Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Rozměr: px
Začít zobrazení ze stránky:

Download "Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12"

Transkript

1 Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 1 / 13

2 Logika X. Prenexní normální tvar. Skolemizace. Rezoluční metoda. RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 2 / 13

3 Prenexní normální tvar Definice Formule je v prenexním normální tvaru, jestliže je ve tvaru (Q 1 x 1 )...(Q n x n )A, kde A je otevřená formule, Q i jsou kvantifikátory, x i jsou proměnné. ( x)( y)( z)(y < x y ), ( k)(n = 2k) Definice Formule B je varianta formule A, jestliže se liší jen přejmenováním vázaných proměnných. ( u)( v)( w)(w < u v ), ( l)(n = 2l). Věta Je-li B varianta A, pak A B. ( x)( y)( z)(y < x y ) ( u)( v)( w)(w < u v ) (( k)(n = 2k) ( l)(n = 2l)) RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 3 / 13

4 Prenexní operace Chceme mít formule v prenexním tvaru. Víme: (( x)a ( x)b) ( x)(a B) (( x)a ( x)b) ( x)(a B) Prenexní operace 1 ( x)a ( x) A ( x)a ( x) A 2 Není-li x volná v A, pak (A ( x)b(x)) ( x)(a B(x)) (A ( x)b(x)) ( x)(a B(x)) 3 Není-li x volná v A, pak (A ( x)b(x)) ( x)(a B(x)) (A ( x)b(x)) ( x)(a B(x)) 4 Není-li x volná v B, pak (( x)a(x) B) ( x)(a(x) B) (( x)a(x) B) ( x)(a(x) B) RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 4 / 13

5 Prenexní operace - důkaz ad 2. Není-li x volná v A, pak (A ( x)b(x)) ( x)(a B(x)). Dokážeme (A ( x)b(x)) ( x)(a B(x)). Sporem. Kdyby ex. M tak, že M = (A ( x)b(x)) ( x)(a B(x)), pak M = (A ( x)b(x)) a M = ( x)( A B(x)), tedy existuje m M tak, že A B[m], ale A B[m].. Dokážeme ( x)(a B(x)) (A ( x)b(x)). Sporem. Kdyby ex. M tak, že M = ( x)(a B(x) (A ( x)b(x)), pak M = ( x)(a B(x)) a M = A a M = ( x) B(x), tedy existuje m M tak, že B[m], ale A B[m] a A.. ad 3. Není-li x volná v A, pak (A ( x)b(x)) ( A ( x)b(x)) ( x)( A B(x)) ( x)(a B(x)) ad 4. Není-li x volná v B, pak (( x)a(x) B) ( ( x)a(x) B) (( x) A(x) B) ( x)(a(x) B) RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 5 / 13

6 Prenexní normální tvar Věta Ke každé formuli existuje formule s ní ekvivalentní v prenexním normálním tvaru. Příklady: 1 ( a)( b)((a < b) ( c)(a < b < c) ( a)( b)( c)((a < b) (a < b < c) 2 ( x)(x = 0) ( x)(x = S(0)) ( x)(x = 0) ( y)(y = S(0)) ( x)( y)((x = 0) (y = S(0))) 3 ( x)(x > 0) ( y)(x + y > 0)) ( z)(z > 0) ( y)(x + y > 0)) ( z)( y)((z > 0) (x + y > 0)) ( y)( z)((z > 0) (x + y > 0)) 4 ( ɛ)((ɛ > 0) ( δ)( x)((δ > 0) ( x c < δ) ( f (x) f (c) < ɛ)) ( ɛ)( δ)( x)((ɛ > 0) ((δ > 0) ( x c < δ) ( f (x) f (c) < ɛ)) RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 6 / 13

7 Skolemizace Chceme jen obecné kvantifikátory. Definice T je konzervativní rozšíření teorie T, právě když L L a pro každou formuli jazyka L platí T = A, právě když T = A. ( x)a(x)... vybereme novou konstantu c L = L {c} T = T {( x)a(x) A(c)} ( x)( y)a(x, y)... definujeme novou funkci f (x) L = L {f (x)} T = T {( x)a(x, f (x))) ( x)( y)a(x, y)} RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 7 / 13

8 Skolemův normální tvar Věta Ke každé uzavřené formuli A existuje formule A S, která je v prenexním normální tvaru, kde všechny kvantifikátory jsou obecné, tzv. Skolemův normální tvar. Příklady: A je splnitelná, právě když A S je splnitelná. ( y)( x)(x > y)... definujeme konstantu c tak, že ( x)(x > c) ( x)( y)(x > y)... definujeme funkci f (x) tak, že ( x)(x > f (x)) ( t)( x)( y)( z)( u)( w)a(t, x, y, z, u, w)... c ( x)( y)( z)( u)( w)a(c, x, y, z, u, w)... g(x, y) ( x)( y)( u)( w)a(c, x, y, g(x, y), u, w)... h(x, y, u) ( x)( y)( u)a(c, x, y, g(x, y), u, h(x, y, u)) RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 8 / 13

9 Otevřené jádro formule Věta Nechť A je otevřená formule s volnými proměnnými x 1,..., x n. Potom pro libovolnou interpretaci M platí M = A, právě když M = ( x 1 )...( x n )A. A je tautologie ( x 1 )...( x n )A je tautologie. A se nazývá otevřené jádro formule ( x 1 )...( x n )A Příklad: ( x)( y)((x > y) (y > x)) je pravdivé v N, právě když (x > y) (y > x) je pravdivé v N A(x) je tautologie, právě když ( x)a(x) je tautologie. POZOR! A(x) ( x)a(x) není tautologie. A(x) ( x)a(x) není tautologie. ( x 1 )...( x n )A není logicky ekvivalentní s A. RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 9 / 13

10 Rezoluční metoda v predikátové logice 1 Teorie. Konjunkce formuĺı. 2 Prenexní normální tvar. 3 Skolemizace. 4 Otevřené jádro formule. 5 Klausule. 6 Resolventy formuĺı. 7 Kontradikce? Příklad: ( x)(p(x) Q(x)), ( x) P(x) = ( x)q(x)? ( x)(p(x) Q(x)) ( x) P(x) ( x)q(x) ( x)(p(x) Q(x)) ( z) P(z) ( y) Q(y) ( z)( x)( y)((p(x) Q(x)) P(z) Q(y)) ( x)( y)((p(x) Q(x)) P(c) Q(y)) (P(x) Q(x)) P(c) Q(y)) Q(c), Q(c), RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 10 / 13

11 Rezoluční metoda v predikátové logice Žádný člověk není zvíře Některé zvíře je šelma. Tudíž některá šelma není člověk. ( x)(c(x) z(x)), ( x)(z(x) s(x)) = ( x)(s(x) c(x)) ( x)( c(x) z(x)) ( x)(z(x) s(x)) ( x)(s(x) c(x)) ( x)( c(x) z(x)) ( v)(z(v) s(v)) ( u)(s(u) c(u)) ( x)( c(x) z(x)) (z(k) s(k)) ( u)(s(u) c(u)) ( x)( u)( c(x) z(x)) z(k) s(k) ( s(u) c(u)) (( c(x) z(x)) z(k) s(k) ( s(u) c(u)))... otevřená formule s(k), c(k), z(k), z(k),. RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 11 / 13

12 Příklady Každá větší ryba je rychlejší než menší ryba. Tudíž jestliže je nějaká ryba největší, pak je i nějaká ryba nejrychlejší, v(x, y), r(x, y) ( x)( y)(v(x, y) r(x, y)) = ( z)( y)v(z, y) ( z)( y)r(z, y) Sporem: ( x)( y)(v(x, y) r(x, y)) (( z)( u)v(z, u) ( z)( u)r(z, u)) ( x)( y)(v(x, y) r(x, y)) ( z)( u)v(z, u) ( s)( t)r(s, t) ( x)( y)( v(x, y) r(x, y)) ( z)( u)v(z, u) ( s)( t) r(s, t) RM: ( x)( y)( v(x, y) r(x, y)) ( u)v(c, u) ( s) r(s, f (s)) v(c, u), r(c, f (c)), v(c, f (c)), v(c, f (c)) r(c, f (c)). Spor. STROM: Tedy existuje c tak, že ( u)v(c, u). Tedy též existuje d tak, že r(c, d). Tedy i v(c, d). Ale v(c, d) r(c, d). Tedy spor. RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 12 / 13

13 Příklad Každý Cadillac je dražší než jakékoli levné vozidlo. Tudíž Cadillac není levné vozidlo, c(x), l(x) d(x, y) ( x)( y)((c(x) l(y)) d(x, y)) = ( x)(c(x) l(x)) Kdyby tomu tak nebylo, pak ( x)( y)((c(x) l(y) d(x, y))) ( x)(c(x) l(x)) Označme si toto konkrétní auto m. Platí c[m] l[m] (( c[m] l[y])) d[m, m]). Tedy d[m, m]. To je spor. RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 13 / 13

Predikátová logika. prvního řádu

Predikátová logika. prvního řádu Predikátová logika prvního řádu 2 Predikát Predikát je n-ární relace - vyjadřuje vlastnosti objektů a vztahy mezi objekty - z jednoduchého výroku vznikne vypuštěním alespoň jednoho jména objektu (individua)

Více

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu.

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu. 6 Kapitola 2 Příklady z predikátové logiky 2.1 Formule predikátové logiky 2.1.1 Příklad. Napište formule predikátové logiky odpovídající následujícím větám. Použijte k tomu predikátových symbolu uvedených

Více

Převyprávění Gödelova důkazu nutné existence Boha

Převyprávění Gödelova důkazu nutné existence Boha Převyprávění Gödelova důkazu nutné existence Boha Technické podrobnosti Důkaz: Konečná posloupnost výrokůkorektně utvořených formulí nějakého logického kalkulu), z nichž každý jelogickým) axiomem, postulátemteorie),

Více

Rezoluce v predikátové logice

Rezoluce v predikátové logice Rezoluce v predikátové logice Jiří Velebil: X01DML 15. října 2010: Rezoluce v PL 1/16 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. (M musí být množina sentencí, ϕ sentence.) 2 X nesplnitelná

Více

Rezoluce v predikátové logice

Rezoluce v predikátové logice Rezoluce v predikátové logice Jiří Velebil: AD0B01LGR 2015 Rezoluce v PL 1/16 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. (M musí být množina sentencí, ϕ sentence.) 2 X nesplnitelná iff X =

Více

Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz

Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz Jednoduché úsudky, kde VL nestačí Všechny opice mají rády banány Judy je opice Judy má ráda banány Z hlediska VL

Více

Klínové řemeny obalované s úzkým průřezem

Klínové řemeny obalované s úzkým průřezem profilem Řemenice a lanové kladky Spojky a křížové emeny Řetězové pohony Inteligentní nástroje Klínové ky Spojky a křížové klouby Ozubené řemeny Řetězová í nástroje Klínové řemeny a řemeny s úzkým profilem

Více

Predikátová logika. Kapitola 2. 2.1 Formule predikátové logiky

Predikátová logika. Kapitola 2. 2.1 Formule predikátové logiky 5 Kapitola 2 Predikátová logika 2.1 Formule predikátové logiky 2.1.1 Příklad. Napište formule predikátové logiky odpovídající následujícím větám. Použijte k tomu predikátových symbolů uvedených v textu.

Více

Logika I. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Logika I. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Logika I. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální

Více

Negace bázového atomu Negace atomu s existenčním termem Negace klauzule Negace množiny klauzulí Predikát rovnosti. Klauzulární logika

Negace bázového atomu Negace atomu s existenčním termem Negace klauzule Negace množiny klauzulí Predikát rovnosti. Klauzulární logika Vlastnosti klauzulí, negace Šárka Vavrečková Ústav informatiky, Filozoficko-přírodovědecká fakulta Slezské univerzity v Opavě sarka.vavreckova@fpf.slu.cz 27. října 2008 Věta o transferu bázového atomu

Více

3. Polynomy Verze 338.

3. Polynomy Verze 338. 3. Polynomy Verze 338. V této kapitole se věnujeme vlastnostem polynomů. Definujeme základní pojmy, které se k nim váží, definujeme algebraické operace s polynomy. Diskutujeme dělitelnost polynomů, existenci

Více

Predikátová logika. 3.1 Formule predikátové logiky

Predikátová logika. 3.1 Formule predikátové logiky 12 Kapitola 3 Predikátová logika 3.1 Formule predikátové logiky 3.1.1 Příklad. Napište formule predikátové logiky odpovídající následujícím větám. Použijte k tomu predikátových symbolů uvedených v textu.

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více

Cyklickékódy. MI-AAK(Aritmetika a kódy)

Cyklickékódy. MI-AAK(Aritmetika a kódy) MI-AAK(Aritmetika a kódy) Cyklickékódy c doc. Ing. Alois Pluháček, CSc., 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Evropský sociální fond Praha&

Více

Řešení: Ano. Řešení: Ne.

Řešení: Ano. Řešení: Ne. 1 ÚLOHY Z PREDIKÁTOVÉ LOGIKY Instance, varianty. UF.1.1. Substituovatelnost. 1. Buď ϕ formule ( z)(x=z)&y < x a dále x, y, z různé proměnné, F unární funkční symbol, c konstantní symbol. Uveďte, zda je

Více

Která tvrzení jsou pravdivá nezávisle na tom, který den v týdnu byla vyslovena? Tvrzení trosečníka Dana.

Která tvrzení jsou pravdivá nezávisle na tom, který den v týdnu byla vyslovena? Tvrzení trosečníka Dana. Trosečníci Adam, Barry, Code a Dan zapoměli po čase kalendář. Začali se dohadovat, který den v týdnu vlastně je. Každý z nich řekl svůj názor: A: Dnes je úterý nebo zítra je neděle B: Dnes není úterý nebo

Více

Jak jsem potkal logiku. Převod formule do (úplného) disjunktivního tvaru. Jan Hora

Jak jsem potkal logiku. Převod formule do (úplného) disjunktivního tvaru. Jan Hora Česká zemědělská univerzita 17. října 2011 U makléře Já: Dobrý den, rád bych koupil nějaký světlý byt. Chtěl bych, aby měl dvě koupelny a aby byl v domě výtah. A neměl by být nijak extrémně drahý. Makléř:

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

Výrobky SKF pro přenos výkonu

Výrobky SKF pro přenos výkonu Výrobky SK pro přenos výkonu Obsah 5 47 Řemeny 6 Klínové řemeny obalované s úzkým průřezem 10 Klínové řemeny obalované s klasickým průřezem Úzké klínové řemeny obalované 16 Ozubené klínové řemeny s úzkým

Více

diferenciální rovnice verze 1.1

diferenciální rovnice verze 1.1 Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování

Více

Rezoluce ve výrokové logice

Rezoluce ve výrokové logice Rezoluce ve výrokové logice Jiří Velebil: AD0B01LGR 2015 Rezoluce ve VL 1/13 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. 2 X nesplnitelná iff X = ff. 3 Hledání kritických důsledků X syntakticky.

Více

Matematická logika. Rostislav Horčík. horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik

Matematická logika. Rostislav Horčík. horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 18 Predikátová logika Motivace Výroková

Více

Obsah. 5 47 Řemeny. 49 72 Řetězy. 73 91 Spojky. 93 98 Pouzdra a náboje. 99 183 Řetězová kola. 185 273 Řemenice. 275 281 Inteligentní nástroje

Obsah. 5 47 Řemeny. 49 72 Řetězy. 73 91 Spojky. 93 98 Pouzdra a náboje. 99 183 Řetězová kola. 185 273 Řemenice. 275 281 Inteligentní nástroje Obsah 5 47 Řemeny 49 72 Řetězy 73 91 Spojky 93 98 Pouzdra a náboje 99 183 Řetězová kola 185 273 Řemenice 275 281 Inteligentní nástroje Značka SK znamená pro zákazníky více než dřív a také jim více nabízí.

Více

Spojitost funkcí více proměnných

Spojitost funkcí více proměnných Reálné funkce více proměnných Reálnou funkcí n reálných proměnných rozumíme zobrazení, které každé uspořádané n ticireálnýchčíselznějaképodmnožinykartézskéhosoučinur R=R n přiřazuje nějaké reálné číslo.

Více

1 Predikátová logika. 1.1 Syntax. jaký mohou mít formule význam (sémantiku). 1. Logických symbolů: 2. Speciálních (mimologických) symbolů:

1 Predikátová logika. 1.1 Syntax. jaký mohou mít formule význam (sémantiku). 1. Logických symbolů: 2. Speciálních (mimologických) symbolů: 1 Predikátová logika 1.1 Syntax Podobně jako ve výrokové logice začneme nejprve se syntaxí predikátové logiky, která nám říká, co jsou správně utvořené formule predikátové logiky. V další části tohoto

Více

1 REZOLUČNÍ FORMÁLNÍ DŮKAZY

1 REZOLUČNÍ FORMÁLNÍ DŮKAZY Vážená kolegyně / vážený kolego, součástí Vašeho rozšiřujícího studia informatiky je absolvování předmětu Logika pro učitele 2, jehož cílem je v návaznosti na předmět Logika pro učitele 1 seznámení se

Více

teorie logických spojek chápaných jako pravdivostní funkce

teorie logických spojek chápaných jako pravdivostní funkce Výroková logika teorie logických spojek chápaných jako pravdivostní funkce zabývá se způsoby tvoření výroků pomocí spojek a vztahy mezi pravdivostí různých výroků používá specifický jazyk složený z výrokových

Více

- y. 5.5 Kráceni a rozširování lomenvch výrazu. eseru: = = = x +.) Podmínkyrešitelnosti:x -:;l:o, x -:;l:3/2

- y. 5.5 Kráceni a rozširování lomenvch výrazu. eseru: = = = x +.) Podmínkyrešitelnosti:x -:;l:o, x -:;l:3/2 48 Príklad 73: Rozložte na soucin: a)4x2-25 c)x4-16 - e) x' + 27 b} 25x2 + 30xy + 9y2 d) 8x3-36~y + 54xy2-27l Rešení: a) Použije vzorec a2 - b2 = (a - b). (a + b), v nemž platí a = 2x, b = 5. Dostaneme:

Více

Historie matematiky a informatiky Cvičení 2

Historie matematiky a informatiky Cvičení 2 Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic

Více

Diskrétní matematika DISKRÉTNÍ MATEMATIKA. RNDr. Ivan Havlíček, CSc., ivan.havlicek@vsfs.cz ::

Diskrétní matematika DISKRÉTNÍ MATEMATIKA. RNDr. Ivan Havlíček, CSc., ivan.havlicek@vsfs.cz :: DISKRÉTNÍ MATEMATIKA pro obor aplikovaná informatika 1. diskrétní 1. ohleduplný, taktní 2. zachovávající tajemství 3. nespojitý, přetržitý Akademický slovník cizích slov (1998): 2. Literatura Berka, M.,

Více

Výrobky SKF pro přenos výkonu

Výrobky SKF pro přenos výkonu Výrobky SK pro přenos výkonu Obsah 5 47 Řemeny 6 Klínové řemeny obalované s úzkým průřezem 10 Klínové řemeny obalované s klasickým průřezem 15 Úzké klínové řemeny obalované 16 Ozubené klínové řemeny s

Více

Lineární algebra I. látka z. I. semestru informatiky MFF UK. Obsah. Zpracovali: Ondřej Keddie Profant, Jan Zaantar Štětina

Lineární algebra I. látka z. I. semestru informatiky MFF UK. Obsah. Zpracovali: Ondřej Keddie Profant, Jan Zaantar Štětina 1 Lineární algebra I látka z I semestru informatiky MFF UK Zpracovali: Ondřej Keddie Profant, Jan Zaantar Štětina Obsah Matice2 Grupy4 Grupa permutací4 Znaménko, inverze a transpozice grup5 Podgrupy5 Tělesa6

Více

výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.

výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává. 1 Základní pojmy matematické logiky Výrokový počet... syntaktické hledisko Predikátový počet... sémantické hledisko 1.1 VÝROKOVÝ POČET výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.

Více

Á É Č ď ý ý Č Ť ž ý ý ť žž Ž ý ú ž š ý ž ž ž š š š ý Š ť ý ý š ž ž ý ž ž Ň ý ž ť ť ú ž ý š ž š ž ž š ž š ž ý ý šť ý Ý Ú ň ý ý Ý ž ý ý ť ý ž ý ý ž ý ď ý ý š ý ž ú ú ď ý ž š ž ý ž ť ý ý ý ý ý Á ý ď ž š ž

Více

Co byste měl/a zvládnout po 4. týdnu

Co byste měl/a zvládnout po 4. týdnu Co byste měl/a zvládnout po 4. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B0LAG Zvládnutá látka po 4. týdnu /9 Slovník základních pojmů Množina generátorů

Více

Matematika II: Pracovní listy do cvičení

Matematika II: Pracovní listy do cvičení Matematika II: Pracovní listy do cvičení Radomír Paláček, Petra Schreiberová, Petr Volný Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Příklady Integrální počet funkcí

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A středa 19. listopadu 2014, 11:20 13:20 ➊ (8 bodů) Rozhodněte o stejnoměrné konvergenci řady n 3 n ( ) 1 e xn2 x 2 +n 2 na množině A = 0, + ). ➋

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

Funkce zadané implicitně

Funkce zadané implicitně Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf

Více

LOGIKA A TEORIE MNOŽIN

LOGIKA A TEORIE MNOŽIN Poznámka: Tento text vzniká jako materiál k přednášce Logika a teorie množin na MFFUKvPraze.Jelikožjdeotextvefázivzniku,obsahujejistěřadunedostatků, které budou průběžně odstraňovány, stejně jako se text

Více

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie Komplexní čísla. Komplexní čísla jsou objekty tvaru α+iβ, kde α, β R. Množina všech komplexních čísel se značí C. Rovnost komplexních

Více

MATEMATICKÁ TEORIE ROZHODOVÁNÍ

MATEMATICKÁ TEORIE ROZHODOVÁNÍ MATEMATICKÁ metodický list č. 1 Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do těchto dílčích témat: 1. Řešení úloh ve stavovém

Více

š š š ů ů š ž ž š É Ú Š ý ů ý ů ů É ů ů ý Ů ý Ů ť š ů š ů š Č ý ň ú Č ý ů ň ý ž š ž š ý ů ň š š ý š ž ů ů š Š Č šť Č š š ý ů ý ý š Š ů Š ů ů ý ů ů Š š š ů ý Š ů š ý ý ů ů ý š ý Š ž šť Š ž ý Č š ž š š ý

Více

2. SÉRIE: SOUSTAVY LINEÁRNÍCH ROVNIC, METODY E ENÍ. lineárních rovnic (prove te zkou²ku dosazením):

2. SÉRIE: SOUSTAVY LINEÁRNÍCH ROVNIC, METODY E ENÍ. lineárních rovnic (prove te zkou²ku dosazením): ZÁKLADY MATEMATIKY 2 2. SÉRIE: SOUSTAVY LINEÁRNÍCH ROVNIC, METODY E ENÍ P ípravní úlohy. V této sérii se p edpokládá, ºe uº umíte ur it v²echna e²ení jednoduchých soustav lineárních rovnic. Otestujte se

Více

Regresní a korelační analýza

Regresní a korelační analýza Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)

Více

Í Ť ř Í Í Í ř Ú Á Á Á Ř Ň Ú ř ň Ě Ě É Ů Ů Č Ý Ě ř ř ň Ž š ň ř ň ř ý ú ý Úř ř ú ř ř Ž Ř Ě Ě ý Ů Á Ě Č É É Ě Á Ú Í ě ě ů ů ý ě Ě Ě Ý Ů ů ů Ú Í ě ě ý ů š Ž ř ě Č ř š ě ě ě ů ř Ú ě ú ě ů š ř ř ý ů ů ř š ú

Více

1. MATEMATICKÁ LOGIKA A MNOŽINY

1. MATEMATICKÁ LOGIKA A MNOŽINY . MATEMATICKÁ LOGIKA A MNOŽINY Průvodce studiem V následující kapitole si připomeneme některé význačné poznatky z matematické logiky a teorie množin, tvořící základ množinově logického aparátu. S celou

Více

ZADÁNÍ ZKOUŠKOVÉ PÍSEMNÉ PRÁCE Z PŘEDMĚTU LINEÁRNÍ ALGEBRA PRO IT. Verze 1.1A

ZADÁNÍ ZKOUŠKOVÉ PÍSEMNÉ PRÁCE Z PŘEDMĚTU LINEÁRNÍ ALGEBRA PRO IT. Verze 1.1A Verze 1.1A Čas na práci: 1 minut Za každý úkol můžete získat maximálně 1 bodů. Řešení každého příkladu zapisujte čitelně a srozumitelně, 2x 1 +4x 3 +3x 4 = 4 x 1 +2x 2 +4x 3 3x 4 = 1 2x 1 +x 2 x 3 3x 4

Více

Ě Ý Č ě ř š ě ý Žď ů ý č ě ě č ř ř ý ž ě š č ů ř š Ž ř ř ž ů č ě š š ý ý š ý ý ň ř š ý ř ě š ě š ž ě ž ě ř ž ý ř ř ý ý ý ř č ěř č č ě š ě ý ů ž ř ř ě ž ě ů ů ř š ř š ů ř š ě ý ů ř ě č ě ě Žď ý ů ě č ý

Více

I. Úvodní pojmy. Obsah

I. Úvodní pojmy. Obsah I. Úvodní pojmy Obsah 1 Matematická logika 2 1.1 Výrok,logickéoperátory,výrokovéformuleaformy... 2 1.2 Logickávýstavbamatematiky... 3 1.2.1 Základnímetodydůkazůmatematickýchvět..... 3 1.2.2 Negacevýroků.....

Více

Í Í ů ř ý ý ď ž ě Č č č č š ě š ě ě ě ě ž ě ě ř ě ě ú ě ě ě č řš ě ř ě ě ž ý ě ž č š ě ř ě ě řč ě š ů ů š ě ý ě ž ř č š ě ě ř š ř ý ě ě š ř ž ě ě ě ě ů ě ú ů ě ě Á ý ě ý ň Úč ž ů ý ě ů š ě č ř š ě ů Ž

Více

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška Disjunktivní a konjunktivní normáln lní tvar formule 2.přednáška Disjunktivní normáln lní forma Definice Řekneme, že formule ( A ) je v disjunktivním normálním tvaru (formě), zkráceně v DNF, jestliže je

Více

8 Kořeny cyklických kódů, BCH-kódy

8 Kořeny cyklických kódů, BCH-kódy 24 8 Kořeny cyklických kódů, BCH-kódy Generující kořeny cyklických kódů Nechť K je cyklický kód délky n nad Z p s generujícím polynomem g(z). Chceme najít rozšíření T tělesa Z p, tedy nějaké těleso GF

Více

Využití programu MS Excel při výuce vlastností kvadratické funkce

Využití programu MS Excel při výuce vlastností kvadratické funkce Využití programu MS Excel při výuce vlastností kvadratické funkce Martin Mikuláš Tabulkové kalkulátory lze ve škole velmi dobře využít při výuce matematiky. Lze v nich totiž snadno naprogramovat aplikace,

Více

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou,

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou, Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 2. Reálná čísla, funkce reálné proměnné V této kapitole zavádíme množinu, na níž stojí celá matematická analýza:

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

Á Š ř á ář Á É Í á š Ř ÁŘ á é ř č á ž é ř š ů ř á é ě š ď ř š šč Č á ě ý č ář é ď ý ý ř ě č ě ý Č Á Ě Ý Č ř ě ý č á š ž áš ě ž š ž č ě é č ě č éř ř š ý š ž á é áš č á ů á š š ř éž ř ý č á á ě ř á á ý ř

Více

Testování a spolehlivost. 6. Laboratoř Ostatní spolehlivostní modely

Testování a spolehlivost. 6. Laboratoř Ostatní spolehlivostní modely Testování a spolehlivost ZS 2011/2012 6. Laboratoř Ostatní spolehlivostní modely Martin Daňhel Katedra číslicového návrhu Fakulta informačních technologií ČVUT v Praze Příprava studijního programu Informatika

Více

Výroková a predikátová logika Výpisky z cvičení Martina Piláta

Výroková a predikátová logika Výpisky z cvičení Martina Piláta Výroková a predikátová logika Výpisky z cvičení Martina Piláta Jan Štětina 1. prosince 2009 Cviˇcení 29.9.2009 Pojem: Sekvence je konečná posloupnost, značíme ji predikátem seq(x). lh(x) je délka sekvence

Více

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Lineární algebra 10. přednáška: Ortogonalita II Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text byl vytvořen

Více

5 Inteligentní usuzování

5 Inteligentní usuzování 5 Inteligentní usuzování Jak již bylo řečeno v předcházející kapitole, způsob reprezentování znalostí a způsob jejich využívaní pro usuzování spolu úzce souvisejí. Připomeňme zde tedy ještě jednou používaná

Více

Lineární Regrese Hašovací Funkce

Lineární Regrese Hašovací Funkce Hašovací Funkce Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v

Více

Sbírka příkladů z matematické analýzy II. Petr Tomiczek

Sbírka příkladů z matematické analýzy II. Petr Tomiczek Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah Diferenciální rovnice. řádu 3. Separace proměnných......................... 3. Přechod k separaci.......................... 4.3 Variace konstant...........................

Více

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Kapitola 9 Skalární součin Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Definice 9.1 Je-li x = (x 1,..., x n ) T R n 1 reálný

Více

uvedení do problematiky i Bezpečnostní kódy: detekční kódy = kódy zjišťující chyby samoopravné kódy = kódy opravující chyby příklady kódů:

uvedení do problematiky i Bezpečnostní kódy: detekční kódy = kódy zjišťující chyby samoopravné kódy = kódy opravující chyby příklady kódů: I. Bezpečnostníkódy úvod základní pojmy počet zjistitelných a opravitelných chyb 2prvkové těleso a lineární prostor jednoduché bezpečnostní kódy lineární kódy Hammingův kód smysluplnost bezpečnostních

Více

č ý é ů é ý é é ž ó ž Č é ě ěš é ř ů ř ý ěž č ň č ý č é č ř ě é č é č ů č ž š ě ý ě š č ů ů é č é č ý é é ž č ě ě é ý č ě é č ů ě ů ě ý ů ě č é ř é č ď ř ě ýš č č č č č é é č ž č ě š ť ě ě ý ř é ž č ý

Více

http://user.mendelu.cz/marik, kde je dostupný ve formě vhodné pro tisk i ve formě vhodné pro prohlížení na obrazovce a z adresy http://is.mendelu.

http://user.mendelu.cz/marik, kde je dostupný ve formě vhodné pro tisk i ve formě vhodné pro prohlížení na obrazovce a z adresy http://is.mendelu. Inženýrská matematika Robert Mařík Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg.

Více

1. Pravděpodobnost a statistika (MP leden 2010)

1. Pravděpodobnost a statistika (MP leden 2010) 1. Pravděpodobnost a statistika (MP leden 2010) Pravděpodobnost pojmy 1. Diskrétní pravděpodobnostní prostor(definice, vlastnosti, příklad). Diskrétní pravděpodobnostní prostor je trojice(ω, A, P), kde

Více

Ě Ý Í Č ř Á Š ě Š é éí Č é Ž š ě Ž ě é ž ý Ť žš ů ž ů ě š ů ě ý č š š ě ť ý ý š ů é ř ž é é č é ř ů ů ěř é č Ž š ý ř é Íů ů ž ů š š Í č ý ý ý ě ú ů ž ř ý é ř ř é š ěř ý ě ý ě ů ů ě ž ů ř ř é ěí é ž š ř

Více

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení., Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou

Více

Logika. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD.

Logika. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD. Tematické okruhy: 1. Stručné dějiny logiky a její postavění ve vědě 2. Analýza složených výroků pomocí pravdivostní tabulky 3. Subjekt-predikátová

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Integrální počet VY_32_INOVACE_M0308. Matematika

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Integrální počet VY_32_INOVACE_M0308. Matematika Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 0 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ..07/.5.00/3.0 Zlepšení podmínek pro

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

D DE = = + [ + D[ [ D = - - XY = = + -

D DE = = + [ + D[ [ D = - - XY = = + - Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího

Více

Základy podmíněné matematické optimalizace

Základy podmíněné matematické optimalizace Základy podmíněné matematické optimalizace Zpracoval Doc. RNDr. Zdeněk Hlaváč, CSc V tématu nepodmíněné optimalizace jsme na pohyb bodu v prostoru nezávisle proměnných nekladli žádná omezení. V případě

Více

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j. Kapitola 3 Počítání s maticemi Matice stejného typu můžeme sčítat a násobit reálným číslem podobně jako vektory téže dimenze. Definice 3.1 Jsou-li A (a ij ) a B (b ij ) dvě matice stejného typu m n, pak

Více

Kapitola 1. Tenzorový součin matic

Kapitola 1. Tenzorový součin matic Kapitola 1 Tenzorový součin matic Definice 1.1. Buď F komutativní těleso. Pro matice A F m n a B F r s definujeme tenzorový součin A B jako matici o rozměru mr ns zapsanou blokově: A 11 B A 12 B A 1n B

Více

Tento text je stručným shrnutím těch tvrzení Ramseyovy teorie, která zazněla

Tento text je stručným shrnutím těch tvrzení Ramseyovy teorie, která zazněla Ramseyovy věty Martin Mareš Tento text je stručným shrnutím těch tvrzení Ramseyovy teorie, která zazněla na mé letošní přednášce z Kombinatoriky a grafů I Předpokládá, že čtenář se již seznámil se základní

Více

STŘEDOŠKOLSKÁ MATEMATIKA

STŘEDOŠKOLSKÁ MATEMATIKA STŘEDOŠKOLSKÁ MATEMATIKA MOCNINY, ODMOCNINY, ALGEBRAICKÉ VÝRAZY VŠB Technická univerzita Ostrava Ekonomická fakulta 006 Mocniny, odmocniny, algebraické výrazy http://moodle.vsb.cz/ 1 OBSAH 1 Informace

Více

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

Klasická predikátová logika

Klasická predikátová logika Klasická predikátová logika Matematická logika, LS 2012/13, závěrečná přednáška Libor Běhounek www.cs.cas.cz/behounek/teaching/malog12 PřF OU, 6. 5. 2013 Symboly klasické predikátové logiky Poznámky Motivace

Více

Copyright c R.Fučík FJFI ČVUT Praha, 2008

Copyright c R.Fučík FJFI ČVUT Praha, 2008 funkcí funkcí funkce Copyright c R.Fučík FJFI ČVUT Praha, 2008 funkcí Polynom p(x) = x 4 10x 3 + 35x 2 50x + 24 funkce funkcí Polynom p(x) = x 4 10x 3 + 35x 2 50x + 24 T 0 (x) = 24 funkce funkcí Polynom

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

1 Matematika jako část logiky

1 Matematika jako část logiky 1 Matematika jako část logiky Matematika, kterou jste se učili na střední škole, byla spíše matematikou praktickou. To znamená, že obsahovala hlavně návody jak počítat s čísly, jak upravovat různé výrazy

Více

MATEMATICKÁ TEORIE ROZHODOVÁNÍ

MATEMATICKÁ TEORIE ROZHODOVÁNÍ MATEMATICKÁ TEORIE ROZHODOVÁNÍ Podklady k soustředění č. 2 Reprezentace a zpracování znalostí 1. dílčí téma: Reprezentace znalostí V polovině 70. let se začal v umělé inteligenci přesouvat důraz od hledání

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Cvičení 3. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Cvičení 3. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Cvičení 3 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické

Více

Č š é č š ž Č Í é ř ě ě š ž ř ě č ř š č č ž ř Í č č č ě ř ž ěř č č Č ČŠ ř ě é š Ž ř ě š ď Š ř ě č č šť ě ů ě é é ě š ž ě ř š ř šš é é ďě š é ě ě š ř ů šť ě š ě ě é š ř ě š é č š č ě š ě é ě č ě é ě é é

Více

ř ž š é ř č ř ý é ě ě š ě š ť ř é č é Ž é ě ěú ř ž ý úř č éú žú č úč Š ú ě ř é č ř ý é č ž ý š é ř ř ů é č Ť řž ř č č é é ř š ý ú é ý č é ř é ž ě ř é ý č ě ě ř é ž ů ý é č ě ž ě ť č š Ú č ó ú ý č ú ě š

Více

Matematika 1 pro PEF PaE

Matematika 1 pro PEF PaE Vázané extrémy funkcí více proměnných 1 / 13 Matematika 1 pro PEF PaE 11. Vázané extrémy funkcí více proměnných Přemysl Jedlička Katedra matematiky, TF ČZU Vázané extrémy funkcí více proměnných Vázané

Více

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů...

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů... [1] Báze Každý lineární (pod)prostor má svou bázi Vzhledem ke zvolené bázi určujeme souřadnice vektorů... a) base, 4, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p.

Více

Definiční obor funkce více proměnných, vrstevnice apod.

Definiční obor funkce více proměnných, vrstevnice apod. vičení 1 Definiční obor funkce více proměnných, vrstevnice apod. 1. Najděte definiční obor funkce fx, y = x y + y x. Řešení: D f = { x y a y x }, což je konvexní množina omezená křivkami x = y a y = x.

Více

Úvod do matematiky. Mgr. Radek Horenský, Ph.D. Důkazy

Úvod do matematiky. Mgr. Radek Horenský, Ph.D. Důkazy Úvod do matematiky Mgr. Radek Horenský, Ph.D. Důkazy Matematika a matematické chápání jako takové je založeno na logické výstavbě. Základními stavebními prvky jsou definice, věty a důkazy. Definice zavádějí

Více

Databázové systémy. * relační kalkuly. Tomáš Skopal. - relační model

Databázové systémy. * relační kalkuly. Tomáš Skopal. - relační model Databázové systémy Tomáš Skopal - relační model * relační kalkuly Osnova přednášky relační kalkuly doménový n-ticový Relační kalkuly využití aparátu predikátové logiky 1. řádu pro dotazování rozšíření

Více

Ě ž ž ď ž ž ó ž Š ú ó ž ť Ť Š ó Ě ž š Ž ž ú š ď ů š ů ú š ú š ů š ó šú ú ú ď ó ú ž ú ú š ž š É š ů ú ó ú Ž š ů Ž ů ž ů ů š ů š ž š š Ť ž ú ť ž ů ž ŽŽ ú ž ž ž Ž Ť Ťú Ž Ě š ž ú ž Ž š ú Ť Ž ď ů ž ú ú Ý Ú

Více

ř Ý Ť č š Ž č č ů č ř č ů ů č č ř ú ř ř ř č Ý Ý č š Ě Řž č ň ň Ě Ř č č ř Ó ř š ř ř Ě č ř č č Ř š Ž č ů Ó č ů ř ů ů É č č ř ř ů ř ř Ý Ď č š Ů ž Ř š Ř Ř š č č ř ů ř ř č ř č š ř ř č Ž č č ů č ř Ó č ů č č

Více

Přijímací zkouška - matematika

Přijímací zkouška - matematika Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,

Více

Dnešní program odvozování v Bayesovských sítích exaktní metody (enumerace, eliminace proměnných) aproximační metody y( (vzorkovací techniky)

Dnešní program odvozování v Bayesovských sítích exaktní metody (enumerace, eliminace proměnných) aproximační metody y( (vzorkovací techniky) Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Bayesovská síť zachycuje závislosti mezi náhodnými proměnnými Pro zopakování orientovaný acyklický graf

Více