Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Rozměr: px
Začít zobrazení ze stránky:

Download "Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12"

Transkript

1 Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 1 / 13

2 Logika X. Prenexní normální tvar. Skolemizace. Rezoluční metoda. RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 2 / 13

3 Prenexní normální tvar Definice Formule je v prenexním normální tvaru, jestliže je ve tvaru (Q 1 x 1 )...(Q n x n )A, kde A je otevřená formule, Q i jsou kvantifikátory, x i jsou proměnné. ( x)( y)( z)(y < x y ), ( k)(n = 2k) Definice Formule B je varianta formule A, jestliže se liší jen přejmenováním vázaných proměnných. ( u)( v)( w)(w < u v ), ( l)(n = 2l). Věta Je-li B varianta A, pak A B. ( x)( y)( z)(y < x y ) ( u)( v)( w)(w < u v ) (( k)(n = 2k) ( l)(n = 2l)) RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 3 / 13

4 Prenexní operace Chceme mít formule v prenexním tvaru. Víme: (( x)a ( x)b) ( x)(a B) (( x)a ( x)b) ( x)(a B) Prenexní operace 1 ( x)a ( x) A ( x)a ( x) A 2 Není-li x volná v A, pak (A ( x)b(x)) ( x)(a B(x)) (A ( x)b(x)) ( x)(a B(x)) 3 Není-li x volná v A, pak (A ( x)b(x)) ( x)(a B(x)) (A ( x)b(x)) ( x)(a B(x)) 4 Není-li x volná v B, pak (( x)a(x) B) ( x)(a(x) B) (( x)a(x) B) ( x)(a(x) B) RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 4 / 13

5 Prenexní operace - důkaz ad 2. Není-li x volná v A, pak (A ( x)b(x)) ( x)(a B(x)). Dokážeme (A ( x)b(x)) ( x)(a B(x)). Sporem. Kdyby ex. M tak, že M = (A ( x)b(x)) ( x)(a B(x)), pak M = (A ( x)b(x)) a M = ( x)( A B(x)), tedy existuje m M tak, že A B[m], ale A B[m].. Dokážeme ( x)(a B(x)) (A ( x)b(x)). Sporem. Kdyby ex. M tak, že M = ( x)(a B(x) (A ( x)b(x)), pak M = ( x)(a B(x)) a M = A a M = ( x) B(x), tedy existuje m M tak, že B[m], ale A B[m] a A.. ad 3. Není-li x volná v A, pak (A ( x)b(x)) ( A ( x)b(x)) ( x)( A B(x)) ( x)(a B(x)) ad 4. Není-li x volná v B, pak (( x)a(x) B) ( ( x)a(x) B) (( x) A(x) B) ( x)(a(x) B) RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 5 / 13

6 Prenexní normální tvar Věta Ke každé formuli existuje formule s ní ekvivalentní v prenexním normálním tvaru. Příklady: 1 ( a)( b)((a < b) ( c)(a < b < c) ( a)( b)( c)((a < b) (a < b < c) 2 ( x)(x = 0) ( x)(x = S(0)) ( x)(x = 0) ( y)(y = S(0)) ( x)( y)((x = 0) (y = S(0))) 3 ( x)(x > 0) ( y)(x + y > 0)) ( z)(z > 0) ( y)(x + y > 0)) ( z)( y)((z > 0) (x + y > 0)) ( y)( z)((z > 0) (x + y > 0)) 4 ( ɛ)((ɛ > 0) ( δ)( x)((δ > 0) ( x c < δ) ( f (x) f (c) < ɛ)) ( ɛ)( δ)( x)((ɛ > 0) ((δ > 0) ( x c < δ) ( f (x) f (c) < ɛ)) RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 6 / 13

7 Skolemizace Chceme jen obecné kvantifikátory. Definice T je konzervativní rozšíření teorie T, právě když L L a pro každou formuli jazyka L platí T = A, právě když T = A. ( x)a(x)... vybereme novou konstantu c L = L {c} T = T {( x)a(x) A(c)} ( x)( y)a(x, y)... definujeme novou funkci f (x) L = L {f (x)} T = T {( x)a(x, f (x))) ( x)( y)a(x, y)} RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 7 / 13

8 Skolemův normální tvar Věta Ke každé uzavřené formuli A existuje formule A S, která je v prenexním normální tvaru, kde všechny kvantifikátory jsou obecné, tzv. Skolemův normální tvar. Příklady: A je splnitelná, právě když A S je splnitelná. ( y)( x)(x > y)... definujeme konstantu c tak, že ( x)(x > c) ( x)( y)(x > y)... definujeme funkci f (x) tak, že ( x)(x > f (x)) ( t)( x)( y)( z)( u)( w)a(t, x, y, z, u, w)... c ( x)( y)( z)( u)( w)a(c, x, y, z, u, w)... g(x, y) ( x)( y)( u)( w)a(c, x, y, g(x, y), u, w)... h(x, y, u) ( x)( y)( u)a(c, x, y, g(x, y), u, h(x, y, u)) RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 8 / 13

9 Otevřené jádro formule Věta Nechť A je otevřená formule s volnými proměnnými x 1,..., x n. Potom pro libovolnou interpretaci M platí M = A, právě když M = ( x 1 )...( x n )A. A je tautologie ( x 1 )...( x n )A je tautologie. A se nazývá otevřené jádro formule ( x 1 )...( x n )A Příklad: ( x)( y)((x > y) (y > x)) je pravdivé v N, právě když (x > y) (y > x) je pravdivé v N A(x) je tautologie, právě když ( x)a(x) je tautologie. POZOR! A(x) ( x)a(x) není tautologie. A(x) ( x)a(x) není tautologie. ( x 1 )...( x n )A není logicky ekvivalentní s A. RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 9 / 13

10 Rezoluční metoda v predikátové logice 1 Teorie. Konjunkce formuĺı. 2 Prenexní normální tvar. 3 Skolemizace. 4 Otevřené jádro formule. 5 Klausule. 6 Resolventy formuĺı. 7 Kontradikce? Příklad: ( x)(p(x) Q(x)), ( x) P(x) = ( x)q(x)? ( x)(p(x) Q(x)) ( x) P(x) ( x)q(x) ( x)(p(x) Q(x)) ( z) P(z) ( y) Q(y) ( z)( x)( y)((p(x) Q(x)) P(z) Q(y)) ( x)( y)((p(x) Q(x)) P(c) Q(y)) (P(x) Q(x)) P(c) Q(y)) Q(c), Q(c), RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 10 / 13

11 Rezoluční metoda v predikátové logice Žádný člověk není zvíře Některé zvíře je šelma. Tudíž některá šelma není člověk. ( x)(c(x) z(x)), ( x)(z(x) s(x)) = ( x)(s(x) c(x)) ( x)( c(x) z(x)) ( x)(z(x) s(x)) ( x)(s(x) c(x)) ( x)( c(x) z(x)) ( v)(z(v) s(v)) ( u)(s(u) c(u)) ( x)( c(x) z(x)) (z(k) s(k)) ( u)(s(u) c(u)) ( x)( u)( c(x) z(x)) z(k) s(k) ( s(u) c(u)) (( c(x) z(x)) z(k) s(k) ( s(u) c(u)))... otevřená formule s(k), c(k), z(k), z(k),. RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 11 / 13

12 Příklady Každá větší ryba je rychlejší než menší ryba. Tudíž jestliže je nějaká ryba největší, pak je i nějaká ryba nejrychlejší, v(x, y), r(x, y) ( x)( y)(v(x, y) r(x, y)) = ( z)( y)v(z, y) ( z)( y)r(z, y) Sporem: ( x)( y)(v(x, y) r(x, y)) (( z)( u)v(z, u) ( z)( u)r(z, u)) ( x)( y)(v(x, y) r(x, y)) ( z)( u)v(z, u) ( s)( t)r(s, t) ( x)( y)( v(x, y) r(x, y)) ( z)( u)v(z, u) ( s)( t) r(s, t) RM: ( x)( y)( v(x, y) r(x, y)) ( u)v(c, u) ( s) r(s, f (s)) v(c, u), r(c, f (c)), v(c, f (c)), v(c, f (c)) r(c, f (c)). Spor. STROM: Tedy existuje c tak, že ( u)v(c, u). Tedy též existuje d tak, že r(c, d). Tedy i v(c, d). Ale v(c, d) r(c, d). Tedy spor. RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 12 / 13

13 Příklad Každý Cadillac je dražší než jakékoli levné vozidlo. Tudíž Cadillac není levné vozidlo, c(x), l(x) d(x, y) ( x)( y)((c(x) l(y)) d(x, y)) = ( x)(c(x) l(x)) Kdyby tomu tak nebylo, pak ( x)( y)((c(x) l(y) d(x, y))) ( x)(c(x) l(x)) Označme si toto konkrétní auto m. Platí c[m] l[m] (( c[m] l[y])) d[m, m]). Tedy d[m, m]. To je spor. RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 13 / 13

Matematická logika. Rostislav Horčík. horcik

Matematická logika. Rostislav Horčík.  horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 18 Příklad Necht L je jazyk obsahující

Více

Predikátová logika. prvního řádu

Predikátová logika. prvního řádu Predikátová logika prvního řádu 2 Predikát Predikát je n-ární relace - vyjadřuje vlastnosti objektů a vztahy mezi objekty - z jednoduchého výroku vznikne vypuštěním alespoň jednoho jména objektu (individua)

Více

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu.

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu. 6 Kapitola 2 Příklady z predikátové logiky 2.1 Formule predikátové logiky 2.1.1 Příklad. Napište formule predikátové logiky odpovídající následujícím větám. Použijte k tomu predikátových symbolu uvedených

Více

Úvod do logiky (PL): negace a ekvivalence vět mimo logický

Úvod do logiky (PL): negace a ekvivalence vět mimo logický Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (PL): negace a ekvivalence vět mimo logický čtverec

Více

Převyprávění Gödelova důkazu nutné existence Boha

Převyprávění Gödelova důkazu nutné existence Boha Převyprávění Gödelova důkazu nutné existence Boha Technické podrobnosti Důkaz: Konečná posloupnost výrokůkorektně utvořených formulí nějakého logického kalkulu), z nichž každý jelogickým) axiomem, postulátemteorie),

Více

Matematická logika. Rostislav Horčík. horcik

Matematická logika. Rostislav Horčík.  horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Splnitelnost množin Definice Množina

Více

Rezoluce v predikátové logice

Rezoluce v predikátové logice Rezoluce v predikátové logice Jiří Velebil: X01DML 15. října 2010: Rezoluce v PL 1/16 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. (M musí být množina sentencí, ϕ sentence.) 2 X nesplnitelná

Více

Rezoluce v predikátové logice

Rezoluce v predikátové logice Rezoluce v predikátové logice Jiří Velebil: AD0B01LGR 2015 Rezoluce v PL 1/16 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. (M musí být množina sentencí, ϕ sentence.) 2 X nesplnitelná iff X =

Více

Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz

Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz Jednoduché úsudky, kde VL nestačí Všechny opice mají rády banány Judy je opice Judy má ráda banány Z hlediska VL

Více

Predikátová logika. Kapitola 2. 2.1 Formule predikátové logiky

Predikátová logika. Kapitola 2. 2.1 Formule predikátové logiky 5 Kapitola 2 Predikátová logika 2.1 Formule predikátové logiky 2.1.1 Příklad. Napište formule predikátové logiky odpovídající následujícím větám. Použijte k tomu predikátových symbolů uvedených v textu.

Více

Klínové řemeny obalované s úzkým průřezem

Klínové řemeny obalované s úzkým průřezem profilem Řemenice a lanové kladky Spojky a křížové emeny Řetězové pohony Inteligentní nástroje Klínové ky Spojky a křížové klouby Ozubené řemeny Řetězová í nástroje Klínové řemeny a řemeny s úzkým profilem

Více

Základní pojmy matematické logiky

Základní pojmy matematické logiky KAPITOLA 1 Základní pojmy matematické logiky Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. 1. Výroková logika Co je

Více

Logika I. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Logika I. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Logika I. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální

Více

Přednáška 3: rozhodování o platnosti úsudku

Přednáška 3: rozhodování o platnosti úsudku Přednáška 3: rozhodování o platnosti úsudku Marie Duží marie.duzi@vsb.cz 1 Úvod do teoretické informatiky Úsudky Úsudek je platný, jestliže nutně, za všech okolností, tj. při všech interpretacích, ve kterých

Více

Negace bázového atomu Negace atomu s existenčním termem Negace klauzule Negace množiny klauzulí Predikát rovnosti. Klauzulární logika

Negace bázového atomu Negace atomu s existenčním termem Negace klauzule Negace množiny klauzulí Predikát rovnosti. Klauzulární logika Vlastnosti klauzulí, negace Šárka Vavrečková Ústav informatiky, Filozoficko-přírodovědecká fakulta Slezské univerzity v Opavě sarka.vavreckova@fpf.slu.cz 27. října 2008 Věta o transferu bázového atomu

Více

3. Polynomy Verze 338.

3. Polynomy Verze 338. 3. Polynomy Verze 338. V této kapitole se věnujeme vlastnostem polynomů. Definujeme základní pojmy, které se k nim váží, definujeme algebraické operace s polynomy. Diskutujeme dělitelnost polynomů, existenci

Více

Predikátová logika. 3.1 Formule predikátové logiky

Predikátová logika. 3.1 Formule predikátové logiky 12 Kapitola 3 Predikátová logika 3.1 Formule predikátové logiky 3.1.1 Příklad. Napište formule predikátové logiky odpovídající následujícím větám. Použijte k tomu predikátových symbolů uvedených v textu.

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více

Výroková logika - opakování

Výroková logika - opakování - opakování ormální zavedení Výroková formule: Máme neprázdnou nejvýše spočetnou množinu A výrokových proměnných. 1. Každá proměnná je výroková formule 2. Když α, β jsou formule, potom ( α), (α β), (α

Více

Cyklickékódy. MI-AAK(Aritmetika a kódy)

Cyklickékódy. MI-AAK(Aritmetika a kódy) MI-AAK(Aritmetika a kódy) Cyklickékódy c doc. Ing. Alois Pluháček, CSc., 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Evropský sociální fond Praha&

Více

Matematické důkazy Struktura matematiky a typy důkazů

Matematické důkazy Struktura matematiky a typy důkazů Matematické důkazy Struktura matematiky a typy důkazů Petr Liška Masarykova univerzita 18.9.2014 Motto: Matematika je tvořena z 50 procent formulemi, z 50 procent důkazy a z 50 procent představivostí.

Více

Predikátová logika dokončení

Predikátová logika dokončení Predikátová logika dokončení Jiří Velebil: X01DML 1. října 2010: Predikátová logika dokončení 1/18 Syntaktická analýza Jako ve výrokové logice (syntaktické stromy). Každý list úspěšného stromu je obsazen

Více

Řešení: Ano. Řešení: Ne.

Řešení: Ano. Řešení: Ne. 1 ÚLOHY Z PREDIKÁTOVÉ LOGIKY Instance, varianty. UF.1.1. Substituovatelnost. 1. Buď ϕ formule ( z)(x=z)&y < x a dále x, y, z různé proměnné, F unární funkční symbol, c konstantní symbol. Uveďte, zda je

Více

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE FBI VŠB-TUO 28. března 2014 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y

Více

Úvod do logiky (PL): analýza vět mimo logický čtverec

Úvod do logiky (PL): analýza vět mimo logický čtverec Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (PL): analýza vět mimo logický čtverec doc. PhDr.

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

Jak jsem potkal logiku. Převod formule do (úplného) disjunktivního tvaru. Jan Hora

Jak jsem potkal logiku. Převod formule do (úplného) disjunktivního tvaru. Jan Hora Česká zemědělská univerzita 17. října 2011 U makléře Já: Dobrý den, rád bych koupil nějaký světlý byt. Chtěl bych, aby měl dvě koupelny a aby byl v domě výtah. A neměl by být nijak extrémně drahý. Makléř:

Více

Která tvrzení jsou pravdivá nezávisle na tom, který den v týdnu byla vyslovena? Tvrzení trosečníka Dana.

Která tvrzení jsou pravdivá nezávisle na tom, který den v týdnu byla vyslovena? Tvrzení trosečníka Dana. Trosečníci Adam, Barry, Code a Dan zapoměli po čase kalendář. Začali se dohadovat, který den v týdnu vlastně je. Každý z nich řekl svůj názor: A: Dnes je úterý nebo zítra je neděle B: Dnes není úterý nebo

Více

diferenciální rovnice verze 1.1

diferenciální rovnice verze 1.1 Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování

Více

Výrobky SKF pro přenos výkonu

Výrobky SKF pro přenos výkonu Výrobky SK pro přenos výkonu Obsah 5 47 Řemeny 6 Klínové řemeny obalované s úzkým průřezem 10 Klínové řemeny obalované s klasickým průřezem Úzké klínové řemeny obalované 16 Ozubené klínové řemeny s úzkým

Více

4. Diferenciál a Taylorova věta

4. Diferenciál a Taylorova věta 4. Diferenciál a Taylorova věta Definice 4.1. Buď f : R n R, a Df. Řekneme, že f je diferencovatelná v bodě a, když h V n takový, že a + h Df platí f(a + h) f(a) gradf(a) h + h τ(h), kde lim τ(h) 0. Funkce

Více

Matematická logika. Rostislav Horčík. horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik

Matematická logika. Rostislav Horčík. horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 18 Predikátová logika Motivace Výroková

Více

Rezoluce ve výrokové logice

Rezoluce ve výrokové logice Rezoluce ve výrokové logice Jiří Velebil: AD0B01LGR 2015 Rezoluce ve VL 1/13 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. 2 X nesplnitelná iff X = ff. 3 Hledání kritických důsledků X syntakticky.

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška první Miroslav Kolařík Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Co a k čemu je logika? 2 Výroky a logické spojky

Více

Spojitost funkcí více proměnných

Spojitost funkcí více proměnných Reálné funkce více proměnných Reálnou funkcí n reálných proměnných rozumíme zobrazení, které každé uspořádané n ticireálnýchčíselznějaképodmnožinykartézskéhosoučinur R=R n přiřazuje nějaké reálné číslo.

Více

Obsah. 5 47 Řemeny. 49 72 Řetězy. 73 91 Spojky. 93 98 Pouzdra a náboje. 99 183 Řetězová kola. 185 273 Řemenice. 275 281 Inteligentní nástroje

Obsah. 5 47 Řemeny. 49 72 Řetězy. 73 91 Spojky. 93 98 Pouzdra a náboje. 99 183 Řetězová kola. 185 273 Řemenice. 275 281 Inteligentní nástroje Obsah 5 47 Řemeny 49 72 Řetězy 73 91 Spojky 93 98 Pouzdra a náboje 99 183 Řetězová kola 185 273 Řemenice 275 281 Inteligentní nástroje Značka SK znamená pro zákazníky více než dřív a také jim více nabízí.

Více

1 Predikátová logika. 1.1 Syntax. jaký mohou mít formule význam (sémantiku). 1. Logických symbolů: 2. Speciálních (mimologických) symbolů:

1 Predikátová logika. 1.1 Syntax. jaký mohou mít formule význam (sémantiku). 1. Logických symbolů: 2. Speciálních (mimologických) symbolů: 1 Predikátová logika 1.1 Syntax Podobně jako ve výrokové logice začneme nejprve se syntaxí predikátové logiky, která nám říká, co jsou správně utvořené formule predikátové logiky. V další části tohoto

Více

1 REZOLUČNÍ FORMÁLNÍ DŮKAZY

1 REZOLUČNÍ FORMÁLNÍ DŮKAZY Vážená kolegyně / vážený kolego, součástí Vašeho rozšiřujícího studia informatiky je absolvování předmětu Logika pro učitele 2, jehož cílem je v návaznosti na předmět Logika pro učitele 1 seznámení se

Více

teorie logických spojek chápaných jako pravdivostní funkce

teorie logických spojek chápaných jako pravdivostní funkce Výroková logika teorie logických spojek chápaných jako pravdivostní funkce zabývá se způsoby tvoření výroků pomocí spojek a vztahy mezi pravdivostí různých výroků používá specifický jazyk složený z výrokových

Více

- y. 5.5 Kráceni a rozširování lomenvch výrazu. eseru: = = = x +.) Podmínkyrešitelnosti:x -:;l:o, x -:;l:3/2

- y. 5.5 Kráceni a rozširování lomenvch výrazu. eseru: = = = x +.) Podmínkyrešitelnosti:x -:;l:o, x -:;l:3/2 48 Príklad 73: Rozložte na soucin: a)4x2-25 c)x4-16 - e) x' + 27 b} 25x2 + 30xy + 9y2 d) 8x3-36~y + 54xy2-27l Rešení: a) Použije vzorec a2 - b2 = (a - b). (a + b), v nemž platí a = 2x, b = 5. Dostaneme:

Více

Historie matematiky a informatiky Cvičení 2

Historie matematiky a informatiky Cvičení 2 Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

Diskrétní matematika DISKRÉTNÍ MATEMATIKA. RNDr. Ivan Havlíček, CSc., ivan.havlicek@vsfs.cz ::

Diskrétní matematika DISKRÉTNÍ MATEMATIKA. RNDr. Ivan Havlíček, CSc., ivan.havlicek@vsfs.cz :: DISKRÉTNÍ MATEMATIKA pro obor aplikovaná informatika 1. diskrétní 1. ohleduplný, taktní 2. zachovávající tajemství 3. nespojitý, přetržitý Akademický slovník cizích slov (1998): 2. Literatura Berka, M.,

Více

4.2 Syntaxe predikátové logiky

4.2 Syntaxe predikátové logiky 36 [070507-1501 ] 4.2 Syntaxe predikátové logiky V tomto oddíle zavedeme syntaxi predikátové logiky, tj. uvedeme pravidla, podle nichž se tvoří syntakticky správné formule predikátové logiky. Význam a

Více

Kapitola 7: Integrál. 1/17

Kapitola 7: Integrál. 1/17 Kapitola 7: Integrál. 1/17 Neurčitý integrál - Motivační příklad 2/17 Příklad: Necht se bod pohybuje po přímce rychlostí a) v(t) = 3 [m/s] (rovnoměrný přímočarý pohyb), b) v(t) = 2t [m/s] (rovnoměrně zrychlený

Více

6. Logika a logické systémy. Základy logiky. Lucie Koloušková, Václav Matoušek / KIV. Umělá inteligence a rozpoznávání, LS

6. Logika a logické systémy. Základy logiky. Lucie Koloušková, Václav Matoušek / KIV. Umělá inteligence a rozpoznávání, LS Základy logiky Umělá inteligence a rozpoznávání, LS 2012 6-1 Logika je naukou, která se zabývá studiem lidského uvažování. Mezi základní úlohy logiky patří nalézání metod správného usuzování, tedy postupů,

Více

Matematická logika. Rostislav Horčík. horcik

Matematická logika. Rostislav Horčík.  horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Sémantická věta o dedukci Věta Pro

Více

INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE

INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz www.mendelu.cz/user/marik c Robert Mařík, 2009 Obsah 1 Diferenciální rovnice úvod

Více

výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.

výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává. 1 Základní pojmy matematické logiky Výrokový počet... syntaktické hledisko Predikátový počet... sémantické hledisko 1.1 VÝROKOVÝ POČET výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.

Více

Výrobky SKF pro přenos výkonu

Výrobky SKF pro přenos výkonu Výrobky SK pro přenos výkonu Obsah 5 47 Řemeny 6 Klínové řemeny obalované s úzkým průřezem 10 Klínové řemeny obalované s klasickým průřezem 15 Úzké klínové řemeny obalované 16 Ozubené klínové řemeny s

Více

Logika a logické programování

Logika a logické programování Logika a logické programování témata ke zkoušce Poslední aktualizace: 16. prosince 2009 Zkouška je písemná, skládá se obvykle ze sedmi otázek (může být více nebo méně, podle náročnosti otázek), z toho

Více

Lineární algebra I. látka z. I. semestru informatiky MFF UK. Obsah. Zpracovali: Ondřej Keddie Profant, Jan Zaantar Štětina

Lineární algebra I. látka z. I. semestru informatiky MFF UK. Obsah. Zpracovali: Ondřej Keddie Profant, Jan Zaantar Štětina 1 Lineární algebra I látka z I semestru informatiky MFF UK Zpracovali: Ondřej Keddie Profant, Jan Zaantar Štětina Obsah Matice2 Grupy4 Grupa permutací4 Znaménko, inverze a transpozice grup5 Podgrupy5 Tělesa6

Více

Co byste měl/a zvládnout po 4. týdnu

Co byste měl/a zvládnout po 4. týdnu Co byste měl/a zvládnout po 4. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B0LAG Zvládnutá látka po 4. týdnu /9 Slovník základních pojmů Množina generátorů

Více

Á É Č ď ý ý Č Ť ž ý ý ť žž Ž ý ú ž š ý ž ž ž š š š ý Š ť ý ý š ž ž ý ž ž Ň ý ž ť ť ú ž ý š ž š ž ž š ž š ž ý ý šť ý Ý Ú ň ý ý Ý ž ý ý ť ý ž ý ý ž ý ď ý ý š ý ž ú ú ď ý ž š ž ý ž ť ý ý ý ý ý Á ý ď ž š ž

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

a a

a a 1.. Cíle V této kapitole se naučíme určovat zejména celočíselné kořeny některých polynomů. Výklad Při výpočtu hodnoty polynomu n k p( x) = ak x n-tého stupně n 1 v bodě x 0 C k = 0 musíme provést ( n 1)

Více

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část Matematika I 1/15 2/15 Organizace Zápočet: test 6. + 11. týden semestru (pátek) 80 bodů 50 79 bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část www.vscht.cz/mat Výuka www.vscht.cz/mat/jana.nemcova

Více

Matematika II: Pracovní listy do cvičení

Matematika II: Pracovní listy do cvičení Matematika II: Pracovní listy do cvičení Radomír Paláček, Petra Schreiberová, Petr Volný Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Příklady Integrální počet funkcí

Více

Maloobchodní ceník motorů Honda 2016 Platnost od do

Maloobchodní ceník motorů Honda 2016 Platnost od do Maloobchodní ceník motorů Honda 2016 Platnost od 1.1.2016 do 30.6.2016 Model Typ Verze Kód Doporučená cena Doporučená cena barvy bez DPH s DPH GCV140A N2 EE SD 8 339 Kč 10 090 Kč GCV160A0 A1 G7 SD 8 194

Více

Matematika vzorce. Ing. Petr Šídlo. verze

Matematika vzorce. Ing. Petr Šídlo. verze Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............

Více

ZÁKLADY LOGIKY A METODOLOGIE

ZÁKLADY LOGIKY A METODOLOGIE ZÁKLADY LOGIKY A METODOLOGIE Metodický list č. 1 Téma: Předmět logiky a metodologie, základy logiky a formalizace. Toto téma lze rozdělit do tří základních tématických oblastí: 1) Předmět logiky a metodologie

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A středa 19. listopadu 2014, 11:20 13:20 ➊ (8 bodů) Rozhodněte o stejnoměrné konvergenci řady n 3 n ( ) 1 e xn2 x 2 +n 2 na množině A = 0, + ). ➋

Více

MATEMATICKÁ TEORIE ROZHODOVÁNÍ

MATEMATICKÁ TEORIE ROZHODOVÁNÍ MATEMATICKÁ TEORIE ROZHODOVÁNÍ Metodický list č. 1 Název tématického celku: Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie Komplexní čísla. Komplexní čísla jsou objekty tvaru α+iβ, kde α, β R. Množina všech komplexních čísel se značí C. Rovnost komplexních

Více

LOGIKA A TEORIE MNOŽIN

LOGIKA A TEORIE MNOŽIN Poznámka: Tento text vzniká jako materiál k přednášce Logika a teorie množin na MFFUKvPraze.Jelikožjdeotextvefázivzniku,obsahujejistěřadunedostatků, které budou průběžně odstraňovány, stejně jako se text

Více

Opravyshlukůchyb. MI-AAK(Aritmetika a kódy)

Opravyshlukůchyb. MI-AAK(Aritmetika a kódy) MI-AAK(Aritmetika a kódy) Opravyshlukůchyb c doc. Ing. Alois Pluháček, CSc., 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Evropský sociální fond

Více

Funkce zadané implicitně

Funkce zadané implicitně Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf

Více

MATEMATICKÁ TEORIE ROZHODOVÁNÍ

MATEMATICKÁ TEORIE ROZHODOVÁNÍ MATEMATICKÁ metodický list č. 1 Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do těchto dílčích témat: 1. Řešení úloh ve stavovém

Více

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou,

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou, Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 2. Reálná čísla, funkce reálné proměnné V této kapitole zavádíme množinu, na níž stojí celá matematická analýza:

Více

ZADÁNÍ ZKOUŠKOVÉ PÍSEMNÉ PRÁCE Z PŘEDMĚTU LINEÁRNÍ ALGEBRA PRO IT. Verze 1.1A

ZADÁNÍ ZKOUŠKOVÉ PÍSEMNÉ PRÁCE Z PŘEDMĚTU LINEÁRNÍ ALGEBRA PRO IT. Verze 1.1A Verze 1.1A Čas na práci: 1 minut Za každý úkol můžete získat maximálně 1 bodů. Řešení každého příkladu zapisujte čitelně a srozumitelně, 2x 1 +4x 3 +3x 4 = 4 x 1 +2x 2 +4x 3 3x 4 = 1 2x 1 +x 2 x 3 3x 4

Více

Zápočtová písemka z Matematiky III (BA04) skupina A

Zápočtová písemka z Matematiky III (BA04) skupina A skupina A 0 pro x < 1, ae x pro x 1, ), Pravděpodobnost P (X ) a P (X =.). E (X) a E ( X 1). Hustotu transformované náhodné veličiny Y = (X + 1). F(x) = x 3 pro x (0, 9), Hustotu f(x). Pravděpodobnost

Více

š š š ů ů š ž ž š É Ú Š ý ů ý ů ů É ů ů ý Ů ý Ů ť š ů š ů š Č ý ň ú Č ý ů ň ý ž š ž š ý ů ň š š ý š ž ů ů š Š Č šť Č š š ý ů ý ý š Š ů Š ů ů ý ů ů Š š š ů ý Š ů š ý ý ů ů ý š ý Š ž šť Š ž ý Č š ž š š ý

Více

1. MATEMATICKÁ LOGIKA A MNOŽINY

1. MATEMATICKÁ LOGIKA A MNOŽINY . MATEMATICKÁ LOGIKA A MNOŽINY Průvodce studiem V následující kapitole si připomeneme některé význačné poznatky z matematické logiky a teorie množin, tvořící základ množinově logického aparátu. S celou

Více

1 Funkce dvou a tří proměnných

1 Funkce dvou a tří proměnných 1 Funkce dvou a tří proměnných 1.1 Pojem funkce více proměnných Definice Funkce dvou proměnných je předpis, který každému bodu z R 2 (tj. z roviny) přiřazuje jediné reálné číslo. z = f(x, y), D(f) R 2

Více

Regresní a korelační analýza

Regresní a korelační analýza Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)

Více

2. SÉRIE: SOUSTAVY LINEÁRNÍCH ROVNIC, METODY E ENÍ. lineárních rovnic (prove te zkou²ku dosazením):

2. SÉRIE: SOUSTAVY LINEÁRNÍCH ROVNIC, METODY E ENÍ. lineárních rovnic (prove te zkou²ku dosazením): ZÁKLADY MATEMATIKY 2 2. SÉRIE: SOUSTAVY LINEÁRNÍCH ROVNIC, METODY E ENÍ P ípravní úlohy. V této sérii se p edpokládá, ºe uº umíte ur it v²echna e²ení jednoduchých soustav lineárních rovnic. Otestujte se

Více

Í Ť ř Í Í Í ř Ú Á Á Á Ř Ň Ú ř ň Ě Ě É Ů Ů Č Ý Ě ř ř ň Ž š ň ř ň ř ý ú ý Úř ř ú ř ř Ž Ř Ě Ě ý Ů Á Ě Č É É Ě Á Ú Í ě ě ů ů ý ě Ě Ě Ý Ů ů ů Ú Í ě ě ý ů š Ž ř ě Č ř š ě ě ě ů ř Ú ě ú ě ů š ř ř ý ů ů ř š ú

Více

I. Úvodní pojmy. Obsah

I. Úvodní pojmy. Obsah I. Úvodní pojmy Obsah 1 Matematická logika 2 1.1 Výrok,logickéoperátory,výrokovéformuleaformy... 2 1.2 Logickávýstavbamatematiky... 3 1.2.1 Základnímetodydůkazůmatematickýchvět..... 3 1.2.2 Negacevýroků.....

Více

Lineární algebra : Báze a dimenze

Lineární algebra : Báze a dimenze Lineární algebra : Báze a dimenze (5. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 9. dubna 2014, 13:33 1 2 5.1 Báze lineárního prostoru Definice 1. O množině vektorů M z LP V řekneme,

Více

1 3Logika XII. RNDr. Kate 0 0ina Trlifajov PhD.

1 3Logika XII. RNDr. Kate 0 0ina Trlifajov PhD. 1 3Logika XII. RNDr. Kate 0 0ina Trlifajov PhD. Katedra teoretick informatiky Fakulta informa 0 0n ch technolog 0 3 0 9esk vysok u 0 0en technick v Praze c ПKate 0 0ina Trlifajov, 2010 BI-MLO, ZS 2011/12

Více

Kapitola 10: Diferenciální rovnice 1/14

Kapitola 10: Diferenciální rovnice 1/14 Kapitola 10: Diferenciální rovnice 1/14 Co je to diferenciální rovnice? Definice: Diferenciální rovnice je vztah mezi hledanou funkcí y(x), jejími derivacemi y (x), y (x), y (x),... a nezávisle proměnnou

Více

8 Kořeny cyklických kódů, BCH-kódy

8 Kořeny cyklických kódů, BCH-kódy 24 8 Kořeny cyklických kódů, BCH-kódy Generující kořeny cyklických kódů Nechť K je cyklický kód délky n nad Z p s generujícím polynomem g(z). Chceme najít rozšíření T tělesa Z p, tedy nějaké těleso GF

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Využití programu MS Excel při výuce vlastností kvadratické funkce

Využití programu MS Excel při výuce vlastností kvadratické funkce Využití programu MS Excel při výuce vlastností kvadratické funkce Martin Mikuláš Tabulkové kalkulátory lze ve škole velmi dobře využít při výuce matematiky. Lze v nich totiž snadno naprogramovat aplikace,

Více

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška Disjunktivní a konjunktivní normáln lní tvar formule 2.přednáška Disjunktivní normáln lní forma Definice Řekneme, že formule ( A ) je v disjunktivním normálním tvaru (formě), zkráceně v DNF, jestliže je

Více

Marie Duží

Marie Duží Marie Duží marie.duzi@vsb.cz Co je to množina? Množina je soubor prvků a je svými prvky plně určena; množinu s prvky a, b, c značíme: {a, b, c}. Prvkem množiny může být opět množina, množina nemusí mít

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 12. přednáška Blanka Šedivá KMA zimní semestr 216/21 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 216/21 1 / 15 Integrování jako inverzní operace příklady inverzních

Více

λογος - LOGOS slovo, smysluplná řeč )

λογος - LOGOS slovo, smysluplná řeč ) MATA P1: Výroky, množiny a operace s nimi Matematická logika (z řeckého slova λογος - LOGOS slovo, smysluplná řeč ) Výrok primitivní pojem matematické logiky. Tvrzení, pro které má smysl otázka o jeho

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

Úlohy domácího kola kategorie A

Úlohy domácího kola kategorie A 49. ročník Matematické olympiády Úlohy domácího kola kategorie A 1. Nechť P (x), Q(x) jsou kvadratické trojčleny takové, že tři z kořenů rovnice P (Q(x)) = 0 jsou čísla 22, 7, 13. Určete čtvrtý kořen této

Více

Cvičení 5. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Cvičení 5. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. 5 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v

Více

Ě Ý Č ě ř š ě ý Žď ů ý č ě ě č ř ř ý ž ě š č ů ř š Ž ř ř ž ů č ě š š ý ý š ý ý ň ř š ý ř ě š ě š ž ě ž ě ř ž ý ř ř ý ý ý ř č ěř č č ě š ě ý ů ž ř ř ě ž ě ů ů ř š ř š ů ř š ě ý ů ř ě č ě ě Žď ý ů ě č ý

Více

Í Í ů ř ý ý ď ž ě Č č č č š ě š ě ě ě ě ž ě ě ř ě ě ú ě ě ě č řš ě ř ě ě ž ý ě ž č š ě ř ě ě řč ě š ů ů š ě ý ě ž ř č š ě ě ř š ř ý ě ě š ř ž ě ě ě ě ů ě ú ů ě ě Á ý ě ý ň Úč ž ů ý ě ů š ě č ř š ě ů Ž

Více

Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška:

Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška: Přednášky: Mgr. Radek Výrut, Matematika I katedra matematiky, UL-605, rvyrut@kma.zcu.cz tel.: 377 63 2658 Zkouška: Písemná část zkoušky - příklady v rozsahu zápočtových prací Ústní část zkoušky - základní

Více

13) 1. Číselné obory 1. 1, 3

13) 1. Číselné obory 1. 1, 3 1. Číselné obory 1. 0 1 4 3 4 5 6 1 7 6 2. 1 3 0 1 2 3 4 3. 4; 4. C; 5. C; 6. E; 7. A) 104/25; B) 118/21; C) 18/5; 8. 200; 9. 1,056 10 11 ; 10. 2,3472 10 26 ; 11. A) {1; 2; 3; 4; 5; 6}; B) {-7; -6; -5;

Více

1. Predikátová logika jako prostedek reprezentace znalostí

1. Predikátová logika jako prostedek reprezentace znalostí 1. Predikátová logika jako prostedek reprezentace znalostí 1.1 Historie výrokové logiky Problém explicitních znalostí a údaj, kterých je obrovské množství, vedl ke vzniku výrokové logiky. lovk si obecn

Více

Po prostudování této kapitoly byste měli porozumět základním definicím uvedených v této kapitole a měli je umět bezchybně interpretovat,

Po prostudování této kapitoly byste měli porozumět základním definicím uvedených v této kapitole a měli je umět bezchybně interpretovat, 1 Matematická logika 1.1 Výroky, operace s výroky Po prostudování této kapitoly byste měli porozumět základním definicím uvedených v této kapitole a měli je umět bezchybně interpretovat, měli být schopni

Více

Á Š ř á ář Á É Í á š Ř ÁŘ á é ř č á ž é ř š ů ř á é ě š ď ř š šč Č á ě ý č ář é ď ý ý ř ě č ě ý Č Á Ě Ý Č ř ě ý č á š ž áš ě ž š ž č ě é č ě č éř ř š ý š ž á é áš č á ů á š š ř éž ř ý č á á ě ř á á ý ř

Více

Výroková a predikátová logika Výpisky z cvičení Martina Piláta

Výroková a predikátová logika Výpisky z cvičení Martina Piláta Výroková a predikátová logika Výpisky z cvičení Martina Piláta Jan Štětina 1. prosince 2009 Cviˇcení 29.9.2009 Pojem: Sekvence je konečná posloupnost, značíme ji predikátem seq(x). lh(x) je délka sekvence

Více