SLOVENSKÁ POĽNOHOSPODÁRSKA UNIVERZITA V NITRE FAKULTA AGROBIOLÓGIE A POTRAVINOVÝCH ZDROJOV KATEDRA GENETIKY A ŠĽACHTENIA RASTLÍN
|
|
- Irena Pavlíková
- před 7 lety
- Počet zobrazení:
Transkript
1 SLOVENSKÁ POĽNOHOSPODÁRSK UNIVERZIT V NITRE FKULT ROBIOLÓIE POTRVINOVÝH ZDROJOV KTEDR ENETIKY ŠĽHTENI RSTLÍN Prednáška zo Všeobecnej genetiky Informačné molekuly a dedičnosť. prof. RNDr. Milan BEŽO, Sc.
2 Informačné molekuly Význam látok pre živú hmotu Organizačný a informačný. Nukleové kyseliny. Regulačný a kinetický. Bielkoviny enzýmy. Štruktúrny a energetický. Bielkoviny, sacharidy, lipidy. 2
3 Informačné molekuly Nukleové kyseliny Biopolyméry zložené z jedného alebo dvoch reťazcov. Základnou jednotkou nukleových kyselín sú nukleotidy, tvorené bázou, pentózou (cukor) a zvyškom kyseliny fosforečnej. Známe sú dve formy nukleových kyselín, deoxyribonukleová kyselina (DN) a ribonukleová kyselina (RN). 3
4 Informačné molekuly Základné zložky DN a RN Bázy, puríny adenín (), guanín (), pyrimidíny cytozín (), tymín (T). ukor, 2 deoxy-d-ribóza (D). Fosfát, kyselina fosforečná (P). DN RN Bázy, puríny adenín (), guanín (), pyrimidíny cytozín (), uracil (U). ukor, D-ribóza (R). Fosfát, kyselina fosforečná (P). 4
5 Informačné molekuly Bázy deoxyribóza fosfát I. Zložky nukleotida DN adenín, guanín, T tymín, cytozín. II. Nukleotidy DN TP deoxyadenozín trifosfát, TP deoxyguanozín trifosfát, TTP deoxytymidín trifosfát, TP deoxycytidín trifosfát. III. Polynukleotid DN T IV. dsdn Štruktúra DN Zložky nukleotida (I.), nukleotidy (II.), polynukleotid DN (III.) a dvojreťazcová DN, dsdn (IV.). 5
6 Informačné molekuly Bázy ribóza fosfát I. Zložky nukleotida RN adenín, guanín, U uracil, cytozín. III. ssrn II. Nukleotidy RN TP adenozín trifosfát, TP guanozín trifosfát, UTP uridín trifosfát, TP cytidín trifosfát. Štruktúra RN Zložky nukleotida RN (I.), nukleotidy (II.) a jednoreťazcová ssrn (III.). 6
7 Informačné molekuly Informačná RN (mrn) DN RN bielkovina K Transferová RN (trn) Prenos aminokyselín (K) na miesto syntézy bielkovín. ntikodón Ribozomálna RN (rrn) Súčasť ribozómu, miesta syntézy bielkovín. Ribozóm Triedy ribonukleových kyselín (RN) 7
8 Syntéza nukleových kyselín Polymerizácia doplňovacích nukleotidov na jednoreťazcovom úseku rozpletenej dvojreťazcovej molekuly DN. Na princípe párovania báz sa na dusíkatú bázu DN naviaže nukleotid. DN: dttp, T dtp, dtp, dtp. RN: UTP, U TP, TP, TP. Nukleotidy sa viažu fosfodiesterovou väzbou. adenín, T tymín, guanín, cytozín, U uracil. dtp deoxyadenozíntrifosfát, dttp deoxytymidíntrifosfát, dtp deoxycytidíntrifosfát, dtp deoxyguanozíntrifosfát. TP adenozíntrifosfát, UTP uridíntrifosfát, TP cytidíntrifosfát, TP guanozíntrifosfát. 8
9 Syntéza nukleových kyselín dttp Čiastočne rozpletená molekula dsdn pri jej replikácii. T DN dtp DN DN Syntéza (replikácia) DN Na reťazcoch rozpletenej dsdn sa podľa párovania báz T a viažu nukleozidtrifosfáty, deoxyadenozín trifosfát (dtp), deoxycytidín trifosfát (dtp), deoxyguanozín trifosfát (dtp), deoxytymidín trifosfát (dttp). Nukleotidy sa navzájom viažu fosfodiesterickou väzbou. Replikáciou DN vznikajú dve molekuly DN. (Vpravo). 9
10 Syntéza nukleových kyselín Čiastočne rozpletená molekula dsdn pri syntéze RN. T DN DN/RN dtp DN RN Syntéza RN Na reťazcoch rozpletenej dsdn sa podľa párovania báz U a viažu nukleozidtrifosfáty, adenozíntrifosfát (TP), cytidíntrifosfát (TP), guanozíntrifosfát (TP) a uridíntrifosfát (UTP). Nukleotidy sa navzájom viažu fosfodiesterickou väzbou. (Vľavo). Syntézou RN vzniká molekula RN. Na molekule sa DN vodíkovými väzbami medzi bázami obnoví dvojzávitnica. (Vpravo). 10
11 Syntéza bielkovín Syntéza bielkovín Polymerizácia lineárneho usporiadania aminokyselín podľa poradia nukleotidov v molekule nukleových kyselin. (a) Prepis genetickej informácie (I). Na molekule DN sa na krátkom úseku, géne nasyntetizuje mrn. b) Preklad I. Podľa trojíc nukleotidov mrn sa na ribozómoch usporiadavajú a polymerizujú aminokyseliny do polypeptidového reťazca. enetická informácia poradie nukleotidov v molekule nukleovej kyseliny (gén) kódujúce bielkovinu alebo kontrolujúce aktivitu génov. 11
12 Syntéza bielkovín én a jeho štruktúra én je špecifická diskrétna časť nukleovej kyseliny (DN alebo RN vírusov), ktorá kóduje molekulu ribonukleovej kyseliny (mrn, rrn, trn) a prostredníctvom mrn aj bielkoviny. Funkčná a štruktúrna jednotka dedičnosti 12
13 Syntéza bielkovín enetický kód Systém pravidiel podľa, ktorých sa poradie nukleotidov mrn prekladá do poradia aminokyselín pri syntéze bielkovín. Vlastnosti genetického kódu Tri nukleotidy mrn, triplet určujú zaradenie jednej aminokyseliny v bielkovine. Čítanie nukleotidov je neprerušované a neprekrýva sa. Je univerzálny, platný pre všetky organizmy. Je degenerovaný, niektoré aminokyseliny sú kódované viacerými tripletmi. 13
14 Kódovací slovník pre mrn a bielkoviny I. U II. U UUU Phe UU Phe UU Leu UU Leu UU Leu U Leu U Leu U Leu UU Ile U Ile U Ile U Met UU Val U Val U Val U Val UU Ser U Ser U Ser U Ser U Pro Pro Pro Pro U Thr Thr Thr Thr U la la la la UU Tyr U Tyr U Stop U Stop U His His ln ln U sn sn Lys Lys U sp sp lu lu UU ys U ys U Stop U Trp U rg rg rg rg U Ser Ser rg rg U ly ly ly ly III. U U U U Poznámka: I. prvá, II. druhá, III. tretia pozícia bázy v kodóne. adenín, cytozín, guanín, U uracil sú jednopísmenkové skratky báz. la alanín, rg arginín, sn asparagín, sp kyselina asparágová, ys cysteín, ln glutamín, lu kyselina glutamová, ly glycín, His histidín, Ile izoleucín, Leu leucín, Lys lyzín, Met metionín, Phe fenylalanín, Pro prolín, Ser serín, Thr treonín, Trp tryptofán, Tyr tyrozín, Val valín, trojpísmenkové skratky aminokyselín. Stop kodóny pre ukončenie syntézy molekuly bielkoviny 14
15 Syntéza bielkovín Prepis I Preklad I Thr sp T His én Kodón sp dsdn mrn Peptid Prepis a preklad genetickej informácie (I) Prepis I je syntéza mrn na predlohe DN. én je oblasť jedného reťazca nukleotidov dvojreťazcovej DN (dsdn). Preklad I, je syntéza peptida podľa predlohy mrn. Kodón je trojica báz DN a mrn, ktorá kóduje jednu aminokyselinu peptida. 15
16 Syntéza bielkovín Expresia génu Expresia génu je prepis a preklad genetickej informácie v bunke. Prepis genetickej informácie (transkripcia), je syntéza RN na predlohe DN. Preklad genetickej informácie (translácia), je syntéza bielkovín na predlohe mrn podľa genetického kódu. 16
17 Syntéza bielkovín hromozóm baktérie (dsdn) Prepis I mrn Preklad I Bunka baktérie Ribozóm Peptid Prepis a preklad genetickej informácie (I) v bunke baktérie 1. hromozóm v bunke baktérie tvorený kružnicovou dvojreťazcovou DN (dsdn). 2. Prepis I, syntéza mrn na predlohe jedného reťazca dsdn. 3. Preklad I, syntéza peptida na predlohe mrn. Polycistrónny preklad, syntéza viacej rôznych peptidov podľa predlohy jednej mrn. 17
18 Syntéza bielkovín Nukleozómy DN Rozvinutie nukleozómov Jadro bunky dsdn ytoplazma bunky pre-mrn mrn mrn Rozvinutá dsdn pri syntéze pre-mrn Úprava pre-mrn na mrn Ribozóm Peptid Prepis a preklad genetickej informácie v bunke eukaryí én v bunke eukaryí má intróny a exóny. V jadre bunky je pre-mrn upravená, vyštiepené sú intróny, nasyntetizovaná je čiapočka a poly koniec. Syntéza peptida je monocistrónna, na jednej mrn sa syntetizuje jeden peptid. 18
19 Syntéza bielkovín Etapy tvorby bielkovín Pred začiatkom syntézy bielkovín je potrebná (a) syntéza mrn, (b) aktivácia aminokyselín vytvorením komplexu aminokyseliny a špecifickej trn (aminoacyl-trn). Preklad genetickej informácie má tri etapy. 1. Začiatok (iniciácia) syntézy Vytvorenie iniciačného komplexu z mrn, ribozómu a aminoacyl-trn. 2. Predlžovanie (elongácia) reťazca Na ribozóme sa aminoacyl-trn antikodónom viaže na kodón mrn. 3. Zakončenie (terminácia) syntézy STOP kodón mrn signalizuje ukončenie syntézy bielkoviny. 19
20 Syntéza bielkovín Ribozóm kodón U U U U U mrn antikodón trn Phe ys Všeobecná schéma syntézy bielkovín Molekula mrn a ribozóm tvoria miesto syntézy bielkovín. Na kodón (triplet) mrn sa viaže antikodón trn s naviazanou príslušnou aminokyselinou. Väzbou aminokyselín usporiadaných vedľa seba vzniká polypeptidový reťazec (bielkovina). Phe fenyalanín, ys cysteín (aminokyseliny) 20
21 T T T T Kódujúci reťazec DN T T T Komplementárny reťazec DN Prepis komplementárneho reťazca DN U U U U mrn Preklad mrn met ala trp thr ser Bielkovina Prepis (DN RN) a preklad (RN bielkovina) genetickej informácie. Dvojreťazcová DN (double stranded DN dsdn) má antiparalelné reťazce (jeden v smere a druhý ). Reťazec je ako gén zmyslový (sens), plus alebo kódujúci pretože je identický k sekvenciám mrn. Reťazec nie je prepisovaný. Reťazec je ako gén protizmyslový (antisens), mínus, alebo nekódujúci. Je predloha (templát, matrica) pre enzým RN polymeráza, ktorý katalyzuje syntézu molekuly RN. Reťazec je komplementárny k reťazcu a je prepisovaný.
22 Význam informačných molekúl Syntéza DN DN én Prepis DN DN mrn Preklad Bielkovina Substrát Znak enetický význam nukleových kyselín a bielkovín Syntéza DN, prepis a preklad genetickej informácie. 22
23 Ďakujem za pozornosť
Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA
Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA
Exprese genetické informace
Exprese genetické informace Tok genetické informace DNA RNA Protein (výjimečně RNA DNA) DNA RNA : transkripce RNA protein : translace Gen jednotka dědičnosti sekvence DNA nutná k produkci funkčního produktu
Translace (druhý krok genové exprese)
Translace (druhý krok genové exprese) Od RN k proteinu Milada Roštejnská Helena Klímová 1 enetický kód trn minoacyl-trn-synthetasa Translace probíhá na ribosomech Iniciace translace Elongace translace
Molekulárn. rní. biologie Struktura DNA a RNA
Molekulárn rní základy dědičnosti Ústřední dogma molekulárn rní biologie Struktura DNA a RNA Ústřední dogma molekulárn rní genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace
Struktura a funkce nukleových kyselin
Struktura a funkce nukleových kyselin ukleové kyseliny Deoxyribonukleová kyselina - DA - uchovává genetickou informaci Ribonukleová kyselina RA - genová exprese a biosyntéza proteinů Složení A stavební
2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:
Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Struktura nukleových kyselin Vlastnosti genetického materiálu
Struktura nukleových kyselin Vlastnosti genetického materiálu V předcházejících kapitolách bylo konstatováno, že geny jsou uloženy na chromozomech a kontrolují fenotypové vlastnosti a že chromozomy se
Proteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D.
Proteiny Genová exprese 2013 Doc. MVDr. Eva Bártová, Ph.D. Bílkoviny (proteiny), 15% 1g = 17 kj Monomer = aminokyseliny aminová skupina karboxylová skupina α -uhlík postranní řetězec Znát obecný vzorec
Peter Javorský BNK I 2003/2004
P6/1 Posttranskripčné úpravy primárnych transkriptov RNA (modifikácia a zostrih hnrna do mrna, úprava pre-rrna a pre-trna, úprava primárnych transkriptov v mitochondriách) modifikácia hnrna: fyzikálne
Základy molekulární a buněčné biologie. Přípravný kurz Komb.forma studia oboru Všeobecná sestra
Základy molekulární a buněčné biologie Přípravný kurz Komb.forma studia oboru Všeobecná sestra Genetický aparát buňky DNA = nositelka genetické informace - dvouvláknová RNA: jednovláknová mrna = messenger
Centrální dogma molekulární biologie
řípravný kurz LF MU 2011/12 Centrální dogma molekulární biologie Nukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Mendel) 1869 objev nukleových kyselin (Miescher) 1944 genetická informace v nukleových
Nukleové kyseliny. obecný přehled
Nukleové kyseliny obecný přehled Nukleové kyseliny objeveny r.1868, izolovány koncem 19.stol., 1953 objasněno jejich složení Watsonem a Crickem (1962 Nobelova cena) biopolymery nositelky genetické informace
Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza
Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových
TRANSLACE - SYNTÉZA BÍLKOVIN
TRANSLACE - SYNTÉZA BÍLKOVIN Translace - překlad genetické informace z jazyka nukleotidů do jazyka aminokyselin podle pravidel genetického kódu. Genetický kód - způsob zápisu genetické informace Kód Morseovy
b) Jak se změní sekvence aminokyselin v polypeptidu, pokud dojde v pozici 23 k záměně bázového páru GC za TA (bodová mutace) a s jakými následky?
1.1: Gén pro polypeptid, který je součástí peroxidázy buku lesního, má sekvenci 3'...TTTACAGTCCATTCGACTTAGGGGCTAAGGTACCTGGAGCCCACGTTTGGGTCATCCAG...5' 5'...AAATGTCAGGTAAGCTGAATCCCCGATTCCATGGACCTCGGGTGCAAACCCAGTAGGTC...3'
Úvod do studia biologie. Základy molekulární genetiky
Úvod do studia biologie Základy molekulární genetiky Katedra biologie PdF MU, 2011 - podobor genetiky (genetika je obecnější) Genetika: - nauka o dědičnosti a proměnlivosti - věda 20. století Johann Gregor
Biológia. Prednášky - zimný semester Ročník - Magisterské štúdium
Biológia Prednášky - zimný semester 2015 1. Ročník - Magisterské štúdium 28. september 2015 3. Prednáška 3. Chemické zloženie živej hmoty chemický základ života. Atómy, molekuly, organické látky cukry,
NUKLEOVÉ KYSELINY. Složení nukleových kyselin. Typy nukleových kyselin:
NUKLEOVÉ KYSELINY Deoxyribonukleová kyselina (DNA, odvozeno z anglického názvu deoxyribonucleic acid) Ribonukleová kyselina (RNA, odvozeno z anglického názvu ribonucleic acid) Definice a zařazení: Nukleové
Návody na praktické cvičenia z témy Genetika
Molekulové základy dedičnosti DNA a transkripcia Úlohy: Časť jedného vlákna molekuly DNA tvoria nukleotidy s týmto poradím báz:...agtaccgatactcgattacgc......caccgtacagaatcgcttatt... c....gtgtaacgaccgatactgtag...
Genetický kód. Jakmile vznikne funkční mrna, informace v ní obsažená může být ihned použita pro syntézu proteinu.
Genetický kód Jakmile vznikne funkční, informace v ní obsažená může být ihned použita pro syntézu proteinu. Pravidla, kterými se řídí prostřednictvím přenos z nukleotidové sekvence DNA do aminokyselinové
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
a) Primární struktura NK NUKLEOTIDY Monomerem NK jsou nukleotidy
1 Nukleové kyseliny Nukleové kyseliny (NK) sice tvoří malé procento hmotnosti buňky ale významem v kódování genetické informace a její expresí zcela nezbytným typem biopolymeru všech živých soustav a)
Exprese genetické informace
Exprese genetické informace Stavební kameny nukleových kyselin Nukleotidy = báze + cukr + fosfát BÁZE FOSFÁT Nukleosid = báze + cukr CUKR Báze Cyklické sloučeniny obsahující dusík puriny nebo pyrimidiny
Molekulární základ dědičnosti
Molekulární základ dědičnosti Dědičná informace je zakódována v deoxyribonukleové kyselině, která je uložena v jádře buňky v chromozómech. Zlomovým objevem pro další rozvoj molekulární genetiky bylo odhalení
Úvod do studia biologie. Základy molekulární genetiky
Úvod do studia biologie Základy molekulární genetiky Katedra biologie PdF MU, 2010 Mendel - podobor Genetiky (Genetika je obecnější) Genetika: - nauka o dědičnosti a proměnlivosti - věda 20. století Johann
Jsme tak odlišní. Co nás spojuje..? Nukleové kyseliny
Jsme tak odlišní Co nás spojuje..? ukleové kyseliny 1 UKLEVÉ KYSELIY = K anj = A ositelky genetických informací Základní význam pro všechny organismy V buňkách a virech Identifikace v buněčném jádře (nucleos)
Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA).
Typy nukleových kyselin Existují dva typy nukleových kyselin (NA, z anglických slov nucleic acid): deoxyribonukleová (DNA); ribonukleová (RNA). DNA je lokalizována v buněčném jádře, RNA v cytoplasmě a
Molekulární základy dědičnosti
Mendelova genetika v příkladech Molekulární základy dědičnosti Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Stručná historie 1853-65
GENETIKA dědičností heredita proměnlivostí variabilitu Dědičnost - heredita podobnými znaky genetickou informací Proměnlivost - variabilita
GENETIKA - věda zabývající se dědičností (heredita) a proměnlivostí (variabilitu ) živých soustav - sleduje rozdílnost a přenos dědičných znaků mezi rodiči a potomky Dědičnost - heredita - schopnost organismu
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Molekulární genetika (Molekulární základy dědičnosti) 0 Gen - historie 1909 Johanssen
Biosyntéza a metabolismus bílkovin
Bílkoviny Biosyntéza a metabolismus bílkovin lavní stavební materiál buněk a tkání Prakticky jediný zdroj dusíku pro heterotrofní organismy eexistují zásobní bílkoviny nutný dostatečný přísun v potravě
Nukleové kyseliny. Nukleové kyseliny. Genetická informace. Gen a genom. Složení nukleových kyselin. Centrální dogma molekulární biologie
Centrální dogma molekulární biologie ukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Transkripce D R Translace rotein Mendel) Replikace 1869 objev nukleových kyselin (Miescher) 1944 nukleové kyseliny
Molekulární genetika (Molekulární základy dědičnosti)
Molekulární genetika (Molekulární základy dědičnosti) Struktura nukleové kyseliny Cukerná pentóza: 2-deoxy-D-ribóza D-ribóza Fosfátový zbytek: PO 4 3- Purin Pyrimidin Dusíkatá báze Adenin Guanin Tymin
Genetika zvířat - MENDELU
Genetika zvířat DNA - primární struktura Několik experimentů ve 40. a 50. letech 20. století poskytla důkaz, že genetický materiál je tvořen jedním ze dvou typů nukleových kyselin: DNA nebo RNA. DNA je
Molekulární základy dědičnosti
Obecná genetika Molekulární základy dědičnosti Doc. RNDr. Ing. Eva PALÁTOVÁ, PhD. Ing. Roman LONGAUER, CSc. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt je spolufinancován Evropským sociálním
-nukleové kyseliny jsou makromolekulární látky, jejichž základní stavební jednotkou je nukleotid každý nukleotid vzniká spojením:
Otázka: Molekulární základy dědičnosti Předmět: Biologie Přidal(a): Mulek NUKLEOVÉ KYSELINY -nositelkami genetické informace jsou molekuly nukleových kyselin tvořené řetězci vzájemně spojených nukleotidů,
Předmět: KBB/BB1P; KBB/BUBIO
Předmět: KBB/BB1P; KBB/BUBIO Chemické složení buňky Cíl přednášky: seznámit posluchače se složením buňky po chemické stránce Klíčová slova: biogenní prvky, chemické vazby a interakce, uhlíkaté sloučeniny,
Molekulárn. rní genetika
Molekulárn rní genetika Centráln lní dogma molekulárn rní biologie cesta přenosu genetické informace: DNA RNA proteiny výjimkou reverzní transkripce retrovirů: RNA DNA Chemie nukleových kyselin dusíkaté
Nukleové kyseliny. DeoxyriboNucleic li Acid
Molekulární lární genetika Nukleové kyseliny DeoxyriboNucleic li Acid RiboNucleic N li Acid cukr (deoxyrobosa, ribosa) fosforečný zbytek dusíkatá báze Dusíkaté báze Dvouvláknová DNA Uchovává genetickou
15. Základy molekulární biologie
15. Základy molekulární biologie DNA je zkratka pro kyselinu deoxyribonukleovou, která je nositelkou genetické informace všech živých buněčných organismů. Je tedy nezbytná pro život pomocí svých informací
Nukleosidy, nukleotidy, nukleové kyseliny, genetická informace
Nukleosidy, nukleotidy, nukleové kyseliny, genetická informace Centrální dogma Nukleové kyseliny Fosfátem spojené nukleotidy (cukr s navázanou bází a fosfátem) Nukleotidy Nukleotidy stavební kameny nukleových
MOLEKULÁRNÍ ZÁKLADY DĚDIČNOSTI
Maturitní téma č. 33 MOLEKULÁRNÍ ZÁKLADY DĚDIČNOSTI NUKLEOVÉ KYSELINY - jsou to makromolekuly tvořené řetězci vzájemně spojených nukleotidů. Molekula nukleotidu sestává z : - pětiuhlíkatého monosacharidu
Nukleové kyseliny Milan Haminger BiGy Brno 2017
ukleové kyseliny Milan aminger BiGy Brno 2017 ukleové kyseliny jsou spolu s proteiny základní a nezbytnou složkou živé hmoty. lavní jejich funkce je uchování genetické informace a její přenos do dceřinné
CHEMICKÉ SLOŽENÍ BAKTERIÁLNÍ BUŇKY. Sloučeniny: Nízkomolekulární: aminokyseliny, monosacharidy, oligosacharidy, hexosaminy, nukleotidy, voda
CHEMICKÉ SLOŽENÍ BAKTERIÁLNÍ BUŇKY Prvky : Makrobiogenní C, H, O, N, S, P, K, Na, Mg Mikrobiogenní - Fe, Cu, Mn, Co, F, Br, Si, Sr, Va, Zn, Ba Sloučeniny: Nízkomolekulární: aminokyseliny, monosacharidy,
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Molekulární základy genetiky
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Molekulární základy genetiky 1/76 GENY Označení GEN se používá ve dvou základních významech: 1. Jako synonymum pro vlohu
Eva Benešová. Genetika
Eva Benešová Genetika Význam nukleotidů - Energetický metabolismus (oběh energie). - Propojení odpovědi buňky na hormony a další stimuly. - Komponenty enzymových kofaktorů a dalších metabolických intermediátů.
Projekt SIPVZ č.0636p2006 Buňka interaktivní výuková aplikace
Nukleové kyseliny Úvod Makromolekulární látky, které uchovávají a přenášejí informaci. Jsou to makromolekulární látky uspořádané do dlouhých. Řadí se mezi tzv.. Jsou přítomny ve buňkách a virech. Poprvé
Nukleové kyseliny Replikace Transkripce, RNA processing Translace
ukleové kyseliny Replikace Transkripce, RA processing Translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti
NUKLEOVÉ KYSELINY. Základ života
NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním
Schéma průběhu transkripce
Molekulární základy genetiky PROTEOSYNTÉZA A GENETICKÝ KÓD Proteosyntéza je složitý proces tvorby bílkovin, který zahrnuje proces přepisu genetické informace z DNA do kratšího zápisu v informační mrna
Virtuální svět genetiky 1. Translace
(překlad) je druhým krokem exprese genetické informace a ukončuje dráhu DNA > RNA > protein. probíhá mimo jádro, v cytoplazmě na ribozómech. Výchozími látkami pro translaci je 21 standardních aminokyselin,
Metabolismus aminokyselin. Vladimíra Kvasnicová
Metabolismus aminokyselin Vladimíra Kvasnicová Aminokyseliny aminokyseliny přijímáme v potravě ve formě proteinů: důležitá forma organicky vázaného dusíku, který tak může být v těle využit k syntéze dalších
jedné aminokyseliny v molekule jednoho z polypeptidů hemoglobinu
Translace a genetický kód Srpkovitý tvar červených krvinek u srpkovité anémie: důsledek záměny Srpkovitý tvar červených krvinek u srpkovité anémie: důsledek záměny jedné aminokyseliny v molekule jednoho
Garant předmětu GEN: prof. Ing. Jindřich Čítek, CSc. Garant předmětu GEN1: prof. Ing. Václav Řehout, CSc.
Garant předmětu GEN: prof. Ing. Jindřich Čítek, CSc. Garant předmětu GEN1: prof. Ing. Václav Řehout, CSc. Další vyučující: Ing. l. Večerek, PhD., Ing. L. Hanusová, Ph.D., Ing. L. Tothová Předpoklady: znalosti
6. Nukleové kyseliny
6. ukleové kyseliny ukleové kyseliny jsou spolu s proteiny základní a nezbytnou složkou živé hmoty. lavní jejich funkce je uchování genetické informace a její přenos do dceřinné buňky. ukleové kyseliny
Odvětví genetiky zkoumající strukturu a funkci genů na molekulární úrovni
Otázka: Molekulární genetika a biologie Předmět: Biologie Přidal(a): Tomáš Pfohl Odvětví genetiky zkoumající strukturu a funkci genů na molekulární úrovni Zakladatel klasické genetiky - Johan Gregor Mendel
Nukleové kyseliny a nadmolekulové komplexy polynukleotidů buněčných struktur
Nukleové kyseliny a nadmolekulové komplexy polynukleotidů buněčných struktur Nukleové kyseliny (polynukleotidy) Objevitelem je Friedrich Miescher (1887) NK stojí v hierarchii látek potřebných k existenci
Molekulární genetika: Základní stavební jednotkou nukleových kyselin jsou nukleotidy, které jsou tvořeny
Otázka: Molekulární genetika, genetika buněk Předmět: Biologie Přidal(a): jeti52 Molekulární genetika: Do roku 1953 nebylo přesně známa podstata genetické informace, genů, dědičnosti,.. V roce 1953 Watson
Struktura proteinů. - testík na procvičení. Vladimíra Kvasnicová
Struktura proteinů - testík na procvičení Vladimíra Kvasnicová Mezi proteinogenní aminokyseliny patří a) kyselina asparagová b) kyselina glutarová c) kyselina acetoctová d) kyselina glutamová Mezi proteinogenní
1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním
1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním školám Genetika - shrnutí TL2 1. Doplň: heterozygot,
Studijní materiály pro bioinformatickou část ViBuChu. úloha II. Jan Komárek, Gabriel Demo
Studijní materiály pro bioinformatickou část ViBuChu úloha II Jan Komárek, Gabriel Demo Adenin Struktura DNA Thymin 5 konec 3 konec DNA tvořena dvěmi řetězci orientovanými antiparalelně (liší se orientací
POLYPEPTIDY. Provitaminy = organické sloučeniny bez vitaminózního účinku, které se v živočišném těle mění působením ÚV záření nebo enzymů na vitaminy.
POLYPEPTIDY Provitaminy = organické sloučeniny bez vitaminózního účinku, které se v živočišném těle mění působením ÚV záření nebo enzymů na vitaminy. Hormony = katalyzátory v živočišných organismech (jsou
Nukleové kyseliny (polynukleotidy) Nukleové kyseliny a nadmolekulové komplexy polynukleotidů buněčných struktur
Nukleové kyseliny (polynukleotidy) Nukleové kyseliny a nadmolekulové komplexy polynukleotidů buněčných struktur Objevitelem je Friedrich Miescher (1887) NK stojí v hierarchii látek potřebných k existenci
ENZYMY A NUKLEOVÉ KYSELINY
ENZYMY A NUKLEOVÉ KYSELINY Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 28. 3. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Organické sloučeniny 1 Anotace: Žáci se seznámí
Nukleové kyseliny Replikace DNA Doc. MVDr. Eva Bártová, Ph.D.
Nukleové kyseliny Replikace DNA 2013 Doc. MVDr. Eva Bártová, Ph.D. Nukleové kyseliny 7% cytozin Monomer: NUKLEOTID, tvoří jej: uracil kyselina fosforečná pentóza (ribóza, deoxyribóza) tymin organická dusíkatá
Genetika. Genetika. Nauka o dědid. dičnosti a proměnlivosti. molekulárn. rní buněk organismů populací
Genetika Nauka o dědid dičnosti a proměnlivosti Genetika molekulárn rní buněk organismů populací Dědičnost na úrovni nukleových kyselin Předávání vloh z buňky na buňku Předávání vlastností mezi jednotlivci
Obecná struktura a-aminokyselin
AMINOKYSELINY Obsah Obecná struktura Názvosloví, třídění a charakterizace Nestandardní aminokyseliny Reaktivita - peptidová vazba Biogenní aminy Funkce aminokyselin Acidobazické vlastnosti Optická aktivita
6) Transkripce. Bakteriální RNA-polymeráza katalyzuje transkripci všech uvedených typů primárních transkriptů (na rozdíl od eukaryot).
6) Transkripce Transkripce bakteriálního genomu Jde o přenos genetické informace z DNA do RNA. Katalyzuje ji enzym RNA-polymeráza (transkriptáza). Další názvy:dna-řízená RNApolymeráza, DNA-řízená RNA-nukleotidyltransferáza,
Peter Javorský BNK I 2003/2004
P3/1 Bunkové živé sústavy (jednobunkové a mnohobunkové organizmy, vykazujú všetky základné životné funkcie, sú schopné realizovať prenos genetickej informácie - replikáciu, transkripciu a transláciu, obsahujú
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Vztah struktury a funkce nukleových kyselin. Replikace, transkripce
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vztah struktury a funkce nukleových kyselin. Replikace, transkripce Nukleová kyselina gen základní jednotka informace v živých systémech,
Bílkoviny a nukleové kyseliny
Na www.studijni-svet.cz zaslal(a): Nemám - Samanta - BÍLKOVINY: Bílkoviny a nukleové kyseliny - Bílkoviny, odborně proteiny, patří mezi biopolymery. Jedná se o vysokomolekulární přírodní látky složené
SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA. 48. ročník, školský rok 2011/2012 Kategória EF, úroveň F. Školské kolo
SLOVENSKÁ KOMISIA CHEMICKEJ OLYMPIÁDY CHEMICKÁ OLYMPIÁDA 48. ročník, školský rok 2011/2012 Kategória EF, úroveň F Školské kolo TEORETICKÉ A PRAKTICKÉ ÚLOHY ÚLOHY ZO VŠEOBECNEJ A FYZIKÁLNEJ CHÉMIE (II)
Kde se NK vyskytují?
ukleové kyseliny Kde se K vyskytují? Struktura ukleotid H 2 - H báze Zbytek kyseliny fosforečné H Cukerná složka H H H H H H H H H H H ribosa β-d-ribofuranosa H H H H H H H H H H deoxyribosa 2-deoxy-β-D-ribofuranosa
Metabolismus aminokyselin - testík na procvičení - Vladimíra Kvasnicová
Metabolismus aminokyselin - testík na procvičení - Vladimíra Kvasnicová Vyberte esenciální aminokyseliny a) Asp, Glu b) Val, Leu, Ile c) Ala, Ser, Gly d) Phe, Trp Vyberte esenciální aminokyseliny a) Asp,
6. Nukleové kyseliny a molekulová genetika
6. Nukleové kyseliny a molekulová genetika Obtížnost A Odhadněte celkové nukleotidové složení dvouvláknové DNA, u níž bylo experimentálně stanoveno, že ze 100 deoxynukleotidů tvoří průměrně 22 deoxyadenosin-5
SLOVENSKÁ POĽNOHOSPODÁRSKA UNIVERZITA V NITRE FAKULTA AGROBIOLÓGIE A POTRAVINOVÝCH ZDROJOV KATEDRA GENETIKY A ŠĽACHTENIA RASTLÍN
SLOVENSKÁ POĽNOHOSPODÁRSKA UNIVERZITA V NITRE FAKULTA AGROBIOLÓGIE A POTRAVINOVÝCH ZDROJOV KATEDRA GENETIKY A ŠĽACHTENIA RASTLÍN Prednáška zo Základov biologickej bezpečnosti Metódy identifikácie cudzorodých
Aminokyseliny. Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín. Tematická oblast Datum vytvoření Ročník Stručný obsah Způsob využití
Aminokyseliny Tematická oblast Datum vytvoření Ročník Stručný obsah Způsob využití Autor Kód Chemie přírodních látek proteiny 18.7.2012 3. ročník čtyřletého G Určování postranních řetězců aminokyselin
MOLEKULÁRNÍ BIOLOGIE PROKARYOT
Informační makromolekuly MOLEKULÁRNÍ BIOLOGIE PROKARYOT Funkce a syntéza informačních makromolekul Regulace metabolické aktivity Nukleové kyseliny Proteiny Pořadí monomerních jednotek nese genetickou informaci
Bílkoviny. Charakteristika a význam Aminokyseliny Peptidy Struktura bílkovin Významné bílkoviny
Bílkoviny harakteristika a význam Aminokyseliny Peptidy Struktura bílkovin Významné bílkoviny 1) harakteristika a význam Makromolekulární látky složené z velkého počtu aminokyselinových zbytků V tkáních
Metabolismus bílkovin. Václav Pelouch
ZÁKLADY OBECNÉ A KLINICKÉ BIOCHEMIE 2004 Metabolismus bílkovin Václav Pelouch kapitola ve skriptech - 3.2 Výživa Vyvážená strava člověka musí obsahovat: cukry (50 55 %) tuky (30 %) bílkoviny (15 20 %)
Nukleové kyseliny příručka pro učitele. Obecné informace:
Obecné informace: Nukleové kyseliny příručka pro učitele Téma Nukleové kyseliny je završením základních kapitol z popisné chemie a je tedy zařazeno až na její závěr. Probírá se v rámci jedné, eventuálně
Tomáš Oberhuber. Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Buňka buňka je základní stavební prvek všech živých organismů byla objevena Robertem Hookem roku 1665 jednodušší
Gymnázium, Brno, Elgartova 3
Gymnázium, Brno, Elgartova 3 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: GE Vyšší kvalita výuky Číslo projektu: CZ.1.07/1.5.00/34.0925 Autor: Mgr. Hana Křivánková Téma:
Vazebné interakce protein s DNA
Vazebné interakce protein s DNA Vazebné možnosti vn jší vazba atmosféra + iont kolem nabité DNA vazba ve žlábku van der Waalsovský kontakt s lé ivem ve žlábku interkalace vmeze ení planárního aromat.
Úvod Cytológia Bunka Chemické zloženie živej hmoty Membránové štruktúry bunky... 17
Obsah Úvod... 3 1. Cytológia... 4 1.1 Bunka... 4 1.2 Chemické zloženie živej hmoty... 6 1.3 Membránové štruktúry bunky... 17 1.3.1 Plazmatická membrána (PM)... 17 1.3.2 Mitochondria... 19 1.3.3 Endoplazmatické
DUM č. 11 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika
projekt GML Brno Docens DUM č. 11 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 30.06.2014 Ročník: 6AF, 6BF Anotace DUMu: Princip genové exprese, intenzita překladu
3. Genetická informace a její exprese
3. Genetická informace a její exprese 3.1 Nukleové kyseliny 3.1.1 Primární struktura nukleových kyselin Nukleotid = je sloučenina nukleozidu s kyselinou fosforečnou Nukleozid = vzniká spojením purinové
19.b - Metabolismus nukleových kyselin a proteosyntéza
19.b - Metabolismus nukleových kyselin a proteosyntéza Proteosyntéza vyžaduje především zajištění primární struktury. Informace je uložena v DNA (ev. RNA u některých virů) trvalá forma. Forma uskladnění
PROTEINY. Biochemický ústav LF MU (H.P.)
PROTEINY Biochemický ústav LF MU 2013 - (H.P.) 1 proteiny peptidy aminokyseliny 2 Aminokyseliny 3 Charakteristika základní stavební jednotky proteinů geneticky kódované 20 základních aminokyselin 4 a-aminokyselina
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy Genetiky
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy Genetiky ROSTLINNÁ BUŇKA aaaaaaaa jádro mitochondrie chromatin (DNA) aaaaaaaa aaaaaaa aaaaaaaa aaaaaaaa plastid
Vzdělávací materiál. vytvořený v projektu OP VK. Anotace. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu:
Vzdělávací materiál vytvořený v projektu VK ázev školy: Gymnázium, Zábřeh, náměstí svobození 20 Číslo projektu: ázev projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek pro
Nukleové kyseliny Replikace Transkripce translace
Nukleové kyseliny Replikace Transkripce translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti buněk skladovat,
-zakladatelem je Johan Gregor Mendel ( ), který se narodil v Hynčicích na Moravě
Otázka: Genetika I Předmět: Biologie Přidal(a): Paris -věda, která se zabývá dědičností a proměnlivostí -zakladatelem je Johan Gregor Mendel (1822 1884), který se narodil v Hynčicích na Moravě 1. MOLEKULÁRNÍ
BIOMEDICÍNSKA FYZIKA. Návod na vyplnenie hárku. Test 20
BIOMEDICÍNSKA FYZIKA Návod na vyplnenie hárku Súčasťou testu je priložený snímací hárok. Na ten budete zaznamenávať odpovede na otázky testu. Hárok je ohraničený veľkým čiernym rámom. Vpisujte len do vnútornej
Gymnázium Janka Kráľa, Ul. SNP 3, Zlaté Moravce. RNDr. Renáta Kunová, PhD. BIOLÓGIA Pracovný list 2 Téma: Bunka (cellula)
RNDr. Renáta Kunová, PhD. BIOLÓGIA Pracovný list 2 Téma: Bunka (cellula) Aktivity Pracovný list obsahuje kartičky (zalaminované) s obrázkami bunkových povrchov a organel, kartičky s popisom danej štruktúry