Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12"

Transkript

1 Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 1 / 13

2 Logika X. Prenexní normální tvar. Skolemizace. Rezoluční metoda. RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 2 / 13

3 Prenexní normální tvar Definice Formule je v prenexním normální tvaru, jestliže je ve tvaru (Q 1 x 1 )...(Q n x n )A, kde A je otevřená formule, Q i jsou kvantifikátory, x i jsou proměnné. ( x)( y)( z)(y < x y ), ( k)(n = 2k) Definice Formule B je varianta formule A, jestliže se liší jen přejmenováním vázaných proměnných. ( u)( v)( w)(w < u v ), ( l)(n = 2l). Věta Je-li B varianta A, pak A B. ( x)( y)( z)(y < x y ) ( u)( v)( w)(w < u v ) (( k)(n = 2k) ( l)(n = 2l)) RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 3 / 13

4 Prenexní operace Chceme mít formule v prenexním tvaru. Víme: (( x)a ( x)b) ( x)(a B) (( x)a ( x)b) ( x)(a B) Prenexní operace 1 ( x)a ( x) A ( x)a ( x) A 2 Není-li x volná v A, pak (A ( x)b(x)) ( x)(a B(x)) (A ( x)b(x)) ( x)(a B(x)) 3 Není-li x volná v A, pak (A ( x)b(x)) ( x)(a B(x)) (A ( x)b(x)) ( x)(a B(x)) 4 Není-li x volná v B, pak (( x)a(x) B) ( x)(a(x) B) (( x)a(x) B) ( x)(a(x) B) RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 4 / 13

5 Prenexní operace - důkaz ad 2. Není-li x volná v A, pak (A ( x)b(x)) ( x)(a B(x)). Dokážeme (A ( x)b(x)) ( x)(a B(x)). Sporem. Kdyby ex. M tak, že M = (A ( x)b(x)) ( x)(a B(x)), pak M = (A ( x)b(x)) a M = ( x)( A B(x)), tedy existuje m M tak, že A B[m], ale A B[m].. Dokážeme ( x)(a B(x)) (A ( x)b(x)). Sporem. Kdyby ex. M tak, že M = ( x)(a B(x) (A ( x)b(x)), pak M = ( x)(a B(x)) a M = A a M = ( x) B(x), tedy existuje m M tak, že B[m], ale A B[m] a A.. ad 3. Není-li x volná v A, pak (A ( x)b(x)) ( A ( x)b(x)) ( x)( A B(x)) ( x)(a B(x)) ad 4. Není-li x volná v B, pak (( x)a(x) B) ( ( x)a(x) B) (( x) A(x) B) ( x)(a(x) B) RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 5 / 13

6 Prenexní normální tvar Věta Ke každé formuli existuje formule s ní ekvivalentní v prenexním normálním tvaru. Příklady: 1 ( a)( b)((a < b) ( c)(a < b < c) ( a)( b)( c)((a < b) (a < b < c) 2 ( x)(x = 0) ( x)(x = S(0)) ( x)(x = 0) ( y)(y = S(0)) ( x)( y)((x = 0) (y = S(0))) 3 ( x)(x > 0) ( y)(x + y > 0)) ( z)(z > 0) ( y)(x + y > 0)) ( z)( y)((z > 0) (x + y > 0)) ( y)( z)((z > 0) (x + y > 0)) 4 ( ɛ)((ɛ > 0) ( δ)( x)((δ > 0) ( x c < δ) ( f (x) f (c) < ɛ)) ( ɛ)( δ)( x)((ɛ > 0) ((δ > 0) ( x c < δ) ( f (x) f (c) < ɛ)) RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 6 / 13

7 Skolemizace Chceme jen obecné kvantifikátory. Definice T je konzervativní rozšíření teorie T, právě když L L a pro každou formuli jazyka L platí T = A, právě když T = A. ( x)a(x)... vybereme novou konstantu c L = L {c} T = T {( x)a(x) A(c)} ( x)( y)a(x, y)... definujeme novou funkci f (x) L = L {f (x)} T = T {( x)a(x, f (x))) ( x)( y)a(x, y)} RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 7 / 13

8 Skolemův normální tvar Věta Ke každé uzavřené formuli A existuje formule A S, která je v prenexním normální tvaru, kde všechny kvantifikátory jsou obecné, tzv. Skolemův normální tvar. Příklady: A je splnitelná, právě když A S je splnitelná. ( y)( x)(x > y)... definujeme konstantu c tak, že ( x)(x > c) ( x)( y)(x > y)... definujeme funkci f (x) tak, že ( x)(x > f (x)) ( t)( x)( y)( z)( u)( w)a(t, x, y, z, u, w)... c ( x)( y)( z)( u)( w)a(c, x, y, z, u, w)... g(x, y) ( x)( y)( u)( w)a(c, x, y, g(x, y), u, w)... h(x, y, u) ( x)( y)( u)a(c, x, y, g(x, y), u, h(x, y, u)) RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 8 / 13

9 Otevřené jádro formule Věta Nechť A je otevřená formule s volnými proměnnými x 1,..., x n. Potom pro libovolnou interpretaci M platí M = A, právě když M = ( x 1 )...( x n )A. A je tautologie ( x 1 )...( x n )A je tautologie. A se nazývá otevřené jádro formule ( x 1 )...( x n )A Příklad: ( x)( y)((x > y) (y > x)) je pravdivé v N, právě když (x > y) (y > x) je pravdivé v N A(x) je tautologie, právě když ( x)a(x) je tautologie. POZOR! A(x) ( x)a(x) není tautologie. A(x) ( x)a(x) není tautologie. ( x 1 )...( x n )A není logicky ekvivalentní s A. RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 9 / 13

10 Rezoluční metoda v predikátové logice 1 Teorie. Konjunkce formuĺı. 2 Prenexní normální tvar. 3 Skolemizace. 4 Otevřené jádro formule. 5 Klausule. 6 Resolventy formuĺı. 7 Kontradikce? Příklad: ( x)(p(x) Q(x)), ( x) P(x) = ( x)q(x)? ( x)(p(x) Q(x)) ( x) P(x) ( x)q(x) ( x)(p(x) Q(x)) ( z) P(z) ( y) Q(y) ( z)( x)( y)((p(x) Q(x)) P(z) Q(y)) ( x)( y)((p(x) Q(x)) P(c) Q(y)) (P(x) Q(x)) P(c) Q(y)) Q(c), Q(c), RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 10 / 13

11 Rezoluční metoda v predikátové logice Žádný člověk není zvíře Některé zvíře je šelma. Tudíž některá šelma není člověk. ( x)(c(x) z(x)), ( x)(z(x) s(x)) = ( x)(s(x) c(x)) ( x)( c(x) z(x)) ( x)(z(x) s(x)) ( x)(s(x) c(x)) ( x)( c(x) z(x)) ( v)(z(v) s(v)) ( u)(s(u) c(u)) ( x)( c(x) z(x)) (z(k) s(k)) ( u)(s(u) c(u)) ( x)( u)( c(x) z(x)) z(k) s(k) ( s(u) c(u)) (( c(x) z(x)) z(k) s(k) ( s(u) c(u)))... otevřená formule s(k), c(k), z(k), z(k),. RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 11 / 13

12 Příklady Každá větší ryba je rychlejší než menší ryba. Tudíž jestliže je nějaká ryba největší, pak je i nějaká ryba nejrychlejší, v(x, y), r(x, y) ( x)( y)(v(x, y) r(x, y)) = ( z)( y)v(z, y) ( z)( y)r(z, y) Sporem: ( x)( y)(v(x, y) r(x, y)) (( z)( u)v(z, u) ( z)( u)r(z, u)) ( x)( y)(v(x, y) r(x, y)) ( z)( u)v(z, u) ( s)( t)r(s, t) ( x)( y)( v(x, y) r(x, y)) ( z)( u)v(z, u) ( s)( t) r(s, t) RM: ( x)( y)( v(x, y) r(x, y)) ( u)v(c, u) ( s) r(s, f (s)) v(c, u), r(c, f (c)), v(c, f (c)), v(c, f (c)) r(c, f (c)). Spor. STROM: Tedy existuje c tak, že ( u)v(c, u). Tedy též existuje d tak, že r(c, d). Tedy i v(c, d). Ale v(c, d) r(c, d). Tedy spor. RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 12 / 13

13 Příklad Každý Cadillac je dražší než jakékoli levné vozidlo. Tudíž Cadillac není levné vozidlo, c(x), l(x) d(x, y) ( x)( y)((c(x) l(y)) d(x, y)) = ( x)(c(x) l(x)) Kdyby tomu tak nebylo, pak ( x)( y)((c(x) l(y) d(x, y))) ( x)(c(x) l(x)) Označme si toto konkrétní auto m. Platí c[m] l[m] (( c[m] l[y])) d[m, m]). Tedy d[m, m]. To je spor. RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 13 / 13

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu.

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu. 6 Kapitola 2 Příklady z predikátové logiky 2.1 Formule predikátové logiky 2.1.1 Příklad. Napište formule predikátové logiky odpovídající následujícím větám. Použijte k tomu predikátových symbolu uvedených

Více

Rezoluce v predikátové logice

Rezoluce v predikátové logice Rezoluce v predikátové logice Jiří Velebil: X01DML 15. října 2010: Rezoluce v PL 1/16 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. (M musí být množina sentencí, ϕ sentence.) 2 X nesplnitelná

Více

Rezoluce v predikátové logice

Rezoluce v predikátové logice Rezoluce v predikátové logice Jiří Velebil: AD0B01LGR 2015 Rezoluce v PL 1/16 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. (M musí být množina sentencí, ϕ sentence.) 2 X nesplnitelná iff X =

Více

Cyklickékódy. MI-AAK(Aritmetika a kódy)

Cyklickékódy. MI-AAK(Aritmetika a kódy) MI-AAK(Aritmetika a kódy) Cyklickékódy c doc. Ing. Alois Pluháček, CSc., 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Evropský sociální fond Praha&

Více

Řešení: Ano. Řešení: Ne.

Řešení: Ano. Řešení: Ne. 1 ÚLOHY Z PREDIKÁTOVÉ LOGIKY Instance, varianty. UF.1.1. Substituovatelnost. 1. Buď ϕ formule ( z)(x=z)&y < x a dále x, y, z různé proměnné, F unární funkční symbol, c konstantní symbol. Uveďte, zda je

Více

diferenciální rovnice verze 1.1

diferenciální rovnice verze 1.1 Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování

Více

Rezoluce ve výrokové logice

Rezoluce ve výrokové logice Rezoluce ve výrokové logice Jiří Velebil: AD0B01LGR 2015 Rezoluce ve VL 1/13 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. 2 X nesplnitelná iff X = ff. 3 Hledání kritických důsledků X syntakticky.

Více

výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.

výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává. 1 Základní pojmy matematické logiky Výrokový počet... syntaktické hledisko Predikátový počet... sémantické hledisko 1.1 VÝROKOVÝ POČET výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.

Více

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou,

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou, Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 2. Reálná čísla, funkce reálné proměnné V této kapitole zavádíme množinu, na níž stojí celá matematická analýza:

Více

Historie matematiky a informatiky Cvičení 2

Historie matematiky a informatiky Cvičení 2 Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A středa 19. listopadu 2014, 11:20 13:20 ➊ (8 bodů) Rozhodněte o stejnoměrné konvergenci řady n 3 n ( ) 1 e xn2 x 2 +n 2 na množině A = 0, + ). ➋

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

Co byste měl/a zvládnout po 4. týdnu

Co byste měl/a zvládnout po 4. týdnu Co byste měl/a zvládnout po 4. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B0LAG Zvládnutá látka po 4. týdnu /9 Slovník základních pojmů Množina generátorů

Více

Využití programu MS Excel při výuce vlastností kvadratické funkce

Využití programu MS Excel při výuce vlastností kvadratické funkce Využití programu MS Excel při výuce vlastností kvadratické funkce Martin Mikuláš Tabulkové kalkulátory lze ve škole velmi dobře využít při výuce matematiky. Lze v nich totiž snadno naprogramovat aplikace,

Více

uvedení do problematiky i Bezpečnostní kódy: detekční kódy = kódy zjišťující chyby samoopravné kódy = kódy opravující chyby příklady kódů:

uvedení do problematiky i Bezpečnostní kódy: detekční kódy = kódy zjišťující chyby samoopravné kódy = kódy opravující chyby příklady kódů: I. Bezpečnostníkódy úvod základní pojmy počet zjistitelných a opravitelných chyb 2prvkové těleso a lineární prostor jednoduché bezpečnostní kódy lineární kódy Hammingův kód smysluplnost bezpečnostních

Více

Výroková a predikátová logika Výpisky z cvičení Martina Piláta

Výroková a predikátová logika Výpisky z cvičení Martina Piláta Výroková a predikátová logika Výpisky z cvičení Martina Piláta Jan Štětina 1. prosince 2009 Cviˇcení 29.9.2009 Pojem: Sekvence je konečná posloupnost, značíme ji predikátem seq(x). lh(x) je délka sekvence

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška Disjunktivní a konjunktivní normáln lní tvar formule 2.přednáška Disjunktivní normáln lní forma Definice Řekneme, že formule ( A ) je v disjunktivním normálním tvaru (formě), zkráceně v DNF, jestliže je

Více

Logika. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD.

Logika. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD. Tematické okruhy: 1. Stručné dějiny logiky a její postavění ve vědě 2. Analýza složených výroků pomocí pravdivostní tabulky 3. Subjekt-predikátová

Více

STŘEDOŠKOLSKÁ MATEMATIKA

STŘEDOŠKOLSKÁ MATEMATIKA STŘEDOŠKOLSKÁ MATEMATIKA MOCNINY, ODMOCNINY, ALGEBRAICKÉ VÝRAZY VŠB Technická univerzita Ostrava Ekonomická fakulta 006 Mocniny, odmocniny, algebraické výrazy http://moodle.vsb.cz/ 1 OBSAH 1 Informace

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů...

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů... [1] Báze Každý lineární (pod)prostor má svou bázi Vzhledem ke zvolené bázi určujeme souřadnice vektorů... a) base, 4, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p.

Více

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

Definiční obor funkce více proměnných, vrstevnice apod.

Definiční obor funkce více proměnných, vrstevnice apod. vičení 1 Definiční obor funkce více proměnných, vrstevnice apod. 1. Najděte definiční obor funkce fx, y = x y + y x. Řešení: D f = { x y a y x }, což je konvexní množina omezená křivkami x = y a y = x.

Více

Copyright c R.Fučík FJFI ČVUT Praha, 2008

Copyright c R.Fučík FJFI ČVUT Praha, 2008 funkcí funkcí funkce Copyright c R.Fučík FJFI ČVUT Praha, 2008 funkcí Polynom p(x) = x 4 10x 3 + 35x 2 50x + 24 funkce funkcí Polynom p(x) = x 4 10x 3 + 35x 2 50x + 24 T 0 (x) = 24 funkce funkcí Polynom

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Matematická analýza 1

Matematická analýza 1 Matematická analýza 1 Verze: 20121012 01MA1 2011/12 Obsah Zkouška z předmětu 01MA1.............................. 4 Literatura....................................... 4 Logika........................................

Více

Úvod do logiky: PL Kategorický sylogismus

Úvod do logiky: PL Kategorický sylogismus Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky: PL Kategorický sylogismus doc. PhDr. Jiří Raclavský,

Více

Úvod do logiky (PL): sylogismy (cvičení)

Úvod do logiky (PL): sylogismy (cvičení) Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (PL): sylogismy (cvičení) doc. PhDr. Jiří Raclavský,

Více

č ý é ů é ý é é ž ó ž Č é ě ěš é ř ů ř ý ěž č ň č ý č é č ř ě é č é č ů č ž š ě ý ě š č ů ů é č é č ý é é ž č ě ě é ý č ě é č ů ě ů ě ý ů ě č é ř é č ď ř ě ýš č č č č č é é č ž č ě š ť ě ě ý ř é ž č ý

Více

Bezkontextové jazyky 3/3. Bezkontextové jazyky 3 p.1/27

Bezkontextové jazyky 3/3. Bezkontextové jazyky 3 p.1/27 Bezkontextové jazyky 3/3 Bezkontextové jazyky 3 p.1/27 Vlastnosti bezkontextových jazyků Bezkontextové jazyky 3 p.2/27 Pumping teorém pro BJ Věta 6.1 Necht L je bezkontextový jazyk. Pak existuje konstanta

Více

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Algebra študenti MFF 15. augusta 2008 1 8 Algebra Požadavky Grupa, okruh, těleso definice a příklady Podgrupa, normální podgrupa, faktorgrupa, ideál

Více

Co byste měl/a zvládnout po 6. týdnu

Co byste měl/a zvládnout po 6. týdnu Co byste měl/a zvládnout po 6. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B01LAG Zvládnutá látka po 6. týdnu 1/8 Slovník základních pojmů Monomorfismus,

Více

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L.

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Soustavy o jedné rovnici neboli rovnice. Algebraické rovnice: Polynom= 0. POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Rovnice 1. stupně: lineární, ax + b = 0, a 0. Řešení: x = b a. Rovnice 2. stupně:

Více

Á Š ř á ář Á É Í á š Ř ÁŘ á é ř č á ž é ř š ů ř á é ě š ď ř š šč Č á ě ý č ář é ď ý ý ř ě č ě ý Č Á Ě Ý Č ř ě ý č á š ž áš ě ž š ž č ě é č ě č éř ř š ý š ž á é áš č á ů á š š ř éž ř ý č á á ě ř á á ý ř

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

Klauzulární logika. Znalostní báze. Šárka Vavrečková

Klauzulární logika. Znalostní báze. Šárka Vavrečková Klauzulární logika Znalostní báze Šárka Vavrečková Ústav informatiky, Filozoficko-přírodovědecká fakulta Slezské univerzity v Opavě sarka.vavreckova@fpf.slu.cz 26. listopadu 2007 (Znalostní báze) Klauzulární

Více

Úlohy k procvičování textu o univerzální algebře

Úlohy k procvičování textu o univerzální algebře Úlohy k procvičování textu o univerzální algebře Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

KMA/MDS Matematické důkazy a jejich struktura

KMA/MDS Matematické důkazy a jejich struktura Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 KMA/MDS Matematické důkazy a jejich struktura Seminář 1 Cílem tohoto semináře je efektivní uvedení

Více

UNIVERZITA PARDUBICE FAKULTA ELEKTROTECHNIKY A INFORMATIKY BAKALÁŘSKÁ PRÁCE. 2009 Tomáš Michek

UNIVERZITA PARDUBICE FAKULTA ELEKTROTECHNIKY A INFORMATIKY BAKALÁŘSKÁ PRÁCE. 2009 Tomáš Michek UNIVERZITA PARDUBICE FAKULTA ELEKTROTECHNIKY A INFORMATIKY BAKALÁŘSKÁ PRÁCE 2009 Tomáš Michek Univerzita Pardubice Fakulta elektrotechniky a informatiky Program pro výuku a testování základů výrokové a

Více

MONTÁŽNÍ KATALYZÁTORY

MONTÁŽNÍ KATALYZÁTORY MONTÁŽNÍ KATALYZÁTORY Katalyzátory ŠKODA - pøehled náhled obj. èíslo OE aplikace K001M K001MK 6U0 131 701HX 6U0 131 701HX Škoda Felicia 1.3 do r.v. 11/98 (keramika) Škoda Felicia 1.3 do r.v. 11/98 (kov)

Více

ŘEŠENÉ ZÁPOČTOVÉ TESTY Z VÝROKOVÉ A PREDIKÁTOVÉ LOGIKY

ŘEŠENÉ ZÁPOČTOVÉ TESTY Z VÝROKOVÉ A PREDIKÁTOVÉ LOGIKY Poznámka: Tento materiál je souborem řešených zápočtových testů ze zimního semestru 2012/2013 k přednášce Výroková a predikátová logika na MFF UK v Praze. Nejedná se o oficiální materiál k přednášce, nebyl

Více

ú čá á ú á Í á č é ú Ť á ě ů ů á Žá Í á ú ě é ě č á č ú ě é é č Í ú ě č ú ě ů čá čá ě ú é ů ě á é ů Í ě Í ě ú Í č ú ě č ě č ú ě é ů é é čú é é č ě é ě é é é č č ú ě ě é č ě č ě Í á ů č ě ě ů ú é é ú é

Více

Č š é č š ž Č Í é ř ě ě š ž ř ě č ř š č č ž ř Í č č č ě ř ž ěř č č Č ČŠ ř ě é š Ž ř ě š ď Š ř ě č č šť ě ů ě é é ě š ž ě ř š ř šš é é ďě š é ě ě š ř ů šť ě š ě ě é š ř ě š é č š č ě š ě é ě č ě é ě é é

Více

Cvičení 3. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Cvičení 3. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Cvičení 3 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické

Více

Funkce, funkční závislosti Lineární funkce

Funkce, funkční závislosti Lineární funkce Funkce, funkční závislosti Lineární funkce Obsah: Definice funkce Grafické znázornění funkce Konstantní funkce Lineární funkce Vlastnosti lineárních funkcí Lineární funkce - příklady Zdroje Z Návrat na

Více

1) íselný výraz. 8. roník Algebraické výrazy. Algebraické výrazy výrazy s promnnou

1) íselný výraz. 8. roník Algebraické výrazy. Algebraické výrazy výrazy s promnnou Algebraické výrazy výrazy s promnnou S výrazy jsme se setkali v matematice a fyzice již mnohokrát. Pomocí výraz zapisujeme napíklad matematické vzorce. Vyskytují se v nich jednak ísla, kterým íkáme konstanty

Více

Matematická analýza 1b. 9. Primitivní funkce

Matematická analýza 1b. 9. Primitivní funkce Matematická analýza 1b 9. Primitivní funkce 9.1 Základní vlastnosti Definice Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

ó Šú ž ó ó ó É Ž É Š Ž Š ú ů ó š Š Š Ž ó Š Ž ú ů Š Ž ň š ů É Ž š Ž ó Ž ů ň š š ů š Ú ů Š Ž ž ó Ž ů ú É Ú š É Ť ú ů Š Ž Š š Ť É Š Š Ž Ž Š Š ť ť ť Ž É Š Š Š Ž š Š Ž Ž Ů Š š Ž Ý Ý Š Ž Š Ž Ť Ž É Ý Š Š Ž š

Více

Základy fuzzy logiky 1

Základy fuzzy logiky 1 A Tutorial Základy fuzzy logiky 1 George J. Klir Petr Osička State University of New York (SUNY) Binghamton, New York 13902, USA gklir@binghamton.edu Palacky University, Olomouc, Czech Republic prepared

Více

4. Topologické vlastnosti množiny reálných

4. Topologické vlastnosti množiny reálných Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 4. Topologické vlastnosti množiny reálných čísel V této kapitole definujeme přirozenou topologii na množině

Více

10 Důkazové postupy pro algoritmy

10 Důkazové postupy pro algoritmy 10 Důkazové postupy pro algoritmy Nyní si ukážeme, jak formální deklarativní jazyk z Lekce 9 využít k formálně přesným induktivním důkazům vybraných algoritmů. Dá se říci, že tato lekce je vrcholem v naší

Více

Í č ž š Č ů ú ú řč ř š řč ů ř ý ů č č ř ý Žš ř ú š ý Š ř č ž č ú ň ř č ř Í Ť ůč ý ů ř Š ý ý ů Ž ž řč ř ů Ž ý ů ý ýš ř č ý ů ý ý č š ů Ž č š š ýý č ý ů š ý š Ž Ž žš ý ý ý šš ů ř č č ž Š ř ý ř ž č š ý ý

Více

Výroková logika dokazatelnost

Výroková logika dokazatelnost Výroková logika dokazatelnost Ke zjištění, zda formule sémanticky plyne z dané teorie (množiny formulí), máme k dispozici tabulkovou metodu. Velikost tabulky však roste exponenciálně vzhledem k počtu výrokových

Více

Rovnice s parametrem (17. - 18. lekce)

Rovnice s parametrem (17. - 18. lekce) Rovnice s parametrem (17. - 18. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 22. října 2011 Lineární rovnice s parametrem

Více

MAT 1 Mnohočleny a racionální lomená funkce

MAT 1 Mnohočleny a racionální lomená funkce MAT 1 Mnohočleny a racionální lomená funkce Studijní materiály Pro listování dokumentem NEpoužívejte kolečko myši nebo zvolte možnost Full Screen. Brno 2012 RNDr. Rudolf Schwarz, CSc. First Prev Next Last

Více

Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé?

Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé? Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé? Jiří Močkoř University of Ostrava Department of Mathematics Institute for Research and Applications of Fuzzy Modeling 30. dubna 22,

Více

Deskripce a existence: uctívali Řekové olympské bohy?

Deskripce a existence: uctívali Řekové olympské bohy? Kapitola 4 Deskripce a existence: uctívali Řekové olympské bohy? Přestože jsme se v minulé kapitole zabývali subjekty a predikáty, existuje ještě jeden typ výrazů, který může vystupovat jako podmět oznamovací

Více

Týden 11. Přednáška. Teoretická informatika průběh výuky v semestru 1. Nejprve jsme dokončili témata zapsaná u minulé přednášky.

Týden 11. Přednáška. Teoretická informatika průběh výuky v semestru 1. Nejprve jsme dokončili témata zapsaná u minulé přednášky. Teoretická informatika průběh výuky v semestru 1 Týden 11 Přednáška Nejprve jsme dokončili témata zapsaná u minulé přednášky. PSPACE, NPSPACE, PSPACE-úplnost Uvědomilijsmesi,ženapř.prozjištěnítoho,zdaBílýmánějakoustrategiivehřeŠACHY,

Více

ÁŘ É š Ž ůž ž ů ů ž š Š Ž Č Ž ů Ž Ž ž ů ů Ž š Ž Ž Ž ž š Ž ů ž Ž ů ž Ž Ž š Ž Ů ž Ž ůž Ů š Š š š ů ů š Ž Ž š š š Ž š š ů ůž Š š ú Ž Š ť ň Š ů É š š š š š Ž š ů š Ž ůš š Š š Ž Ú š ž š ú š Č Ž Ž ů Ž Ž Ů š

Více

J. Zendulka: Databázové systémy 4 Relační model dat 1

J. Zendulka: Databázové systémy 4 Relační model dat 1 4. Relační model dat 4.1. Relační struktura dat... 3 4.2. Integritní pravidla v relačním modelu... 9 4.2.1. Primární klíč... 9 4.2.2. Cizí klíč... 11 4.2.3. Relační schéma databáze... 13 4.3. Relační algebra...

Více

Kapitola 3: Relační model. Základní struktura. Relační schéma. Instance relace

Kapitola 3: Relační model. Základní struktura. Relační schéma. Instance relace - 3.1 - Struktura relačních databází Relační algebra n-ticový relační kalkul Doménový relační kalkul Rozšířené operace relační algebry Modifikace databáze Pohledy Kapitola 3: Relační model Základní struktura

Více

VÍKA K VÁLCŮM TYP 9800-0300 (EH)

VÍKA K VÁLCŮM TYP 9800-0300 (EH) VÍKA K VÁLCŮM TYP 9800-0300 (EH) ČÍSLO VÝKRESU AL (mm) S (mm) D (mm) F LF (mm) L1 (mm) L (mm) HMOTNOST Kg CENA PRODEJ Kč CENA S TĚSNIVEM PRODEJ Kč 9801-0300 40 22 50 M45x1,5 15 36 40 0,267 184 Kč 274 Kč

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy

postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy Formální systémy (výrokové) logiky postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy cíl: získat formální teorii jako souhrn dokazatelných

Více

Á ž Ů Ž É Č Í ř č ě š á ž š ž ř Č ě ě ů ý žá ý ů á š ř č ě čů á ž ř š é ý š é ř é ě ý ř š ř š á ř ě ř š á ě ž žá é ř á ř á ě ž ř ě ř ě ě é ř á ř é š ý á ě Ě Í á ž š é ě ý ě á é á é á ě á ě ž ř ř á á á

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před

Více

LOGICA LUDUS Jaroslav Peregrin, FLÚ AV ČR a FF UK, Praha www.cuni.cz/~peregrin

LOGICA LUDUS Jaroslav Peregrin, FLÚ AV ČR a FF UK, Praha www.cuni.cz/~peregrin LOGICA LUDUS Jaroslav Peregrin, FLÚ AV ČR a FF UK, Praha www.cuni.cz/~peregrin Vymezení logického kalkulu, či vymezení nějaké teorie vyjádřené v jeho rámci se obvykle skládá ze tří součástí: (1) Syntaktická

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

OSTRAVSKÁ UNIVERZITA OSTRAVA PEDAGOGICKÁ FAKULTA MATEMATIKA. ve studiu učitelství 1. stupně základní školy. Vilma Novotná, Bohuslav Pisklák

OSTRAVSKÁ UNIVERZITA OSTRAVA PEDAGOGICKÁ FAKULTA MATEMATIKA. ve studiu učitelství 1. stupně základní školy. Vilma Novotná, Bohuslav Pisklák OSTRAVSKÁ UNIVERZITA OSTRAVA PEDAGOGICKÁ FAKULTA MATEMATIKA ve studiu učitelství 1. stupně základní školy Vilma Novotná, Bohuslav Pisklák Ostrava 2003 Obsah I. Úvod do teorie množin a matematické logiky

Více

4.9.70. Logika a studijní předpoklady

4.9.70. Logika a studijní předpoklady 4.9.70. Logika a studijní předpoklady Seminář je jednoletý, je určen pro studenty posledního ročníku čtyřletého studia, osmiletého studia a sportovní přípravy. Cílem přípravy je orientace ve formální logice,

Více

Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D

Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D Milan Holický Kloknerův ústav ČVUT v Praze 1. Úvod 2. Kvantil náhodné veličiny 3. Hodnocení jedné veličiny 4. Hodnocení modelu 5. Příklady -

Více

Značení pro sklady a výrobu

Značení pro sklady a výrobu Značení pro sklady a výrobu regálové podlahové na palety zděné, ocelové a jiné konstrukce s.r.o. Havlíčkova 1732 266 01 Beroun +420 602 665 004 cahajla@3csystems.eu Regálové značení Regálové značení Samolepicí

Více

ř ý ř ř É Í ý ř úř ř š ý ú Ť š ř ž š ř ú Ť ř Ž ž ž ú ř šú ú ř ř ř ú ř ž š Ž ý š ú ř ř š ú š ú ř ýš ř ř ú ň ý ý ý Í ž ý š ú ď ú ý ú ř š š ý Ž ř ý š š ý ž ý ř ý ý š ř ý š ř š Ž š ř ř ř ž š š ú ř ř Ť ý ř

Více

Reziduovaná zobrazení

Reziduovaná zobrazení Reziduovaná zobrazení Irina Perfilieva Irina.Perfilieva@osu.cz 1. března 2015 Outline 1 Reziduované zobrazení 2 Izotónní/Antitónní zobrazení Definice Necht A, B jsou uspořádané množiny. Zobrazení f : A

Více

á ó ú Ž ý á á š č š é á č ú Ž á ú é ř é š ů á á ý á á ý ř áš ý ý é á ý ů é ž á é ř ž ý řč ůž ý ř š éž á á č řč á é ý č č é é ů ý ý á Í á á Ž é č ř Ž ř š čů ů Ž č á Ž é Ž č š Ž Ž š á é š ó é š é ůž š ř

Více

Í ž ě ě Á Á É Š ó Á ĚŘ Í Ý Í Á ě Č ú ě Ž Í ě Í ě š ú ě ě ú ě ě Ž ů Č ž ě ě Ž Ž ě Ž Ž ě Í ú ě š Š Ú ě ě Ž ě ě ě š ě Č š š ú Á ĚŘ Í Á Ý ě ě ú ů ě Í ě Č Ť š ú ě ě ě Í ě ů Č ž ě Ž Ú ě ě š ů ě ů ě ě ú ů ě Žš

Více

Jakub Opršal. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165.

Jakub Opršal. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165. TEORIE ČÍSEL MNOHOČLENŮ A MNOHOČLENY V TEORII ČÍSEL Jakub Opršal Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty v přírodních vědách a matematice s využitím

Více

Jsme stejní, jen žijeme jinde.

Jsme stejní, jen žijeme jinde. Jsme stejní, jen žijeme jinde. tango tango Praktik Garant Zásuvky jiných systémů element time 291 Zásuvky zapuštěné Tango (podle DIN) s ochrannými kontakty bílá 5518A-A3449 BX 10 slonová kost 5518A-A3449

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

čí ř ý č ř ě č ů ý ý ů Ž Í íř é Ž ý ř Ž ž é ě ů ý č Ž Ž Š ě č Ž č ý ěď Ž ž ě ť Í ř ů ř Ť ří ž ř ř š č ř í í ň í Č ě é ř š í ů é í Ž ů í ů č š ř í ě é í í é ž é ě í í ě ž ů í č é ří ž ý é č í ží ž í é ž

Více

ř ř š ů ř č ú ř Š Ů ť č ú ť č ř č š Č ď č ř ý Ž š ů ž č č ÁČ Á Á Ž Ý Á Ý É ř š ý ž ů Č Ž ýř Ú Č Ž š Í ý ů ý ů ř ž ř č š č ú š ž ť ů č č ď Í Ž č ý Ž č Á ř š ž ý Ž Ž ů ý š Ť ř úč Í Č ý ž ý ů ř ž ň ů ů ř

Více

š ř ý é č ú ý ř Ó ó ř í ř ě Ž á Í á ší á é ý ě á ň ě ý í ř ě á á í ŘÍ Í Á Ž É Ř É ŘÍŠ ěž á á ě ě ů š ž á í ž ž ě ř č é á ě í ř ž ý í ášé ú ý íž š é í š á ů é é ř é ří ř ž ý á ž ý á é í ý ě á é ž é éž ě

Více

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika.

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Lineární kódy, část 2 Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG 22.12.2014: Lineární kódy, část 2 1/12 Dnešní přednáška 1 Analýza Hammingova (7, 4)-kódu.

Více

Úvod do logiky (VL): 13. Axiomatické systémy VL a pojem důkazu

Úvod do logiky (VL): 13. Axiomatické systémy VL a pojem důkazu Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (VL): 13. Axiomatické systémy VL a pojem důkazu

Více

Ř Í Ř Ý Ú Á Ř Í Í Í Ř Ř Á É Í Ě Ě Š Ř Ů Ř Ý Á Ř Á É Á Á Á Á Ý č ú é Í š č ž Š Á ý ý ý ý č é é é Ř Ř Í é Š é é Í ó č é ů ý é Í č Í Š é é é š ý ů é ý Ó Í Í ý ý č é ú Í ý ý Úč Í Ř Ř ů ý ý ší čů Í ů Í é čá

Více

Složitější domény. Petr Štěpánek. S využitím materialu Krysztofa R. Apta

Složitější domény. Petr Štěpánek. S využitím materialu Krysztofa R. Apta Složitější domény Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 11 1 V této části se budeme zabývat seznamy a binárními stromy. Naším cílem není tyto datové struktury podrobně

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

Ě Ý Í Č ě ř Í Í Á Č ř č Č é č č šř Č é č ě é ř č č š ě ř č ď ě š ř ě č é ř ďů ž ě š š Č é éú ě ě ž éč Í ř ě éú ů č ů ř č ů č ř ř šť é řč Žď ž ú ů ř š ř éž ů ů é ž ú č ř č ř šť č ž č ě ř č č č ů ř é ř č

Více

Ť ě ě ě á č á ž č ě ž ě ž č á ě š Ť ě č ž á ě č ě ž Ť č č ž Ť ž š á ě ž ě ž ž ě ě Ěá á á Ťš č á ě š č č š ěž ě č ě á ě č š ď ě ž á č ž ť á ť ě č ť ž Ž č ě č á á á á ě ž á ě á ě ž á á áž č ž ě ě á ž ě á

Více

ě Ý ř Ě Ý ý č ý é ý č é á á ž á á ř ý č š ě á řš é řá á ř á Č á á ý č ž š ě ý é ý č é ž ý š ž š ě ý éž ý ý čá ů á ě ý á á ř á á ř č ě š č é á ě ý ž á á é ž ř é č ž č ě á ž ž ř é ů á á á ěř á é č ř ř č

Více

š ě ě č š š š ů š Í š ň ě š šč š Ť š ě č č š č ó č č š č ě ů ň ě š č ě ů ž š ň ž ň č ě ě ž ě ž ě š ď ě ě š ž ž Ř č ě č š ů ů ě š š č ě ě Ž Í š ě ě ů ů š ž ů ů ů Í ě š ě ů ž š ů ž ů ď ě ž ž ě ěž šť ž č

Více

vysledek = ((1:1:50).*(100-(1:1:50))) *ones(50,1) vysledek = ((1:1:75)./2).*sqrt(1:1:75) *ones(75,1)

vysledek = ((1:1:50).*(100-(1:1:50))) *ones(50,1) vysledek = ((1:1:75)./2).*sqrt(1:1:75) *ones(75,1) ZKOUŠKA ČÍSLO 1 x=linspace(0,100,20); y=sqrt(x); A=[x;y]'; save('data.txt','a','-ascii'); polyn = polyfit(x,y,3); polyv = polyval(polyn,x); plot(x,y,'r*') plot(x,polyv,'b') p1=[1 0 0 0 0 0 0-1]; k=roots(p1);

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

Cvičení 11. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Cvičení 11. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. 11 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické

Více