11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ"

Transkript

1 11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti: 1. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů.. Porozumět zavedení kartézské soustavy souřadnic na přímce, v rovině, v prostoru. Ovládat vzájemné přiřazování bodů a jejich souřadnic v rovině a v prostoru.umět určit souřadnice vektoru ze souřadnic bodů jeho umístění. Umět sčítat, odčítat a násobit reálným číslem vektory určené souřadnicemi. Umět určit velikost vektoru a vzdálenost dvou bodů, souřadnice středu úsečky a těžiště trojúhelníku, rozhodnout o kolineárnosti bodů, rovnoběžnosti vektorů a lineární závislosti vektorů, jsou-li dány příslušné souřadnice. 3. Umět určit skalární součin dvou nenulových vektorů geometricky. v u. v.cosα u. v = u v + u v + u v. Umět ho aplikovat při [ ] u = i algebraicky [ ( )] určování velikosti úhlu dvou vektorů, odchylky dvou přímek a při rozhodování o jejich případné kolmosti Znát geometrický význam definice vektorového součinu; umět určit jeho souřadnice. Umět určit obsah trojúhelníku a normálový vektor roviny\ pomocí vektorového součinu. 5. Pomocí směrových vektorů přímek a normálových vektorů rovin umět určit odchylku přímky a roviny a odchylku dvou rovin. 3 3 Úlohy: Vektorová algebra 1. Na ose y určete bod A tak, aby měl od bodu B[-6;-5 ] vzdálenost d = 10. A 1 [0;3], A [0;-13]. V rovině jsou dány body K[`3], L[1`-4], M[-1`-3]. Dokažte, že trojúhelník KLM je pravoúhlý. Vypočtěte jeho obsah. [ ano, je pravoúhlý, S = 7,5] 1

2 3. Určete vektor u tak, aby měl velikost 10 a přitom byl kolmý k danému vektoru v =(-1;). 4 5; 5 nebo u = 4 5; 5 ] [u = ( ) ( ) 4. Je dán trojúhelník ABC o vrcholech A[1;0], B[1;-6], C[5;-3]. Vypočtěte délku těžnice t a. Vypočtěte velikost úhlu β. [ t a = 4,94; β = 53 8 ] 5. Zjistěte, zda body A[3;7], B[10;-], C[5;1] leží na jedné přímce. [ne] 6. Jsou dány vektory a = (3;5), b = (6;). Najděte vektor c kolmý k vektoru b, pro který platí 1 a.c = 4. [c = ; 1 ] 3 Analytická geometrie 1. a) Zapište parametrické vyjádření přímky a, která prochází body A [0;-5] B [3;-3 ] [ a: x = 3 t y = -5 + t ; t R ] b) Zapište parametrické vyjádření přímky b, která je dána bodem B [3; -7 ] a směrovým vektorem B b ( - ; 5 ) [ b: x = 3 t y = t ; t R ]. Zjistěte, zda body M [-4; 7 ] A [11 ;8 ] leží na přímce AB ;A [;5] B [ -1; 6 ] [ M AB, N AB ] 3. Určete.souřadnici bodu C tak, aby ležel na přímce AB, A[ 3; -1], B[ 1; 3], jestliže a) C [ 1; y ] [ y = 3 ] b) C [,5; y ] [ y = 0 ] 4. Jsou dány body A[ ; -3] B [-1; - ].Napište: a) parametrické vyjádření úsečky AB [ AB: x = -3t y = -3+ t; t 0;1 ] b) parametrické vyjádření polopřímky AB [ α AB; x = -3 t y = -3+ t; t 0; )] c) par,vyjádření polopřímky opačné k α AB [opačná k AB: x = -3 t y = -3+ t; t (- ; 0 ]

3 d) par.vyjádření polopřímky BA [ α BA: x = -1+3 t y = -- t; t 0; ) ] 5. Jsou dány body A [-5; -6 ], B [11;], C [3; 4 ]. a) Napište par.vyjádření přímky AC, b) napište par.vyjádření těžnice t a ABC, c) napište par.vyjádření výšky v c ABC (přímky,na které leží výška v c ). [ AC: x = -5+8 t y = t; t R ] [ t a : x = -5+1 s y = -6+9 s; s 0; 1 ] [ v c : x = 3-8 r y = 4+16 r; r R ] 6. Napište parametrické vyjádření osy úsečky KL, K[+3; -3]; L[-1; -] [ o: x = 1+ t y = -,5 + 4 t; t R ] 7. a) Napište parametrické vyjádření přímky m, která prochází bodem M[; -1,3] a je rovnoběžná s přímkou q, danou bodem Q [-3; 0 ] a bodem R [ 3; -4 ]. [m: x = +6 t y = -1,3-4 t ] b) Napište par.vyjádření přímky k, která je kolmá na přímku m z předchozí úlohy a prochází bodem K [-; 0 ] [ k: x = -+4 t y = 6 t; t R ] 8. Napište obecnou rovnici přímky, která je určena a) bodem A [-3; ] a normálovým vektorem n ρ ( ; 1 ) b) bodem A [ 3;-1 ] a směrovým vektorem s ρ (3; - ) c) body A [; 1 ], B [-; 4 ] d) parametrickým vyjádřením:x = - t y = -3 + t; t R e) směrnicovým tvarem rovnice: y = -5x + 3 [ x + y + 4 = 0 ] [ x + 3y 7 = 0] [ x + y = 0 ] [ x + y 1 = 0 ] [ 5x + y 3 = 0 ] 3

4 9. Je dán ABC: A [6; ] B [-; 4] C [-; 0]. Určete obecné rovnice přímek,které obsahují: a) stranu AB [c: x + 4y 14 = 0 ] b) těžnici t a [t a : y = 0 ] c) těžnici t b [t b : 3x + 4y 10 = 0 ] 10. K dané přímce napište obecnou rovnici přímky r, která je rovnoběžná s přímkou p a prochází bodem A a) p: 3x y + 1 = 0; A [3;-1 ] [ r : 3x y 10 = 0 ] b) p: x = 1 + t y = t t R; A [3; 4 ] [ r : x + y 11 = 0 ] 11. Napište obecnou rovnici tečny kružnice v době dotyku T [6; ], jestliže střed je S[3;-4] [ t: x + y 10 = 0 ] 1. Určete vzájemnou polohu přímek A jsou-li různoběžné, určete souřadnice jejich průsečíku : a) a: x y + 3 = 0 b: x + y 6 = 0 různoběžné, P [1; 5 ] b) a: x 3y 1 = 0 b: -x + 6y + 5 = 0 rovnoběžné, a b c) a: 3x y + 1 = 0 b: x = -1 - t y = 4 + t, t R různoběžné, P [1; ] d) a: x + y 5 = 0 b: x = 1 t y = + t, t R a = b e) a: x = -1 t b: x = 3 s y = 3, t R y = + s, s R různoběžné, P [1; 3 ] 13. Sestavte rovnici přímky m (obecnou rovnici), která prochází bodem A [;-3 ] a průsečíkem přímek a: x + 7y 8 = 0 b: x + y 1 = 0 [m: x + y +1 = 0 ] 14. Průsečíkem přímek k, l veďte přímku p tak, aby byla rovnoběžná s přímkou r : k: x 3y 9 = 0 l: 4x y + 8 = 0 r: x + 3y 18 = 0 Zapište obecnou rovnici přímky p. [p: 15. Určete odchylku přímek p, q : a) p: x y + 1 = 0 q: 3x + y 1 = 0 [ α = 45 ] b) p: x y + 1 = 0 q: y = ⅔x + [ α = ] c) p: x y + 13 = 0 q = AB: A [0; -1], B [4; 1] [α = 0 ] d) p: x = 1 3t q: x = 3 s y = + t, t R y = 1 3s, s R [α = 90 ] 4

5 16. Mezi všemi přímkami 5x + 1y + c = 0 najděte tu, jejíž vzdálenost od počátku soustavy souřadnic je 3. [ řešení: p 1 : 5x + 1y + 39 = 0 p : 5x + 1y - 39 = 0 ] 17. Určete vzdálenost bodu M od přímky p, je-li : a) M [; -1] p: 3x + 4y 1 = 0 [ d = ] b) M [-4; -3] p = AB, A [1; 1] 6 5 B [; 3] [ d = ] 5 c) M [; 4 ] p: x = 6 + 3t y = -8 4t; t R [ d = 4] 18. Určete směrnici přímky p: x + 3y 5 = 0 [ k = - 3 ] 19. Určete směrnici přímky AB: A [1; 3 ] B [-; 1 ] [ k = 3 ] 0. a) Napište směrnicový tvar rovnice přímky a, která prochází bodem A [4; 3 ] a je kolmá k přímce p: y = x + 1 [ a: y = - 1 x + 5 ] b) Napište směrnicový tvar rovnice přímky b, která prochází bodem B [-1; 6 ] a je rovnoběžná s přímkou p: y = 3x + 5 [ b: y = 3x + 9 ] 1. Určete vzájemnou polohu přímek, jsou-li různoběžné, vypočtěte odchylku : a) p: 3x y + 6 = 0 q: x = + t y = 1 t t R [ α = 63 6 ] b) p: x y + 3 = 0 q: x + y 6 = 0 [ α = ] c) p: x + y = 0 q : x + y 4 = 0 [ p = q] d) p: x = -1 t q : 3x y + 1 = 0 [ α = ] y = 4 + t t R e) p: x = 1 t q: x = 3 s y = 3 + t t R y = s s R [ rovnoběžné ] f) p: x = -1 t q: x = 3 s s R [ α = 6 34 ] 5

6 . Určete vzájemnou polohu přímek, jsou-li rovnoběžné. Vypočtěte jejich vzdálenost : a) a: x = 3 t b: x 6y + 5 = 0 y = 1 t t R [ v = 0,474 j ] b) a: x = 1 t b: x = -1 - s y = + t t R y = 4 + s s R [ a = b ] c) a: x + y 7 = 0 b: x = 3 s y = s s R [ v = 1,79 j ] d) a: y = - x + 5 b : y = - x 1 [ v =,68 j ] e) a: x + y + 6 = 0 b : x + y 4 = 0 [ v = 5 j ] f) a: x = + 3 t b: y = 3 4 x [ v = 0,8 j ] 3. Určete na ose y bod Y, který má od přímky p : y = -x + 4 vzdálenost 5. [ Y 1 [0; -6] ; Y [0; 14 ] 4. Na přímce p : x + 3y = 0 určete bod M tak, aby jeho vzdálenost od přímky q : 5x + 1y 4 = 0 byla 3. [ M 1 [ 35;-11 ] ; M [ -43; 15 ] ] 5. Určete hodnotu parametru c R tak, aby vzdálenost počátku soustavy souřadnic od přímky p : x y + c = 0 byla 4. [ c = ± 4 5 ] 1 6. Vypočtěte délky výšek v ABC : a) A [ 5; ] B [ 1; 5 ] [ v a = v c = 5 j; v b = 5 j ] 7. Vypočtěte odchylku přímky p : 8 x 15y + 10 = 0 od osy x. [ α = 8 04 ] 8. Je dán ABC, A [ -1; 4 ], B [ ; - ], C [ 5; -1 ]. Vypočítejte odchylku osy úsečky AB od souřadnicové osy x. [ α = 6 34 ] 9. Průsečíkem přímek p: 3x + y = 0, q: x y 6 = 0 veďte rovnoběžku s přímkou r: x y + 4 = 0. Určete její obecnou rovnici. [ x y 8 =0 ] 6

7 30. Určete hodnotu parametru m R tak, aby přímka mx + y + m 11 = 0 procházela průsečíkem přímek p: x + y + 6 = 0, q: x y + 8 = 0. [ m = -3 ] 31. Jsou dány body A[ ; 3; -1 ], B[ 4; 3; - ]. a) Rozhodněte, zda body K[0; 4; ; ] a L[ 3 ; 3; - 3 ] leží na přímce AB. b) Určete r,s R tak, aby bod M [r; r; s ] ležel na přímce AB. 3 3 [a)k AB, L AB, b) M[ ;3; ] 4 3. Zapište parametrické vyjádření a) přímky p, která je určena bodem A [5;-8;]a vektorem u ρ ( 4;3; 1). b) přímky q, která prochází bodem A[9;-3;1] a je rovnoběžná s přímkou BC, B[-4;-7;6] a C[;-5;3]. c) přímky a procházející body K[-1;;-5] a L[3;-;-4]. d) přímky m, která je rovnoběžná s přímkou p = {[t;1-3t;4+5t]; t R } a prochází bodem M[-3;0;]. [a) p: x = 5 + 4t, y = t, z = t; t R b) q: x = 9 + 6t, y = -3 + t, z = 1 3t; t R c) a: x = t, y = 4t, z = -5 + t; t R d) m: x = -3 + t, y = -3t, z = + 5t, t R] 33. Rozhodněte, jakou vzájemnou polohu mají přímky p,q: a) p = {[8-4t; 4 + 8t; -1t],t R }, q = {[3 + 3s; 1-6s; - + 9s ],s R } b) p = {[3 - t; - + t; 3t],t R }, q = {[ + s; 1- s; 9 + 3s],s R } c) p = {[1- t; + t; -6 - t],t R }, q = {[4 + s; -1 - s; s],s R } d) p = {[t; 3 - t; 4 - t],t R }, q = {[ - s; -1 + s; 6 + s],s R } [a) rovnoběžné různé ;b) různoběžné ; c) totožné ; d) mimoběžné] 34. Zjistěte vzájemnou polohu, pokud jsou různoběžné, určete i průsečík a) a = {[ 3t; 6 + t; -t],t R}, b = {[1 s; 3s; + s], s R} b) a = {[4 t; 1 + 3t; -5 3t], t R}, b = {[7 7s; + 5s; -8-3s], s R} [a) mimoběžné; b)[0; 7; -11] 35. Jsou dány body A[3; ; 1], B[-5; -10; 5], C[4; 7; -3],D[3; 5; -].Určete, pokud existuje, průsečík přímek AB a CD. [ P [-3; -7; 4 ] ] 36. Určete vzájemnou polohu přímek p,q, jestliže přímka p je dána body A[7; 6; -3], B[6;8; -6], přímka q bodem C[6, -5, 7] a směrovým vektorem s (-; 4; -6). [rovnoběžné různé ] 7

8 37. Napište parametrické vyjádření roviny určené body: a) A[ 1; 3; -1], B[ ; 3; 3], C[ -; -5; -7] b) A[ -1; -1; 0], B[ 1; 1; ], C[ ; ; 3] c) A[ 1; 1; 0], B[ ; ; 1], C[ 0; 0; 0] [a) x = 1 + t 3s; y = 3-8s; z = t 6s; t,s R; b) body leží v jedné přímce, neurčují jednu rovinu; c) x = 1 + t s; y = 1 + t s; z = t; t,s R ] 38. Napište parametrické vyjádření roviny dané bodem a přímkou: a) M[3; ; -1], p = {[ t, 3 + t, -t],t R} b) M[ -3; 1; -3], p = {[ 1 t, t; - + 3t],t R} [a) x = t + s; y = 3 + t s; z = -t s; t,s R; b) x = 1 t 4s; y = t + s; z = - + 3t s; t,s R] 39. Zjistěte, zda bod B [ 5; -; 6] leží v rovině určené bodem A [ ; -1; 3] a přímkou p = {[ 3 + t, t, 1 + t], t R} [ ano leží ] 40. Napište obecnou rovnici roviny, která prochází bodem A [ -3; 5; -7] a je kolmá k vektoru n ( 1; -; -1). [ x y z + 6 = 0 ] 41. Určete číslo d tak, aby rovina ρ : 7x 8y -z + d = 0 procházela bodem A [ 7; 6; -3 ]. [ d = -7 ] 4. Zapište obecnou rovnici roviny, která je dána parametricky: ρ = {[1 t + 3s, 7 + t s, -3 t + s], t,s R} [x y 5z = 0 ] 43. Napište obecnou rovnici roviny, která prochází body A[ 3; ; -1] a B[ 4; 1; 1] a je rovnoběžná s přímkou p = {[ 5 t, t, 4 + t], t R} [4x + y z 17 = 0 ] 44. Napište obecnou rovnici roviny, která prochází bodem A[7; -5; 3] a je kolmá k přímce p = {[ + 3t, 5t, 7 t], t R}. [ 3x + 5y z + 10 = 0 ] 43. Rozhodněte o vzájemné poloze přímky a roviny a) p = {[ 4 3t, 5 3t, 4 4t], t R ; ρ =[1 r + 5s, + 3r, 4s],r,s R} b) p = {[ 4 + 5t,3 5t, 1 + t], t R; ρ =[ r + 3s, 3r 4s, 7 + r], r,s R } [a) p ρ, p leží v ρ ; b) p ρ, p neleží v ρ ] 8

9 44. Určete jakou vzájemnou polohu má rovina a přímka a) ρ : x 5y + 4z 6 = 0], p = {[ t, 3t, 3 + 4t], t R} b) ρ : 3x + y 3z 13 = 0], p = {[3 t, 1 + 3t, -1 t], t R} c) ρ : x 7y + z 5 = 0], p = {[4 t, 8 3t, 3 + t], t R} [a) p ρ, p neleží v ρ ; b) p ρ, p leží v ρ ; c) p ρ ] 45. Dokažte, že AB : A [3; -; -1], B [4; 1; 3] je různoběžná s rovinou σ : x - 3y +z - = 0. Potom najděte průsečík. [ P [6; 7; 11] ] 6. Určete vzájemnou polohu rovin σ = x y z 1 = 0, ρ = 5x 3y + z 5 = 0 [různoběžné, v k. u ] 47. Vypočítejte vzdálenost bodu A[5; -1; 3] od přímky p = {[-1 + t, t, - + t] t R} [ 3 ] 48. Vypočtěte vzdálenost bodu B[1; ; 3] od přímky určené bodem A[5; 10; -1] a směrovým vektorem u (-1; -; 1). [ 0 ] 49. Vypočtěte vzdálenost bodu A od roviny ρ : a) A [ 3; 5; -6], ρ = x -y + z 8 = 0 b) A [-1; 3; ], ρ = 3x -4y + 5z 15 = 0 [a) 6; b) ] 50. Vypočtěte vzdálenost dvou rovnoběžek a ={[1 + t,1 + t, -t],t R},b= {[r, 4r, -r], r R} 51. Jsou dány roviny: ρ = {[s, r, - r s],r,s R a σ = {[1 u v, u, v ],u,v R. Ověřte, zda jsou rovnoběžné a určete jejich vzdálenost. [ 6 ] 5. Určete vzdálenost dvou rovnoběžných rovin α : x + y + z 6 = 0 ; β : x + y + z 3 = 0 [ 3 ] 53. Určete vzdálenost bodu D [0; ; -] od roviny ABC určené třemi body A [1; -; -], B [; -1; -1], C [1;-1; -] [ ] 9

10 54. Vypočtěte odchylku dvou přímek a) p = {[ + t, t, 7 t],t R}, q = [4 k, 5, -3 + k],k R} b) p = {[ t,1 + t,4 3t],t R}, q = [1 + k, 1 k, 4 k],k R} c) p = {[ + t, t, - 3t],t R}, q = [1 k, k, 3 + 3k],k R} 55. Určete odchylku přímky od roviny a) p = {[5 + t, 1 + 3t, -t],t R}, ρ : x y + 3z 4 = 0 b) p = {[4 t, 1 t, t],t R}, ρ : x + 4y + z 1 = 0 [a) β = 30, b) ] 56. Zjistěte odchylku dvou rovin ρ 1 : x + y z + 4 = 0, ρ :x + 4y + z 5 = Určete hodnotu parametru a R tak, aby přímka p = {[1 + t, + at, - 1- t], t R} a rovina ρ : x + y z + 8 = 0 byly rovnoběžné. 10

11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ. u. v = u v + u v. Umět ho aplikovat při

11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ. u. v = u v + u v. Umět ho aplikovat při . VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti:. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..

Více

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz 1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině

Více

2. ANALYTICKÁ GEOMETRIE V PROSTORU Vektory Úlohy k samostatnému řešení... 21

2. ANALYTICKÁ GEOMETRIE V PROSTORU Vektory Úlohy k samostatnému řešení... 21 2 ANALYTICKÁ GEOMETRIE V PROSTORU 21 21 Vektory 21 Úlohy k samostatnému řešení 21 22 Přímka a rovina v prostoru 22 Úlohy k samostatnému řešení 22 23 Vzájemná poloha přímek a rovin 25 Úlohy k samostatnému

Více

Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R

Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R Rovnice přímky Přímka p je určená dvěma různými body (A, B)(axiom) směrový vektor nenulový rovnoběžný (kolineární) s vektorem s = AB = B A pro libovolný bod X na přímce platí: X A = t s tj. Vektorová rovnice

Více

Urci parametricke vyjadreni primky zadane body A[2;1] B[3;3] Urci, zda bod P [-3;5] lezi na primce AB, kde A[1;1] B[5;-3]

Urci parametricke vyjadreni primky zadane body A[2;1] B[3;3] Urci, zda bod P [-3;5] lezi na primce AB, kde A[1;1] B[5;-3] 1 Parametricke vyjadreni primky Priklad 16 Priklad 17 Priklad 18 jestlize Urci parametricke vyjadreni primky zadane body A[2;1] B[3;3] Urci, zda bod P [-3;5] lezi na primce AB, kde A[1;1] B[5;-3] Urci,

Více

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem Analytická geometrie - kružnice Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A = ; 5 [ ] Napište středový i obecný tvar rovnice kružnice, která má střed

Více

1. Parametrické vyjádření přímky Přímku v prostoru můžeme vyjádřit jen parametricky, protože obecná rovnice přímky v prostoru neexistuje.

1. Parametrické vyjádření přímky Přímku v prostoru můžeme vyjádřit jen parametricky, protože obecná rovnice přímky v prostoru neexistuje. 1/7 ANALYTICKÁ GEOMETRIE V PROSTORU Základní pojmy: Parametrické vyjádření přímky, roviny Obecná rovnice roviny Vzájemná poloha přímek a rovin Odchylka přímek a rovin Vzdálenosti www.karlin.mff.cuni.cz/katedry/kdm/diplomky/jan_koncel/

Více

Analytická geometrie (AG)

Analytická geometrie (AG) Analytická geometrie (AG) - zkoumá geometrické útvary pomocí algebraických a analytických metod Je založena na vektorech a soustavě souřadnic, rozděluje se na AG v rovině a v prostoru. Analytická geometrie

Více

Analytická geometrie lineárních útvarů

Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod

Více

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika analytická geometrie. Mgr. Pavel Liška

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika analytická geometrie. Mgr. Pavel Liška Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace

Více

1. Přímka a její části

1. Přímka a její části . Přímka a její části přímka v rovině, v prostoru, přímka jako graf funkce, konstrukce přímky nebo úsečky, analytická geometrie přímky, přímka jako tečna grafu, přímka a kuželosečka Přímka v rovině a v

Více

VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ

VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ Dvě přímky v rovině mohou být: různoběžné - mají jediný společný bod, rovnoběžné různé - nemají společný bod, totožné - mají nekonečně mnoho společných bodů. ŘEŠENÉ

Více

Analytická geometrie. přímka vzájemná poloha přímek rovina vzájemná poloha rovin. Název: XI 3 21:42 (1 z 37)

Analytická geometrie. přímka vzájemná poloha přímek rovina vzájemná poloha rovin. Název: XI 3 21:42 (1 z 37) Analytická geometrie přímka vzájemná poloha přímek rovina vzájemná poloha rovin Název: XI 3 21:42 (1 z 37) Název: XI 3 21:42 (2 z 37) Rovnice přímky a) parametrická A B A B C A X Název: XI 3 21:42 (3 z

Více

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí

Více

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1) .6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí

Více

PLANIMETRIE úvodní pojmy

PLANIMETRIE úvodní pojmy PLANIMETRIE úvodní pojmy Je část geometrie zabývající se studiem geometrických útvarů v rovině. Základními stavebními kameny v rovině budou bod a přímka. 1) Přímka a její části Dvěma různými body lze vést

Více

Vzorce počítačové grafiky

Vzorce počítačové grafiky Vektorové operace součet vektorů rozdíl vektorů opačný vektor násobení vektoru skalárem úhel dvou vektorů velikost vektoru a vzdálenost dvojice bodů v rovině (v prostoru analogicky) u = B A= b a b a u

Více

Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky

Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Př. 1: Určete rovnice všech kružnic, které procházejí bodem A = * 6; 9+, mají střed na přímce p: x + 3y 18 = 0 a jejich poloměr

Více

je pravoúhlý BNa ose y najděte bod, který je vzdálený od bodu A = [ 4;

je pravoúhlý BNa ose y najděte bod, který je vzdálený od bodu A = [ 4; 1 BUAnlytická geometrie - bod, souřdnice bodu, vzdálenost bodů 11 1BRozhodněte, zd trojúhelník s vrcholy A [ ; ], B [ 1; 1] C [ 11; 6] je prvoúhlý 1 1BN ose y njděte bod, který je vzdálený od bodu A [

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

8. Parametrické vyjádření a. Repetitorium z matematiky

8. Parametrické vyjádření a. Repetitorium z matematiky 8. Parametrické vyjádření a obecná rovnice přímky a roviny Repetitorium z matematiky Podzim 2012 Ivana Medková Osnova: 1 Geometrie v rovině 1. 1 Parametrické vyjádření přímky 1. 2 Obecná rovnice přímky

Více

Analytická geometrie přímky, roviny (opakování středoškolské látky) = 0. Napište obecnou rovnici. 8. Jsou dány body A [ 2,3,

Analytická geometrie přímky, roviny (opakování středoškolské látky) = 0. Napište obecnou rovnici. 8. Jsou dány body A [ 2,3, Analytická geometrie přímky roviny opakování středoškolské látk Jsou dány body A [ ] B [ 5] a C [ 6] a) přímky AB b) osy úsečky AB c) přímky na které leží výška vc trojúhelníka ABC d) přímky na které leží

Více

KONSTRUKTIVNÍ GEOMETRIE

KONSTRUKTIVNÍ GEOMETRIE KONSTRUKTIVNÍ GEOMETRIE Přednáška Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

P L A N I M E T R I E

P L A N I M E T R I E M T E M T I K P L N I M E T R I E rovinná geometrie Základní planimetrické pojmy od - značí se velkými tiskacími písmeny, např.,,. P, Q. Přímka - značí se malými písmeny, např. a, b, p, q nebo pomocí bodů

Více

1 Analytická geometrie

1 Analytická geometrie 1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice

Více

Užití stejnolehlosti v konstrukčních úlohách

Užití stejnolehlosti v konstrukčních úlohách Užití stejnolehlosti v konstrukčních úlohách Příklad 1: Je dána kružnice k(o,r) a bod M ležící uvnitř kružnice k. Bodem M veďte tětivu AB, jejíž délka je bodem M rozdělena v poměru 2 : 1. Sestrojte obraz

Více

M - Příprava na 1. čtvrtletku pro třídu 4ODK

M - Příprava na 1. čtvrtletku pro třídu 4ODK M - Příprava na 1. čtvrtletku pro třídu 4ODK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu povoleno pouze s odkazem na www.jarjurek.cz. VARIACE 1 Tento dokument byl

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Mgr. Zora Hauptová ANALYTICKÁ GEOMETRIE PŘÍMKY TEST VY_32_INOVACE_MA_3_20 OPVK 1.5 EU peníze středním školám CZ.1.07/1.500/34.0116 Modernizace výuky na učilišti

Více

= prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty

= prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty STROMTRI STROMTRI = prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty xióm je jednoduché názorné tvrzení, které se nedokazuje.

Více

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl:

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl: KVINTA úlohy k opakování 1. Jsou dány množiny: = {xr; x - 9 5} B = {xr; 1 - x } a) zapište dané množiny pomocí intervalů b) stanovte A B, A B, A - B, B A. Zapište daná racionální čísla ve tvaru zlomku

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:

Více

Rozpis výstupů zima 2008 Geometrie

Rozpis výstupů zima 2008 Geometrie Rozpis výstupů zima 2008 Geometrie 20. 10. porovnávání úseček grafický součet úseček grafický rozdíl úseček... porovnávání úhlů grafický součet úhlů grafický rozdíl úhlů... osa úhlu úhly vedlejší a vrcholové...

Více

Lingebraické kapitolky - Analytická geometrie

Lingebraické kapitolky - Analytická geometrie Lingebraické kapitolky - Analytická geometrie Jaroslav Horáček KAM MFF UK 2013 Co je to vektor? Šipička na tabuli? Ehm? Množina orientovaných úseček majících stejný směr. Prvek vektorového prostoru. V

Více

3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY

3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY 3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY V této kapitole se dozvíte: jak popsat bod v rovině a v prostoru; vzorec na výpočet vzdálenosti dvou bodů; základní tvary rovnice přímky

Více

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.

Více

M - Příprava na 12. zápočtový test

M - Příprava na 12. zápočtový test M - Příprava na 1. zápočtový test Určeno pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Kartézská soustava souřadnic je dána počátkem O a uspořádanou trojicí bodů E x,

Více

Konstrukční úlohy. Růžena Blažková, Irena Budínová. Milé studentky, milí studenti,

Konstrukční úlohy. Růžena Blažková, Irena Budínová. Milé studentky, milí studenti, Konstrukční úlohy Růžena Blažková, Irena Budínová Milé studentky, milí studenti, zadání konstrukčních úloh si vylosujete v semináři nebo na přednášce, u každé konstrukční úlohy proveďte: - rozbor obsahuje

Více

Geometrie v R n. z balíku student. Poznamenejme, že vlastně počítáme délku úsečky, která oba body spojuje. (b d)2 + (c a) 2

Geometrie v R n. z balíku student. Poznamenejme, že vlastně počítáme délku úsečky, která oba body spojuje. (b d)2 + (c a) 2 Geometrie v R n Začněme nejjednodušší úlohou: Vypočtěme vzdálenost dvou bodů v rovině. Použijeme příkaz distance z balíku student. Poznamenejme, že vlastně počítáme délku úsečky, která oba body spojuje.

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

19 Eukleidovský bodový prostor

19 Eukleidovský bodový prostor 19 Eukleidovský bodový prostor Eukleidovským bodovým prostorem rozumíme afinní bodový prostor, na jehož zaměření je definován skalární součin. Víme, že pomocí skalárního součinu jsou definovány pojmy norma

Více

Maturitní nácvik 2008/09

Maturitní nácvik 2008/09 Maturitní nácvik 008/09 1. Parabola a) Načrtněte graf funkce y + 4 - ² a z grafu vypište všechny její vlastnosti. b) Určete čísla a,b,c tak, aby parabola s rovnicí y a + b + c procházela body K[1,-], L[0,-1],

Více

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32 Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;

Více

S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N A

S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N A S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N AČENÍ bod (A, B, C, ), přímka (a, b, p, q, AB, ), rovina (α, β, ρ,

Více

- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU:

- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU: 1/12 PLANIMETRIE Základní pojmy: Shodnost, podobnost trojúhelníků Středová souměrnost, osová souměrnost, posunutí, otočení shodná zobrazení Středový a obvodový úhel Obsahy a obvody rovinných obrazců 1.

Více

1. LINEÁRNÍ ALGEBRA Vektory Operace s vektory... 8 Úlohy k samostatnému řešení... 8

1. LINEÁRNÍ ALGEBRA Vektory Operace s vektory... 8 Úlohy k samostatnému řešení... 8 1 Lineární algebra 1 LINEÁRNÍ ALGEBRA 8 11 Vektory 8 111 Operace s vektory 8 8 112 Lineární závislost a nezávislost vektorů 8 8 113 Báze vektorového prostoru 9 9 12 Determinant 9 9 13 Matice 1 131 Operace

Více

11 Vzdálenost podprostorů

11 Vzdálenost podprostorů 11 Vzdálenost podprostorů 11.1 Vzdálenost bodů Eukleidovský bodový prostor E n = afinní bodový prostor, na jehož zaměření je definován skalární součin. (Pech:AGLÚ/str.126) Definováním skalárního součinu

Více

7 Analytická geometrie v rovině

7 Analytická geometrie v rovině 7 Analytická geometrie v rovině Myslím, tedy jsem (René Descartes) 71 Úsečka V kapitole 51 jsme zavedli pojem souřadnice v rovině pro potřeby konstrukce grafů funkcí Pomocí souřadnic lze ovšem popisovat

Více

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b 008 verze 0A. Řešeními nerovnice x + 4 0 jsou právě všechna x R, pro která je x ( 4, 4) b) x = 4 c) x R x < 4 e) nerovnice nemá řešení b. Rovnice x + y x = je rovnicí přímky b) dvojice přímek c) paraboly

Více

( ) ( ) 6. Algebraické nerovnice s jednou neznámou ( ) ( ) ( ) ( 2. e) = ( )

( ) ( ) 6. Algebraické nerovnice s jednou neznámou ( ) ( ) ( ) ( 2. e) = ( ) 6. Algebraické nerovnice s jednou neznámou Další dovednosti: -iracionální nerovnice -lineární nerovnice s parametrem -kvadratické nerovnice s parametrem Možné maturitní otázky: Lineární a kvadratické nerovnice

Více

Analytická metoda aneb Využití vektorů v geometrii

Analytická metoda aneb Využití vektorů v geometrii KM/GVS Geometrické vidění světa (Design) nalytická metoda aneb Využití vektorů v geometrii Použité značky a symboly R, C, Z obor reálných, komleních, celých čísel geometrický vektor R n aritmetický vektor

Více

3.MONGEOVO PROMÍTÁNÍ. Rovnoběžný průmět 3D těles na rovinu není vzájemně jednoznačné zobrazení, k obrazu neumíme jednoznačně určit objekt v prostoru

3.MONGEOVO PROMÍTÁNÍ. Rovnoběžný průmět 3D těles na rovinu není vzájemně jednoznačné zobrazení, k obrazu neumíme jednoznačně určit objekt v prostoru 3.MONGEOVO PROMÍTÁNÍ A B E 3 E 2 Rovnoběžný průmět 3D těles na rovinu není vzájemně jednoznačné zobrazení, k obrazu neumíme jednoznačně určit objekt v prostoru 3.1.Kartézský souřadnicový systém O počátek

Více

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán rovinný obrazec, v obrázku vyznačený barevnou výplní, který představuje

Více

SEZNAM ANOTACÍ. CZ.1.07/1.5.00/ III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA4 Analytická geometrie

SEZNAM ANOTACÍ. CZ.1.07/1.5.00/ III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA4 Analytická geometrie SEZNAM ANOTACÍ Číslo projektu Číslo a název šablony klíčové aktivity Označení sady DUM Tematická oblast CZ.1.07/1.5.00/34.0527 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA4 Analytická

Více

3.2. ANALYTICKÁ GEOMETRIE ROVINY

3.2. ANALYTICKÁ GEOMETRIE ROVINY 3.2. ANALYTICKÁ GEOMETRIE ROVINY V této kapitole se dozvíte: jak popsat rovinu v třídimenzionálním prostoru; jak analyzovat vzájemnou polohu bodu a roviny včetně jejich vzdálenosti; jak analyzovat vzájemnou

Více

Parametrická rovnice přímky v rovině

Parametrická rovnice přímky v rovině Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou

Více

c) nelze-li rovnici upravit na stejný základ, logaritmujeme obě strany rovnice

c) nelze-li rovnici upravit na stejný základ, logaritmujeme obě strany rovnice Několik dalších ukázek: Eponenciální rovnice. Řešte v R: a) 5 +. 5 - = 5 - b) 5 9 4 c) 7 + = 5 d) = e) + + = f) 6 4 = g) 4 8.. 9 9 S : a) na každé straně rovnice musí být základ 5, aby se pak základy mohly

Více

Analytická geometrie. c ÚM FSI VUT v Brně

Analytická geometrie. c ÚM FSI VUT v Brně 19. září 2007 Příklad 1. Příklad 2. Příklad 3. Příklad 1. Určete obecnou rovnici roviny, která prochází body A = [0, 1, 2], B = [ 1, 0, 3], C = [3, 1, 0]. Příklad 1. A = [0, 1, 2], B = [ 1, 0, 3], C =

Více

PRACOVNÍ SEŠIT ANALYTICKÁ GEOMETRIE. 8. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online

PRACOVNÍ SEŠIT ANALYTICKÁ GEOMETRIE. 8. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online Připrav se na státní matritní zkošk z MATEMATIKY důkladně, z pohodlí domova a online PRACOVNÍ SEŠIT 8. tematický okrh: ANALYTICKÁ GEOMETRIE vytvořila: RNDr. Věra Effenberger expertka na online příprav

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky Systematizace a prohloubení učiva matematiky 4. ročník 2 hodiny Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné

Více

CVIČNÝ TEST 43. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 43. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 43 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Pro a, b R + určete hodnotu výrazu ( a b) 2 ( a + b) 2, víte-li,

Více

VEKTORY A ANALYTICKÁ GEOMETRIE PAVLÍNA RAČKOVÁ JAROMÍR KUBEN

VEKTORY A ANALYTICKÁ GEOMETRIE PAVLÍNA RAČKOVÁ JAROMÍR KUBEN VEKTORY A ANALYTICKÁ GEOMETRIE PAVLÍNA RAČKOVÁ JAROMÍR KUBEN Brno 2014 Verze 30. listopadu 2014 1 Volné a vázané vektory v rovině a prostoru 1.1 Kartézská soustava souřadnic, souřadnice bodu, vzdálenost

Více

SHODNÁ ZOBRAZENÍ V ROVINĚ GEOMETRICKÁ ZOBRAZENÍ V ROVINĚ SHODNÁ ZOBRAZENÍ

SHODNÁ ZOBRAZENÍ V ROVINĚ GEOMETRICKÁ ZOBRAZENÍ V ROVINĚ SHODNÁ ZOBRAZENÍ Předmět: Ročník: Vytvořil: Datum: MTEMTIK DRUHÝ Mgr. Tomáš MŇÁK 21. června 2012 Název zpracovaného celku: SHODNÁ ZORZENÍ V ROVINĚ Teoretická část GEOMETRICKÁ ZORZENÍ V ROVINĚ Zobrazení Z v rovině je předpis,

Více

DIDAKTIKA MATEMATIKY

DIDAKTIKA MATEMATIKY DIDAKTIKA MATEMATIKY GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní a důkazové Růžena Blažková, Irena Budínová Brno 2007 1 1. Základní pojmy 1. Zvolte si čtyři různé body

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

Metrické vlastnosti v prostoru

Metrické vlastnosti v prostoru Metrické vlastnosti v prostoru Ž2 Metrické vlastnosti v prostoru Odchylka přímek p, q v prostoru V planimetrii jsme si definovali pojem odchylky dvou přímek p, q pro různoběžky a pro rovnoběžky. Ve stereometrii

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více

A STEJNOLEHLOST,, EUKLIDOVYE VĚTY 2.

A STEJNOLEHLOST,, EUKLIDOVYE VĚTY 2. PODOBNOST A STEJNOLEHLOST,, EUKLIDOVYE VĚTY 2. ČÁST MAT. OT 2. OT. Č.. 15: SHODNÁS HODNÁ ZOBRAZENÍ V ROVINĚ, PODOBNOST A STEJNOLEHLOST,, EUKLIDOVYE VĚTY PODOBNOST KDE LÁTKU NAJDETE Kapitola Základy planimetrie

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více

Konstruktivní geometrie - LI. Konstruktivní geometrie - LI () Kótované promítání 1 / 44

Konstruktivní geometrie - LI. Konstruktivní geometrie - LI () Kótované promítání 1 / 44 Kótované promítání Konstruktivní geometrie - LI Konstruktivní geometrie - LI () Kótované promítání 1 / 44 Obsah 1 Polohové úlohy 2 Spád přímky a roviny Konstruktivní geometrie - LI () Kótované promítání

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos

Více

KRUŽNICE, KRUH, KULOVÁ PLOCHA, KOULE

KRUŽNICE, KRUH, KULOVÁ PLOCHA, KOULE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol KRUŽNICE,

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní. Růžena Blažková

GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní. Růžena Blažková GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní Růžena Blažková 1. Základní pojmy 1. Zvolte si čtyři různé body v rovině. Kolik různých přímek je těmito body určeno? Jak

Více

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ 7. 5. 0 Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST Je každé zobrazení v rovině takové, že pro libovolné body roviny

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory

Více

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava I Úprav algebraických výrazů zlomk, rozklad kvadratického trojčlenu,

Více

7.5.3 Hledání kružnic II

7.5.3 Hledání kružnic II 753 Hledání kružnic II Předpoklady: 750 Pedagogická poznámka: Tato hodina patří mezi vůbec nejtěžší Není reálné předpokládat, že by většina studentů dokázala samostatně přijít na řešení, po čase na rozmyšlenou

Více

Cyklografie. Cyklický průmět bodu

Cyklografie. Cyklický průmět bodu Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme

Více

Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem

Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem Shodná zobrazení Otočení Příklad 1. Jsou dány tři různé soustředné kružnice a, b a c. Sestrojte rovnostranný trojúhelník ABC tak, aby A ležel na a, B ležel na b a C ležel na c. Řešení. Zvolíme vrchol A

Více

CVIČNÝ TEST 40. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 40. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 40 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 Vypočtěte pro a 1; 3 hodnotu výrazu 4 + a 3 + a 3 ( 2). 1 bod VÝCHOZÍ TEXT

Více

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0. Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,

Více

Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod,

Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod, 5.4 Parabola Parabola je křivka, která vznikne řezem rotační kuželové plochy rovinou, jestliže odchylka roviny řezu od osy kuželové plochy je stejná jako odchylka povrchových přímek plochy a rovina řezu

Více

PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh

PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh Lomená čára A 0 A 1 A 2 A 3..., A n (n 2) se skládá z úseček A 0 A 1, A 1 A 2, A 2 A 3,..., A n 1 A n, z nichž každé dvě sousední mají společný jeden krajní

Více

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné

Více

SOUŘADNICE BODU, VZDÁLENOST BODŮ

SOUŘADNICE BODU, VZDÁLENOST BODŮ Registrační číslo projektu: CZ.1.07/1.1.14/01.001 SOUŘADNICE BODU, VZDÁLENOST BODŮ SOUŘADNICE BODU NA PŘÍMCE ČÍSELNÁ OSA na přímce je určena počátkem O a jednotkou měření. Libovolný bod A na číselné ose

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

ZÁKLADNÍ PLANIMETRICKÉ POJMY

ZÁKLADNÍ PLANIMETRICKÉ POJMY ZÁKLADNÍ PLANIMETRICKÉ POJMY Základní geometrické pojmy jsou bod, přímka a rovina. Geometrie je chápána jako část matematiky, která se zabývá studiem geometrických útvarů v rovině. Body určujeme jako průsečíky

Více

Analytická geometrie

Analytická geometrie Analytická geometrie Obsah Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1 Vektory - opakování 2 1.1 Teorie........................................... 2 1.1.1 Pojem vektor a jeho souřadnice, umístění

Více

3. LINEÁRNÍ FUNKCE, LINEÁRNÍ ROVNICE A LINEÁRNÍ NEROVNICE

3. LINEÁRNÍ FUNKCE, LINEÁRNÍ ROVNICE A LINEÁRNÍ NEROVNICE . LINEÁRNÍ FUNKCE, LINEÁRNÍ ROVNICE A LINEÁRNÍ NEROVNICE Dovednosti:. Lineární funkce. -Vědět, že je vyjádřena předpisem f: y = a + b, a znát geometrický význam konstant a,b. -Umět přiřadit proměnné její

Více

Matematika PRŮŘEZOVÁ TÉMATA

Matematika PRŮŘEZOVÁ TÉMATA Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí

Více

Analytická geometrie v prostoru

Analytická geometrie v prostoru Analytická geometrie v prostoru Jméno autora: Ivana Dvořáková Období vytvoření: prosinec 2012 Ročník: 4. ročník střední odborné školy Tematická oblast: Matematické vzdělávání Předmět: Matematika 4. ročník

Více

Funkce 1) Zakreslete body K, L a M do souřadného systému Oxy, jsou-li dány jejich souřadnice: K[-3;0]; L[0;-2]; M[4;3].

Funkce 1) Zakreslete body K, L a M do souřadného systému Oxy, jsou-li dány jejich souřadnice: K[-3;0]; L[0;-2]; M[4;3]. Téma 4: (převody jednotek, funkce, konstrukční úlohy, osová a středová souměrnost) Převody jednotek 1) Kolik gramů je pět třetin z 2,1 kilogramu? a) 1 260 g b) 3 500 g c) 17 000 g d) 700 g 2) Přednáška

Více