Předzpracování dat. Lenka Vysloužilová
|
|
- Eliška Dušková
- před 6 lety
- Počet zobrazení:
Transkript
1 Předzpracování dat Lenka Vysloužilová 1
2 Metodika CRISP-DM (
3 Příprava dat Data Preparation příprava dat pro modelování selekce příznaků výběr relevantních příznaků čištění dat získávání odvozených příznaků převod typů dat transformace dat do jedné velké tabulky formátování pro jednotlivé modelovací techniky nejpracnější část celého procesu často se provádí opakovaně
4 Transformace dat do jedné tabulky 1:1 prakticky pouze doplnění tabulky o nové atributy 1:N vytvoření agregovaných hodnot součet, min, max, průměr, regresní křivka majoritní hodnota, počet různých hodnot, výskyt konkrétní hodnoty do této skupiny patří časové řady M:N nutná volba úlohy, zda chceme 1:N nebo 1:M Propozicionalizace
5 Datová tabulka Sepallength Sepalwidth Petallength Petalwidth Class Filtrování a úprava instancí Iris-setosa Iris-setosa Iris-setosa Iris-versicolor Iris-versicolor Iris-versicolor Iris-virginica Iris-virginica Filtrování a úprava příznaků
6 ÚPRAVA INSTANCÍ
7 Náhrada chybějících hodnot nedělat nic, náhrada hodnotou nevím některým algoritmům chybějící hodnoty nevadí, např. rozhodovací stromy Not Available NA ignorovat celou instanci ideální pro data s minimem chybějících hodnot newdata <- na.omit(mydata) náhrada nejčetnější hodnotou průměrem, mediánem replace(x, is.na(x), median(x, na.rm=t)) nalezení nejbližšího souseda využití algoritmu pro modelování
8 Outliers Výrazně odlišné hodnoty atributu pro danou instanci Outlier pro jeden atribut nemusí být outlier i pro kombinaci atributů a naopak! Boxplot
9 Vzorkování dat obrovský počet instancí - pro algoritmy pracující v dávkovém režimu nutnost redukce počtu dat tvorba modelů na základě podmnožin a jejich následná kombinace rozdělení dat na trénovací a testovací část nevyvážená data např. třída A 95%, třída B 5% každý objekt patří do majoritní třídy různé ceny chybného rozhodnutí výběr dat pro různé třídy s různou pravděpodobností
10 ÚPRAVA PŘÍZNAKŮ
11 Které příznaky mají význam v DM? V případě prediktivních úloh musí jít především o příznaky, jejichž hodnota je známá v okamžiku, kdy chceme predikci provádět. Pozor na anachronické příznaky (anachronistic at.), tj. takové, že nesplňují výše uvedený požadavek. Příklad. Telefonní operátor a predikce těch, co přecházejí k jinému operátorovi. Mezi 500 použitými atributy se ukázal mít velkou prediktivní sílu atribut odpovídající jménu zaměstnance, který dělal s klientem poslední interview. Později se ukázalo, že jiný člověk měl na starosti klienty, kteří projevili zájem odejít.
12 Diskretizace dat Neinformované metody ekvidistantní intervaly ekvifrekvenční intervaly Informované metody využití znalosti o příslušnosti objekt -> třída strategie rozdělování nebo spojování intervalů
13 Diskretizace: Ekvidistantní intervaly Počet [64,67) [67,70) [70,73) [73,76) [76,79) [79,82) [82,85]
14 Diskretizace: Ekvidistantní intervaly Nevýhoda: metoda může vytvářet shluky dat Počet [0 200,000). Platy 1 [1,800,000 2,000,000]
15 Diskretizace: Ekvifrekvenční intervaly Počet [ ] [ ] [ ] [ ]
16 Diskretizace: v závislosti na třídě požadujeme minimálně 3 instance na interval Yes No Yes Yes No No No Yes Yes Yes No Yes Yes No A B C
17 Normalizace dat Převod numerických hodnot do intervalu <0,1> Numerické atributy a i vi min vi max v min v i v i : aktuální hodnota atributu I i nebo a i vi Avg( vi ) StDev ( v ) i
18 Odvozené atributy výpočet nového atributu ze stávajících BMI = váha(kg) / výška(m) 2 rodné číslo => věk a pohlaví agregační hodnoty
19 Redukce počtu příznaků Proč je výběr příznaků důležitý? Extrakce příznaků PCA principal component analysis Selekce příznaků Míru pro měření kvality vybrané podmnožiny příznaků Strategii prohledávání prostoru Metody výběru příznaků
20 Proč je výběr příznaků důležitý? Vztah mezi výběrem příznaků a strojovým učení (ML) nebo dobýváním znalostí? - Předpokládáme-li, že informace o cílové třídě je implicitně zahrnuta v hodnotách příznaků, pak - Můžeme učinit naivní závěr, že mít více příznaků - je výhodné, neboť tím získáváme => víc informací => větší rozlišovací schopnost. - Praktická zkušenost upozorňuje, že často tomu tak není! - Další doplňkový argument: Optimalizace je (obvykle) výhodná. Proč se tedy nepokusit o optimalizaci kódování vstupu?
21 Věta o PAC učení rozhodovacího stromu Nechť objekty jsou charakterizovány pomocí n binárních atributů a nechť připouštíme jen hypotézy ve tvaru rozhodovacího stromu s maximální délkou větve k. Dále nechť, jsou malá pevně zvolená kladná čísla blízká 0. Pokud algoritmus strojového učení vygeneruje hypotézu, která je konzistentní se všemi m příklady trénovací množiny a platí m m k-dt (n) c ( n k + ln (1/ )) / pak je -skoro správná hypotéza s pravděpodobností větší než (1- ), t.j. chyba hypotézy na celém definičním oboru konceptu je menší než s pravděpodobností větší než (1- ). PAC učení = Probably Approximately Correct Learning
22 Prokletí dimensionality Počet trénovacích příkladů m potřebných proto, aby byla vytvořena hypotéza o dostatečné přesnosti roste exponenciálně s počtem atributů! PAC: m > Počet_prvků (Prostor_hypotéz) V praktických úlohách bývá maximální počet trénovacích příkladů pevně dán! => výkon klasifikátoru (classifier performance) výrazně klesá s rostoucím počtem atributů (# of variables)! Velmi často lze docílit toho, že ztráta informace vzniklá vynecháním některých atributů je vyvážena daleko lepšími výsledky klasifikace v prostoru o nižší dimenzi!
23 2 cesty k redukci dimenze Extrakce příznaků (Feature Extraction) váha(kg) váha / výška Vytvoří nový příznak, který může skupinu jiných nahradit Např. váha/výška Výběr příznaků (Feature Selection) Vybere 1 nebo více příznaků, na které se sosutředí např. zachová p. váha (používá příslušný průmět) V tomto příkladě není klasifikace jednoznačná Weight (kg) výška(cm ) Height (cm) váha(kg)
24 Principal Component Analysis
25 Výběr podmnožin příznaků Potřebujeme: Míru pro měření kvality vybrané podmnožiny příznaků (hodnotící funkci) Strategii prohledávání prostoru všech možných podmnožin => Good heuristics are needed! Používané metody: Filtrační metody Wrappers Vnořené metody jsou zabudované do jednotlivých algoritmů strojového učení (např. uvnitř ID3) [9] E. Amaldi, V. Kann: The approximability of minimizing nonzero variables and unsatisfied relations in linear systems. (1997)
26 Vhodná hodnotící kritéria Pearsonův korelační koeficient R ( f, y) i cov( f, y) var( f ) var( y) i i Odhad pro m vzorků: R( f, y) i m m k 1 f k, i fi yk y m f fi y y k, i k k 1 k 1 2 2
27 Hodnotící kriterium korelace
28 Hodnotící kriterium korelace Může být skupina (alespoň 2) příznaků s nízkým hodnocením užitečná? ANO! Je nutné hledat další kriteria
29 Další hodnotící kriteria Korelace Chi-kvadrát test, entropie, informační míra závislosti vychází z kontingenční tabulky nevýhoda: posuzujeme každý atribut samostatně množiny atributů
30 Výběr podmnožin příznaků Potřebujeme: Míru pro měření kvality vybrané podmnožiny příznaků Strategii prohledávání prostoru všech možných podmnožin => Good heuristics are needed! Používané metody: Filtrační metody Vybírají podmnožinu příznaků obvykle v rámci předzpracování a nezávisle na tom, jaký bude použit klasifikátor!! Wrappers Wrapper prohledává prostor všech možných podmnožin příznaků a každou zvažovanou podmnožinu hodnotí tak, že její kvalitu otestuje na trénovacích datech s použitím nějakého učicího algoritmu Vnořené metody jsou zabudované do jednotlivých algoritmů strojového učení (např. uvnitř ID3)
31 Závěrečné poznámky Vhodný výběr příznaků může významně zlepšit výkon při řešení problému strojového učení (přesnost i počítačová náročnost) ale jedná se o náročnou úlohu! Je to cesta k řešení problémů s velmi mnoha atributy Pozor na vztah mezi relevancí a optimalitou (nelze automaticky ignorovat všechny příznaky s malým hodnocením mohou mít význam v kombinaci!). Prostor pro vylepšení? Nový způsob prohledávání prostoru podmnožin příznaků Odhad kvality aktuální množiny příznaků Malé množiny příznaků lze najít i při použití metody boosting (kombinace klasifikátorů) pro klasifikátory s jediným příznakem!
Extrakce a selekce příznaků
Extrakce a selekce příznaků Based on slides Martina Bachlera martin.bachler@igi.tugraz.at, Makoto Miwa And paper Isabelle Guyon, André Elisseeff: An Introduction to variable and feature selection. JMLR,
Získávání znalostí z dat
Získávání znalostí z dat Informační a komunikační technologie ve zdravotnictví Získávání znalostí z dat Definice: proces netriviálního získávání implicitní, dříve neznámé a potencionálně užitečné informace
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
Pravděpodobně skoro správné. PAC učení 1
Pravděpodobně skoro správné (PAC) učení PAC učení 1 Výpočetní teorie strojového učení Věta o ošklivém kačátku. Nechť E je klasifikovaná trénovací množina pro koncept K, který tvoří podmnožinu konečného
Přednáška 13 Redukce dimenzionality
Vytěžování Dat Přednáška 13 Redukce dimenzionality Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ČVUT (FEL) Redukce dimenzionality 1 /
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
Obsah přednášky Jaká asi bude chyba modelu na nových datech?
Obsah přednášky Jaká asi bude chyba modelu na nových datech? Chyba modelu Bootstrap Cross Validation Vapnik-Chervonenkisova dimenze 2 Chyba skutečná a trénovací Máme 30 záznamů, rozhodli jsme se na jejich
Miroslav Čepek. Fakulta Elektrotechnická, ČVUT. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování Dat Přednáška 12 Kombinování modelů Miroslav Čepek Pavel Kordík a Jan Černý (FIT) Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ČVUT (FEL)
Vytěžování znalostí z dat
Pavel Kordík, Josef Borkovec (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 3 1/29 Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec Department of Computer Systems Faculty of Information
Výpočetní teorie strojového učení a pravděpodobně skoro správné (PAC) učení. PAC učení 1
Výpočetní teorie strojového učení a pravděpodobně skoro správné (PAC) učení PAC učení 1 Cíl induktivního strojového učení Na základě omezeného vzorku příkladů E + a E -, charakterizovat (popsat) zamýšlenou
Předzpracování dat. Pavel Kordík. Department of Computer Systems Faculty of Information Technology Czech Technical University in Prague
Předzpracování dat Pavel Kordík Department of Computer Systems Faculty of Information Technology Czech Technical University in Prague Cvičení 1: Visualizace MI-PDD, 09/2011 MI-POA Evropský sociální fond
Dobývání a vizualizace znalostí
Dobývání a vizualizace znalostí Olga Štěpánková, Lenka Vysloužilová, et al. https://cw.fel.cvut.cz/wiki/courses/a6m33dvz/start 1 Osnova přednášky Úvod: data, objem, reprezentace a základní terminologie
Dobývání a vizualizace znalostí. Olga Štěpánková et al.
Dobývání a vizualizace znalostí Olga Štěpánková et al. 1 Osnova předmětu Dobývání znalostí - popis a metodika procesu CRISP a objasnění základních pojmů Nástroje pro modelování klasifikovaných dat a jejich
Vytěžování znalostí z dat
Pavel Kordík, Jan Motl (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 7 1/27 Vytěžování znalostí z dat Pavel Kordík, Jan Motl Department of Computer Systems Faculty of Information Technology
Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma
Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky
Dobývání a vizualizace znalostí
Dobývání a vizualizace znalostí Olga Štěpánková et al. 1 Osnova předmětu 1. Dobývání znalostí - popis a metodika procesu a objasnění základních pojmů 2. Nástroje pro modelování klasifikovaných dat a jejich
Získávání dat z databází 1 DMINA 2010
Získávání dat z databází 1 DMINA 2010 Získávání dat z databází Motto Kde je moudrost? Ztracena ve znalostech. Kde jsou znalosti? Ztraceny v informacích. Kde jsou informace? Ztraceny v datech. Kde jsou
AVDAT Mnohorozměrné metody, metody klasifikace
AVDAT Mnohorozměrné metody, metody klasifikace Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Mnohorozměrné metody Regrese jedna náhodná veličina je vysvětlována pomocí jiných
Vytěžování znalostí z dat
Vytěžování znalostí z dat Department of Computer Systems Faculty of Information Technology Czech Technical University in Prague Přednáška 5: Hodnocení kvality modelu BI-VZD, 09/2011 MI-POA Evropský sociální
odlehlých hodnot pomocí algoritmu k-means
Chybějící a odlehlé hodnoty; odstranění odlehlých hodnot pomocí algoritmu k-means Návod ke druhému cvičení Matěj Holec, holecmat@fel.cvut.cz ZS 2011/2012 Úvod Cílem cvičení je připomenout důležitost předzpracování
Asociační i jiná. Pravidla. (Ch )
Asociační i jiná Pravidla (Ch. 14 +...) Učení bez učitele Nemáme cílovou třídu Y, G; máme N pozorování což jsou p-dimenzionální vektory se sdruženou pravděpodobností chceme odvozovat vlastnosti. Pro málo
Dobývání a vizualizace znalostí
Dobývání a vizualizace znalostí Olga Štěpánková et al. 1 Osnova předmětu 1. Dobývání znalostí - popis a metodika procesu a objasnění základních pojmů 2. Nástroje pro modelování klasifikovaných dat a jejich
Úvod do dobývání. znalostí z databází
POROZUMĚNÍ 4iz260 Úvod do DZD Úvod do dobývání DOMÉNOVÉ OBLASTI znalostí z databází VYUŽITÍ VÝSLEDKŮ POROZUMĚNÍ DATŮM DATA VYHODNO- CENÍ VÝSLEDKŮ MODELOVÁNÍ (ANALYTICKÉ PROCEDURY) PŘÍPRAVA DAT Ukázka slidů
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Bayesovské modely Doc. RNDr. Iveta Mrázová, CSc.
Pokročilé neparametrické metody. Klára Kubošová
Pokročilé neparametrické metody Klára Kubošová Pokročilé neparametrické metody Výuka 13 přednášek doplněných o praktické cvičení v SW Úvod do neparametrických metod + princip rozhodovacích stromů Klasifikační
Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence
APLIKACE UMĚLÉ INTELIGENCE Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence Aplikace umělé inteligence - seminář ING. PETR HÁJEK, PH.D. ÚSTAV SYSTÉMOVÉHO INŽENÝRSTVÍ A INFORMATIKY
Selekce a extrakce příznaků 2
Selekce a extrakce příznaků. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics Selekce a extrakce příznaků Proč?..............................................................................................................
DATA MINING KLASIFIKACE DMINA LS 2009/2010
DATA MINING KLASIFIKACE DMINA LS 2009/2010 Osnova co je to klasifikace typy klasifikátoru typy výstupu jednoduchý klasifikátor (1R) rozhodovací stromy Klasifikace (ohodnocení) zařazuje data do předdefinovaných
METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1
METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 DOLOVÁNÍ V DATECH (DATA MINING) OBJEVUJE SE JIŽ OD 60. LET 20. ST. S ROZVOJEM POČÍTAČOVÉ TECHNIKY DEFINICE PROCES VÝBĚRU, PROHLEDÁVÁNÍ A MODELOVÁNÍ
Moderní systémy pro získávání znalostí z informací a dat
Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:
Výpočetní teorie učení. PAC učení. VC dimenze.
Výpočetní teorie učení. PAC učení. VC dimenze. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics COLT 2 Koncept...........................................................................................................
Automatické vyhledávání informace a znalosti v elektronických textových datech
Automatické vyhledávání informace a znalosti v elektronických textových datech Jan Žižka Ústav informatiky & SoNet RC PEF, Mendelova universita Brno (Text Mining) Data, informace, znalost Elektronická
Chybějící atributy a postupy pro jejich náhradu
Chybějící atributy a postupy pro jejich náhradu Jedná se o součást čištění dat Čistota dat je velmi důležitá, neboť kvalita dat zásadně ovlivňuje kvalitu výsledků, které DM vyprodukuje, neboť platí Garbage
Strukturální regresní modely. určitý nadhled nad rozličnými typy modelů
Strukturální regresní modely určitý nadhled nad rozličnými typy modelů Jde zlepšit odhad k-nn? Odhad k-nn konverguje pro slušné k očekávané hodnotě. ALE POMALU! Jiné přístupy přidají předpoklad o funkci
Obr. 1: Vizualizace dat pacientů, kontrolních subjektů a testovacího subjektu.
Řešení příkladu - klasifikace testovacího subjektu pomocí Bayesova klasifikátoru: ata si vizualizujeme (Obr. ). Objem mozkových komor 9 8 7 6 5 pacienti kontroly testovací subjekt 5 6 Objem hipokampu Obr.
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Rozhodovací stromy Doc. RNDr. Iveta Mrázová, CSc.
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat
Zkouška ISR 2013 přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat 1. Rozdílné principy u induktivního a deduktivního
Analýza dat pomocí systému Weka, Rapid miner a Enterprise miner
Vysoká škola ekonomická v Praze Analýza dat pomocí systému Weka, Rapid miner a Enterprise miner Dobývání znalostí z databází 4IZ450 XXXXXXXXXXX Přidělená data a jejich popis Data určená pro zpracování
Strojové učení Marta Vomlelová
Strojové učení Marta Vomlelová marta@ktiml.mff.cuni.cz KTIML, S303 Literatura 1.T. Hastie, R. Tishirani, and J. Friedman. The Elements of Statistical Learning, Data Mining, Inference and Prediction. Springer
ANALÝZA A KLASIFIKACE DAT
ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz LITERATURA Holčík, J.: přednáškové prezentace Holčík, J.: Analýza a klasifikace signálů.
Úvodem Dříve les než stromy 3 Operace s maticemi
Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová
Klasifikace a rozpoznávání
Klasifikace a rozpoznávání Prezentace přednášek Ústav počítačové grafiky a multimédií Téma přednášky Boosting Michal Hradiš UPGM FIT Brno University of Technology Obsah: Co je to boosting? Algoritmus AdaBoost
Státnice odborné č. 20
Státnice odborné č. 20 Shlukování dat Shlukování dat. Metoda k-středů, hierarchické (aglomerativní) shlukování, Kohonenova mapa SOM Shlukování dat Shluková analýza je snaha o seskupení objektů do skupin
Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) 9. ledna 2017
Vytěžování dat Filip Železný Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) 9. ledna 2017 Rozhodovací pravidla Strom lze převést na seznam pravidel ve tvaru if podmínky then třída if teplota=horečka
Modely a sémantika. Petr Šaloun VŠB-Technická univerzita Ostrava FEI, katedra informatiky
Modely a sémantika Petr Šaloun VŠB-Technická univerzita Ostrava FEI, katedra informatiky Úvod Existující problémy Prudký nárůst množství informací na webu Kognitivní přetížení Ztráta v informačním prostoru
Vícerozměrné metody. PSY117/454 Statistická analýza dat v psychologii Přednáška 12. Schematický úvod
PSY117/454 Statistická analýza dat v psychologii Přednáška 12 Vícerozměrné metody Schematický úvod Co je na slově statistika tak divného, že jeho vyslovení tak často způsobuje napjaté ticho? William Kruskal
INDUKTIVNÍ STATISTIKA
10. SEMINÁŘ INDUKTIVNÍ STATISTIKA 3. HODNOCENÍ ZÁVISLOSTÍ HODNOCENÍ ZÁVISLOSTÍ KVALITATIVNÍ VELIČINY - Vychází se z kombinační (kontingenční) tabulky, která je výsledkem třídění druhého stupně KVANTITATIVNÍ
ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM POJETÍ
ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM POJETÍ INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz 5. LETNÍ ŠKOLA MATEMATICKÉ BIOLOGIE ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM
DOBÝVÁNÍ ZNALOSTÍ Z DATABÁZÍ
DOBÝVÁNÍ ZNALOSTÍ Z DATABÁZÍ Úvod a oblasti aplikací Martin Plchút plchut@e-globals.net DEFINICE A POJMY Netriviální extrakce implicitních, ch, dříve d neznámých a potenciáln lně užitečných informací z
Kybernetika a umělá inteligence, cvičení 10/11
Kybernetika a umělá inteligence, cvičení 10/11 Program 1. seminární cvičení: základní typy klasifikátorů a jejich princip 2. počítačové cvičení: procvičení na problému rozpoznávání číslic... body za aktivitu
Segmentace bankovních zákazníků algoritmem k- means
Segmentace bankovních zákazníků algoritmem k- means LS 2014/2015 Michal Heřmanský xherm22 Obsah 1 Úvod... 3 1.1 CRISP- DM... 3 2 Porozumění problematice a datům... 4 3 Příprava dat... 5 4 Modelování...
Rozhodovací stromy. Úloha klasifikace objektů do tříd. Top down induction of decision trees (TDIDT) - metoda divide and conquer (rozděl a panuj)
Rozhodovací stromy Úloha klasifikace objektů do tříd. Top dow iductio of decisio trees (TDIDT) - metoda divide ad coquer (rozděl a pauj) metoda specializace v prostoru hypotéz stromů (postup shora dolů,
Statistická teorie učení
Statistická teorie učení Petr Havel Marek Myslivec přednáška z 9. týdne 1 Úvod Představme si situaci výrobce a zákazníka, který si u výrobce objednal algoritmus rozpoznávání. Zákazník dodal experimentální
Učící se klasifikátory obrazu v průmyslu
Učící se klasifikátory obrazu v průmyslu FCC průmyslové systémy s.r.o. FCC průmyslové systémy je technicko obchodní společností, působící v oblasti průmyslové automatizace. Tvoří ji dvě základní divize:
Obsah. Kapitola 1. Kapitola 2. Kapitola 3. Úvod 9
Obsah Úvod 9 Kapitola 1 Business Intelligence, datové sklady 11 Přechod od transakčních databází k analytickým..................... 13 Kvalita údajů pro analýzy................................................
x T 1 matici 45.53 25.22 57.81 12.39 11.88 36.09 22.15 7.52 &0.31 20.94 27.97 48.06 1.41 16.77 66.21 S 1 kovarianční matici 74.42 &9.52 37.
Vzorová úloha 4.7 Užití lineární diskriminační funkce Předpokládejme, že máme data o 2 třídách objektů tibetských lebek v úloze B4.14 Aglomerativní hierarchické shlukování při analýze lebek Tibeťanů: prvních
UČENÍ BEZ UČITELE. Václav Hlaváč
UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení
Obsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou
Úvod.................................................................. 11 Kapitola 1 Než začneme.................................................................. 17 1.1 Logika kvantitativního výzkumu...........................................
Rozdělování dat do trénovacích a testovacích množin
Rozdělování dat do trénovacích a testovacích množin Marcel Jiřina Rozpoznávání je důležitou metodou při zpracování reálných úloh. Rozpoznávání je definováno dvěma kroky a to pořízením dat o reálném rozpoznávaném
DSS a De Novo programming
De Novo Programming DSS a De Novo programming DSS navrhují žádoucí budoucnost a cesty k jejímu uskutečnění Optimalizační modely vhodné nástroje pro identifikaci optimálního řešení problému Je ale problém
Neuronové časové řady (ANN-TS)
Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci
Příprava dat a) Kontrola dat
Příprava dat a) Kontrola dat 2 Sběr data? Příprava dat Předpoklady o datech Software obsahuje nástroje pro: Detekci chybějících dat a dat mimo stanovených rozsah Detekci odlehlých a extrémních hodnot Překodování
Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group
Vytěžování dat Miroslav Čepek, Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme
Kapacita jako náhodná veličina a její měření. Ing. Igor Mikolášek, Ing. Martin Bambušek Centrum dopravního výzkumu, v. v. i.
Kapacita jako náhodná veličina a její měření Ing. Igor Mikolášek, Ing. Martin Bambušek Centrum dopravního výzkumu, v. v. i. Obsah Kapacita pozemních komunikací Funkce přežití Kaplan-Meier a parametrické
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Intervalová data a výpočet některých statistik
Intervalová data a výpočet některých statistik Milan Hladík 1 Michal Černý 2 1 Katedra aplikované matematiky Matematicko-fyzikální fakulta Univerzita Karlova 2 Katedra ekonometrie Fakulta informatiky a
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan
1 Úvod 1.1 Empirický výzkum a jeho etapy 1.2 Význam teorie pro výzkum 1.2.1 Konstrukty a jejich operacionalizace 1.2.2 Role teorie ve výzkumu 1.2.3 Proces ověření hypotéz a teorií 1.3 Etika vědecké práce
UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů)
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů) Autor: Vladimir Vapnik Vapnik, V. The Nature of Statistical Learning Theory.
MODERNÍ METODY SEGMENTACE ZÁKAZNÍKŮ Ing. Miloš Uldrich ZÁKAZNICKÁ LOAJALITA A AKVIZICE VE FINANČNÍCH SLUŽBÁCH. StatSoft CR
Váš pomocník pro analýzu dat MODERNÍ METODY SEGMENTACE ZÁKAZNÍKŮ Ing. Miloš Uldrich StatSoft CR StatSoft StatSoft CR Dodavatel komplexních analytických řešení Výhradní dodavatel softwaru STATISTICA pro
Optimální rozdělující nadplocha 4. Support vector machine. Adaboost.
Optimální rozdělující nadplocha. Support vector machine. Adaboost. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics Opakování Lineární diskriminační
O kurzu MSTU Témata probíraná v MSTU
O kurzu MSTU Témata probíraná v MSTU 1.: Úvod do STU. Základní dělení, paradigmata. 2.: Základy statistiky. Charakteristiky, rozložení, testy. 3.: Modely: rozhodovací stromy. 4.: Modely: učení založené
Vytěžování znalostí z dat
Pavel Kordík, Jan Motl (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 1 1/32 Vytěžování znalostí z dat Pavel Kordík, Jan Motl Department of Computer Systems Faculty of Information Technology
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Cvičení 12: Binární logistická regrese
Cvičení 12: Binární logistická regrese Příklad: V roce 2014 konalo státní závěrečné zkoušky bakalářského studia na jisté fakultě 167 studentů. U každého studenta bylo zaznamenáno jeho pohlaví (0 žena,
Rozhodovací stromy a jejich konstrukce z dat
Příklad počítačová hra. Můžeme počítač naučit rozlišovat přátelské a přátelské roboty? Rozhodovací stromy a jejich konstruk z dat Učení s učitelem: u některých už víme, jakou mají povahu (klasifika) Neparametrická
Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení
Aplikace 2: Hledání informativních příznaků pro rozpoznávání
Aplikace : Hledání informativních příznaků pro rozpoznávání Sonogram štítné žlázy v podélném řezu zdravá lymfocitická thyroitida Zajímá nás, kolik se lze z dat dozvědět o třídě c a kde ta informace je.
Kombinování klasifikátorů Ensamble based systems
Kombinování klasifikátorů Ensamble based systems Rozhodování z více hledisek V běžném životě se často snažíme získat názor více expertů, než přijmeme závažné rozhodnutí: Před operací se radíme s více lékaři
Předzpracování dat pro data mining: metody a nástroje
Předzpracování dat pro data mining: metody a nástroje Olga Štěpánková, Zdeněk Kouba, P. Mikšovský, P. Aubrecht Gerstnerova laboratoř pro inteligentní rozhodování a řízení České vysoké učení technické v
Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy
Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy Relativní riziko a poměr šancí Princip korelace dvou náhodných veličin Korelační koeficienty Pearsonůva Spearmanův Korelace a kauzalita
Integrace. Numerické metody 7. května FJFI ČVUT v Praze
Integrace Numerické metody 7. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod 1D Kvadraturní vzorce Gaussovy kvadratury Více dimenzí Programy 1 Úvod Úvod - Úloha Máme funkci f( x) a snažíme se najít určitý integrál
Trénování sítě pomocí učení s učitelem
Trénování sítě pomocí učení s učitelem! předpokládá se, že máme k dispozici trénovací množinu, tj. množinu P dvojic [vstup x p, požadovaný výstup u p ]! chceme nastavit váhy a prahy sítě tak, aby výstup
Dolování z textu. Martin Vítek
Dolování z textu Martin Vítek Proč dolovat z textu Obrovské množství materiálu v nestrukturované textové podobě knihy časopisy vědeckéčlánky sborníky konferencí internetové diskuse Proč dolovat z textu
Získávání znalostí z databází. Alois Kužela
Získávání znalostí z databází Alois Kužela Obsah související pojmy datové sklady, získávání znalostí asocianí pravidla 2/37 Úvod získávání znalostí z dat, dolování (z) dat, data mining proces netriviálního
ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM POJETÍ
ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM POJETÍ INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz 5. LETNÍ ŠKOLA MATEMATICKÉ BIOLOGIE ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM
Měření závislosti statistických dat
5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě
Statistická analýza dat
Statistická analýza dat Jméno: Podpis: Cvičení Zkouška (písemná + ústní) 25 Celkem 50 Známka Pokyny k vypracování: doba řešení je 120min, jasně zodpovězte pokud možno všechny otázky ze zadání, pracujte
Univerzita Pardubice Fakulta ekonomicko-správní. Využití soft computingu pro redukci atributů v informačním systému. Bc.
Univerzita Pardubice Fakulta ekonomicko-správní Využití soft computingu pro redukci atributů v informačním systému Bc. Ladislav Svoboda Diplomová práce 2012 Prohlášení Prohlašuji: Tuto práci jsem vypracoval
Zadání semestrální práce IKTZ 2 letní semestr 2009/2010
Zadání semestrální práce IKTZ 2 letní semestr 2009/2010 Obecné zadání Dle zadání zpracujte data ze studie STULONG (soubory Entry a Contr). Práce je rozdělena do tří částí, které se řeší odděleně. Výstupem
Změkčování hranic v klasifikačních stromech
Změkčování hranic v klasifikačních stromech Jakub Dvořák Seminář strojového učení a modelování 24.5.2012 Obsah Klasifikační stromy Změkčování hran Ranking, ROC křivka a AUC Metody změkčování Experiment
Kalkulace závažnosti komorbidit a komplikací pro CZ-DRG
Kalkulace závažnosti komorbidit a komplikací pro CZ-DRG Michal Uher a analytický tým projektu DRG Restart Ústav zdravotnických informací a statistiky ČR, Praha Institut biostatistiky a analýzy, Lékařská
Analytické procedury v systému LISp-Miner
Dobývání znalostí z databází MI-KDD ZS 2011 Přednáška 8 Analytické procedury v systému LISp-Miner Část II. (c) 2011 Ing. M. Šimůnek, Ph.D. KIZI, Fakulta informatiky a statistiky, VŠE Praha Evropský sociální
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Úloha - rozpoznávání číslic
Úloha - rozpoznávání číslic Vojtěch Franc, Tomáš Pajdla a Tomáš Svoboda http://cmp.felk.cvut.cz 27. listopadu 26 Abstrakt Podpůrný text pro cvičení předmětu X33KUI. Vysvětluje tři způsoby rozpoznávání
Příprava dat v softwaru Statistica
Příprava dat v softwaru Statistica Software Statistica obsahuje pokročilé nástroje pro přípravu dat a tvorbu nových proměnných. Tyto funkcionality přinášejí značnou úsporu času při přípravě datového souboru,
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).