Základní principy zobrazení čísla Celá čísla s pevnou řádovou čárkou Zobrazení reálných čísel Aritmetika s binárními čísly

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Základní principy zobrazení čísla Celá čísla s pevnou řádovou čárkou Zobrazení reálných čísel Aritmetika s binárními čísly"

Transkript

1 Počítačové systémy Zobrazení čísel v počítači Miroslav Flídr Počítačové systémy LS /21- Západočeská univerzita v Plzni

2 Vážený poziční kód Obecný předpis čísla vyjádřeného v pozičním systému: C = n 1 i= l w i b i b představuje základ zvoleného pozičního systému váha w i může nabývat pouze určitých hodnot (0... b 1) Z hlediska výpočetní techniky jsou zajímavé poziční systémy o základu 2, 8, 16 označované jako binární, oktalové a hexadecimální. Příklad: 1823, = , = Miroslav Flídr Počítačové systémy LS /21- Západočeská univerzita v Plzni

3 Celá čísla s pevnou řádovou čárkou a znaménkem Čísla jsou zobrazena pomocí váženého pozičního systému, kde l = 0 a řádová čárka je za poslední platnou číslicí. Je třeba rozlišit kladná a záporná čísla nejvíce významný bit představuje znaménko. Je možné uvažovat pouze kladná čísla. Např. pro 8mi bitová čísla je možné zobrazit 2 8 = 256 čísel. Existuje několik druhů kódování celých čísel přímý kód inverzní kód dvojkový doplněk excess 2 n 1 1 Miroslav Flídr Počítačové systémy LS /21- Západočeská univerzita v Plzni

4 Přímý kód (Signed magnitude) Představuje nejjednodušší způsob reprezentace celých čísel. nejvíce významný bit představuje znaménko zbylé bity představují velikost n-bitové celé číslo umožní zobrazit čísla v rozsahu (2 n 1 1) 2 n 1 1 Příklad: = = Nevýhody přímého kódu Poskytuje dvě reprezentace pro nulu ( a ). Nešikovné pro hardwarovou implementaci (složitá operace sčítání) Miroslav Flídr Počítačové systémy LS /21- Západočeská univerzita v Plzni

5 Dvojkový doplněk Nejčastěji používaný způsob kódování. kladná čísla jsou stejná jako v přímém kódu záporná čísla získáme invertováním kladného a přičtením jedničky Příklad: : inverze : : : Vlastnosti dvojkového doplňku pouze jedna reprezentace pro nulu asymetrický rozsah čísel: 2 n 1 2 n 1 1 jednoduchá implementace sčítaní a odčítání Miroslav Flídr Počítačové systémy LS /21- Západočeská univerzita v Plzni

6 Posunuté kódování (excess-n) dvojkový doplněk se posouvá přičtením hodnoty N = 2 n 1 1 zachovává význam znaménkového bitu (1 - kladné, 0 - záporné) usnadňuje porovnávnání/třídění čísel pouze jedna reprezentace pro nulu ( ) Příklad: excess : : Miroslav Flídr Počítačové systémy LS /21- Západočeská univerzita v Plzni

7 Reálná čísla Čísla v pevné řádové čárce používá se pouze pro speciální účely (finanční software) vhodné pro čísla se známou pevným formátem (např. měna) zobrazeny jako přeškálovaná celá čísla Čísla v pohyblivé řádové čárce (floating-point čísla) používá se takzvaná vědecká notace R = s m b e Hodnota dána znaménkem s, mantisou m a exponentem e při bázi číselného systému b. floating point čísla jsou pouhou aproximací reálných čísel dokáže zobrazit pouze konečný počet čísel častá nepřesnost zobrazení (např. není možné zobrazit číslo 1/10) Miroslav Flídr Počítačové systémy LS /21- Západočeská univerzita v Plzni

8 Floating-point čísla dříve různé konvence reprezentace floating-point čísel různé volby kódování mantisy a exponentu odlišný tvar mantisy (např. čistá desetinná část) rozdílné zobrazení tzv. normalizovaných čísel mnoho reprezentací vedlo k nekorektním aritmetickým operacím zavedena norma IEEE Co specifikuje standard IEEE 754 formát reprezentace precizní specifikace výsledků operací speciální hodnoty předepsané chování při neplatných operacích Miroslav Flídr Počítačové systémy LS /21- Západočeská univerzita v Plzni

9 Standard IEEE 754 Tři základní přesnosti zobrazení single-precision (32 bitové) double-precision (64 bitové) extended precision (80 bitové) používá se jen jako interní formát Hodnota čísla zobrazeného dle standardu IEEE 754 F = ( 1) sign (1 + fraction) 2 exponent Miroslav Flídr Počítačové systémy LS /21- Západočeská univerzita v Plzni

10 Zobrazení čísla dle standardu IEEE 754 Exponent posunuté kódování snadné třídění rozsah exponentů resp Mantisa tzv. signifikant je dán jako hodnota (1 + fraction) uvažuje se implicitní 1 vlevo od řádové čárky mantisa obsahuje pouze fraction (je normalizovaná) mantisa reprezentuje čísla 1 < m < 2 Příklad dekadické 0.75 = 3/4 = 3/2 2 binární 0.11 = IEEE Miroslav Flídr Počítačové systémy LS /21- Západočeská univerzita v Plzni

11 Zobrazení čísla dle standardu IEEE 754 Typy čísel dle IEEE 754 normalizované ± 0 < ex ponent < max libovolný bitový vzor denormalizované ± libovolný nenulový vzor nula ± Inf ± NaN ± libovolný nenulový vzor Nástroje pro ošetření chyb ošetření podtečení rozšíření o denormalizovaná čísla ošetření přetečení zavedeno číslo Inf obsahuje dvě nuly mohou pomoci s určením znaménka přetečení nezobrazitelné/neexistující číslo Miroslav Flídr Počítačové systémy LS /21- Západočeská univerzita v Plzni

12 Ošetření singulárních případů ve standardu IEEE 754 Ošetření podtečení doplnění o denormalizovaná čísla (bohužel nepovinné) nejmenší normalizované číslo = největší a nejmenší denormalizované číslo = přijatelnější než rovnou zaokrouhlit k nule uvažována implicitní nula před desetinnou tečkou Miroslav Flídr Počítačové systémy LS /21- Západočeská univerzita v Plzni

13 Ošetření singulárních případů ve standardu IEEE 754 Ošetření přetečení speciální reprezentace pro nekonečno dvě nekonečna lišící se znaménkem = +Inf = Inf uvažována implicitní nula před desetinnou tečkou Inf je možné použít v matematických operacích Inf + Inf = Inf Inf + C = Inf Inf - C = Inf C / 0.0 = Inf -C / 0.0 = -Inf C / Inf = 0.0 Miroslav Flídr Počítačové systémy LS /21- Západočeská univerzita v Plzni

14 Ošetření singulárních případů ve standardu IEEE 754 Nula zobrazení jako u denormalizovaných čísel = = a -0.0 jsou si rovny určení znaménka přetečení C / Inf = 0.0 C / -Inf = / +0.0 = Inf 1 / -0.0 = -Inf Miroslav Flídr Počítačové systémy LS /21- Západočeská univerzita v Plzni

15 Ošetření singulárních případů ve standardu IEEE 754 NaN (Not a Number) jakmile se během výpočtu vyskytne zůstane zachováno NaN není rovno žádnému číslu (ani sobě) NaN není ani větší ani menší než jakékoli číslo NaN reprezentuje výsledek všech operací, které vedou na exponent 11 1 a libovolnou nenulovou mantisu Inf / Inf = NaN 0.0 / 0.0 = NaN sqrt( -3 ) = NaN arccos( 2.4 ) = NaN log(-5) = NaN Miroslav Flídr Počítačové systémy LS /21- Západočeská univerzita v Plzni

16 Celočíselná aritmetika Aritmetika s čísly v přímém kódu sčítaní při stejném znaménku sčítanců: sečtou se hodnoty čísel a zachová se znaménko k přetečení dojde jestliže součet hodnot je větší než 2 (n 1) 1 sčítaní při různých znaménkách sčítanců: nalezne se číslo s větší absolutní hodnotou a odečte se od něj menší číslo přetečení není možné násobení a dělení jednoduché: provede se operace pouze s hodnotami a znaménko se určí jako XOR původních znamének Příklad: ( ) : : : Miroslav Flídr Počítačové systémy LS /21- Západočeská univerzita v Plzni

17 Celočíselná aritmetika Aritmetika s čísly v doplňkovém kódu sčítaní po bitech přenos z nejvíce významného bitu je zahozen při různých znaménkách nemůže dojít k přetečení jestliže se liší přenos do a ze znaménkového bitu došlo k přetečení liší-li se znaménko sčítanců a výsledku, tak došlo k přetečení odčítaní je provedeno přičtením negovaného čísla (převrácená hodnota všech bitů + 1) není potřeba extra HW pro násobení a dělení se čísla převedou na kladná a po provedení operace se vyhodnotí znaménko Příklad: ( ) : ( 1 10 ) : : Miroslav Flídr Počítačové systémy LS /21- Západočeská univerzita v Plzni

18 Aritmetika s floating-point čísly Pro realizaci operací s floating point čísly není nutná speciální implementace v HW (postačí sčítání a posun). To umožňuje práci s těmito čísly i na levnějších systémech používaných např. ve vestavných systémech. Operace sčítání a odečítání s čísly v IEEE 754 formátu 1 opětné vložení implicitního bitu (jedničky resp. nuly u denormalizovaných čísel) 2 denormalizace - je nutné srovnat exponenty 3 vlastní operace sčítání/odečítání 4 opětovná normalizace 5 příprava před uložením ošetření vysunutých bitů - použití guard bitů zaokrouhlení (k nule, k nejbližšímu, k plus nekonečnu, k mínus nekonečnu) odstranění implicitního bitu Miroslav Flídr Počítačové systémy LS /21- Západočeská univerzita v Plzni

19 Aritmetika s floating-point čísly Příklad sčítání (s použitím mini floating-point čísel) Denormalizace: Srovnání exponentů a sečtení: Normalizace: : : : (1.)101(00) : (1.)000(00) : (1.)101(00) : (0.)000(10) : (1.)101(10) = ( ) Miroslav Flídr Počítačové systémy LS /21- Západočeská univerzita v Plzni

20 Aritmetika s floating-point čísly Operace násobení 1 opětné vložení implicitního bitu 2 pronásobení mantis 3 sečtení exponentů 4 provést normalizaci posunem doprava a zvýšit exponent o počet posunů 5 uložení výsledku bez implicitního bitu po zaokrouhlení Operace dělení 1 opětné vložení implicitního bitu 2 podělení mantis 3 odečtení exponentů 4 provést normalizaci posunem doleva a snížit exponent o počet posunů 5 uložení výsledku bez implicitního bitu po zaokrouhlení Miroslav Flídr Počítačové systémy LS /21- Západočeská univerzita v Plzni

21 "Give a digital computer a problem in arithmetic, and it will grind away methodically, tirelessly, at gigahertz speed, until ultimately it produces the wrong answer" Brian Hayes, A Lucid interval, 2003 Problémy s aritmetikou s pevnou přesností zobrazená čísla mají omezenou přesnost a velikost (chyby zaokrouhlování, přetečení, podtečení) nepokrývají úplnou množinu celých resp. reálných čísel vzhledem k aritmetických operacích nejsou uzavřenými množinami neplatí obecně asociativita operací V jakých úlohách automatického řízení se projeví problémy? řešení obyčejných lineárních rovnic vyšetřování řiditelnosti a pozorovatelnosti výpočty frekvenční odezvy výpočty Lyapunovy, Sylvestrovy a Riccatiho rovnice Miroslav Flídr Počítačové systémy LS /21- Západočeská univerzita v Plzni

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

3 Jednoduché datové typy 2 3.1 Interpretace čísel v paměti počítače... 3. 4 Problémy s matematickými operacemi 5

3 Jednoduché datové typy 2 3.1 Interpretace čísel v paměti počítače... 3. 4 Problémy s matematickými operacemi 5 Obsah Obsah 1 Číselné soustavy 1 2 Paměť počítače 1 2.1 Měření objemu paměti počítače................... 1 3 Jednoduché datové typy 2 3.1 Interpretace čísel v paměti počítače................. 3 4 Problémy

Více

Čísla a číselné soustavy.

Čísla a číselné soustavy. Čísla a číselné soustavy. Polyadické soustavy. Převody mezi soustavami. Reprezentace čísel. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK.

Více

v aritmetické jednotce počíta

v aritmetické jednotce počíta v aritmetické jednotce počíta tače (Opakování) Dvojková, osmičková a šestnáctková soustava () Osmičková nebo šestnáctková soustava se používá ke snadnému zápisu binárních čísel. 2 A 3 Doplněné nuly B Číslo

Více

Ahoj mami. Uložení dat v počítači. Příklady kódování dat. IAJCE Přednáška č. 4

Ahoj mami. Uložení dat v počítači. Příklady kódování dat. IAJCE Přednáška č. 4 Uložení dat v počítači Data = užitečné, zpracovávané informace Kódování (formát) dat = způsob uložení v počítači (nutno vše převést na čísla ve dvojkové soustavě) Příklady kódování dat Text každému znaku

Více

Algoritmy a datové struktury

Algoritmy a datové struktury Algoritmy a datové struktury Data a datové typy 1 / 28 Obsah přednášky Základní datové typy Celá čísla Reálná čísla Znaky 2 / 28 Organizace dat Výběr vhodné datvé struktry různá paměťová náročnost různá

Více

Čísla v počítači Výpočetní technika I

Čísla v počítači Výpočetní technika I .. Výpočetní technika I Ing. Pavel Haluza ústav informatiky PEF MENDELU v Brně pavel.haluza@mendelu.cz Osnova přednášky ergonomie údržba počítače poziční a nepoziční soustavy převody mezi aritmetické operace

Více

Přednáška 2: Čísla v počítači. Práce s počítačem. Číselné soustavy. Převody mezi soustavami. Aritmetické operace. Uložení čísel v paměti počítače

Přednáška 2: Čísla v počítači. Práce s počítačem. Číselné soustavy. Převody mezi soustavami. Aritmetické operace. Uložení čísel v paměti počítače Ergonomie Ergonomie Osnova přednášky Výpočetní technika I Ing Pavel Haluza ústav informatiky PEF MENDELU v Brně pavelhaluza@mendelucz ergonomie údržba počítače poziční a nepoziční soustavy převody mezi

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Obsah předmětu

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Obsah předmětu 1 Podklady předmětu pro akademický rok 2006/2007 Radim Farana Obsah 2 Obsah předmětu, Požadavky kreditového systému, Datové typy jednoduché, složené, Programové struktury, Předávání dat. Obsah předmětu

Více

PB002 Základy informačních technologií

PB002 Základy informačních technologií Operační systémy 25. září 2012 Struktura přednašky 1 Číselné soustavy 2 Reprezentace čísel 3 Operační systémy historie 4 OS - základní složky 5 Procesy Číselné soustavy 1 Dle základu: dvojková, osmičková,

Více

Číselné soustavy a převody mezi nimi

Číselné soustavy a převody mezi nimi Číselné soustavy a převody mezi nimi Základní požadavek na počítač je schopnost zobrazovat a pamatovat si čísla a provádět operace s těmito čísly. Čísla mohou být zobrazena v různých číselných soustavách.

Více

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové.

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové. Příprava na cvčení č.1 Čísla a artmetka Číselné soustavy Obraz čísla A v soustavě o základu z: m A ( Z ) a z (1) n kde: a je symbol (číslce) z je základ m je počet řádových míst, na kterých má základ kladný

Více

2 Ukládání dat do paměti počítače

2 Ukládání dat do paměti počítače Projekt OP VK Inovace studijních oborů zajišťovaných katedrami PřF UHK Registrační číslo: CZ..7/../8.8 Cíl Studenti budou umět zapisovat čísla ve dvojkové, osmičkové, desítkové a v šestnáctkové soustavě

Více

1. Základní pojmy a číselné soustavy

1. Základní pojmy a číselné soustavy 1. Základní pojmy a číselné soustavy 1.1. Základní pojmy Hardware (technické vybavení počítače) Souhrnný název pro veškerá fyzická zařízení, kterými je počítač vybaven. Software (programové vybavení počítače)

Více

Už známe datové typy pro representaci celých čísel i typy pro representaci

Už známe datové typy pro representaci celých čísel i typy pro representaci Dlouhá čísla Tomáš Holan, dlouha.txt, Verse: 19. února 2006. Už známe datové typy pro representaci celých čísel i typy pro representaci desetinných čísel. Co ale dělat, když nám žádný z dostupných datových

Více

1. 1 P Ř I R O Z E N Á Č Í S L A

1. 1 P Ř I R O Z E N Á Č Í S L A 1. Č Í S E L N É O B O R Y 1. 1 P Ř I R O Z E N Á Č Í S L A Přirozená čísla (definice, značení, množinový zápis) Číslice (cifry 0 9) Číslo (rozvinutý resp. zkrácený zápis přirozeného čísla v desítkové

Více

KALKULÁTORY EXP LOCAL SIN

KALKULÁTORY EXP LOCAL SIN + = KALKULÁTORY 2014 201 C π EXP LOCAL SIN MU GT ŠKOLNÍ A VĚDECKÉ KALKULÁTORY 104 103 102 Hmotnost: 100 g 401 279 244 EXPONENT EXPONENT EXPONENT 142 mm 170 mm 1 mm 7 mm 0 mm 4 mm Výpočty zlomků Variace,

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Jana

Více

MQL4 COURSE. By Coders guru www.forex-tsd.com. -4 Operace & Výrazy

MQL4 COURSE. By Coders guru www.forex-tsd.com. -4 Operace & Výrazy MQL4 COURSE By Coders guru www.forex-tsd.com -4 Operace & Výrazy Vítejte ve čtvrté lekci mého kurzu MQL4. Předchozí lekce Datové Typy prezentovaly mnoho nových konceptů ; Doufám, že jste všemu porozuměli,

Více

Excel Matematické operátory. Excel předdefinované funkce

Excel Matematické operátory. Excel předdefinované funkce Excel Matematické operátory a) Sčítání + příklad =A1+A2 sečte obsah buněk A1 a A2 b) Odčítání - příklad =A1-A2 odečte hodnotu buňky A2 od hodnoty buňky A1 c) Násobení * příklad =A1*A2 vynásobí obsah buněk

Více

Úvod do informačních technologií

Úvod do informačních technologií Úvod do informačních technologií přednášky Jan Outrata září prosinec 2009 (aktualizace září prosinec 2012) Jan Outrata (KI UP) Úvod do informačních technologií září prosinec 2012 1 / 34 Reprezentace dat

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

BI-JPO (Jednotky počítače) Cvičení

BI-JPO (Jednotky počítače) Cvičení BI-JPO (Jednotky počítače) Cvičení Ing. Pavel Kubalík, Ph.D., 2010 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Evropský sociální fond Praha & EU: Investujeme

Více

OD NULY K NEKONEâNU Poãítej jako EgypÈan âíslice, které nestárnou

OD NULY K NEKONEâNU Poãítej jako EgypÈan âíslice, které nestárnou OD NULY K NEKONEâNU Poãítej jako EgypÈan Nejstarší známý početní systém založený na čísle 10 zavedli před 5 000 lety v Egyptě. Egypťané používali skupinu čar pro vyjádření čísel do devítky. Vypadala asi

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora

Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora Číslo projektu Číslo materiálu ázev školy Autor ázev Téma hodiny Předmět Ročník /y/ C.1.07/1.5.00/34.0394 VY_3_IOVACE_1_ČT_1.01_ vyjádření čísel v různých číselných soustavách Střední odborná škola a Střední

Více

Základní pojmy, historie počítačů, jednotky a převody, dvojková soustava

Základní pojmy, historie počítačů, jednotky a převody, dvojková soustava Základní pojmy, historie počítačů, jednotky a převody, dvojková soustava Obsah OBSAH... 1 1 ZÁKLADNÍ POJMY... 1 2 HISTORIE POČÍTAČŮ... 2 2.1 GENERACE POČÍTAČŮ... 3 2.2 KATEGORIE POČÍTAČŮ... 3 3 KONCEPCE

Více

Jak do počítače. aneb. Co je vlastně uvnitř

Jak do počítače. aneb. Co je vlastně uvnitř Jak do počítače aneb Co je vlastně uvnitř Po odkrytí svrchních desek uvidíme... Von Neumannovo schéma Řadič ALU Vstupně/výstupní zař. Operační paměť Počítač je zařízení, které vstupní údaje transformuje

Více

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů Kapitola 1 Signály a systémy 1.1 Klasifikace signálů Signál představuje fyzikální vyjádření informace, obvykle ve formě okamžitých hodnot určité fyzikální veličiny, která je funkcí jedné nebo více nezávisle

Více

MS EXCEL_vybrané matematické funkce

MS EXCEL_vybrané matematické funkce MS EXCEL_vybrané matematické funkce Vybrané základní matematické funkce ABS absolutní hodnota čísla CELÁ.ČÁST - zaokrouhlení čísla na nejbližší menší celé číslo EXP - vrátí e umocněné na hodnotu argumentu

Více

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného čísla A a přibližného čísla a = A a. Je třeba rozlišovat dva případy:

Více

Bohemius, k.s. www.bohemius.cz

Bohemius, k.s. www.bohemius.cz Bohemius, k.s. www.bohemius.cz Modul je součástí administrativní i manažerské kalkulačky Formulář Malé DPH: Dále následuje : FORMULÁŘ - VLASTNÍ KALKULAČKA o produktu KDO BUDE S FORMULÁŘEM PŘEDEVŠÍM PRACOVAT

Více

4 Datové struktury. Datové struktury. Zobrazení dat v počítači

4 Datové struktury. Datové struktury. Zobrazení dat v počítači 4 Datové struktury Zobrazení dat v počítači Každá hodnota v paměti počítače je zakódovaná do posloupnosti bitů. Využívá se přitom dvojková (binární) soustava, která používá dva znaky, 1 (nebo I ) a 0,

Více

VY_42_INOVACE_MA3_01-36

VY_42_INOVACE_MA3_01-36 Název školy Základní škola Benešov, Jiráskova 888 Číslo projektu CZ.1.07/1.4.00/21.1278 Název projektu Pojďte s námi Číslo a název šablony klíčové aktivity VY_42_INOVACE_MA3_01-36 Inovace a zkvalitnění

Více

Číselné soustavy: Druhy soustav: Počítání ve dvojkové soustavě:

Číselné soustavy: Druhy soustav: Počítání ve dvojkové soustavě: Přednášející : Ing. Petr Haberzettl Zápočet : práce na doma hlavně umět vysvětlit Ze 120 lidí udělá maximálně 25 :D Literatura : Frištacký - Logické systémy Číselné soustavy: Nevyužíváme 10 Druhy soustav:

Více

Úvod do informačních technologií

Úvod do informačních technologií Úvod do informačních technologií přednášky Jan Outrata září prosinec 2009 (aktualizace září prosinec 2012) Jan Outrata (KI UP) Úvod do informačních technologií září prosinec 2012 1 / 58 Binární logika

Více

ARITMETIKA - SEKUNDA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

ARITMETIKA - SEKUNDA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky ARITMETIKA - SEKUNDA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro nižší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

Přirozená čísla do milionu 1

Přirozená čísla do milionu 1 statisíce desetitisíce tisíce stovky desítky jednotky Klíčová aktivita: Přirozená čísla do milionu 1 č. 1 Matematika 1. Porovnej čísla: , =. 758 258 4 258 4 285 568 470 56 847 203 488 1 584 2 458 896

Více

obecně a s numerickými simulacemi fyzikálních jevů. Jednotlivé partie jsou ilustrovány jednoduchými programy.

obecně a s numerickými simulacemi fyzikálních jevů. Jednotlivé partie jsou ilustrovány jednoduchými programy. 1/263 Základy počítačové fyziky Základy počítačové fyziky Příručka studentů kombinovaného studia oboru PTA Stanislav Hledík Ústav fyziky, Filozoficko-přírodovědecká fakulta, Slezská univerzita v Opavě

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

BIUS 2 BIUS 3. Bohemius k.s.

BIUS 2 BIUS 3. Bohemius k.s. Máš chybu na pojistném? Jak ale zjistit vyměřovací základ, když zaokrouhlujeme na Kč nahoru, nebo třeba na stokoruny? Jak zjistit výši původní chyby? Bohemius k.s. BIUS 2 BIUS 3 www.bohemius.cz O PRODUKTU

Více

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula.

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Celá čísla Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Množinu celých čísel označujeme Z Z = { 3, 2, 1,0, 1,2, 3, } Vlastností této množiny je,

Více

VZORCE A VÝPOČTY. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý

VZORCE A VÝPOČTY. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý Autor: Mgr. Dana Kaprálová VZORCE A VÝPOČTY Datum (období) tvorby: září, říjen 2013 Ročník: sedmý Vzdělávací oblast: Informatika a výpočetní technika 1 Anotace: Žáci se seznámí se základní obsluhou tabulkového

Více

DATABÁZE MS ACCESS 2010

DATABÁZE MS ACCESS 2010 DATABÁZE MS ACCESS 2010 KAPITOLA 5 PRAKTICKÁ ČÁST TABULKY POPIS PROSTŘEDÍ Spuštění MS Access nadefinovat název databáze a cestu k uložení databáze POPIS PROSTŘEDÍ Nahoře záložky: Soubor (k uložení souboru,

Více

Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom.

Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom. @213 17. Speciální funkce Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom. Nyní si řekneme něco o třech

Více

INDEX ZX ROM VÝPIS. knihy. autora Ing. Daniela Jenneho a kol. verzia 29.11.2010 2010 Softhouse Ltd.

INDEX ZX ROM VÝPIS. knihy. autora Ing. Daniela Jenneho a kol. verzia 29.11.2010 2010 Softhouse Ltd. INDEX knihy ZX ROM VÝPIS autora Ing. Daniela Jenneho a kol. verzia 29.11.2010 2010 Softhouse Ltd. 1, logická 18, 39 A, nenulové 181 A, nezměněné 190 A, nulové 186, 204 Abramovitz 199 Absolute magnitude

Více

Title: IX 6 11:27 (1 of 6)

Title: IX 6 11:27 (1 of 6) PŘEVODNÍKY ANALOGOVÝCH A ČÍSLICOVÝCH SIGNÁLŮ Převodníky umožňující transformaci číslicově vyjádřené informace na analogové napětí a naopak zaujímají v řídícím systému klíčové postavení. Značná část měřených

Více

Matematika - 6. ročník Vzdělávací obsah

Matematika - 6. ročník Vzdělávací obsah Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá

Více

ANOTACE K VÝUKOVÉ SADĚ č. VY_32_INOVACE_01_03_MAT_Pr

ANOTACE K VÝUKOVÉ SADĚ č. VY_32_INOVACE_01_03_MAT_Pr Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast (předmět) Autor ANOTACE K VÝUKOVÉ SADĚ č. VY_32_INOVACE_01_03_MAT_Pr CZ.1.07/1.5.00/34.0705 III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Architektury počítačů a procesorů

Architektury počítačů a procesorů Kapitola 3 Architektury počítačů a procesorů 3.1 Von Neumannova (a harvardská) architektura Von Neumann 1. počítač se skládá z funkčních jednotek - paměť, řadič, aritmetická jednotka, vstupní a výstupní

Více

FUNKCE 2. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý. Vzdělávací oblast: Informatika a výpočetní technika

FUNKCE 2. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý. Vzdělávací oblast: Informatika a výpočetní technika FUNKCE 2 Autor: Mgr. Dana Kaprálová Datum (období) tvorby: září, říjen 2013 Ročník: sedmý Vzdělávací oblast: Informatika a výpočetní technika 1 Anotace: Žáci se seznámí se základní obsluhou tabulkového

Více

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména

Více

Microsoft Office. Excel vlastní formát buněk

Microsoft Office. Excel vlastní formát buněk Microsoft Office Excel vlastní formát buněk Karel Dvořák 2011 Formát buněk Běžné formáty buněk vybíráme v seznamu formátů ve skupině Číslo. V některých případech potřebujeme formát v trochu jiné podobě,

Více

Základy zpracování kalkulačních tabulek

Základy zpracování kalkulačních tabulek Radek Maca Makovského 436 Nové Město na Moravě 592 31 tel. 0776 / 274 152 e-mail: rama@inforama.cz http://www.inforama.cz Základy zpracování kalkulačních tabulek Mgr. Radek Maca Excel I 1 slide ZÁKLADNÍ

Více

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444 ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní

Více

Analogově-číslicové převodníky ( A/D )

Analogově-číslicové převodníky ( A/D ) Analogově-číslicové převodníky ( A/D ) Převodníky analogového signálu v číslicový (zkráceně převodník N/ Č nebo A/D jsou povětšině založeny buď na principu transformace napětí na jinou fyzikální veličinu

Více

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose 3. Celá čísla 6. ročník 3. Celá čísla 3.1. Vymezení pojmu celé číslo Ve své dosavadní praxi jste se setkávali pouze s přirozenými čísly. Tato čísla určovala konkrétní počet (6 jablek, 7 kilogramů jablek,

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Textové, datumové a časové funkce

Textové, datumové a časové funkce Textové, datumové a časové funkce EU peníze středním školám Didaktický učební materiál Anotace Označení DUMU: VY_32_INOVACE_IT4.15 Předmět: IVT Tematická oblast: Microsoft Office 2007 Autor: Ing. Vladimír

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Způsoby realizace této funkce:

Způsoby realizace této funkce: KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je výstup určen jen výhradně kombinací vstupních veličin. Hodnoty výstupních veličin nezávisejí na předcházejícím stavu logického obvodu, což znamená, že kombinační

Více

Vyčtení / zapsání hodnot z/do OMC8000 pomocí protokolu UDP

Vyčtení / zapsání hodnot z/do OMC8000 pomocí protokolu UDP Application Note #05/14: Vyčtení / zapsání hodnot z/do OMC8000 pomocí protokolu UDP Požadavky: OMC8000 má přiřazenu IP adresu (statickou, nebo pomocí DHCP), označme ji OMC8000_IP Na straně PC máte spuštěného

Více

ČÍSELNÉ SOUSTAVY. Číselnou soustavu, která pro reprezentaci čísel využívá pouze dvou číslic, nazýváme soustavou dvojkovou nebo binární.

ČÍSELNÉ SOUSTAVY. Číselnou soustavu, která pro reprezentaci čísel využívá pouze dvou číslic, nazýváme soustavou dvojkovou nebo binární. Číselné soustavy V běžném životě používáme soustavu desítkovou. Desítková se nazývá proto, že má deset číslic 0 až 9 a v jednom řádu tak dokáže rozlišit deset různých stavů. Mikrokontroléry (a obecně všechny

Více

Zobrazení dat Cíl kapitoly:

Zobrazení dat Cíl kapitoly: Zobrazení dat Cíl kapitoly: Cílem této kapitoly je sezn{mit čten{ře se způsoby z{pisu dat (čísel, znaků, řetězců) v počítači. Proto jsou zde postupně vysvětleny číselné soustavy, způsoby kódov{ní české

Více

Historický vývoj výpočetní techniky. Miroslav Flídr Počítačové systémy LS 2006-1/14- Západočeská univerzita v Plzni

Historický vývoj výpočetní techniky. Miroslav Flídr Počítačové systémy LS 2006-1/14- Západočeská univerzita v Plzni Počítačové systémy Historický vývoj výpočetní techniky Miroslav Flídr Počítačové systémy LS 2006-1/14- Západočeská univerzita v Plzni Co je to počítač? Počítač: počítací stroj, převážně automatické elektronické

Více

7. Datové typy v Javě

7. Datové typy v Javě 7. Datové typy v Javě Primitivní vs. objektové typy Kategorie primitivních typů: integrální, boolean, čísla s pohyblivou řádovou čárkou Pole: deklarace, vytvoření, naplnění, přístup k prvkům, rozsah indexů

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

Metodické pokyny pro práci s modulem Řešitel v tabulkovém procesoru Excel

Metodické pokyny pro práci s modulem Řešitel v tabulkovém procesoru Excel Metodické pokyny pro práci s modulem Řešitel v tabulkovém procesoru Excel Modul Řešitel (v anglické verzi Solver) je určen pro řešení lineárních i nelineárních úloh matematického programování. Pro ilustraci

Více

7 Formátovaný výstup, třídy, objekty, pole, chyby v programech

7 Formátovaný výstup, třídy, objekty, pole, chyby v programech 7 Formátovaný výstup, třídy, objekty, pole, chyby v programech Studijní cíl Tento studijní blok má za cíl pokračovat v základních prvcích jazyka Java. Konkrétně bude věnována pozornost formátovanému výstupu,

Více

SBÍRKA PŘÍKLADŮ Z ČÍSLICOVÉ TECHNIKY

SBÍRKA PŘÍKLADŮ Z ČÍSLICOVÉ TECHNIKY ČÍSLIOVÁ TEHNIK SÍRK PŘÍKLŮ Z ČÍSLIOVÉ TEHNIKY UČENÍ TEXTY Ing Vladimír VLOUH Projekt č: Z107/110/030018 Obsah 1 ČÍSELNÉ SOUSTVY 3 PŘEVOY MEZI ČÍSELNÝMI SOUSTVMI 7 3 RITMETIKÉ OPERE V ČÍS SOUSTVÁH 17 4

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

Základy programování Proměnné Procedury, funkce, události Operátory a podmínková logika Objekt Range a Cells, odkazy Vlastnosti, metody a události

Základy programování Proměnné Procedury, funkce, události Operátory a podmínková logika Objekt Range a Cells, odkazy Vlastnosti, metody a události Petr Blaha Základy programování Proměnné Procedury, funkce, události Operátory a podmínková logika Objekt Range a Cells, odkazy Vlastnosti, metody a události Cykly Základní funkce (matematické, textové,

Více

PŘEDNÁŠKA PS 6 Přenos dat v počítačových sítích

PŘEDNÁŠKA PS 6 Přenos dat v počítačových sítích PŘEDNÁŠKA PS 6 Přenos dat v počítačových sítích Část 2 Osnova Metody detekce chybovosti Pravděpodobnost chyby ve zprávě Parita Kontrolní blokový součet (pseudosoučet) Redundantní cyklické kódy Jiný způsob

Více

Předmět: Ročník: Vytvořil: Datum: Informační. září 2013 Modrovská technologie. zaměření) Název zpracovaného celku:

Předmět: Ročník: Vytvořil: Datum: Informační. září 2013 Modrovská technologie. zaměření) Název zpracovaného celku: Předmět: Ročník: Vytvořil: Datum: Informační 1. a 2. Ing. Andrea a komunikační (podle oboru září 2013 Modrovská technologie zaměření) Název zpracovaného celku: Tabulkový procesor Excel Podmíněné formátování,

Více

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák:

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák: Matematika prima Očekávané výstupy z RVP Školní výstupy Učivo (U) využívá při paměťovém počítání komutativnost a asociativnost sčítání a násobení provádí písemné početní operace v oboru přirozených zaokrouhluje,

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů - 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika 6.ročník Výstup Učivo Průřezová témata - čte, zapisuje a porovnává přirozená čísla s přirozenými čísly - zpaměti a písemně

Více

O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika

O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika O FUNKCÍCH Obsah Nezbytně nutná kapitola, kterou musíte znát pro studium limit, derivací a integrálů. Základ, bez kterého se neobejdete. Nejprve se seznámíte se všemi typy funkcí, které budete potřebovat,

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Číslicové obvody základní pojmy

Číslicové obvody základní pojmy Číslicové obvody základní pojmy V číslicové technice se pracuje s fyzikálními veličinami, které lze popsat při určité míře zjednodušení dvěma stavy. Logické stavy binární proměnné nabývají dvou stavů:

Více

Administrativní kalkulačka skutečně pro každého, včetně manažerů. Bohemius k.s. BIUS2 - BIUS 3. www.bohemius.cz

Administrativní kalkulačka skutečně pro každého, včetně manažerů. Bohemius k.s. BIUS2 - BIUS 3. www.bohemius.cz Administrativní kalkulačka skutečně pro každého, včetně manažerů Bohemius k.s. BIUS2 - BIUS 3 www.bohemius.cz Modul je součástí administrativní i manažerské kalkulačky DALŠÍ OBSAH : O produktu Kdo bude

Více

Splněno ANO/NE/hodnota

Splněno ANO/NE/hodnota část 1 - software pro přípravu interaktivních výukových hodin postavený na aktivní účasti žáků základní specifikace: autorský objektově orientovaný výukový software v českém jazyce s implementovanou galerií

Více

3.2 MATEMATIKA A JEJÍ APLIKACE (M) Charakteristika vzdělávací oblasti

3.2 MATEMATIKA A JEJÍ APLIKACE (M) Charakteristika vzdělávací oblasti 3.2 MATEMATIKA A JEJÍ APLIKACE (M) 51 Charakteristika vzdělávací oblasti Vzdělávací oblast matematika a její aplikace v základním vzdělávání je založena především na aktivních činnostech, které jsou typické

Více

FUNKCE 3. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý. Vzdělávací oblast: Informatika a výpočetní technika

FUNKCE 3. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý. Vzdělávací oblast: Informatika a výpočetní technika FUNKCE 3 Autor: Mgr. Dana Kaprálová Datum (období) tvorby: září, říjen 2013 Ročník: sedmý Vzdělávací oblast: Informatika a výpočetní technika 1 Anotace: Žáci se seznámí se základní obsluhou tabulkového

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Datové typy a struktury

Datové typy a struktury atové typy a struktury Jednoduché datové typy oolean = logická hodnota (true / false) K uložení stačí 1 bit často celé slovo (1 byte) haracter = znak Pro 8-bitový SII kód stačí 1 byte (256 možností) Pro

Více

ČÍSLICOVÁ TECHNIKA OBSAH KAPITOLA 1 ČÍSELNÉ SOUSTAVY A KÓDY

ČÍSLICOVÁ TECHNIKA OBSAH KAPITOLA 1 ČÍSELNÉ SOUSTAVY A KÓDY OBSAH Čísla a číslice... Desítková (dekadická ) číselná soustava... Tvorba libovolné číselné soustavy... 3 Převody čísel mezi číselnými soustavami... 6 Převod čísel z dekadické soustavy do libovolné jiné...

Více

Napájení Zapnutí nebo vypnutí: Pro zapnutí kalkulátory stiskněte tlačítko [ON/C], pro vypnutí kalkulátoru stiskněte [2ndF] [OFF]

Napájení Zapnutí nebo vypnutí: Pro zapnutí kalkulátory stiskněte tlačítko [ON/C], pro vypnutí kalkulátoru stiskněte [2ndF] [OFF] UŽIVATELSKÝ MANUÁL Všeobecné informace VĚDECKÁ KALKULAČKA Model SR-260 Napájení Zapnutí nebo vypnutí: Pro zapnutí kalkulátory stiskněte tlačítko [ON/C], pro vypnutí kalkulátoru stiskněte [2ndF] [OFF] Funkce

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Přehled vzdělávacích materiálů

Přehled vzdělávacích materiálů Přehled vzdělávacích materiálů Název školy Název a číslo OP Název šablony klíčové aktivity Název sady vzdělávacích materiálů Jméno tvůrce vzdělávací sady Číslo sady Anotace Základní škola Ţeliv Novými

Více

Proměnné a datové typy

Proměnné a datové typy Proměnné a datové typy KAPITOLA 2 V této kapitole: Primitivní datové typy Proměnné Opakování Mezi základní dovednosti každého programátora bezesporu patří dobrá znalost datových typů. Ta vám umožní efektivní

Více

CZ.1.07/1.5.00/34.0632

CZ.1.07/1.5.00/34.0632 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Excel Formát buňky Ing. Silvana Žárská

Více

Znak Slovy Popis Zdroj Výsledek Formátova cí řetězec v CZ verzi Excelu

Znak Slovy Popis Zdroj Výsledek Formátova cí řetězec v CZ verzi Excelu řetězec v Všeobecný Odpovídá obecnému formátu - čísla i text bude zarovnán dle kontextu (při nastavení češtiny tedy Excel zarovná text doleva, čísla a časové údaje doprava). Tento formát nemusíme zadávat

Více

4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost

4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost 4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost Michael Šebek Automatické řízení 25 25-2-5 Stabilita obecně Automatické řízení - Kybernetika a robotika Stabilita obecně

Více

Profilová část maturitní zkoušky 2013/2014

Profilová část maturitní zkoušky 2013/2014 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2013/2014 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: TECHNIKA

Více

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy.

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy. Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání

Více