Rudolf Ludwig Mössbauer

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Rudolf Ludwig Mössbauer"

Transkript

1 č. 1 Čs. čas. fyz. 62 (2012) 51 Rudolf Ludwig Mössbauer jeho život, efekt a spektroskopie Karel Závěta 1, Jaroslav Kohout 2, Adriana Lančok 3 1 Fyzikální ústav AV ČR, v. v. i., Na Slovance 2, Praha 8 2 Univerzita Karlova v Praze, Matematicko-fyzikální fakulta, V Holešovičkách 2, Praha 8 3 Ústav anorganické chemie AV ČR, v. v. i., Husinec-Řež 1001, Řež Biografická data V přípravách na oslavu 50. výročí udělení Nobelovy ceny R. L. Mössbauerovi nás zastihla smutná zpráva o jeho úmrtí. Pouhé tři měsíce ho dělily od tohoto mimořádného výročí, jehož se dožila řada nositelů Nobelovy ceny za fyziku. A je snad zajímavé si je připomenout. Jsou to W. L. Bragg (cena udělena v r. 1915, zemřel po dalších 56 letech), M. Siegbahn (1924/54), G. L. Hertz (1925/50), L.-V. P. R. de Broglie (1929/58), P. A. M. Dirac (1933/51), C. D. Anderson (1936/55), W. E. Lamb (1955/53) a dosud žijící C. N. Yang a T. D. Lee (1957) a D. A. Glaser (1960). Rudolf L. Mössbauer se narodil 31. ledna 1929 v Mnichově otci Ludwigovi a matce Erně, rozené Ernst. Střední školu (Oberschule neklasicky zaměřená varianta školy druhého stupně) navštěvoval v Mnichově-Pasingu a ukončil ji v r Než pokračoval ve svých studiích na Technické vysoké škole v Mnichově (Technische Hochschule, München), pracoval rok v průmyslové laboratoři. V r složil zkoušky, jimiž zakončil prvou etapu svého vysokoškolského studia, a prof. Heinz Maier-Leibnitz mu zadal téma pro jeho magisterskou, a jak se později ukázalo, i doktorskou disertaci. Týkalo se rezonační absorpce paprsků gama jádry vybraných izotopů. Na magisterské disertaci pracoval Mössbauer od léta 1953 do března Magisterský diplom na základě obhájené disertace obdržel v r od Laboratoře aplikované fyziky na Technické vysoké škole v Mnichově. V té době také zastával místo asistenta na Matematickém ústavu této školy. Prof. Maier-Leibnitz Mössbauerovi doporučil, aby ve své doktorské disertaci pokračoval na Ústavu Maxe Plancka pro lékařský výzkum v Heidelbergu, kde jednou jeho částí byl Fyzikální ústav vedený prof. W. Bothem, který právě v r dostal Nobelovu cenu společně s Maxem Bornem za objev a využití koincidenční metody. Sám H. Maier-Leibnitz ostatně před několika lety z tohoto pracoviště do Mnichova přišel a stále tam měl kontakty a jistou pozici. Výsledky své disertace publikoval Mössbauer ve třech zásadních článcích [1 3], kde byly shrnuty základy objevu bezodrazové jaderné rezonanční absorpce γ záření, za nějž posléze dostal Nobelovu cenu. Po dokončení své doktorské disertace byl zaměstnán jako vědecký asistent na Technické vysoké škole v Mnichově. Uvedené publikace byly také důvodem, proč byl R. Mössbauer prakticky okamžitě pozván R. Feynmanem na California Institute of Technology v Pasadeně, kde od r pracoval jako vědecký pracovník. Když mu byla 11. prosince 1961 jako dvaatřicetiletému udělena Nobelova cena společně s R. Hofstadterem, byl na tomto pracovišti neprodleně jmenován řádným profesorem. V r dostal R. Mössbauer nabídku, jaká se neodmítá. Jako novému profesorovi experimentální fyziky na jeho minulém mnichovském pracovišti mu bylo přislíbeno vybudování nových laboratoří se špičkovým vybavením a široké pravomoci při jejich reorganizaci. K jeho požadavkům patřilo, aby všechny tři fyzikální ústavy Technické vysoké školy v Mnichově byly zcela nově řízeny do značné míry podle amerického vzoru. Ústavy byly restrukturalizovány do jednotlivých oddělení vedených profesory se stejnými pravomocemi. Z nich pak bylo na časově omezené období voleno direktorium, jež mělo být zárukou dynamického rozvoje výzkumných plánů. Jeho podmínky byly v zásadě přijaty a v Mnichově, kde byla v r škola přejmenována na Technickou univerzitu, pracoval R. Mössbauer až do r. 1972, kdy odchází do Grenoblu jako nástupce H. Maiera-Leibnitze do funkce ředitele Institutu Max von Laue-Paul Langevin (ILL) a vedoucího německo-francouzsko-britského projektu reaktoru s vysokým tokem neutronů. Po skončení svého pětiletého pobytu v Grenoblu se vrací v r do Mnichova, kde se podle některých pramenů situace na Technické univerzitě částečně vrátila do sta rých pořádků, ale přesto odmítá řadu výhodných nabídek na zaměstnání, zejména v USA, a zůstává v Mnichově. Zásadně však mění obor svého výzkumu. Ve svém článku [4] to zdůvodňuje tím, že v době jeho návratu se využitím efektu bezodrazové jaderné rezonanční absorpce γ záření, tedy Mössbauerova jevu, zabývaly stovky laboratoří po celém světě a byly publikovány tisíce článků z tohoto oboru, a proto chtěl dělat něco jiného. Neutronové experimenty prováděné v ILL ho neupoutaly natolik, aby se staly náplní jeho další vědecké práce, avšak reaktor byl kromě neutronů také silným zdrojem neutrin. Jejich studium ho zaujalo do té míry, že mu věnoval další roky svého vědeckého bádání. Jeho zájem se postupně přesunul na problematiku solárních neutrin, zejména určení jejich hmotnosti, rezonancí a přeměn, a měření jejich celkového toku.

2 52 Historie fyziky» O experimentální důkaz jaderné rezonanční absorpce se dlouho snažila řada fyziků bezvýsledně. «Pro R. Mössbauera byla jednou z důležitých podmínek akademické práce svobodná mezinárodní spolupráce na co nejširším základě, takže po svém návratu do Mnichova v r v temných dobách studené války, kdy většina amerických vědců se s kolegy za železnou oponou prakticky nestýkala, přijímá pozvání a odjíždí s delegací německých vědců do Sovětského svazu. Tím byly položeny základy k pozdější vědecké výměně mezi předními vědci ze Sovětského svazu a pracovníky mnichovské Technické univerzity. Pro podporu spolupráce byly pořádány pravidelné semináře s americkými a sovětskými účastníky a realizovala se také řada pozvání sovětských vědců k práci na společných výzkumech v Garchingu. R. Mössbauer byl nejen mimořádným vědcem, ale také vynikajícím akademickým učitelem, který bral svoje přednášky velmi vážně a dovedl jimi strhnout své studenty. Svým spolupracovníkům poskytoval zpravidla velkou svobodu v jejich výzkumné práci. Jeho umění přednášet a zájem na rozšiřování vědeckých znalostí do širší společnosti ho přivedly k činnosti v berlínském spolku Urania, který mu za jeho přednáškovou činnost jako prvému v r propůjčil spolkovou medaili. Byl také nadaným pianistou a v jeho pracovně obvykle stávalo křídlo, na něž příležitostně hrával. K jeho koníčkům patřilo také fotografování a turistika. 31. března 1997 odchází do penze a je jmenován emeritním profesorem Technické univerzity v Mnichově. Ačkoliv se vědecké zájmy R. Mössbauera odklonily od jeho efektu a spektroskopie, nikdy neztratil vědecký a osobní kontakt s početnou skupinou vědců, jež se jimi zabývají. Ještě během osmdesátých a devadesátých let publikoval články o jaderné difrakci Mössbauerova záření (viz např. [5]), účastnil se jejich konferencí ICAME (International Conference on the Applications of Mössbauer Effect) a např. v r v Garmisch-Partenkirchenu oslavoval své sedmdesáté narozeniny jako její čestný předseda a přednesl tam úvodní referát [4]. Poslední konference ICAME, jíž se účastnil, byla v r ve městě Muscat v Omanu. Byl dvakrát ženatý se svou první ženou Elisabeth Pritz měl dcery Suzi a Reginu a syna Petera; jeho druhou manželkou se stala Christel Braun. Jeho život se završil 14. září Osobní vzpomínky a komentáře k objevu bezodrazové rezonanční jaderné absorpce Rezonanční absorpce viditelného záření byla pozorována R. W. Woodem již v r [6] a byla později vysvětlena v kvantovém modelu atomu jako důsledek přechodů mezi energetickými hladinami elektronového obalu s emisí či absorpcí příslušného fotonu. Podobný jev byl hledán i pro přechody mezi jadernými energetickými hladinami, avšak v r poukázal Kuhn na zásadní rozdíl mezi těmito dvěma případy. Problém spočívá v tom, že šířky čar při přechodech mezi jadernými hladinami jsou ve srovnání s šířkami čar elektronových přechodů o několik řádů menší a naopak díky velké energii příslušného γ kvanta (desítky až stovky kev) vede přenos hybnosti při absorpci nebo emisi (izolovaným) jádrem k velké změně energie kvanta o kinetickou energii jádra získanou zpětným rázem [7]. O experimentální důkaz jaderné rezonanční absorpce se bezvýsledně po následujících více než 20 let snažila řada fyziků. Až v r se podařilo Moonovi [8] kompenzovat popsaný rozdíl energií pomocí Dopplerova posunu energie kvanta umístěním zdroje 198 Hg 198 Au jaderného γ záření s energií 411 kev na hrot ultracentrifugy, kde dosahoval lineární rychlosti 670 ms -1 vůči nepohyblivému absorbéru 198 Au. Účinný absorpční průřez pro rezonanční absorpci se tím zvýšil 10 4 násobně, a tak bylo možné absorpci pozorovat. Jiný přístup volil Malmfors [9], jemuž se podařilo pozorovat jadernou rezonanční fluorescenci pomocí zvýšeného překryvu emisních a absorpčních čar jejich rozšířením díky Dopplerovu efektu při vysoké teplotě zdroje i absorbéru. Pomocí těchto dvou přístupů byla postupně jaderná rezonanční absorpce pozorována u řady izotopů. Na radu svého vedoucího prof. H. Maier-Leibnitze vybral R. L. Mössbauer pro studium absorpce γ kvantum o energii 129 kev vznikající při přechodu 191 Os na 191 Ir. Volba byla provedena podle materiálů knihovny Německého muzea v Mnichově (Deutsches Museum, München) a byla ovlivněna několika faktory: energie přechodu byla dostatečně nízká pro měření teplotní závislosti absorpce, radioaktivní izotop 191 Os byl uveden v Harwellském katalogu a protože v té době neexistoval v Německu žádný reaktor, katalog byl jedinou možností jak požadovaný izotop získat dovozem. A konečně doba života excitované hladiny 129 kev nebyla známa a její určení mohlo být požadovaným novým výsledkem disertace. Během přípravy magisterské práce postavil Mössbauer v Mnichově detekční systém sestávající z 12 proporcionálních detektorů, který sice dosahoval v té době patrně nejvyšší účinnosti ~5 % pro daný izotop, ta se však ukázala být pro pozorování rezonanční absorpce nedostatečnou. Jak jsme uvedli již výše, na doktorské práci R. L. Mössbauer začal pracovat již v Heidelbergu. Ve své přednášce [4] sám vyjmenovává řadu významných změn, k nimž po přechodu do Heidelbergu došlo. Především podle příkladu heidelbergských kolegů nahradil svoje mnichovské proporcionální čítače scintilačními detektory s krystaly NaI, jež mají pro záření o energii 129 kev takřka 100% účinnost toto rozhodnutí se ukázalo být pro další práci klíčovým. Dalším kladným faktorem v Heidelbergu byl dostatek finančních prostředků na nákup elektroniky, jež jinak musela být vyráběna vlastními silami. V té době exis-

3 č. 1 Čs. čas. fyz. 62 (2012) 53 tovala ještě v Německu vojenská vláda, jejíž administrativa si hledala nová uplatnění, a jedním z nich byl dohled a přidělování spektroskopicky čistých materiálů pro výrobu potřebných izotopů. Podle tehdy platných předpisů se měl písemný kontakt uskutečňovat přes Max Planck Institut v Göttingenu, který jediný měl povolení jednat s Brity. Když oficiální cesta nevedla k výsledku, Mössbauer se rozhodl překročit nařízení a napsal rovnou do Anglie, do Harwellu. K jeho štěstí se tam našla pracovnice, která mu pomohla obejít předpisy a nechala vyrobit radioaktivní zdroje, jež potřeboval. Jak Mössbauer poznamenává [4], nebylo tehdy obvyklé, aby anglická dáma pomáhala chudému německému studentovi, ale její pomoc byla pro celou práci zásadní. Konečně posledním šťastným faktorem bylo rozhodnutí, jakým směrem měnit teplotu. Zatímco Mössbauerův vedoucí práce navrhoval jít stejnou cestou jako Malmfors, tedy zvýšit teplotu a tím zvětšit překryv čar, Mössbauer si uvědomil, že snížení teploty na teplotu kapalného dusíku, který byl v té době v Heidelbergu k dispozici, by mělo vést ke zhruba stejnému rozdílu pozorovaného efektu. A stavba a provoz kryostatu byly jednodušší než stavba a používání pece. Detekční zařízení dosáhlo rozlišení měřené intenzity γ záření prošlého vzorkem ΔI/I = (2,7±0,7)x10-4, což mělo dostačovat k prokázání snížené absorpce vzorkem při zmenšeném překryvu emisní a absorpční čáry jejich zúžením při snížení teploty. Výsledek experimentu však byl překvapivě opačný absorpce se při snížené teplotě zvyšovala. Při popisu dalších událostí se přidržujeme především vyprávění samotného R. L. Mössbauera [4]. Neočekávané pozorování se nejprve snažil marně vysvětlit nějakým vedlejším efektem. Obrátil se s prosbou o radu na prof. Jensena, který ho odkázal na starší publikaci W. J. Lamba [10], týkající se záchytu pomalých neutronů atomy v krystalu nebo volnými se započtením zpětného rázu. Ovšem sám Jensen spolu se Steinwedelem publikovali již v r teoretickou práci [11], v níž dokazovali, že zabudováním atomu do krystalu nemohou vzniknout úzké čáry jaderných přechodů. Jak podotýká Mössbauer, v té době pro získání magisterského titulu v Mnichově nebylo třeba absolvovat kvantovou mechaniku, takže Jensenovým argumentům plně neporozuměl. Tato příhoda podle něho ilustruje fakt, že mladí lidé mohou přistoupit k problému nekonvenčním způsobem, který zkušenějšího a erudovanějšího vědce vůbec nenapadne. Jak uvádí již Lamb [10], ztráta energie díky zpětnému rázu E R je rovna E R = (m/m) E n, (1) kde m a M jsou hmotnosti dopadajícího neutronu a absorbujícího jádra, E n pak energie neutronu. Když energii zpětného rázu počítáme pro γ kvantum o energii E γ, dostáváme E R = E 2 γ / 2 M J c 2. (2) A Mössbauer si uvědomil, že podobně jako v Lambově případu existuje nenulová pravděpodobnost, že tuto energii nemůže převzít samotný atom s emitujícím (nebo absorbujícím) jádrem, protože v krystalu je jeho energie kvantována a přípustné jsou pouze přechody odpovídající vybuzení nebo anihalaci fononu. Pokud pak dojde k emisi nebo absorpci γ kvanta bez účasti fononu, hybnost kvanta se přenese na krystal jako celek a M J je ve vztahu (2) nahrazeno hmotností celého krystalu. Tím se energie zpětného rázu o mnoho řádů sníží a dojde k bezodrazové rezonanční jaderné absorpci. Tento efekt pak dostal název Mössbauerův jev. Pozorované zvýšení absorpce při snížení teploty tedy bylo jednoduše vysvětleno tím, že se zvyšuje pravděpodobnost zmíněných bezfononových přechodů. S tímto výsledkem, obsaženým a teoreticky vysvětleným v práci [1], se Mössbauer vrátil do Mnichova. Zde byl mezitím spuštěn první atomový reaktor a Mössbauer se připravoval na práci ve fyzice neutronů. Když po 3 měsících vyšla publikace tiskem, autor si ji, jako svou první práci, pozorně pročetl a zjistil, že vlastně neprovedl hlavní experiment změření šířky příslušné čáry, což by bylo možné s použitím lineárního Dopplerova jevu. Jak sám vypráví, toto poznání ho tak vzrušilo, že vrazil do pracovny prof. Maiera- -Leibnitze a volal: Jedu nejbližším vlakem do Heidelbergu, zapomněl jsem udělat ten hlavní experiment! Když se vrátil do Heidelbergu, kde jeho zařízení stále ještě existovalo, propadl panice. Poslal totiž preprinty své práce svým dvěma hlavním konkurentům, specialistům na experimenty s Dopplerovým posunem prof. Moonovi do Birminghamu a prof. Metzgerovi do Filadelfie. Práce byla psána německy a domníval se, že Moon nebude německy umět. Ale nevěděl, že vedle v pracovně sedí německý emigrant Rudolf Peierls, který se však naštěstí pro Mössbauera domníval, že práce je chybná. Takže Moon žádná měření neprovedl. Uspořádání pokusu. A kryostat s absorbérem; Q otáčivý kryostat se zdrojem; D scintilační detektor. M označuje část kruhové dráhy zdroje využité k měření. Závislost relativní intensity (I Ir - I Pt )/ I Pt za Ir nebo Pt absorbérem na rychlosti zdroje vzhledem k absorbéru. E=(v/c).E 0 je energetický posun kvant 129 kev vzhledem k nepohybujícímu se absorbéru. Zdrojem záření bylo osmium o aktivitě 65 mcurie, jehož rozpadové schéma obsahuje linii 129 kev isotopu Ir 191 Obr. 1, 2 Schéma uspořádání historického Mössbauerova experimentu a prvá rezonanční čára bezodrazové absorpce jader izotopu 191 Ir (převzato z [3]).»... nebylo tehdy obvyklé, aby anglická dáma pomáhala chudému německému studentovi, ale její pomoc byla pro celou práci zásadní. «

4 54 Historie fyziky Metzger, původem Švýcar, německy uměl a dokonce napsal Mössbauerovi dopis, v němž ho upozorňoval na chybu ve výpočtu, kde mělo být ¼ kt místo ½ kt, protože šlo o překryv dvou čar. Mössbauer se však domníval, že se Metzger jen snaží získat čas a s obavami se chodil dívat každé ráno do ústavní knihovny na nově došlé fyzikální časopisy. Obavy však byly liché, protože ani jeden ze zmíněných konkurentů se nechystal tento experiment provést. Ve skutečnosti byl velmi jednoduchý, protože šlo o zjištění změn absorpce řádu jednotek procent, zatímco předchozí měření při určování účinných průřezů dávala změnu zhruba o dva řády menší. K uskutečnění svého pokusu potřeboval Mössbauer otáčecí zařízení, ale jeho výroba v místních dílnách by byla příliš dlouhá, takže místo toho vykoupil v místním obchodě s mechanickými hračkami všechna ozubená kolečka. Sestavené zařízení nepracovalo příliš hladce, ale to naštěstí nehrálo podstatnou roli. Schéma zařízení a první experimentální křivka z [2] jsou na obr. 1 a 2. Protože v tomto případě se dopplerovsky vzájemně posouvaly velmi úzké čáry, potřebné rychlosti byly zhruba milionkrát menší než u původních Moonových experimentů. Mössbauer si uvědomil, jaké možnosti tato metoda skýtá a požádal ve svém ústavu, v němž byl tehdy jediný cyklotron v Německu, o výrobu 57 Fe (ve skutečnosti šlo zřejmě o přípravu 57 Co, jehož rozpadem vzniká vzbuzený stav 57 Fe), která však byla odmítnuta, zřejmě pro příliš vysokou požadovanou aktivitu. Tento opravdu převratný výsledek chtěl Mössbauer ve stručné formě publikovat v nějakém nepříliš rozšiřovaném a samozřejmě německém časopise, aby získal čas pro další práci na tomto problému. Bohužel mu jeho vedoucí práce poradil Naturwissenschaften [2]. Přes svou snahu o utajení dostal během týdne po zveřejnění 260 žádostí o zaslání reprintu, takže bylo jasné, že se utajení nepovedlo. Mössbauer své vyprávění o objevu uzavírá dvěma příhodami. V Los Alamos se údajně vsadili o korektnost práce, ale vsazená částka byla jen 5 centů; Mössbauer podotýká, že se mohli vsadit aspoň o 10 ( nickel and dime se v USA užívá v řadě frází a většinou znamená něco bezcenného, malé hodnoty, jež se případně může neočekávaně akumulovat). Druhá příhoda se váže k jeho přednášce na semináři v Heidelbergu v r. 1959, kde byl také přítomen Felix Böhm z California Institute of Technology. Požádal Mössbauera o preprint, který poslal na své pracoviště, kde byli dva hlavní teoretici Bob Christie a Dick Feynman požádáni o vyjádření se k práci. Sešli se večer a dohodli se, že si vymění své názory na práci [2], stále publikovanou v němčině, příští ráno. Feynman údajně prohlásil: Ta celá věc je bláznivá, ale v jeho výpočtech jsem nenašel žádnou chybu. A do Heidelbergu přišel slavný telegram o třech slovech: Get the guy. Signed Dick Feynman. A tak zpráva o udělení Nobelovy ceny za fyziku v r společně s R. Hostadterem zastihla Mössbauera již v USA. Sluší se ještě uvést, jak bylo udělení ceny odůvodněno. V případě Roberta Hostadtera to bylo for his pioneering studies of electron scattering in atomic nuclei and for his thereby achieved discoveries concerning the structure of the nucleons a u R. L. Mössbauera for his researches concerning the resonance absorption of gamma radiation and his discovery in this connection of the effect which bears his name. detektor hlavní absorbér mylarová trubice na He ~73 zdroj s transduktorem detektor pro pokus se zaměněným zdrojem a absorbérem Obr. 3 Technický nákres systému v uzavřené věži v Jeffersonově laboratoři. Mössbauerova spektroskopie nástavby 3. patra, patra 1. patra přízemí, Spektrum a hyperjemné interakce Závislost efektu pozorovaného při bezodrazové jaderné absorpci na energii, tj. změnu intenzity primárního svazku nebo emisi sekundárního záření, konverzních elektronů nebo doprovodného Rentgenova záření, se nazývá Mössbauerovým spektrem. Takovým jednoduchým spektrem je historicky první závislost z práce [3] uvedená v našem obr. 2. Protože k pozorování Mössbauerova jevu je třeba, aby atom s příslušným jádrem byl zabudován v krystalu (pevné látce), je energetické spektrum jader ovlivňováno interakcemi s krystalem. Tyto interakce se nazývají hyperjemné a dělí se na elektrostatické a magnetické. Nejjednodušší elektrostatickou interakcí je vzájemné působení prostorové hustoty náboje jádra s elektronovou hustotou v místě jádra. Tato interakce vede k tzv. izomernímu nebo též chemickému posunu spektra IS (Isomer Shift), který je dán výrazem IS = K (R 2 e R 2 g ) {[Ψ 2 s (0)] a [Ψ 2 s (0)] b }, kde K je konstanta, R e a R g je poloměr jádra v excitovaném a základním stavu a Ψ s je vlnová funkce s-elektronů v místě jádra absorbéru a referenčního absorbéru. V další elektrostatické interakci působí gradient elektrického pole elektronů na kvadrupólový moment jádra, což vede pro případ s osovou lokální symetrií ke kvadrupólovému štěpení spektra o velikosti E Q =eqv zz /4I(2I-1) [3m 2 z -I(I+1)], kde e je náboj elektronu, Q je kvadrupólový moment jádra, V zz je složka gradientu elektrického pole v místě jádra, I je spin jádra a m z je magnetické kvantové číslo.

5 č. 1 Čs. čas. fyz. 62 (2012) 55 Kvadrupólový moment je nenulový pro jádra se spinem větším než ½, a aby se štěpení vedoucí k charakteristickému dubletu ve spektru realizovalo, musí mít okolí jádra symetrii nižší než kubickou. Magnetická interakce vede k Zeemanovu štěpení energetických hladin jádra působením (efektivního) magnetického pole B v místě jádra na jeho dipolový magnetický moment. Energie Zeemanova štěpení je dána výrazem E m = g N μ N B m z, kde g N je jaderný Landéův faktor, μ N je jaderný magneton, m z je magnetické kvantové číslo, které nabývá hodnot od I po jednotkách do I. Hladina se tedy rozštěpí na (2I + 1) ekvidistantních hladin. Povoleny jsou však pouze přechody mezi energetickými hladinami jádra v základním a excitovaném stavu, u nichž je změna magnetického kvantového čísla Δm z = 0 nebo ±1. Konkrétně tedy pro spin v základním a vzbuzeném stavu rovném 1/2 a 3/2 (např. případ 57 Fe) dochází k šesti dovoleným přechodům a ve spektru vzniká charakteristický sextet. Velmi stručně lze říci, že izomerní posun podává informaci o hustotě s-elektronů a tedy na příklad o valenčním stavu atomu, v němž se dané jádro nachází. Kvadrupolové štěpení vypovídá především o symetrii rozložení elektrických nábojů v okolí jádra a tedy o symetrii lokálního okolí jádra. Vzhledem k tomu, že relativní intenzity čar v dubletu závisí známým způsobem na vzájemné orientaci γ paprsku a hlavní osy gradientu elektrického pole, můžeme z nich zpětně získat informaci o orientaci těchto hlavních os vůči osám krystalografickým. Hyperjemné magnetické pole B v magneticky uspořádaných látkách se skládá z řady příspěvků obou znamének a zpravidla rozhodující roli hraje Fermiho kontaktní interakce s-elektronů s příslušným jádrem. Sluší se poznamenat, že toto pole závisí na velikosti lokálního elektronového magnetického momentu, a proto se Zeemanova štěpení využívá ke studiu teplotních závislostí lokálních magnetických momentů. Vzhledem k tomu, že relativní intenzity čar v sextetu závisejí známým způsobem na vzájemné orientaci γ paprsku a B, můžeme z nich naopak získat informace o orientaci lokálních momentů. Efektivní magnetické pole v místě jádra se skládá z vnějšího, hyperjemného a demagnetizačního. Jestliže máme k dispozici dostatečně silné magnetické pole, je pak možné detailně studovat magnetická uspořádání i ve složitějších případech, např. v magnetických materiálech s více podmřížkami, nekolineární magnetická uspořádání a další. Aplikace MS K rychlému udělení Nobelovy ceny R. L. Mössbauerovi pouhé tři roky po publikování práce [1] přispělo jednak pozorování bezodrazové absorpce γ záření na jádrech 57 Fe, což mělo za následek rychlý rozvoj této spektroskopické metody v mnoha vědních oborech, ale také potvrzení A. Einsteinem předpovězeného rudého posuvu spektrálních linií v gravitačním poli. Relativní změna frekvence fotonů (γ-záření) v gravitačním poli Země je podle speciální teorie relativity dána vztahem Δν/ν 0 = gh/c 2, kde g je místní tíhové zrychlení, h je výška umístění zářiče nad pozorovatelem, který je na povrchu Země, a c je rychlost světla. Je-li výška h udána v metrech, činí změna frekvence Δν/ν 0 = 1, h. Praktické provedení pokusu zpočátku naráželo na řadu obtíží. První užívaný mössbauerovský izotop 191 Ir má dostatečně intenzivní bezodrazovou rezonanční absorpci jenom při nízkých teplotách, a navíc je tato absorpční linie poměrně široká (relativní rozlišení ~2, ). Byl tudíž hledán izotop s užší linií poskytující dostatečně intenzivní rezonanční absorpci i při vyšších teplotách. Volba padla na jádra 57 Fe vázaná v kovovém železe, u nichž je při pokojové teplotě ~70 % fotonů γ-záření bezodrazových. První měření gravitačního rudého posuvu uskutečnili v Harvardu v roce 1960 R. V. Pound a G. A. Rebka [12]. Experiment provedli ve věži, která je součástí tamní fyzikální laboratoře. Výškový rozdíl mezi zdrojem a absorbérem γ-záření byl 22 m (viz obrázek 3) a trubice, kterou procházelo záření, byla naplněna plynným heliem, aby byla snížena absorpce záření ve vzduchu, který obsahuje těžší prvky. Při experimentu několikrát zaměnili polohu zdroje a absorbéru. Naměřená střední hodnota relativní změny frekvence fotonů byla v rámci experimentální chyby několik procent v souhlasu s teoretickou předpovědí. Uvedený experiment seznámil s Mössbauerovým jevem širokou fyzikální komunitu. Později opakoval experiment R. V. Pound s J. L. Sniderem s ještě větší přesností [13] (viz obrázek 4) a v roce 1981 T. Katila s K. J. Riskim pomocí izotopu 67 Zn s relativním rozlišením ~5, na vzdálenosti 1 m [14]. Ze všech vědeckých prací, které se týkají Mössbauerovy spektroskopie, se nejvíce používá izotop železa 57 Fe, jehož se týká podle údajů Mössbauer Effect Data Center z r až 64 % prací. Na druhém místě v pomyslném žebříčku je izotop cínu 119 Sn s 18 %. Za pozornost ještě stojí izotopy europia 151 Eu, zlata 197 Au, antimonu 121 Sb a teluru 125 Te, které mají 3 %, resp. 2 %. Řada dalších izotopů je sice využívána, ale v zanedbatelné míře. Oblasti použití Mössbauerova jevu jsou velmi rozsáhlé a ani dnes nejsou známy všechny možnosti jeho využití. Mössbauerova spektroskopie je mimořádně produktivním nástrojem získávání nových poznatků v širokém spektru oblastí základního a aplikovaného 1,1 1 0,9 0,8 výsledky dělené 2gh/c 2» Využití Mössbauerova jevu je velmi rozsáhlé a rozmanité. «plná délka normální plná délka obrácená poloviční délka normální poloviční délka obrácená březen duben květen červen červenec srpen Obr. 4 Shrnutí konečných výsledků experimentu o gravitačním posuvu spektrálních čar; svislé čáry označují standardní odchylku a vodorovné definují dobu měření.

6 56 Historie fyziky Obr. 5 MIMOS (MIniature MOessbauer Spectrometer), Mössbauerův spektrometr použitý na Marsu. vědeckého výzkumu, a to od jaderné fyziky přes fyziku kondenzovaných látek, biofyziku, chemii, medicínu až po mineralogii, archeologii a technické aplikace, např. v materiálovém výzkumu, metalurgii nebo geologii. V následujícím textu upozorníme na některé přehledové publikace, jež se různých vědeckých odvětví týkají. Metalurgické problematice, a to transformacím v železných slitinách, je věnována publikace [15] a o problémech koroze a reakcích na povrchu a rozhraní slitin pak pojednává [16]. Použití Mössbauerovy spektroskopie v chemii je velice rozsáhlé a o řadě směrů je dosti podrobně pojednáno v nedávno vydané knize [17]. O některých relativně časných méně obvyklých aplikacích se lze dozvědět v práci [18]. Použití Mössbauerovy spektroskopie v archeologii je zejména rozšířeno na řeckých pracovištích a práce [19] patří k prvním shrnujícím pojednáním o tomto směru. Poměrně blízká je pak aplikace této metodiky na umělecká díla, a to zejména obrazy a sochy [20]. Určení vlastností pigmentů v malbách je umožněno zejména tím, že řada z nich obsahuje oxidy železa často jako hlavní složku. Obr. 6 Umělecké přenesení marsovského vozítka Spirit do krajiny jeho přistání. Rozvoj aplikací Mössbauerovy spektroskopie v nejrůznějších odvětvích diskutuje Nagy v přehledové publikaci [21], kde je také upozorněno na problémy spojené s rozšířením této metody do odlehlých směrů výzkumu. Jedním z významných mezinárodních projektů, který získal značnou pozornost nejen v mössbauerovské komunitě, ale i široké veřejnosti, byl úspěšný vývoj a konstrukce miniaturních přístrojů MIMOS Miniaturised Mössbauer Spectrometer (obr. 5) a jejich umístění na kosmických sondách, jejichž přistávací moduly úspěšně dosedly 4., resp. 25. ledna 2004 na protilehlých místech povrchu planety Mars. Z každého modulu byl uvolněn 180 kg těžký pohyblivý robot MER Mars Exploration Rover, nejdříve Spirit (viz obr. 6) a pak i jeho dvojče Opportunity. Ty do konce roku 2007 urazily na povrchu Marsu s nainstalovanými vědeckými přístroji vzdálenost 7,5, resp. 10,5 km a pokračují v činnosti. Kromě Mössbauerova spektrometru a panoramatické kamery jsou na elektromobilu umístěny také TES Thermal Emission Spectrometer, APXS Alpha Particle X-ray Spectrometer, MI Microscopic Imager, což je kombinace mikroskopu a CCD kamery a další přístroje. MIMOS je upevněn na pohyblivém ramenu robotu, který vysune kobaltový zdroj γ záření proti zkoumanému materiálu povrchové nebo předem odfrézované hornině a detektor registruje zpětně odražené záření. Z Mössbauerových spekter se potom zjišťuje výskyt železných minerálů, z nichž některé mohou vznikat pouze za přítomnosti vody. Na obr. 7 je Mössbauerovo spektrum vyvřelé horniny z lokality Meradiani Planum, která obsahuje značný podíl minerálu jarositu (zásaditý síran draselnoželezitý). V části A jsou uvedena spektra při různých teplotách v oboru rychlostí 12 až +12 mm/s získaná složením spekter vyvřelin ze dvou různých kráterů. Část B ukazuje spektrum z jedné lokality po odstranění povrchové vrstvy a jde zde o detail pro nižší rychlosti rozmítání. Ve spektrech jsou identifikovány dva dublety odpovídající Fe 3+ (Jar jarosit, Fe3D3 blíže neidentifikovaná oktaedrická fáze), dublet odpovídající přítomnosti Fe 2+ (Px pyroxen) a sextet magneticky uspořádaného hematitu (Hm). Svislé čárkované úsečky jsou centrovány z poloh maxim pro teploty 260 a 280 K. Změna polohy maxim při teplotě K je vyvolána známým Morinovým přechodem v hematitu. Přítomnost jarositu na povrchu Marsu je mineralogickým důkazem výskytu vodních procesů na této planetě [22, 23]. Jaderný rezonanční rozptyl synchrotronového záření Mössbauerova spektroskopie v časové doméně. V roce 1974 navrhl Ruby [24] novou metodu pro studium hyperjemných interakcí jader v kondenzovaných látkách, realizovanou v časové doméně pomocí jaderného rezonančního rozptylu synchrotronového záření jako analogii ke konvenční Mössbauerově spektroskopii v energetické doméně, viz obr. 8 [25]. Toto rozšíření Mössbauerovy spektroskopie do časové domény bylo umožněno dostupností zdrojů synchrotronového záření o veliké brilianci [26] ( fotonů s -1 mm -2 mrad -2 / 0,1 % energetické šířky) na synchrotronech ve Francii (ESRF), Německu (PETRA II), USA (APS) a Japonsku (SPring8). Mezi izotopy, na kterých byl pozorován jaderný rezonanční rozptyl synchrotronového záření,

7 č. 1 Čs. čas. fyz. 62 (2012) 57 patří zejména 40 K, 57 Fe, 61 Ni, 83 Kr, 119 Sn, 121 Sb, 149 Sm, 151 Eu, 161 Dy, 169 Tm a 181 Ta [26]. Jaderný rezonanční dopředný rozptyl (NFS) synchrotronového záření se plně uplatňuje jako metoda s časovým rozlišením (v časové doméně) od roku 1991 [27 29]. Pro určení hyperjemných parametrů se využívá analýza záznějů v časovém průběhu záření při deexcitaci jaderných hladin po předchozí excitaci pulzem monochromatizovaného synchrotronového záření. Další související metoda jaderný neelastický rozptyl (NIS) synchrotronového záření, jehož se účastní fonony (kmity krystalové mříže) při excitaci jaderných hladin [30] se využívá k určení fononových spekter studovaných látek a rozšiřuje tak energetickou škálu konvenční Mössbauerovy spektroskopie, která je pro hyperjemné interakce v rozmezí energií od 10-9 do 10-7 ev až do energií molekulárních vibrací v rozmezí od 10-3 do 10-1 ev. Využití jaderného rezonančního rozptylu synchrotronového záření s velkou briliancí, transverzální koherencí a polarizací umožnilo studium elektronové a magnetické struktury vzorků materiálů s velmi malým objemem, jako jsou tenké vrstvy, multivrstvy a nanočástice. Tyto materiály je možné navíc studovat i při působení vnějších extrémních podmínek, jako jsou vysoké tlaky, silná magnetická pole, extrémní teploty apod. Možnost využití konvečních zdrojů záření pro Mössbauerovu spektroskopii je silně omezena u některých izotopů krátkou dobou života radionuklidů, např. 99 min 61 Co 61 Ni a 78 h 67 Ga 67 Zn. Naproti tomu možnost širokého přeladění energie synchrotronového záření ev otevírá nové perspektivy využití dalších izotopů pro studium kondenzovaných látek pomocí Mössbauerova jevu. (počet pulsů/pozadí) K K K vyvřelá hornina z Meridiani Planum (složené spektrum) Jar Px Hm Fe3D spektrum po odstranění povrchové vrstvy Hm Fe3D3 Jar rychlost [mm/s] Obr. 7 Mössbauerova spektra vyvřelých hornin obsahujících jarosit. Symboly označující komponenty spekter jsou vysvětleny v textu. Px A B relativní přenos [%] rychlost [mm s -1 ] čas [ns] Obr. 8 Srovnání Mössbauerových spekter v energetické a časové doméně pro případ singletu a dubletu (podle [25]). Literatura ΔE Q = 0 mm s -1 ΔE Q = 2 mm s -1 intenzita dopředně rozptýleného synchr. záření [l. j.] [1] R. L. Mössbauer: Kernresonanzfluoreszenz von Gammastrahlung in Ir 191, Z. Phys. 151, 124 (1958). [2] R. L. Mössbauer: Kernresonanzfluoreszenz von Gammastrahlung in Ir 191, Naturwissenschaften 45, 538 (1958). [3] R. L. Mössbauer: Kernresonanzabsorption von γ- -Strahlung in Ir 191, Z. Naturforsch. A 14, 211 (1959). [4] R. L. Mössbauer: The discovery of the Mössbauer effect, Hyperfine Interactions 126, 1 (2000). [5] G. V. Smirnov, U. van Burck, R. L. Mossbauer: Anomalous transmission of Mossbauer radiation in pure nuclear Laue diffraction. III. Anisotropic scattering, J. Phys. C: Solid State Phys., 21, 5835 (1988). [6] R. W. Wood: A quantitative determination of the anomalous dispersion of sodium vapor in the visible and ultra- -vio let regions, Proc. Amer. Acad. Arts Sci. 40, 363 (1904). [7] W. Kuhn: Scattering of thorium C"γ-radiation by radium G and ordinary lead, Phil. Mag. 8, 625 (1929). [8] P. B. Moon: Interference between Rayleigh and nuclear resonant scattering of gamma rays, Proc. Phys. Soc. (London), 64, 76 (1951). [9] K. G. Malmfors: Nuclear resonance scattering of gamma- -rays, Arkiv for Fysik 6, 49 (1953). [10] W. J. Lamb, Jr.: Capture of neutrons by atoms in a crystal, Phys. Rev. 55, 190 (1939). [11] H. Steinwedel, J. H. D. Jensen: Über die Anregung von Molekül und Gitterschwingungen durch den Rückstoss bei Kernprozessen an chemisch gebundenen Atomen, Z. Naturforsch. A 2, 125 (1947). [12] R. V. Pound, G. A. Rebka Jr.: Apparent weight of photons, Phys. Rev. Lett. 4, 337 (1960). [13] R. V. Pound, J. L. Snider: Effect of gravity on nuclear rezonance, Phys. Rev. Lett. 13, 539 (1964); Effect of gravity on gamma radiation, Phys. Rev. 140, B788 (1965). [14] T. Katila, K. J. Riski: Measurements of the interaction between electromagnetic radiation and gravitational field using 67 Zn Mössbauer spectroscopy, Phys. Lett. 83A, 51, (1981). [15] L. H. Schwartz: Ferrous alloy phase transformations, in: Applications of Mössbauer Spectroscopy, ed. R. L. Cohen, Academic Press, New York, 1976, s [16] G. W. Simmons, H. Leidheiser, Jr.: Corrosion and interfacial reactions, in: Applications of Mössbauer Spectroscopy, ed. R. L. Cohen, Academic Press, New York, 1976, s [17] P. Gütlich, E. Bill, A. X. Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry. Springer-Verlag, Berlin-Heidelberg [18] R. S. Preston a U. Gonser: Selected exotic applications, in: Mössbauer Spectroscopy II, ed. U. Gonser, Springer Verlag. Berlin-Heidelberg 1981, s » Možnost přeladění energie fotonů synchrotronového záření v širokém rozsahu ( ev) umožňuje využití dalších izotopů pro studium pevných látek pomocí Mössbauerova jevu. «

8 58 Historie fyziky [19] A. Kostikas, A. Simopoulos, N. H. Gangas: Analysis of archeological artifacts, in: Applications of Mössbauer Spectroscopy, ed. R. L. Cohen, Academic Press, New York, 1976, s [20] B. Keisch: Analysis of works of art, in: Applications of Mössbauer Spectroscopy, ed. R. L. Cohen, Academic Press, New York, 1976, s [21] D. L. Nagy: Mössbauer effect: a dual method for myriad applications, Hyperfine Interactions 182, 5 (2008). [22] R. V. Morris, G. Klingelhöfer, B. Bernhardt, C. Schröder, D. S. Rodionov, P. A. de Souza, Jr., A. Yen, R. Gellert, E. N. Evlanov, J. Foh, E. Kankeleit, P. Gütlich, D. W. Ming, F. Renz, T. Wdowiak, S. W. Squyres, R. E. Arvidson: Mineralogy at Gusev crater from the Mössbauer spectrometer on the Spirit Rover, Science 305, 833 (2004). [23] G. Klingelhöfer, R. V. Morris, B. Bernhardt, C. Schröder, D. S. Rodionov, P. A. de Souza, Jr., A. Yen, R. Gellert, E. N. Evlanov, B. Zubkov, J. Foh, U. Bonnes, E. Kankeleit, P. Gütlich, D. W. Ming, F. Renz, T. Wdowiak, S. W. Squyres, R. E. Arvidson: Jarosite and hematite at Meridiani Planum from Opportunity s Mössbauer spectrometer, Science 306, 1740 (2004). [24] S. L. Ruby: Mössbauer Experiments without Conventional Sources, J. de Physique Coll. 35, C6-209 (1974). [25] P. Gütlich, E. Bill, A. X. Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry. Springer-Verlag, Berlin-Heidelberg 2011, s [26] R.Röhlsberger: Nuclear Condensed Matter Physics with Synchrotron Radiation. Springer Tracts in Modern Physics Vol. 208, Springer-Verlag, Berlin-Heidelberg [27] J. B. Hastings, D. P. Siddons, U. van Burck, R. Hollatz, U. Bergmann: Mossbauer spectroscopy using synchrotron radiation, Phys. Rev. Lett. 66, 770 (1991). Obr. 9 Zařízení na konci paže vozítka Spirit včetně spektrometru MIMOS. [28] E. Gerdau, R. Rüffer, H. Winkler, W. Tolksdorf, C. P. Klages, J. P. Hannon: Nuclear Bragg diffraction of synchrotron radiation in Yttrium Iron Garnet, Phys. Rev. Lett. 54, 835 (1985) [29] R. L. Cohen, G. L. Miller, K. W. West: Nuclear resonance excitation by synchrotron radiation, Phys. Rev. Lett. 41, 381 (1978). [30] M. Seto, Y. Yoda, S. Kikuta, X.W. Zhang, M. Ando: Observation of nuclear resonant scattering accompanied by phonon excitation using synchrotron radiation, Phys. Rev. Lett. 74, 3828 (1995).

Gama spektroskopie. Vojtěch Motyčka Centrum výzkumu Řež s.r.o.

Gama spektroskopie. Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Gama spektroskopie Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Teoretický úvod ke spektroskopii Produkce a transport neutronů v různých materiálech, které se v daných zařízeních vyskytují (urychlovačem

Více

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony atom jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony molekula Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti seskupení alespoň dvou atomů

Více

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu. Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.

Více

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá

Více

NMR spektroskopie. Úvod

NMR spektroskopie. Úvod NMR spektroskopie Úvod Zkratka NMR znamená Nukleární Magnetická Rezonance. Jde o analytickou metodu, která na základě absorpce radiofrekvenčního záření vzorkem umístěným v silném magnetickém poli poskytuje

Více

Za hranice současné fyziky

Za hranice současné fyziky Za hranice současné fyziky Zásadní změny na počátku 20. století Kvantová teorie (Max Planck, 1900) teorie malého a lehkého Teorie relativity (Albert Einstein) teorie rychlého (speciální relativita) Teorie

Více

PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka.

PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka. PSK1-14 Název školy: Autor: Anotace: Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Optické zdroje a detektory Vzdělávací oblast: Informační a komunikační technologie Předmět:

Více

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření KAP. 3 RADIOAKTIVITA A JADERNÉ REAKCE sklo barvené uranem RADIOAKTIVITA =SCHOPNOST NĚKTERÝCH ATOMOVÝCH JADER VYSÍLAT ZÁŘENÍ přírodní nuklidy STABILNÍ NKLIDY RADIONKLIDY = projevují se PŘIROZENO RADIOAKTIVITO

Více

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A Doporučená literatura Přípravný kurz Chemie 2006/07 07 RNDr. Josef Tomandl, Ph.D. Mailto: tomandl@med.muni.cz Předmět: Přípravný kurz chemie J. Vacík a kol.: Přehled středoškolské chemie. SPN, Praha 1990,

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 19. 12. 2012 Pořadové číslo 09 1 RADIOAKTIVITA Předmět: Ročník: Jméno autora:

Více

Spektroskopie v UV-VIS oblasti. UV-VIS spektroskopie. Roztok KMnO 4. pracuje nejčastěji v oblasti 200-800 nm

Spektroskopie v UV-VIS oblasti. UV-VIS spektroskopie. Roztok KMnO 4. pracuje nejčastěji v oblasti 200-800 nm Spektroskopie v UV-VIS oblasti UV-VIS spektroskopie pracuje nejčastěji v oblasti 2-8 nm lze měřit i < 2 nm či > 8 nm UV VIS IR Ultra Violet VISible Infra Red Roztok KMnO 4 roztok KMnO 4 je červenofialový

Více

Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta

Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : Fyzika Ročník: I.ročník - kvinta Fyzikální veličiny a jejich měření Fyzikální veličiny a jejich měření Soustava fyzikálních veličin a jednotek

Více

Jméno a příjmení. Ročník. Měřeno dne. 21.3.2012 Příprava Opravy Učitel Hodnocení

Jméno a příjmení. Ročník. Měřeno dne. 21.3.2012 Příprava Opravy Učitel Hodnocení FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Vojtěch Přikryl Ročník 1 Předmět IFY Kroužek 35 ID 143762 Spolupracoval Měřeno dne Odevzdáno dne Daniel Radoš 7.3.2012 21.3.2012 Příprava

Více

8.1 Elektronový obal atomu

8.1 Elektronový obal atomu 8.1 Elektronový obal atomu 8.1 Celkový náboj elektronů v elektricky neutrálním atomu je 2,08 10 18 C. Který je to prvek? 8.2 Dánský fyzik N. Bohr vypracoval teorii atomu, podle níž se elektron v atomu

Více

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD.

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. KAP FP TU Liberec pavel.pesat@tul.cz tel. 3293 Radioaktivita. Přímo a nepřímo ionizující záření. Interakce záření s látkou. Detekce záření, Dávka

Více

Molekulová spektroskopie 1. Chemická vazba, UV/VIS

Molekulová spektroskopie 1. Chemická vazba, UV/VIS Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Gymnázium, Český Krumlov

Gymnázium, Český Krumlov Gymnázium, Český Krumlov Vyučovací předmět Fyzika Třída: 6.A - Prima (ročník 1.O) Úvod do předmětu FYZIKA Jan Kučera, 2011 1 Organizační záležitosti výuky Pomůcky související s výukou: Pracovní sešit (formát

Více

Zdroje optického záření

Zdroje optického záření Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon

Více

Podivuhodný grafen. Radek Kalousek a Jiří Spousta. Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně. Čichnova 19. 9.

Podivuhodný grafen. Radek Kalousek a Jiří Spousta. Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně. Čichnova 19. 9. Podivuhodný grafen Radek Kalousek a Jiří Spousta Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně Čichnova 19. 9. 2014 Osnova přednášky Úvod Co je grafen? Trocha historie Některé podivuhodné

Více

C Mapy Kikuchiho linií 263. D Bodové difraktogramy 271. E Počítačové simulace pomocí programu JEMS 281. F Literatura pro další studium 289

C Mapy Kikuchiho linií 263. D Bodové difraktogramy 271. E Počítačové simulace pomocí programu JEMS 281. F Literatura pro další studium 289 OBSAH Předmluva 5 1 Popis mikroskopu 13 1.1 Transmisní elektronový mikroskop 13 1.2 Rastrovací transmisní elektronový mikroskop 14 1.3 Vakuový systém 15 1.3.1 Rotační vývěvy 16 1.3.2 Difúzni vývěva 17

Více

ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY ZLATÝCH A STŘÍBRNÝCH KELTSKÝCH MINCÍ Z BRATISLAVSKÉHO HRADU METODOU SEM-EDX. ZPRACOVAL Martin Hložek

ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY ZLATÝCH A STŘÍBRNÝCH KELTSKÝCH MINCÍ Z BRATISLAVSKÉHO HRADU METODOU SEM-EDX. ZPRACOVAL Martin Hložek / 1 ZPRACOVAL Martin Hložek TMB MCK, 2011 ZADAVATEL PhDr. Margaréta Musilová Mestský ústav ochrany pamiatok Uršulínska 9 811 01 Bratislava OBSAH Úvod Skanovací elektronová mikroskopie (SEM) Energiově-disperzní

Více

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207 6..8 Vlnová funkce ředpoklady: 06007 edagogická poznámka: Tato hodina není příliš středoškolská. Zařadil jsem ji kvůli tomu, aby žáci měli alespoň přibližnou představu o tom, jak se v kvantové fyzice pracuje.

Více

Chování látek v nanorozměrech

Chování látek v nanorozměrech Univerzita J.E. Purkyně v Ústí nad Labem Chování látek v nanorozměrech Pavla Čapková Přírodovědecká fakulta Univerzita J.E. Purkyně v Ústí nad Labem Březen 2014 Chování látek v nanorozměrech: Co se děje

Více

dvojí povaha světla Střední škola informatiky, elektrotechniky a řemesel Rožnov pod Radhoštěm Název školy Předmět/modul (ŠVP) Vytvořeno listopad 2012

dvojí povaha světla Střední škola informatiky, elektrotechniky a řemesel Rožnov pod Radhoštěm Název školy Předmět/modul (ŠVP) Vytvořeno listopad 2012 Název školy Dvojí povaha světla Název a registrační číslo projektu Označení RVP (název RVP) Vzdělávací oblast (RVP) Vzdělávací obor (název ŠVP) Předmět/modul (ŠVP) Tematický okruh (ŠVP) Název DUM (téma)

Více

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE VY_32_INOVACE_FY.17 JADERNÁ ENERGIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jaderná energie je energie, která existuje

Více

JOHANN RADON a počítačová tomografie

JOHANN RADON a počítačová tomografie JOHANN RADON a počítačová tomografie Alena Šolcová 26. listopadu 2013 Dětství Narodil se 16. prosince 1887 v Děčíně. Rodiče: Anton a Anna, otec bankovní úředník. Vyrůstal s dcerami otce z prvního manželství.

Více

Elektronová mikroskopie SEM, TEM, AFM

Elektronová mikroskopie SEM, TEM, AFM Elektronová mikroskopie SEM, TEM, AFM Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první

Více

FLUORIMETRICKÉ STANOVENÍ FLUORESCEINU

FLUORIMETRICKÉ STANOVENÍ FLUORESCEINU FLUORIMETRICKÉ STANOVENÍ FLUORESCEINU návod vznikl jako součást bakalářské práce Martiny Vidrmanové Fluorimetrie s využitím spektrofotometru SpectroVis Plus firmy Vernier (http://is.muni.cz/th/268973/prif_b/bakalarska_prace.pdf)

Více

2. Určete frakční objem dendritických částic v eutektické slitině Mg-Cu-Zn. Použijte specializované programové vybavení pro obrazovou analýzu.

2. Určete frakční objem dendritických částic v eutektické slitině Mg-Cu-Zn. Použijte specializované programové vybavení pro obrazovou analýzu. 1 Pracovní úkoly 1. Změřte střední velikost zrna připraveného výbrusu polykrystalického vzorku. K vyhodnocení snímku ze skenovacího elektronového mikroskopu použijte kruhovou metodu. 2. Určete frakční

Více

Gymnázium, Havířov - Město, Komenského 2 MATURITNÍ OTÁZKY Z FYZIKY Školní rok: 2012/2013

Gymnázium, Havířov - Město, Komenského 2 MATURITNÍ OTÁZKY Z FYZIKY Školní rok: 2012/2013 1. a) Kinematika hmotného bodu klasifikace pohybů poloha, okamžitá a průměrná rychlost, zrychlení hmotného bodu grafické znázornění dráhy, rychlosti a zrychlení na čase kinematika volného pádu a rovnoměrného

Více

Základy NIR spektrometrie a její praktické využití

Základy NIR spektrometrie a její praktické využití Nicolet CZ s.r.o. The world leader in serving science Základy NIR spektrometrie a její praktické využití NIR praktická metoda molekulové spektroskopie, nahrazující pracnější, časově náročnější a dražší

Více

Atomová a jaderná fyzika

Atomová a jaderná fyzika Mgr. Jan Ptáčník Atomová a jaderná fyzika Fyzika - kvarta Gymnázium J. V. Jirsíka Atom - historie Starověk - Démokritos 19. století - první důkazy Konec 19. stol. - objev elektronu Vznik modelů atomu Thomsonův

Více

Jak se vyvíjejí hvězdy?

Jak se vyvíjejí hvězdy? Jak se vyvíjejí hvězdy? tlak a teplota normální plyny degenerované plyny osud Slunce fáze červeného obra oblast horizontálního ramena oblast asymptotického ramena obrů planetární mlhovina bílý trpaslík

Více

Mikroskop atomárních sil: základní popis instrumentace

Mikroskop atomárních sil: základní popis instrumentace Mikroskop atomárních sil: základní popis instrumentace Jednotlivé komponenty mikroskopu AFM Funkce, obecné nastavení parametrů a jejich vztah ke konkrétním funkcím software Nova Verze 20110706 Jan Přibyl,

Více

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Praktikum z pevných látek (F6390)

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Praktikum z pevných látek (F6390) Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Praktikum z pevných látek (F6390) Zpracoval: Michal Truhlář Naměřeno: 13. března 2007 Obor: Fyzika Ročník: III Semestr:

Více

Fyzika opakovací seminář 2010-2011 tematické celky:

Fyzika opakovací seminář 2010-2011 tematické celky: Fyzika opakovací seminář 2010-2011 tematické celky: 1. Kinematika 2. Dynamika 3. Práce, výkon, energie 4. Gravitační pole 5. Mechanika tuhého tělesa 6. Mechanika kapalin a plynů 7. Vnitřní energie, práce,

Více

Metody spektrální. Metody molekulové spektroskopie. UV-vis oblast. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Metody spektrální. Metody molekulové spektroskopie. UV-vis oblast. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Metody spektrální Metody molekulové spektroskopie UV-vis oblast Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Absorpční spektro(foto)metrie - v ultrafialové (UV) a viditelné (VIS)

Více

Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích z bublinové komory.

Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích z bublinové komory. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích

Více

VY_32_INOVACE_FY.19 VESMÍR

VY_32_INOVACE_FY.19 VESMÍR VY_32_INOVACE_FY.19 VESMÍR Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Vesmír je souhrnné označení veškeré hmoty, energie

Více

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15 Proč studovat hvězdy? 9 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů.... 13 1.3 Model našeho Slunce 15 2 Záření a spektrum 21 2.1 Elektromagnetické záření

Více

Nukleární Overhauserův efekt (NOE)

Nukleární Overhauserův efekt (NOE) Nukleární Overhauserův efekt (NOE) NOE je důsledek dipolární interakce mezi dvěma jádry. Vzniká přímou interakcí volně přes prostor, tudíž není ovlivněn chemickými vazbami jako nepřímá spin-spinová interakce.

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 10 Název: Rychlost šíření zvuku Pracoval: Jakub Michálek stud. skup. 15 dne: 20. března 2009 Odevzdal dne: Možný

Více

Mobilní Ramanův spektrometr Ahura First Defender

Mobilní Ramanův spektrometr Ahura First Defender ČVUT v Praze, Kloknerův ústav, Šolínova 7, Praha 6 Mobilní Ramanův spektrometr Ahura First Defender Příručka Ing. Daniel Dobiáš, Ph.D. Doc. Ing. Tomáš Klečka, CSc. Praha 2009 Anotace Příručka obsahuje

Více

ČÁST VIII - M I K R O Č Á S T I C E

ČÁST VIII - M I K R O Č Á S T I C E ČÁST VIII - M I K R O Č Á S T I C E 32 Základní částice 33 Dynamika mikročástic 34 Atom - elektronový obal 35 Atomové jádro 36 Radioaktivita 37 Molekuly 378 Pod pojmem mikročástice budeme rozumět tzv.

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice KAPITOLA 2: PRVEK Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora

Více

International Symposium on Radiation Physics - ISRP 2012 Rio de Janeiro, Brazil, 7. 10. 12. 10. 2012. Zpráva o průběhu konference Martin Hložek

International Symposium on Radiation Physics - ISRP 2012 Rio de Janeiro, Brazil, 7. 10. 12. 10. 2012. Zpráva o průběhu konference Martin Hložek International Symposium on Radiation Physics - ISRP 2012 Rio de Janeiro, Brazil, 7. 10. 12. 10. 2012 Zpráva o průběhu konference Martin Hložek Ve dnech 7. 10. 12. 10. 2012 uspořádala INTERNATIONAL RADIATION

Více

CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT. Hmota a její formy VY_32_INOVACE_18_01. Mgr. Věra Grimmerová

CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT. Hmota a její formy VY_32_INOVACE_18_01. Mgr. Věra Grimmerová Průvodka Číslo projektu Název projektu Číslo a název šablony klíčové aktivity CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce

Více

ÚSTAV FYZIKÁLNÍ BIOLOGIE JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH

ÚSTAV FYZIKÁLNÍ BIOLOGIE JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH ÚSTAV FYZIKÁLNÍ BIOLOGIE JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH PŘIHLÁŠKA STUDENTSKÉHO PROJEKTU Projekt Název projektu: Rozptyl primárních elektronů na atomech zalévacího média biologického materiálu

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Fyzika - 6. ročník Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí stavba látek - látka a těleso - rozdělení látek na pevné, kapalné a plynné

Více

Fysika a zkoumání živého

Fysika a zkoumání živého XIII. VALNÉ SHROMÁŽDĚNÍ UČENÉ SPOLEČNOSTI ČESKÉ REPUBLIKY KAROLINUM 15. KVĚTNA 2007 Fysika a zkoumání živého B. Velický, MFF KU Několik poznámek fysika, který se sám zkoumání živého nikdy neúčastnil Základní

Více

Praktikum z experimentálních metod biofyziky a chemické fyziky I. Vypracoval: Jana Čurdová, Martin Kříž, Vít Marek. Dne: 2.3.

Praktikum z experimentálních metod biofyziky a chemické fyziky I. Vypracoval: Jana Čurdová, Martin Kříž, Vít Marek. Dne: 2.3. Praktikum z experimentálních metod biofyziky a chemické fyziky I. Vypracoval: Jana Čurdová, Martin Kříž, Vít Marek. Dne:.3.3 Úloha: Radiometrie ultrafialového záření z umělých a přirozených světelných

Více

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : CHEMIE Ročník: 1.ročník a kvinta Obecná Bezpečnost práce Názvosloví anorganických sloučenin Zná pravidla bezpečnosti práce a dodržuje je.

Více

Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země

Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země strana 2 Co je DPZ Dálkový průzkum je umění rozdělit svět na množství malých barevných čtverečků, se kterými si lze hrát na počítači a odhalovat jejich neuvěřitelný

Více

6.2.7 Princip neurčitosti

6.2.7 Princip neurčitosti 6..7 Princip neurčitosti Předpoklady: 606 Minulá hodina: Elektrony se chovají jako částice, ale při průchodu dvojštěrbinou projevují interferenci zdá se, že neplatí předpoklad, že elektron letí buď otvorem

Více

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH Jan Hruška TV-FYZ Ahoj, tak jsme tady znovu a pokusíme se Vám vysvětlit problematiku vedení elektrického proudu v látkách. Co je to vlastně elektrický proud? Na to

Více

Fyzika II mechanika zkouška 2014

Fyzika II mechanika zkouška 2014 Fyzika II mechanika zkouška 2014 Přirozené složky zrychlení Vztahy pro tečné, normálové a celkové zrychlení křivočarého pohybu, jejich odvození, aplikace (nakloněná rovina, bruslař, kruhový závěs apod.)

Více

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou JÁDRO ATOMU A RADIOAKTIVITA VY_32_INOVACE_03_3_03_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Atomové jádro je vnitřní

Více

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů energií (mechanické, tepelné, elektrické, magnetické, chemické a jaderné) při td. dějích. Na rozdíl od td. cyklických dějů

Více

Absorpční fotometrie

Absorpční fotometrie Absorpční fotometrie - v ultrafialové (UV) a viditelné (VIS) oblasti přechody mezi elektronovými stavy +... - v infračervené (IČ) oblasti přechody mezi vibračními stavy +... - v mikrovlnné oblasti přechody

Více

Abychom obdrželi všechna data za téměř konstantních podmínek, schopných opakování:

Abychom obdrželi všechna data za téměř konstantních podmínek, schopných opakování: 1.0 Vědecké přístupy a získávání dat Měření probíhalo v reálném čase ve snaze získat nejrelevantnější a pravdivá data impulzivní dynamické síly. Bylo rozhodnuto, že tato data budou zachycována přímo z

Více

1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou.

1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou. 1 Pracovní úkoly 1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou. 2. Sestrojte graf této závislosti. 2 Teoretický úvod 2.1 Povrchové napětí

Více

Analýza dat a spektrálního rozlišení spektrometrů s řádkovými senzory

Analýza dat a spektrálního rozlišení spektrometrů s řádkovými senzory Analýza dat a spektrálního rozlišení spektrometrů s řádkovými senzory Ing. Pavel Oupický Oddělení optické diagnostiky, Turnov Ústav fyziky plazmatu AV ČR, v.v.i., Praha Spektrometry - specifikace a klasifikace

Více

Zákony ideálního plynu

Zákony ideálního plynu 5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. neutronové číslo

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. neutronové číslo JADERNÁ FYZIKA I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í 1. Úvod 4 14 17 1 jádra E. Rutherford, 1914 první jaderná reakce: α+ N O H 2 7 8 + 1 jaderné síly = nový druh velmi silných sil vzdálenost

Více

Přírodopis 9. Naše Země ve vesmíru. Mgr. Jan Souček. 2. hodina

Přírodopis 9. Naše Země ve vesmíru. Mgr. Jan Souček. 2. hodina Přírodopis 9 2. hodina Naše Země ve vesmíru Mgr. Jan Souček VESMÍR je soubor všech fyzikálně na sebe působících objektů, který je současná astronomie a kosmologie schopna obsáhnout experimentálně observační

Více

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ P. Novák, J. Novák Katedra fyziky, Fakulta stavební, České vysoké učení technické v Praze Abstrakt V práci je popsán výukový software pro

Více

9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km.

9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km. 9. Astrofyzika 9.1 Uvažujme hvězdu, která je ve vzdálenosti 4 parseky od sluneční soustavy. Určete: a) jaká je vzdálenost této hvězdy vyjádřená v kilometrech, b) dobu, za kterou dospěje světlo z této hvězdy

Více

ŠVP Gymnázium Jeseník Seminář z fyziky oktáva, 4. ročník 1/5

ŠVP Gymnázium Jeseník Seminář z fyziky oktáva, 4. ročník 1/5 ŠVP Gymnázium Jeseník Seminář z fyziky oktáva, 4. ročník 1/5 žák řeší úlohy na vztah pro okamžitou výchylku kmitavého pohybu, určí z rovnice periodu frekvenci, počáteční fázi kmitání vypočítá periodu a

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

SPECIALIZAČNÍ NÁPLŇ TECHNICKÁ SPOLUPRÁCE V OBORECH NUKLEÁRNÍ MEDICÍNY, RADIODIAGNOSTIKY A RADIOTERAPIE ZOBRAZOVACÍ METODY V RADIOLOGII

SPECIALIZAČNÍ NÁPLŇ TECHNICKÁ SPOLUPRÁCE V OBORECH NUKLEÁRNÍ MEDICÍNY, RADIODIAGNOSTIKY A RADIOTERAPIE ZOBRAZOVACÍ METODY V RADIOLOGII SPECIALIZAČNÍ NÁPLŇ v oboru TECHNICKÁ SPOLUPRÁCE V OBORECH NUKLEÁRNÍ MEDICÍNY, RADIODIAGNOSTIKY A RADIOTERAPIE ZOBRAZOVACÍ METODY V RADIOLOGII 1. Cíl specializační přípravy Cílem specializační přípravy

Více

Zlatý úspěch na MFO v Íránu: dvě zlaté, jedna stříbrná a dvě bronzové medaile. Zpracoval: Bohumil Vybíral

Zlatý úspěch na MFO v Íránu: dvě zlaté, jedna stříbrná a dvě bronzové medaile. Zpracoval: Bohumil Vybíral Zlatý úspěch na MFO v Íránu: dvě zlaté, jedna stříbrná a dvě bronzové medaile Zpracoval: Bohumil Vybíral vedoucí české reprezentace na 38. MFO, 2007 38. ročník Mezinárodní fyzikální olympiády v Íránu 38.

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN 12975-2 Ing. Tomáš Matuška,

Více

1/2008 Sb. NAŘÍZENÍ VLÁDY ČÁST PRVNÍ PŘEDMĚT ÚPRAVY

1/2008 Sb. NAŘÍZENÍ VLÁDY ČÁST PRVNÍ PŘEDMĚT ÚPRAVY 1/2008 Sb. NAŘÍZENÍ VLÁDY o ochraně zdraví před neionizujícím zářením Vláda nařizuje podle 108 odst. 3 zákona č. 258/2000 Sb., o ochraně veřejného zdraví a o změně některých souvisejících zákonů, 21 písm.

Více

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 2 Fyzikální veličiny a jednotky,

Více

Věra Mansfeldová. vera.mansfeldova@jh-inst.cas.cz Ústav fyzikální chemie Jaroslava Heyrovského AV ČR, v. v. i.

Věra Mansfeldová. vera.mansfeldova@jh-inst.cas.cz Ústav fyzikální chemie Jaroslava Heyrovského AV ČR, v. v. i. Mikroskopie, která umožnila vidět Feynmanův svět Věra Mansfeldová vera.mansfeldova@jh-inst.cas.cz Ústav fyzikální chemie Jaroslava Heyrovského AV ČR, v. v. i. Richard P. Feynman 1918-1988 1965 - Nobelova

Více

MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice přednášky 4-7

MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice přednášky 4-7 MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice přednášky 4-7 Ondřej Votava J. Heyrovský Institute of Physical Chemistry AS ČR Co vás v příštích třech týdnech čeká: Dnes Za týden

Více

42. MAGNETICKÉ VLASTNOSTI. Diamagnetizmus Paramagnetizmus Feromagnetizmus Magnetická rezonance a Mössbauerova spektroskopie

42. MAGNETICKÉ VLASTNOSTI. Diamagnetizmus Paramagnetizmus Feromagnetizmus Magnetická rezonance a Mössbauerova spektroskopie 565 42. MAGNETICKÉ VLASTNOSTI Diamagnetizmus Paramagnetizmus Feromagnetizmus Magnetická rezonance a Mössbauerova spektroskopie Magnetické vlastnosti látek jsme charakterizovali vektorem magnetizace, permeabilitou

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 21. 1. 2013 Pořadové číslo 11 1 Merkur, Venuše Předmět: Ročník: Jméno autora:

Více

2. Pro každou naměřenou charakteristiku (při daném magnetickém poli) určete hodnotu kritického

2. Pro každou naměřenou charakteristiku (při daném magnetickém poli) určete hodnotu kritického 1 Pracovní úkol 1. Změřte V-A charakteristiky magnetronu při konstantním magnetickém poli. Rozsah napětí na magnetronu volte 0-200 V (s minimálním krokem 0.1-0.3 V v oblasti skoku). Proměřte 10-15 charakteristik

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

Testové otázky za 2 body

Testové otázky za 2 body Přijímací zkoušky z fyziky pro obor PTA K vypracování písemné zkoušky máte k dispozici 90 minut. Kromě psacích potřeb je povoleno používání kalkulaček. Pro úspěšné zvládnutí zkoušky je třeba získat nejméně

Více

Přírodní radioaktivita

Přírodní radioaktivita Přírodní radioaktivita Náš celý svět, naše Země, je přirozeně radioaktivní, a to po celou dobu od svého vzniku. V přírodě můžeme najít několik tisíc radionuklidů, tj. prvků, které se samovolně rozpadají

Více

Jaderné záření kolem nás

Jaderné záření kolem nás Jaderné záření kolem nás Projekt řešený na Letním soustředění mladých fyziků a matematiků v Plasnici, 2014 Řešitelé: Martin Kaplan, Adam Tywoniak, Petr Vincena Vedoucí projektu: RNDr. Zdeňka Koupilová,

Více

TEPLOTNÍ ODOLNOST PVD VRSTEV VŮČI LASEROVÉMU POVRCHOVÉMU OHŘEVU

TEPLOTNÍ ODOLNOST PVD VRSTEV VŮČI LASEROVÉMU POVRCHOVÉMU OHŘEVU TEPLOTNÍ ODOLNOST PVD VRSTEV VŮČI LASEROVÉMU POVRCHOVÉMU OHŘEVU Beneš, P. 1 Sosnová, M. 1 Kříž, A. 1 Vrstvy a Povlaky 2007 Solaň Martan, M. 2 Chmelíčková, H. 3 1- Katedra materiálu a strojírenské metalurgie-

Více

VY_32_INOVACE_06_III./19._HVĚZDY

VY_32_INOVACE_06_III./19._HVĚZDY VY_32_INOVACE_06_III./19._HVĚZDY Hvězdy Vývoj hvězd Konec hvězd- 1. možnost Konec hvězd- 2. možnost Konec hvězd- 3. možnost Supernova závěr Hvězdy Vznik hvězd Vše začalo už strašně dávno, kdy byl vesmír

Více

Ultrazvuková defektoskopie. Vypracoval Jan Janský

Ultrazvuková defektoskopie. Vypracoval Jan Janský Ultrazvuková defektoskopie Vypracoval Jan Janský Základní principy použití vysokých akustických frekvencí pro zjištění vlastností máteriálu a vad typické zařízení: generátor/přijímač pulsů snímač zobrazovací

Více

Klasické a inovované měření rychlosti zvuku

Klasické a inovované měření rychlosti zvuku Klasické a inovované měření rychlosti zvuku Jiří Tesař katedra fyziky, Pedagogická fakulta JU Klíčová slova: Rychlost zvuku, vlnová délka, frekvence, interference vlnění, stojaté vlnění, kmitny, uzly,

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat

Více

Spolupříjemce dotace: Masarykova Univerzita Brno

Spolupříjemce dotace: Masarykova Univerzita Brno Spolupříjemce dotace: Masarykova Univerzita Brno Fakulty Právnická Lékařská Přírodovědecká Filozofická Pedagogická Ekonomicko-správní Informatiky Sociálních studií Sportovních studií Ústavy Výpočetní techniky

Více

Všechny galaxie vysílají určité množství elektromagnetického záření. Některé vyzařují velké množství záření a nazývají se aktivní.

Všechny galaxie vysílají určité množství elektromagnetického záření. Některé vyzařují velké množství záření a nazývají se aktivní. VESMÍR Model velkého třesku předpovídá, že vesmír vznikl explozí před asi 15 miliardami let. To, co dnes pozorujeme, bylo na začátku koncentrováno ve velmi malém objemu, naplněném hmotou o vysoké hustotě

Více

Zdroje částic Supravodivé magnety Aplikace urychlovačů. Mgr. Jan Pipek jan.pipek@gmail.com 25.11.2010 Dostupné na http://fjfi.vzdusne.

Zdroje částic Supravodivé magnety Aplikace urychlovačů. Mgr. Jan Pipek jan.pipek@gmail.com 25.11.2010 Dostupné na http://fjfi.vzdusne. Zdroje částic Supravodivé magnety Aplikace urychlovačů Mgr. Jan Pipek jan.pipek@gmail.com 25.11.2010 Dostupné na http://fjfi.vzdusne.cz/urychlovace Zdroje částic Zdroje částic přehled Cílem je vytvořit

Více

VÝUKA FYZIKY NA FAKULTĚ ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VUT V BRNĚ. Pavel Koktavý

VÝUKA FYZIKY NA FAKULTĚ ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VUT V BRNĚ. Pavel Koktavý VÝUKA FYZIKY NA FAKULTĚ ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VUT V BRNĚ Pavel Koktavý Ústav fyziky Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně Představení FEKT

Více

MINISTERSTVO ŠKOLSTVÍ MLÁDEŽE A TĚLOVÝCHOVY

MINISTERSTVO ŠKOLSTVÍ MLÁDEŽE A TĚLOVÝCHOVY MINISTERSTVO ŠKOLSTVÍ MLÁDEŽE A TĚLOVÝCHOVY Schválilo Ministerstvo školství mládeže a tělovýchovy dne 15. července 2003, čj. 22 733/02-23 s platností od 1. září 2002 počínaje prvním ročníkem Učební osnova

Více

Tělesa sluneční soustavy

Tělesa sluneční soustavy Tělesa sluneční soustavy Měsíc dráha vzdálenost 356 407 tis. km (průměr 384400km); určena pomocí laseru/radaru e=0,0549, elipsa mění tvar gravitačním působením Slunce i=5,145 deg. měsíce siderický 27,321661

Více

Využití technologie Ink-jet printing pro přípravu mikro a nanostruktur II.

Využití technologie Ink-jet printing pro přípravu mikro a nanostruktur II. Ústav fyziky a měřicí techniky Vysoká škola chemicko-technologická v Praze Využití technologie Ink-jet printing pro přípravu mikro a nanostruktur II. Výrobci, specializované technologie a aplikace Obsah

Více

JADERNÁ ENERGIE. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 6. 2012. Ročník: devátý

JADERNÁ ENERGIE. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 6. 2012. Ročník: devátý Autor: Mgr. Stanislava Bubíková JADERNÁ ENERGIE Datum (období) tvorby: 25. 6. 2012 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Chemické reakce; chemie a společnost 1 Anotace: Žáci se

Více

Téma roku - PEDOLOGIE

Téma roku - PEDOLOGIE Téma roku - PEDOLOGIE Březen Kolik vody dokáže zadržet půda? Zadrží více vody půda písčitá nebo jílovitá? Jak lépe předpovědět povodně nebo velká sucha? Proveďte měření půdní vlhkosti v blízkosti vaší

Více