Predikátová logika [Predicate logic]

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Predikátová logika [Predicate logic]"

Transkript

1 Predikátová logika [Predicate logic] Přesněji predikátová logika prvého řádu. Formalizuje výroky o vlastnostech předmětů (entit) a vztazích mezi předměty, které patří do dané předmětné oblasti univerza. Příklad: Následovník každého lichého přirozeného čísla je sudé číslo. Číslo 7 je liché. Číslo 8 je sudé. Predikátové logiky vyšších řádů formalizují vztahy mezi vlastnostmi a vztahy, vztahy mezi vztahy vlastnostmi vztahů a vlastností. Výrokovou logiku lze považovat za predikátovou logiku nultého řádu. Formalizuje pouze výroky o entitách. S výrokovou logikou vědecké disciplíny nevystačí. S predikátovou logikou prvého řádu se zpravidla vystačí v matematice i informatice. Logické symboly: Jazyk predikátové logiky obsahuje tuto abecedu: 1. Konečnou nebo nekonečnou spočetnou množinu proměnných (značíme x, y, z, u, v, x 1, x 2,... ). 2. Logické spojky,,,, ( ). 3. Univerzální kvantifikátor (čti pro všechna ). 4. Existenční kvantifikátor (čti existuje). Speciální symboly: 1. Neprázdnou množinu predikátových symbolů P. Různé arity. Vyjadřují vlastnosti a vztahy. 2. Množinu funkčních symbolů F. - Různé arity. Konečnou nebo spočetnou. 3. Množinu konstantních symbolů K. Konečnou nebo spočetnou. Ty lze považovat za funkce arity 0 (nemají žádné proměnné a tedy mají vždy stejnou hodnotu). Značíme a, b, c, a 1, a 2,.... Pomocné symboly: závorky (, ), čárku,. Poznámka: Univerzální kvantifikátor lze chápat jako zobecnění konjunkce, Existenční kvantifikátor jako zobecnění disjunkce, na množiny, které mohou být i nekonečné. 1

2 Gramatika predikátové logiky udává jak vytvářet formule Term (rekurzivní definice) 1. Každý symbol proměnné je term. 2. Každá konstanta je term. 3. Jsou-li t 1,, t m termy a f je funkční symbol arity m, potom je i f(t 1,, t m ) term. 4. Nic jiného než to, co vznikne aplikací pravidel 1., 2. a 3. již term není. Atomická formule Je predikátový symbol aplikovaný na m termů, kde m je arita predikátového symbolu. p(t 1,, t m ). Formule (rekurzivní definice) 1. Každá atomická formule je formule. 2. Jsou-li ϕ a ψ formule, pak také ( ϕ), (ϕ ψ), (ϕ ψ), (ϕ ψ), (ϕ ψ) jsou formule. 3. Je-li ϕ formule a x proměnné, potom i ( x ϕ) a ( x ϕ) jsou formule. 4. Nic jiného než to, co vznikne aplikací pravidel 1., 2. a 3. již formule není. Závorky lze vynechat, pokud jsou zbytečné vzhledem k obvyklým preferenčním pravidlům pro logické spojky. Vnější závorky se též vynechávají. Výskyt proměnné x ve formuli A je vázaný, jestliže je součástí nějaké podformule x B(x) nebo x B(x) formule A. Proměnná x je vázaná ve formuli A, má-li v A vázaný výskyt. Výskyt proměnné x ve formuli A, který není vázaný, nazýváme volný. Proměnná x je volná ve formuli A, má-li v A volný výskyt. Formule, v níž každá proměnná má buď všechny výskyty volné nebo všechny výskyty vázané, se nazývá formulí s čistými proměnnými. Formule se nazývá uzavřenou, neobsahuje-li žádnou volnou proměnnou. Formule, která obsahuje aspoň jednu volnou proměnnou se nazývá otevřenou. Uzavřená formule se nazývá větou [sentence]. 2

3 Příklady zápisu výroků v predikátové logice: Univerzum je množina všech lidí. Nikdo, kdo není zapracován (P), nepracuje samostatně (S). x ( P(x) S(x)). Ne každý talentovaný (T) spisovatel (Sp) je slavný člověk (Sl). x ((T(x) Sp(x)) Sl(x)). Někdo je spokojen (Sn) a někdo není spokojen. x Sn(x) x Sn(x). Někteří chytří lidé (Ch) jsou líní (L). x (Ch(x) L(x)). Interpretace Pro to, abychom rozhodli zda je daná formule pravdivá či ne (má hodnotu TRUE či FALSE), je třeba mít vymezeno univerzum a vědět co znamenají všechny v ní užité predikáty, funkční symboly a konstanty. Takovému přiřazení říkáme interpretace. Formálně je interpretace dvojice (U, I), kde U je neprázdná množina zvaná univerzum, I je zobrazení které: Každé konstantě přiřazuje prvek univerza. Každému n-árnímu funkčnímu symbolu přiřazuje funkci n proměnných na univerzu s hodnotami z univerza. Každému n-árnímu predikátu přiřazuje n-ární relaci na univerzu, tvořenou všemi n-ticemi prvků univerza, pro které je daný predikát pravdivý. Pravdivost formule predikátového počtu lze vyhodnotit pouze na základě dané interpretace a daného ohodnocení (valuace) všech volných proměnných. Přitom: Pro stanovení pravdivostních hodnot složených formulí platí stejná pravidla jako u výrokové logiky. Výrok x ϕ(x) je pravdivý právě když I(ϕ) je celé univerzum U (výrok platí pro všechny prvky univerza). Výrok x ϕ(x) je pravdivý právě když I(ϕ) je neprázdná podmnožina univerza (výrok platí aspoň pro jeden prvek univerza). Formule A je splnitelná v interpretaci I, jestliže existuje aspoň jedno ohodnocení e volných proměnných takové, že vznikne pravdivý výrok. Formule A je pravdivá v interpretaci I, jestliže pro všechna možná ohodnocení e volných proměnných vznikne pravdivý výrok. Formule A je splnitelná, jestliže existuje interpretace I, ve které je splnitelná, tj. jestliže existuje interpretace I a ohodnocení volných proměnných e takové, že vznikne pravdivý výrok. Taková dvojice (I, e) interpretace I a valuace e se nazývá model formule. Formule A je tautologií je-li pravdivá v každé interpretaci. Formule A je kontradikcí, jestliže nemá model, tedy neexistuje interpretace I, v která by formule A byla splnitelná. 3

4 Pozn.: Zjevně platí, že A je kontradikce, právě když negace A je tautologie. Model množiny formulí {A 1,, A n } je taková interpretace I v kterém jsou všechny formule splnitelné, tedy interpretace I a ohodnocení e volných v kterém jsou všechny formule volných proměnných), která splňuje všechny formule A 1,, A n pravdivé. Sémantická a logická dedukce v predikátovém počtu Oba typy dedukce se definují obdobně jako ve výrokové logice. Uzavřená formule (věta) ϕ je sémantickým důsledkem (též tautologickým důsledkem značíme ) množiny uzavřených formulí S právě tehdy, když každý model S je také modelem ϕ. To však je obtížné ověřit. Pro logickou dedukci ( ) přebereme I-pravidla a E-pravidla výrokové logiky a přidáme k nim přirozená pravidla pro kvantifikované výroky. Jde především o pravidla ϕ(t) x ϕ(x) x ϕ(x) x ϕ(x) Tabulka pravidel logické dedukce v predikátové logice: Logická spojka Pravidlo pro zavedení Pravidlo pro vyloučení {ϕ ψ, ψ} ϕ princip nepřímého důkazu ϕ ϕ T; ϕ ϕ princip vyloučení třetího a princip dvojí negace {ϕ, ψ} {ϕ ψ, ψ ϕ} ϕ ψ {ϕ, ψ} definice konjunkce ϕ {ϕ ψ, ψ ϕ} definice disjunkce definice konjunkce {ϕ ψ, ϕ α α, ψ α} α princip důkazu rozborem případů {ϕ ψ} ϕ ψ definice implikace {ϕ, ϕ ψ} ψ pravidlo modus ponens Kvalifikátor Pravidlo pro zavedení Pravidlo pro vyloučení ϕ(x) x ϕ(x) x ϕ(x) ϕ(x) ϕ(a) x ϕ(x) { x ϕ(x), ϕ(y) ψ} ψ I zde (stejně jako u výrokové logiky) platí, že postačí jediné pravidlo, modus ponens. Užívání všech pravidel je však přirozenější a vede k závěru snáze. 4

5 Pro predikátovou logiku platí rovněž věta o úplnosti. Přirozená dedukce je bezrozporná (vše co se dá logicky odvodit je i sémantickým důsledkem). Přirozená dedukce je úplná. Vše co je sémantickým důsledkem lze odvodit i logicky. Tedy S α tehdy a jen tehdy když S α. Důkaz tohoto tvrzení však není snadný. Platí následující důležitá tvrzení: Větu lze odvodit bez předpokladů, právě když je tautologií. Množina vět je bezrozporná, právě když je splnitelná (tedy má nějaký model). Množina vět je rozporná, právě když z ní vyplývá kontradikce. Mezi výrokovým a predikátovým počtem je následující podstatný rozdíl: Každý jazyk predikátové logiky má nekonečně mnoho možných interpretací (už jenom universum lze stanovit nekonečně mnoha způsoby). Tím se liší od jazyka výrokové logiky, který má vždy jen konečný počet interpretací ohodnocení TRUE FALSE výrokových proměnných (jazyk výrokové logiky pracující s n výrokovými symboly má různých 2 n interpretací, je tedy možné, i když časově náročné, ověřit pravdivost všech interpretací ). Tautologičnost formulí predikátové logiky nelze proto sémanticky dokazovat tak, že ukážeme, že každá možná interpretace jazyka je i modelem dané formule. Tímto způsobem jsme postupovali ve výrokové logice, když jsme zjišťovali pravdivostní hodnotu formule pro každou kombinaci pravdivostních hodnot výrokových symbolů. I zde při velkém n narážel tento postup na exponenciální růst výpočetní složitosti. U predikátového počtu nelze tento způsob užít ani teoreticky, bez ohledu na rostoucí časové nároky na výpočet. Přímý logický důkaz probíhá takto: 1. Vyjdeme z množiny S daných předpokladů a prohlásíme ji za množinu dosud dokázaných formulí (tvrzení). 2. Použijeme libovolné pravidlo logické dedukce a libovolné a libovolnou formuli z množiny dosud dokázaných formulí. Důsledek bude formule, kterou k množině S přidáme. 3. Opakujeme bod 2. tak dlouho, dokud se nám nepodaří jako důsledek získat dokazovanou formuli ϕ. Problém je, jak vybírat pravidla a předpoklady z množiny již dokázaných, aby tato cesta vedla k důsledku ϕ. Takový postup je obtížné automatizovat. 5

6 Resoluční princip v predikátové logice Zaveďme některé pojmy analogické pojmům z výrokové logiky: Literál je atomická formule (n-ární predikát aplikovaný na n termů) nebo její negace. Komplementární literály je dvojice literálů z nichž každý je negací druhého. Klausule je věta (formule bez volných proměnných), taková, že obsahuje pouze univerzální kvantifikátory na začátku a následuje disjunkce konečného počtu literálů nebo jediný literál. Zavedeme následující úmluvu: U klausule budeme univerzální kvantifikátory proměnných vynechávat. Protože u disjunkce nezáleží na pořadí, budeme klausule zapisovat pouze jako množiny jejich literálů. Tedy například místo tří klauzulí P(x, y), a ( Q(a) R(a, x) S(f(a), a), a b S(a, b) Q(b) budeme psát pouze množinu tří množin literálů {P(x, y)}, { Q(a), R(a, x), S(f(a), a)}, {S(a, b), Q(b)}. Prázdná klausule neobsahuje žádné literály a je tedy kontradikcí. Obvykle se značí symbolem, někdy též F. Tato klausule není splnitelná. Její přítomnost v množině formulí znamená nesplnitelnost této množiny. Princip rezoluční metody u predikátové logiky je analogický jako u výrokové logiky. Je však komplikovanější, protože není k dispozici přímá analogie k konjunktivně disjunktivní normální formě. Postupně odvozujeme z daných klausulí resolventy tak, že vypouštíme dvojice komplementárních literálů. Původní klausule ponecháme. Postup je založen na tom, že tautologicky platí (ϕ η) (ψ η) (ϕ ψ). V případě výskytu predikátů s proměnnými, konstantami a funkčními symboly je třeba provést substituce. Ukážeme to na příkladech: Příklad 1: Resolventa klausulí C 1 = {P(x, y, z), Q(x, y)} a C 2 = { P(x, y, z), R(x)}, kde x, y, z jsou proměnné je klausule C = { Q(x, y), R(x)}. Komplementární literály P(x, y, z) a { P(x, y, z) lze vynechat. Množiny klausulí {C 1, C 2 } a {C 1, C 2, C} jsou tautologicky ekvivalentní. Mají tytéž modely. Abychom to dokázali, stačí ukázat, že pro každou interpretaci (U, I), kde C 1 a C 2 jsou pravdivé je pravdivé i C. Nechť a, b, c jsou libovolné konstanty z U. Substitujeme-li a za x, b za y a c za z (označme jako x/a, y/b, z/c) odvodíme, že { Q(a, b), R(a)} je pravdivé a tedy C je pravdivé v interpretaci (U, I). 6

7 Příklad 2 (již bez podrobného zdůvodnění) Resolventa klausulí {P(x, y, z), Q(x, y)} a C 2 = { P(a, b, z), R(a)}získaná substitucí x/a, y/b je { Q(a, b), R(a)}. Nalézání komplementárních literálů v množině klauzulí lze algoritmizovat. Tento postup je užit například při ověřování, zda dané tvrzení vyplývá z daných předpokladů. Jde o ověření tautologičnosti implikace tautologicky ekvivalentní s tedy s (p 1 p 2 p n ) q, (p 1 p 2 p n ) q, p 1 p 2 p n q Takováto klausule se nazývá Hornovou klausulí. Vyhodnocovací proces (tak zvaný inferenční mechanismus) logického programovacího jazyka PROLOG spočívá v odvozování resolvent z Hornových klausulí. Ty representují fakta a pravidla z databáze. Cílem je ověřit formuli danou dotazem, případně nalézt konstanty, pro které je splněna. Chceme-li rozhodnout zda je splnitelná jakákoliv množina klausulí S, sestrojíme množinu S 1, tak, že k S přidáme resolventy prvého řádu. Dále přidáme resolventy S 1, získáme S 2 a pokračujeme dokud nenastane rovnost S n = S n+1. Dostaneme množiny R 0 (S) = S, R j+1 (S) = R(R j (S)) pro j = 1, 2,.... Platí: S = R 0 (S) R 1 (S)... R k (S).... Položme R Resoluční princip predikátové logiky říká: * ( S) = j= 1 R j (S). Množina S je splnitelná právě když R * (S) neobsahuje prázdnou klausuli. Chceme-li zjistit zda klauzule ϕ je důsledkem (logickým a tedy i sémantickým) množiny klauzulí S, vytvoříme množinu S = S { ϕ} a zjistíme, zda je splnitelná, či nikoliv. Jeli S splnitelná ϕ není důsledkem S. Je-li nesplnitelná, je ϕ důsledkem S. To je princip nepřímého důkazu v matematice. 7

8 Příklad: Splnitelnost formulí S = {{P(x, y), Q(x, y, a)}, { Q(g(v), z, z), R(v, z)}, { R(b, a), { P(x, a)}}, kde a, b jsou konstantní symboly, x, y, z jsou proměnné: Sledujte potřebné dosazování konstant za proměnné! Odvodili jsme prázdnou klausuli. Množina formulí je tedy nesplnitelná. 8

9 Existuje algoritmický postup jak libovolnou množinu formulí predikátové logiky převést na množinu klausulí. Lze to provést v těchto po sobě následujících krocích: 1. Přejmenují se proměnné tak, aby každý kvantifikátor označoval různou proměnnou. Například x P(x) x Q(x, a) změníme na x y P(x) Q(x, a). 2. Spojky, vyjádříme pouze pomocí,, užitím tautologických ekvivalencí α β α β; α β ( α β) ( α β);. 3. Zařadíme negace dovnitř až před atomické formule pomocí tautologických ekvivalencí x α x α; x α x α ; (α β) α β; (α β) α β; α α. 4. Zařadíme disjunkce co nejhlouběji užitím tautologických ekvivalencí α (β γ) (α β) (α γ); α ( x β) x (α β); α ( x β) x (α β). 5. Přemístíme univerzální kvantifikátory užitím tautologické ekvivalence ( x α) ( x β) x (α β). Pokud formule neobsahuje existenční kvantifikátory, získali jsme konjunkci klausulí, která je tautologicky ekvivalentní původní formuli. V případě existenčních kvantifikátorů provedeme tak zvanou skolemizaci (název odvozen od norského matematika Thorlafa Skolema). Nahradíme formuli x P(x) formulí P(a), kde a je konstanta. V případě, že předcházejí univerzální kvantifikátory před existenčním, závisí tato konstanta na proměnných univerzálních kvantifikátorů. V tomto případě musíme tedy užít funkční symbol příslušné arity. Tedy například x z y P(x, y, z) nahradíme x y P(x, y, c(x)) a x y z P(x, y, z) nahradíme x y P(x, y, c(x, y)). Skolemova konstanta závisí tedy na předchozích univerzálních kvantifikátorech. Je tedy funkčním symbolem arity rovné počtu předchozích univerzálních kvantifikátorů. Obecně: x 1,, x n y ϕ(y, x 1,,x n ) nahradíme formulí x 1,, x n ϕ(f(x 1,,x n ), x 1,,x n ), kde f je nový funkční symbol arity n. Je-li n = 0 užijeme konstantní symbol. Celý postup ozřejmí následující příklad: Užitím resoluční metody ověřte správnost následujícího úsudku: Každý holič na ostrově holí kohokoliv, kdo se neholí sám. Žádný holič na ostrově neholí kohokoliv, kdo se holí sám. Důsledek: Na ostrově nejsou žádní holiči. Převod do predikátové logiky: Univerzum: Všichni lidé na ostrově. B(x) unární predikát: člověk je holič. S(x, y) binární predikát osoba x holí osobu y. 9

10 Náš úsudek ve formalizovaném tvaru: x (B(x) y ( S(y, y) S(x, y)) x (B(x) y (S(y, y) S(x, y)) x B(x). Úsudek bude správný, pokud je nesplnitelná následující množina tří formulí: { x (B(x) y ( S(y, y) S(x, y)), x (B(x) y (S(y, y) S(x, y)), x B(x)}. Tyto formule je třeba transformovat na tautologicky ekvivalentní klausule. Provedeme to standardním algoritmizovatelným postupem, který byl v předchozím odstavci popsán obecně: Přejmenujeme proměnné a převedeme prvé dvě formule na klausule. Poslední klausulí je. x (B(x) y ( S(y, y) S(x, y)) x ( B(x) y ((S(y, y) S(x, y))) x y( B(x) S(y, y) S(x, y)) ; x (B(x) y (S(y, y) S(x, y)) z ( B(z) u ( S(u, u) S(z, u)) z u ( B(z) S(u, u) S(z, u)). Poslední klausule obsahuje existenční kvantifikátor Zaměníme jej za klausuli B(a), kde a je Skolemův konstantní symbol. Úsudek bude správný, pokud bude množina klausulí nesplnitelná. Užijeme resoluční strom: S = {{ B(x), S(y, y), S(x, y)}, { B(z), S(u, u), S(z, u}, (B(a)}} Náš úsudek byl tedy správný. 10

Výroková logika - opakování

Výroková logika - opakování - opakování ormální zavedení Výroková formule: Máme neprázdnou nejvýše spočetnou množinu A výrokových proměnných. 1. Každá proměnná je výroková formule 2. Když α, β jsou formule, potom ( α), (α β), (α

Více

2.5 Rezoluční metoda v predikátové logice

2.5 Rezoluční metoda v predikátové logice 2.5. Rezoluční metoda v predikátové logice [101104-1520] 19 2.5 Rezoluční metoda v predikátové logice Rezoluční metoda v predikátové logice je obdobná stejnojmenné metodě ve výrokové logice. Ovšem vzhledem

Více

Predikátová logika. prvního řádu

Predikátová logika. prvního řádu Predikátová logika prvního řádu 2 Predikát Predikát je n-ární relace - vyjadřuje vlastnosti objektů a vztahy mezi objekty - z jednoduchého výroku vznikne vypuštěním alespoň jednoho jména objektu (individua)

Více

Predikátová logika. Teoretická informatika Tomáš Foltýnek

Predikátová logika. Teoretická informatika Tomáš Foltýnek Predikátová logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz strana 2 Opakování z minulé přednášky Z čeho se skládá jazyk výrokové logiky? Jaká jsou schémata pro axiomy VL? Formulujte

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2017/2018 1 / 17 Předběžnosti Základní pojmy n-ární relace a funkce

Více

Matematická logika. Rostislav Horčík. horcik

Matematická logika. Rostislav Horčík.  horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 18 Příklad Necht L je jazyk obsahující

Více

4.2 Syntaxe predikátové logiky

4.2 Syntaxe predikátové logiky 36 [070507-1501 ] 4.2 Syntaxe predikátové logiky V tomto oddíle zavedeme syntaxi predikátové logiky, tj. uvedeme pravidla, podle nichž se tvoří syntakticky správné formule predikátové logiky. Význam a

Více

Matematická logika. Miroslav Kolařík

Matematická logika. Miroslav Kolařík Matematická logika přednáška třetí Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika

Více

Místo pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu

Místo pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu VÝROKOVÁ LOGIKA Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. Co je výrok nedefinujejme, pouze si řekneme, co si pod

Více

Základní pojmy matematické logiky

Základní pojmy matematické logiky KAPITOLA 1 Základní pojmy matematické logiky Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. 1. Výroková logika Co je

Více

Matematická logika. Rostislav Horčík. horcik

Matematická logika. Rostislav Horčík.  horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Sémantická věta o dedukci Věta Pro

Více

Logika. 2. Výroková logika. RNDr. Luděk Cienciala, Ph. D.

Logika. 2. Výroková logika. RNDr. Luděk Cienciala, Ph. D. Logika 2. Výroková logika RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216, Logika:

Více

Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz

Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz Jednoduché úsudky, kde VL nestačí Všechny opice mají rády banány Judy je opice Judy má ráda banány Z hlediska VL

Více

teorie logických spojek chápaných jako pravdivostní funkce

teorie logických spojek chápaných jako pravdivostní funkce Výroková logika teorie logických spojek chápaných jako pravdivostní funkce zabývá se způsoby tvoření výroků pomocí spojek a vztahy mezi pravdivostí různých výroků používá specifický jazyk složený z výrokových

Více

Výroková a predikátová logika - VI

Výroková a predikátová logika - VI Výroková a predikátová logika - VI Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VI ZS 2017/2018 1 / 24 Predikátová logika Úvod Predikátová logika Zabývá

Více

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu.

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu. 6 Kapitola 2 Příklady z predikátové logiky 2.1 Formule predikátové logiky 2.1.1 Příklad. Napište formule predikátové logiky odpovídající následujícím větám. Použijte k tomu predikátových symbolu uvedených

Více

Predik atov a logika - pˇredn aˇska () Predik atov a logika - pˇredn aˇska / 16

Predik atov a logika - pˇredn aˇska () Predik atov a logika - pˇredn aˇska / 16 Predikátová logika - přednáška 3 6. 1. 2015 () Predikátová logika - přednáška 3 6. 1. 2015 1 / 16 Věta (o dedukci) Bud L jazyk, T teorie pro L, ϕ L-sentence a ψ L-formule. Pak Věta (o kompaktnosti) T ϕ

Více

Matematická logika. Rostislav Horčík. horcik

Matematická logika. Rostislav Horčík.  horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Splnitelnost množin Definice Množina

Více

Výroková a predikátová logika - V

Výroková a predikátová logika - V Výroková a predikátová logika - V Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - V ZS 2015/2016 1 / 21 Dokazovací systémy VL Hilbertovský kalkul Hilbertovský

Více

Výroková logika. Teoretická informatika Tomáš Foltýnek

Výroková logika. Teoretická informatika Tomáš Foltýnek Výroková logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Co je to formalismus a co je jeho cílem? Formulujte Russelův paradox

Více

Predikátová logika dokončení

Predikátová logika dokončení Predikátová logika dokončení Jiří Velebil: X01DML 1. října 2010: Predikátová logika dokončení 1/18 Syntaktická analýza Jako ve výrokové logice (syntaktické stromy). Každý list úspěšného stromu je obsazen

Více

Úvod do výrokové a predikátové logiky

Úvod do výrokové a predikátové logiky Úvod do výrokové a predikátové logiky Eva Ondráčková Na této přednášce se seznámíte se základy výrokové a predikátové logiky. Zjistíte, že podstatou logiky není vyplňování pravdivostních tabulek ani negování

Více

Základy matematické logiky

Základy matematické logiky OBSAH 1 Základy matematické logiky Obsah 1 Úvod 2 1.1 Předmět matematiky.......................... 2 1.2 Nástin historie.............................. 2 1.3 Axiomatická výstavba matematických teorií.............

Více

7 Jemný úvod do Logiky

7 Jemný úvod do Logiky 7 Jemný úvod do Logiky Základem přesného matematického vyjadřování je správné používání (matematické) logiky a logických úsudků. Logika jako filozofická discipĺına se intenzivně vyvíjí už od dob antiky,

Více

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální

Více

Normální formy. (provizorní text)

Normální formy. (provizorní text) Normální formy (provizorní text) Výrokový počet Definice. Jazyk výrokového počtu obsahuje výrokové proměnné p, q, r, s,..., spojky,,,.. a závorky (,). Výrokové proměnné jsou formule. Jestliže a jsou formule,

Více

Logika a logické programování

Logika a logické programování Logika a logické programování témata ke zkoušce Poslední aktualizace: 16. prosince 2009 Zkouška je písemná, skládá se obvykle ze sedmi otázek (může být více nebo méně, podle náročnosti otázek), z toho

Více

Výroková a predikátová logika - VIII

Výroková a predikátová logika - VIII Výroková a predikátová logika - VIII Petr Gregor KTIML MFF UK ZS 2016/2017 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VIII ZS 2016/2017 1 / 21 Tablo Tablo metoda v PL - rozdíly Formule

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška první Miroslav Kolařík Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Co a k čemu je logika? 2 Výroky a logické spojky

Více

0. ÚVOD - matematické symboly, značení,

0. ÚVOD - matematické symboly, značení, 0. ÚVOD - matematické symboly, značení, číselné množiny Výroky Výrok je každé sdělení, u kterého lze jednoznačně rozhodnout, zda je či není pravdivé. Každému výroku lze proto přiřadit jedinou pravdivostní

Více

V této výukové jednotce se student seznámí se základními pojmy z teorie predikátového počtu.

V této výukové jednotce se student seznámí se základními pojmy z teorie predikátového počtu. 1 Predikátová logika Základní informace V této výukové jednotce se student seznámí se základními pojmy z teorie predikátového počtu. Výstupy z výukové jednotky Student se seznámí se základními termíny

Více

Přednáška 3: rozhodování o platnosti úsudku

Přednáška 3: rozhodování o platnosti úsudku Přednáška 3: rozhodování o platnosti úsudku Marie Duží marie.duzi@vsb.cz 1 Úvod do teoretické informatiky Úsudky Úsudek je platný, jestliže nutně, za všech okolností, tj. při všech interpretacích, ve kterých

Více

Základy logiky Logika a logické systémy. Umělá inteligence a rozpoznávání, LS

Základy logiky Logika a logické systémy. Umělá inteligence a rozpoznávání, LS Základy logiky 22. 4. 2015 Umělá inteligence a rozpoznávání, LS 2015 6-1 Logika je naukou, která se zabývá studiem lidského uvažování. Mezi základní úlohy logiky patří nalézání metod správného usuzování,

Více

6. Logika a logické systémy. Základy logiky. Lucie Koloušková, Václav Matoušek / KIV. Umělá inteligence a rozpoznávání, LS

6. Logika a logické systémy. Základy logiky. Lucie Koloušková, Václav Matoušek / KIV. Umělá inteligence a rozpoznávání, LS Základy logiky Umělá inteligence a rozpoznávání, LS 2012 6-1 Logika je naukou, která se zabývá studiem lidského uvažování. Mezi základní úlohy logiky patří nalézání metod správného usuzování, tedy postupů,

Více

Klasická predikátová logika

Klasická predikátová logika Klasická predikátová logika Matematická logika, LS 2012/13, závěrečná přednáška Libor Běhounek www.cs.cas.cz/behounek/teaching/malog12 PřF OU, 6. 5. 2013 Symboly klasické predikátové logiky Poznámky Motivace

Více

LOGIKA VÝROKOVÁ LOGIKA

LOGIKA VÝROKOVÁ LOGIKA LOGIKA Popisuje pravidla odvozování jedněch tvrzení z druhých. Je to myšlenková cesta ke správným závěrům. Vznikla jako součást filosofie. Zakladatelem byl Aristoteles. VÝROKOVÁ LOGIKA Obsahuje syntaktická,

Více

Výroková a predikátová logika - III

Výroková a predikátová logika - III Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/2018 1 / 16 2-SAT 2-SAT Výrok je v k-cnf, je-li v CNF a

Více

Databázové systémy. * relační kalkuly. Tomáš Skopal. - relační model

Databázové systémy. * relační kalkuly. Tomáš Skopal. - relační model Databázové systémy Tomáš Skopal - relační model * relační kalkuly Osnova přednášky relační kalkuly doménový n-ticový Relační kalkuly využití aparátu predikátové logiky 1. řádu pro dotazování rozšíření

Více

Logika. Dana Nejedlová Katedra informatiky Ekonomická fakulta Technická univerzita v Liberci

Logika. Dana Nejedlová Katedra informatiky Ekonomická fakulta Technická univerzita v Liberci Logika Dana Nejedlová Katedra informatiky Ekonomická fakulta Technická univerzita v Liberci 1 Úloha logiky v umělé inteligenci převést fakta na formalizované výroky, se kterými se dá automatizovaně operovat

Více

verze 29/9/09 textu o logice, aritmetice a M. Bizzarrimu.

verze 29/9/09 textu o logice, aritmetice a M. Bizzarrimu. 1 verze 29/9/09 Toto je prozatím definitivní verze provizorního textu o logice, aritmetice a množinách. věnováno Laskavým čtenářům a čtenářkám, kteří navštěvovali tyto přednášky. poděkování Za upozornění

Více

Úvod do logiky (PL): negace a ekvivalence vět mimo logický

Úvod do logiky (PL): negace a ekvivalence vět mimo logický Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (PL): negace a ekvivalence vět mimo logický čtverec

Více

Abstrakt Text je určen jako doplňkový k přednášce Matematická logika a Paradigmata programování 4.

Abstrakt Text je určen jako doplňkový k přednášce Matematická logika a Paradigmata programování 4. Abstrakt Text je určen jako doplňkový k přednášce Matematická logika a Paradigmata programování 4. 1 Matematická logika - poznámky k přednáškám Radim Bělohlávek 29. května 2003 1 Co je (matematická) logika?

Více

Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1

Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1 Negativní informace Petr Štěpánek S použitím materiálu M.Gelfonda a V. Lifschitze 2009 Logické programování 15 1 Negace jako neúspěch Motivace: Tvrzení p (atomická formule) neplatí, jestliže nelze odvodit

Více

Výroková logika dokazatelnost

Výroková logika dokazatelnost Výroková logika dokazatelnost Ke zjištění, zda formule sémanticky plyne z dané teorie (množiny formulí), máme k dispozici tabulkovou metodu. Velikost tabulky však roste exponenciálně vzhledem k počtu výrokových

Více

NAIVNÍ TEORIE MNOŽIN, okruh č. 5

NAIVNÍ TEORIE MNOŽIN, okruh č. 5 NAIVNÍ TEORIE MNOŽIN, okruh č. 5 Definování množiny a jejích prvků Množina je souhrn nějakých věcí. Patří-li věc do množiny X, říkáme, že v ní leží, že je jejím prvkem nebo že množina X tuto věc obsahuje.

Více

Klauzulární logika. úvod. Šárka Vavrečková. 20. října Ústav informatiky Filozoficko-Přírodovědecká fakulta Slezské univerzity, Opava

Klauzulární logika. úvod. Šárka Vavrečková. 20. října Ústav informatiky Filozoficko-Přírodovědecká fakulta Slezské univerzity, Opava Klauzulární logika úvod Šárka Vavrečková Ústav informatiky Filozoficko-Přírodovědecká fakulta Slezské univerzity, Opava 20. října 2008 Klauzulární logika Hlavní vlastnosti pracujeme s klauzulemi, které

Více

1 Predikátová logika. 1.1 Syntax. jaký mohou mít formule význam (sémantiku). 1. Logických symbolů: 2. Speciálních (mimologických) symbolů:

1 Predikátová logika. 1.1 Syntax. jaký mohou mít formule význam (sémantiku). 1. Logických symbolů: 2. Speciálních (mimologických) symbolů: 1 Predikátová logika 1.1 Syntax Podobně jako ve výrokové logice začneme nejprve se syntaxí predikátové logiky, která nám říká, co jsou správně utvořené formule predikátové logiky. V další části tohoto

Více

Rezoluce v predikátové logice

Rezoluce v predikátové logice Rezoluce v predikátové logice Jiří Velebil: X01DML 15. října 2010: Rezoluce v PL 1/16 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. (M musí být množina sentencí, ϕ sentence.) 2 X nesplnitelná

Více

Základy logiky a teorie množin

Základy logiky a teorie množin 1 Základy logiky a teorie množin Petr Pajas pajas@matfyz.cz URL (slajdy): http://pajas.matfyz.cz/vyuka 2 Proč studovat matematickou logiku a teorii množin objasnění vztahu jazyka a významu (syntaxe a sémantiky)

Více

Rezoluce v predikátové logice

Rezoluce v predikátové logice Rezoluce v predikátové logice Jiří Velebil: AD0B01LGR 2015 Rezoluce v PL 1/16 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. (M musí být množina sentencí, ϕ sentence.) 2 X nesplnitelná iff X =

Více

popel, glum & nepil 16/28

popel, glum & nepil 16/28 Lineární rezoluce další způsob zjemnění rezoluce; místo stromu směřujeme k lineární struktuře důkazu Lineární rezoluční odvození (důkaz) z Ë je posloupnost dvojic ¼ ¼ Ò Ò taková, že Ò ½ a 1. ¼ a všechna

Více

Logika. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD.

Logika. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD. Tematické okruhy: 1. Stručné dějiny logiky a její postavění ve vědě 2. Analýza složených výroků pomocí pravdivostní tabulky 3. Subjekt-predikátová

Více

Základy logiky a teorie množin

Základy logiky a teorie množin 1 2 Proč studovat matematickou logiku a teorii množin Základy logiky a teorie množin objasnění vztahu jazyka a významu (syntaxe a sémantiky) precizace klíčových matematických pojmů: axiom, teorie, důkaz,

Více

α β ) právě tehdy, když pro jednotlivé hodnoty platí β1 αn βn. Danou relaci nazýváme relace

α β ) právě tehdy, když pro jednotlivé hodnoty platí β1 αn βn. Danou relaci nazýváme relace Monotónní a Lineární Funkce 1. Relace předcházení a to Uvažujme dva vektory hodnot proměnných α = α,, 1 αn ( ) a β = ( β β ) 1,, n x,, 1 xn. Říkáme, že vekto r hodnot α předchází vektor hodnot β (značíme

Více

Úvod do TI - logika Výroková logika (2.přednáška) Marie Duží

Úvod do TI - logika Výroková logika (2.přednáška) Marie Duží Úvod do TI - logika Výroková logika (2.přednáška) Marie Duží marie.duzi@vsb.cz Výroková logika Analyzuje způsoby skládání jednoduchých výroků do výroků složených pomocí logických spojek. Co je to výrok?

Více

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška Disjunktivní a konjunktivní normáln lní tvar formule 2.přednáška Disjunktivní normáln lní forma Definice Řekneme, že formule ( A ) je v disjunktivním normálním tvaru (formě), zkráceně v DNF, jestliže je

Více

Cvičení Aktivita 1. část 2. část 3. část Ústní Celkem Známka

Cvičení Aktivita 1. část 2. část 3. část Ústní Celkem Známka Celkové hodnocení BI-MLO (nevyplňujte!) Semestr Zkouška Cvičení Aktivita 1. část 2. část 3. část Ústní Celkem Známka BI-MLO Písemná zkouška 9. února 2016 Matematická logika FIT ČVUT v Praze Varianta B

Více

Která tvrzení jsou pravdivá nezávisle na tom, který den v týdnu byla vyslovena? Tvrzení trosečníka Dana.

Která tvrzení jsou pravdivá nezávisle na tom, který den v týdnu byla vyslovena? Tvrzení trosečníka Dana. Trosečníci Adam, Barry, Code a Dan zapoměli po čase kalendář. Začali se dohadovat, který den v týdnu vlastně je. Každý z nich řekl svůj názor: A: Dnes je úterý nebo zítra je neděle B: Dnes není úterý nebo

Více

Výroková logika. p, q, r...

Výroková logika. p, q, r... Výroková logika Výroková logika je logika, která zkoumá pravdivostní podmínky tvrzení a vztah vyplývání v úsudcích na základě vztahů mezi celými větami. Můžeme též říci, že se jedná o logiku spojek, protože

Více

1 REZOLUČNÍ FORMÁLNÍ DŮKAZY

1 REZOLUČNÍ FORMÁLNÍ DŮKAZY Vážená kolegyně / vážený kolego, součástí Vašeho rozšiřujícího studia informatiky je absolvování předmětu Logika pro učitele 2, jehož cílem je v návaznosti na předmět Logika pro učitele 1 seznámení se

Více

VÝROKOVÁ LOGIKA. Výrok srozumitelná oznamovací věta (výraz, sdělení), která může být buď jen pravdivá nebo jen nepravdivá..

VÝROKOVÁ LOGIKA. Výrok srozumitelná oznamovací věta (výraz, sdělení), která může být buď jen pravdivá nebo jen nepravdivá.. VÝROKOVÁ LOGIKA Teorie: Logika je vědní obor zabývající se studiem různých forem vyjadřování a pravidel správného posuzování. (Matematická logika je součástí tohoto vědního oboru a ve velké míře užívá

Více

I) Příklady (převeďte následující věty do formulí PL1 a ověřte jejich ekvivalenci pomocí de Morganových zákonů):

I) Příklady (převeďte následující věty do formulí PL1 a ověřte jejich ekvivalenci pomocí de Morganových zákonů): I) Příklady (převeďte následující věty do formulí PL1 a ověřte jejich ekvivalenci pomocí de Morganových zákonů): 1. Všechna prvočísla větší než 2 jsou lichá. Je-li prvočíslo větší než 2, pak je liché.

Více

1. Predikátová logika jako prostedek reprezentace znalostí

1. Predikátová logika jako prostedek reprezentace znalostí 1. Predikátová logika jako prostedek reprezentace znalostí 1.1 Historie výrokové logiky Problém explicitních znalostí a údaj, kterých je obrovské množství, vedl ke vzniku výrokové logiky. lovk si obecn

Více

Tableaux metody. Jiří Vyskočil 2011

Tableaux metody. Jiří Vyskočil 2011 Tableaux metody Jiří Vyskočil 2011 Tableau [tabló] metoda Tableau metoda je další oblíbená metoda užívaná pro automatické dokazování vět v predikátové logice, ale i v dalších (modálních, temporálních,

Více

ZÁKLADY LOGIKY A METODOLOGIE

ZÁKLADY LOGIKY A METODOLOGIE ZÁKLADY LOGIKY A METODOLOGIE Metodický list č. 1 Téma: Předmět logiky a metodologie, základy logiky a formalizace. Toto téma lze rozdělit do tří základních tématických oblastí: 1) Předmět logiky a metodologie

Více

postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy

postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy Formální systémy (výrokové) logiky postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy cíl: získat formální teorii jako souhrn dokazatelných

Více

[a) (4 (7 + 5) = 4 12) (4 12 = 48); b) ( 1< 1) (1< 3); c) ( 35 < 18) ( 35 = 18)]

[a) (4 (7 + 5) = 4 12) (4 12 = 48); b) ( 1< 1) (1< 3); c) ( 35 < 18) ( 35 = 18)] Úloha 1 U každé dvojice výroků rozhodněte, zda výrok uvedený vpravo je negací výroku vlevo. Pokud tomu tak není, zdůvodněte proč. a) p: Mám bílý svetr. q: Mám černý svetr. b) r: Bod A leží vně kruhu K.

Více

Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška:

Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška: Přednášky: Mgr. Radek Výrut, Matematika I katedra matematiky, UL-605, rvyrut@kma.zcu.cz tel.: 377 63 2658 Zkouška: Písemná část zkoušky - příklady v rozsahu zápočtových prací Ústní část zkoušky - základní

Více

Úvod do logiky (VL): 3. Jazyk VL

Úvod do logiky (VL): 3. Jazyk VL Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (VL): 3. Jazyk VL doc. PhDr. Jiří Raclavský, Ph.D.

Více

Matematicko-fyzikální fakulta UK. Predikátová logika

Matematicko-fyzikální fakulta UK. Predikátová logika Matematicko-fyzikální fakulta UK Predikátová logika Praha 2000 Obsah 1 Úvod 3 1.1 Jazyk logiky.............................. 4 1.2 Formální systém logiky prvního řádu................ 10 2 Výroková logika

Více

5 Inteligentní usuzování

5 Inteligentní usuzování 5 Inteligentní usuzování Jak již bylo řečeno v předcházející kapitole, způsob reprezentování znalostí a způsob jejich využívaní pro usuzování spolu úzce souvisejí. Připomeňme zde tedy ještě jednou používaná

Více

Po prostudování této kapitoly byste měli porozumět základním definicím uvedených v této kapitole a měli je umět bezchybně interpretovat,

Po prostudování této kapitoly byste měli porozumět základním definicím uvedených v této kapitole a měli je umět bezchybně interpretovat, 1 Matematická logika 1.1 Výroky, operace s výroky Po prostudování této kapitoly byste měli porozumět základním definicím uvedených v této kapitole a měli je umět bezchybně interpretovat, měli být schopni

Více

1 Základní pojmy. 1.1 Množiny

1 Základní pojmy. 1.1 Množiny 1 Základní pojmy V této kapitole si stručně připomeneme základní pojmy, bez jejichž znalostí bychom se v dalším studiu neobešli. Nejprve to budou poznatky z logiky a teorie množin. Dále se budeme věnovat

Více

M - Výroková logika VARIACE

M - Výroková logika VARIACE M - Výroková logika Autor: Mgr. Jaromír Juřek Kopírování a další šíření povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu

Více

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část Matematika I 1/15 2/15 Organizace Zápočet: test 6. + 11. týden semestru (pátek) 80 bodů 50 79 bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část www.vscht.cz/mat Výuka www.vscht.cz/mat/jana.nemcova

Více

výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.

výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává. 1 Základní pojmy matematické logiky Výrokový počet... syntaktické hledisko Predikátový počet... sémantické hledisko 1.1 VÝROKOVÝ POČET výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.

Více

Třída PTIME a třída NPTIME. NP-úplnost.

Třída PTIME a třída NPTIME. NP-úplnost. VAS - Přednáška 9 Úvod ke kursu. Složitost algoritmu. Model RAM. Odhady složitosti. Metoda rozděl a panuj. Greedy algoritmy. Metoda dynamického programování. Problémy, třídy složitosti problémů, horní

Více

Rezoluce ve výrokové logice

Rezoluce ve výrokové logice Rezoluce ve výrokové logice Jiří Velebil: AD0B01LGR 2015 Rezoluce ve VL 1/13 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. 2 X nesplnitelná iff X = ff. 3 Hledání kritických důsledků X syntakticky.

Více

Převyprávění Gödelova důkazu nutné existence Boha

Převyprávění Gödelova důkazu nutné existence Boha Převyprávění Gödelova důkazu nutné existence Boha Technické podrobnosti Důkaz: Konečná posloupnost výrokůkorektně utvořených formulí nějakého logického kalkulu), z nichž každý jelogickým) axiomem, postulátemteorie),

Více

LITERATURA. Čechák V.: Základy logiky a metodologie. Praha Eupress 2007

LITERATURA. Čechák V.: Základy logiky a metodologie. Praha Eupress 2007 ÚVOD DO MATEMATICKÉ LOGIKY 1 LITERATURA Čechák V.: Základy logiky a metodologie. Praha Eupress 2007 2 Svátek J., Dostálová L.: Logika pro humanistiku. Aleš Čeněk, Dobrá Voda 2003 Bokr J.:, Svátek J.: Základy

Více

Logický důsledek. Petr Kuchyňka (7765@mail.muni.cz)

Logický důsledek. Petr Kuchyňka (7765@mail.muni.cz) Logický důsledek Petr Kuchyňka (7765@mail.muni.cz) Úvod P 1 Logický důsledek je hlavním předmětem zájmu logiky. Je to relace mezi premisami a závěry logicky platných úsudků: v logicky platném úsudku závěr

Více

Výroková a predikátová logika Výpisky z cvičení Martina Piláta

Výroková a predikátová logika Výpisky z cvičení Martina Piláta Výroková a predikátová logika Výpisky z cvičení Martina Piláta Jan Štětina 1. prosince 2009 Cviˇcení 29.9.2009 Pojem: Sekvence je konečná posloupnost, značíme ji predikátem seq(x). lh(x) je délka sekvence

Více

Substituce. Petr Štěpánek. S využitím materialu Krysztofa R. Apta. Logické programování 2 1

Substituce. Petr Štěpánek. S využitím materialu Krysztofa R. Apta. Logické programování 2 1 Substituce Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 2 1 Algebra termů Předpokládáme, že je dán jazyk termů. L, definovali jsme množinu jeho Zavedeme některé užitečné

Více

Učební texty k státní bakalářské zkoušce Programování Základy teoretické informatiky. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Programování Základy teoretické informatiky. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Programování Základy teoretické informatiky študenti MFF 15. augusta 2008 1 1 Základy teoretické informatiky Požadavky Logika - jazyk, formule, sémantika, tautologie

Více

Klauzulární logika. Znalostní báze. Šárka Vavrečková

Klauzulární logika. Znalostní báze. Šárka Vavrečková Klauzulární logika Znalostní báze Šárka Vavrečková Ústav informatiky, Filozoficko-přírodovědecká fakulta Slezské univerzity v Opavě sarka.vavreckova@fpf.slu.cz 26. listopadu 2007 (Znalostní báze) Klauzulární

Více

Jak jsem potkal logiku. Převod formule do (úplného) disjunktivního tvaru. Jan Hora

Jak jsem potkal logiku. Převod formule do (úplného) disjunktivního tvaru. Jan Hora Česká zemědělská univerzita 17. října 2011 U makléře Já: Dobrý den, rád bych koupil nějaký světlý byt. Chtěl bych, aby měl dvě koupelny a aby byl v domě výtah. A neměl by být nijak extrémně drahý. Makléř:

Více

Sémantika výrokové logiky

Sémantika výrokové logiky Sémantika výrokové logiky Matematická logika, LS 2012/13, přednáška 4 7 Libor Běhounek www.cs.cas.cz/behounek/teaching/malog12 PřF OU, 4. 25. 3. 2013 Osnova 1 Pravdivostní hodnoty v klasické výrokové logice

Více

I. Úvodní pojmy. Obsah

I. Úvodní pojmy. Obsah I. Úvodní pojmy Obsah 1 Matematická logika 2 1.1 Výrok,logickéoperátory,výrokovéformuleaformy... 2 1.2 Logickávýstavbamatematiky... 3 1.2.1 Základnímetodydůkazůmatematickýchvět..... 3 1.2.2 Negacevýroků.....

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

1. Matematická logika

1. Matematická logika MATEMATICKÝ JAZYK Jazyk slouží člověku k vyjádření soudů a myšlenek. Jeho psaná forma má tvar vět. Každá vědní disciplína si vytváří svůj specifický jazyk v úzké návaznosti na jazyk živý. I matematika

Více

MATEMATICKÁ TEORIE ROZHODOVÁNÍ

MATEMATICKÁ TEORIE ROZHODOVÁNÍ MATEMATICKÁ TEORIE ROZHODOVÁNÍ Podklady k soustředění č. 2 Reprezentace a zpracování znalostí 1. dílčí téma: Reprezentace znalostí V polovině 70. let se začal v umělé inteligenci přesouvat důraz od hledání

Více

prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010

prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010 Základní pojmy prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy

Více

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO ÚVOD DO INFORMATIKY VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO ÚVOD DO INFORMATIKY VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO ÚVOD DO INFORMATIKY RADIM BĚLOHLÁVEK VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ

Více

Úvod do logiky (VL): 11. Ověřování, zda je formule tautologií metodou protipříkladu

Úvod do logiky (VL): 11. Ověřování, zda je formule tautologií metodou protipříkladu Jiří Raclavský (214): Úvod do logiky: klasická výroková logika Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.7/2.2./28.216, OPVK) Úvod

Více

Úlohy k procvičování textu o univerzální algebře

Úlohy k procvičování textu o univerzální algebře Úlohy k procvičování textu o univerzální algebře Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Úvod do logiky (VL): 5. Odvození výrokových spojek z jiných

Úvod do logiky (VL): 5. Odvození výrokových spojek z jiných Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (VL): 5. Odvození z jiných doc. PhDr. Jiří Raclavský,

Více

Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i,

Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, [161014-1204 ] 11 2.1.35 Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, kde i = 0, 1,..., takto: p 0 q právě tehdy, když bud p, q F nebo p, q F. Dokud i+1 i konstruujeme p

Více

[1] Definice 1: Polynom je komplexní funkce p : C C, pro kterou. pro všechna x C. Čísla a 0, a 1,..., a n nazýváme koeficienty polynomu.

[1] Definice 1: Polynom je komplexní funkce p : C C, pro kterou. pro všechna x C. Čísla a 0, a 1,..., a n nazýváme koeficienty polynomu. Polynomy Polynom je možno definovat dvěma způsoby: jako reálnou nebo komplexní funkci, jejichž hodnoty jsou dány jistým vzorcem, jako ten vzorec samotný. [1] První způsob zavedení polynomu BI-LIN, polynomy,

Více

Matematická logika. Rostislav Horčík. horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik

Matematická logika. Rostislav Horčík. horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 18 Predikátová logika Motivace Výroková

Více