Komplexní čísla Moderní technologie ve studiu aplikované fyiky CZ.1.07/..00/07.0018 4. Komplexní čísla Matematickým důvodem pro avedení komplexních čísel ( latinského complexus složený), byla potřeba rošířit množinu (obor)

Více

Rychlostní a objemové snímače průtoku tekutin

Rychlostní a objemové snímače průtoku tekutin Rychlostní a objemové snímače průtoku tekutin Rychlostní snímače průtoku Rychlostní snímače průtoku vyhodnocují průtok nepřímo měřením střední rychlosti proudu tekutiny v STŘ. Ta závisí vzhledem k rychlostnímu

Více

Úvod. K141 HYAR Úvod 0

Úvod. K141 HYAR Úvod 0 Úvod K141 HYAR Úvod 0 FYZIKA MECHANIKA MECH. TEKUTIN HYDRAULIKA HYDROSTATIKA HYDRODYNAMIKA Mechanika tekutin zabývá se mechanickými vlastnostmi tekutin (tj. silami v tekutinách a prouděním tekutin) poskytuje

Více

Aplikovaná optika. Optika. Vlnová optika. Geometrická optika. Kvantová optika. - pracuje s čistě geometrickými představami

Aplikovaná optika. Optika. Vlnová optika. Geometrická optika. Kvantová optika. - pracuje s čistě geometrickými představami Aplikovaná optika Optika Geometrická optika Vlnová optika Kvantová optika - pracuje s čistě geometrickými představami - zanedbává vlnovou a kvantovou povahu světla - elektromagnetická teorie světla -světlo

Více

Matematické metody v kartografii. Přednáška 3. Důležité křivky na kouli a elipsoidu. Loxodroma a ortodroma.

Matematické metody v kartografii. Přednáška 3. Důležité křivky na kouli a elipsoidu. Loxodroma a ortodroma. Matematické metody v kartografii Přednáška 3. Důležité křivky na kouli a elipsoidu. Loxodroma a ortodroma. . Přehled důležitých křivek V matematické kartografii existují důležité křivky, které jdou po

Více

Tématické celky { kontrolní otázky.

Tématické celky { kontrolní otázky. Tématické celky kontrolní otázky. Základy teorie pravdìpodobnosti..pravdìpodobnostní míra základní pojmy... Vysvìtlete pojem náhody, náhodného pokusu, náhodného jevu a jeho mno- ¾inovou interpretaci. Popi¹te

Více

Příklad 1. Jak velká vztlakovásíla bude zhruba působit na ocelové těleso o objemu 1 dm 3 ponořené do vody? /10 N/ p 1 = p 2 F 1 = F 2 S 1 S 2.

Příklad 1. Jak velká vztlakovásíla bude zhruba působit na ocelové těleso o objemu 1 dm 3 ponořené do vody? /10 N/ p 1 = p 2 F 1 = F 2 S 1 S 2. VII Mechanika kapalin a plynů Příklady označené symbolem( ) jsou obtížnější Příklad 1 Jak velká vztlakovásíla bude zhruba působit na ocelové těleso o objemu 1 dm 3 ponořené do vody? /10 N/ Stručné řešení:

Více

S = 2. π. r ( r + v )

S = 2. π. r ( r + v ) horní podstava plášť výška válce průměr podstavy poloměr podstavy dolní podstava Válec se skládá ze dvou shodných podstav (horní a dolní) a pláště. Podstavou je kruh. Plášť má tvar obdélníka, který má

Více

Poznámky k cvičením z termomechaniky Cvičení 3.

Poznámky k cvičením z termomechaniky Cvičení 3. Vnitřní energie U Vnitřní energie U je stavová veličina U = U (p, V, T), ale závisí pouze na teplotě (experiment Gay-Lussac / Joule) U = f(t) Pro měrnou vnitřní energii (tedy pro vnitřní energii jednoho

Více

Fyzika kapalin. Hydrostatický tlak. ρ. (6.1) Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné.

Fyzika kapalin. Hydrostatický tlak. ρ. (6.1) Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné. Fyzika kapalin Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné. Plyny nemají stálý tvar ani stálý objem, jsou velmi snadno stlačitelné. Tekutina je společný název pro kapaliny

Více

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D.

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D. ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Modelování termohydraulických jevů 3.hodina Hydraulika Ing. Michal Kabrhel, Ph.D. Letní semestr 008/009 Pracovní materiály pro výuku předmětu.

Více

Řešení testu 1b. Fyzika I (Mechanika a molekulová fyzika) NOFY021. 19. listopadu 2015

Řešení testu 1b. Fyzika I (Mechanika a molekulová fyzika) NOFY021. 19. listopadu 2015 Řešení testu b Fyzika I (Mechanika a olekulová fyzika) NOFY0 9. listopadu 05 Příklad Zadání: Kulička byla vystřelena vodorovně rychlostí 0 /s do válcové roury o průěru a koná pohyb naznačený na obrázku.

Více

8. Stereometrie 1 bod

8. Stereometrie 1 bod 8. Stereometrie 1 bod 8.1. Poměr objemů pravidelného čtyřbokého hranolu a jemu vepsaného válce je 4 : π b) : π c) : π d) : π e) 4 : π. 8.. Zmenšíme-li poloměr podstavy kužele o polovinu a jeho výšku zvětšíme

Více

Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Větránípřirozenéa nucené, výpočet průtoku vzduchu oknem

Větránípřirozenéa nucené, výpočet průtoku vzduchu oknem Větránípřirozenéa nucené, výpočet průtoku vzduchu oknem Modernizace vzdělávacího obsahu a podpora rozvoje na SPŠS Havlíčkův Brod zavřeným a otevřeným VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ ÚSTAV

Více

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic

Více

Pro zředěné roztoky za konstantní teploty T je osmotický tlak úměrný molární koncentraci

Pro zředěné roztoky za konstantní teploty T je osmotický tlak úměrný molární koncentraci TRANSPORTNÍ MECHANISMY Transport látek z vnějšího prostředí do buňky a naopak se může uskutečňovat dvěma cestami - aktivním a pasivním transportem. Pasivním transportem rozumíme přenos látek ve směru energetického

Více

Otázky z kapitoly Stereometrie

Otázky z kapitoly Stereometrie Otázky z kapitoly Stereometrie 10. února 015 Obsah 1 Krokované příklady (0 otázek) 1 Metrické vlastnosti (30 otázek) 1.1 Obtížnost 1 (16 otázek)....................................... 1. Obtížnost (14

Více

Funkce zadané implicitně

Funkce zadané implicitně Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf

Více

Daniel Tokar tokardan@fel.cvut.cz

Daniel Tokar tokardan@fel.cvut.cz České vysoké učení technické v Praze Fakulta elektrotechnická Katedra fyziky A6M02FPT Fyzika pro terapii Fyzikální principy, využití v medicíně a terapii Daniel Tokar tokardan@fel.cvut.cz Obsah O čem bude

Více

Řešení úloh 1. kola 53. ročníku fyzikální olympiády. Kategorie B Autořiúloh:J.Thomas(1,4,7),M.Jarešová(3),I.ČápSK(2),J.Jírů(5) P.

Řešení úloh 1. kola 53. ročníku fyzikální olympiády. Kategorie B Autořiúloh:J.Thomas(1,4,7),M.Jarešová(3),I.ČápSK(2),J.Jírů(5) P. Řešení úloh. ola 53. ročníu fyziální olympiády. Kategorie B Autořiúloh:J.Thomas(,,7),M.Jarešová(3),I.ČápSK(),J.Jírů(5) P. Šedivý(6).a) Objem V ponořenéčástiválečuje63%objemu V celéhováleču.podle Archimedova

Více