Struktura a funkce nukleových kyselin
|
|
- Kamil Šimek
- před 8 lety
- Počet zobrazení:
Transkript
1 Struktura a funkce nukleových kyselin
2 ukleové kyseliny Deoxyribonukleová kyselina - DA - uchovává genetickou informaci Ribonukleová kyselina RA - genová exprese a biosyntéza proteinů
3 Složení A stavební jednotkou A jsou nukleotidy UKLEOTID - dusíkatá báze - báze purinové a pyrimidinové - cukr - zbytek kyseliny fosforečné H 3 PO 4 - O H O P O purin pyrimidin O -
4 ukleotid - dusíkaté báze H 2 O adenin H H 2 H H guanin adenin H 2 guanin cytosin thymin jen v DA uracil jen v RA O H cytosin O H O H uracil O O H H thymin CH 3
5 Ribosa v RA Cukerná složka 5' CH 2 OH 4' H H 3' OH O OH H 1' 2' H OH 5' CH 2 OH 4' H O H OH 1' ribosa 2 - deoxyribosa v DA H 3' 2' H OH H 2'-deoxyribosa
6 ukleosid (deoxynukleosid) spojená cukerná složka a dusíkatá báze H 2 CH 2 OH O H H H H OH H nukleosid - deoxyadenosin
7 ukleotid (deoxynukleotid) H 2 O - O P O - O CH 2 O H H OH H H H nukleotid - deoxyadenosin-5'-monofosfát
8 Vazby v A -glykosidová vazba - mezi dusíkaté báze a uhlíkem C1 ribosy (deoxyribosy) fosfodiesterová vazba - mezi kyselinou fosforečnou a uhlíkem C5 ribosy (deoxyribosy)
9 Převzato: Koolman, J., Roehm, K. H.; Color Atlas of Biochemistry, 2005
10 Párování bází - DA - shodné množství A = T C = G - Watson, Crick 1953 DA je dvoušroubovice - 2 řetězce jsou spojeny vodíkovými můstky mezi purinovými a pyrimidinovými bázemi do pravotočivé dvoušroubovice - párování bází velmi specifické, dáno H-vazbami mezi A a T; C a G pyrimidinová b. C a G 3 H-vazby A a T 2 H-vazby purinová b. Převzato: R. Murray, Harper s Biochemistry, 26th edition
11 Dvoušroubovice DA 6 forem DA: A, B, C, D, E, Z - za fyziologických podmínek: obvykle B Převzato: prof. K. Bezouška, Molekulární biologie a genetika 2005
12 DA dvoušroubovice jedno vlákno templátové uchovává se genetická informace druhé vlákno kódující řetězec obdobný transkriptu kódující protein
13 DA DA je začlěněna do chromozomů Převzato: prof. K. Bezouška, Molekulární biologie a genetika 2005
14 RA spojení nukleotidů stejné jako v DA také 3,5 -fosfodiesterovými vazbami ribosa místo 2 -deoxyribosy není T, ale U jednořetězcová (někdy se jedno vlákno svine do vlásenky, která má dvouřetězcový charakter) množství A a U; C a G se nemusí rovnat
15 Druhy RA mra informační, messengerové, mediatorové přenáší genetickou info z DA do proteosyntetických pochodů, slouží jako templát pro syntézu proteinů rra ribozomální strukturní úloha, přispívají k vytvoření ribozomu (buněčná organela, kde se odehrává syntéza proteinů) tra transferová, adapterové molekuly pro překlad informace z RA do specifické sekvence polymerovaných aminokyselin snra malé jaderné RA, při úpravách RA, v buněčné architektuře
16 tra 75 nukleotidů překlad informace uložené v sekvenci nukleotidů mra do sekvence aminokyselin v buňce vždy aspoň 20 tra jetelový trojlístek akceptorové a antikodonové rameno Převzato: R. Murray, Harper s Biochemistry, 26th edition
17 rra ribozomy cytoplazmatické nukleoproteiny, probíhá v nich syntéza proteinů řízená podle templátu mra prokaryotické a eukaryotické se liší Převzato: prof. K. Bezouška, Molekulární biologie a genetika 2005
18 Replikace a transkripce DA genetická informace v DA: zdroj informace pro syntézu všech proteinů buňky a organismu poskytuje informace děděné dceřinou buňkou nebo potomkem musí být templátem: pro přepis (transkripci) informace do RA pro replikaci informace do dceřiné molekuly DA
19 Funkce nukleových kyselin Převzato: prof. K. Bezouška, Molekulární biologie a genetika 2005
20 Replikace DA komplementarita Watson a Crick (A T, C G) probíhá semikonzervativně po rozdělení mateřské molekuly DA slouží každý řetězec jako matrice, kde se syntetizuje nový komplementární řetězec Převzato: R. Murray, Harper s Biochemistry, 26th edition
21 Replikace DA Iniciace narušení DA v replikačním počátku, vznik replikační vidličky Elongace RA primer začíná syntézu nového vlákna, DA polymeráza syntetizuje nové vlákno DA, vedoucí řetězec směr 5 3 konec,; otálející řetězec směr 3 5 konec, vznik Okazakiho fragmentů, fragmenty jsou spojeny DA-ligasou Terminace dokončení, opravy, dosyntetizování konců
22 Enzymy podílející se na replikaci DA helikáza - využívá energie z hydrolýzy ATP ke svému pohybu a současně odděluje mateřské řetězce DA primáza (RA polymeráza) syntetizuje RA primery DA-polymeráza polymerázová aktivita (syntéza), nukleázová aktivita (opravy) DA-ligáza spojuje 2 části vlákna DA nukleáza odstraňuje RA primery
23 Transkripce - transkripce přepis části nukleotidové sekvence DA (genu) do nukleotidové sekvence RA - vzniká RA komplementární k jednomu řetězci DA Iniciace RA polymeráza rozvinutí DA v místě promotoru Elongace rozplétání DA řetězce, RA polymeráza syntéza RA ve směru 5 3 Terminace zastavení RA polymerázy, uvolnění hotové RA Převzato: R. Murray, Harper s Biochemistry, 26th edition
24 Transkripce RA-polymeráza přepisuje DA do RA, rozvíjí dvoušroubovici DA a přidává jednotlivé nukleotidy k rostoucímu řetězci RA sigma faktor rozpoznává promotor promotor nukleotidová sekvence, kam se naváže RA polymeráza a aktivuje tak transkripci
25 Translace - pořadí nukleotidů v RA se překládá do pořadí aminokyselin v proteinu - probíhá na ribozomech - iniciace vznik iniciačního komplexu - elongace elongační faktory, prodlužování polypeptidového řetězce na základě mra - terminace zakončení sysntézy polypeptidového řetězce na základě terminačních kodonů, terminační faktory
26 Translace Převzato: prof. K. Bezouška, Molekulární biologie a genetika 2005
27 Genetický kód Převzato: R. Murray, Harper s Biochemistry, 26th edition
28 Genetický kód tripletový každá amk kódována trojicí nukleotidů sestaven z 64 kodonů (kódují 21 amk) degenerovaný 1 amk několika kodony celkem 61 kodonů 3 terminační kodony UAA, UAG, UGA (někdy pro SeCys) 1 iniciační AUG (nebo pro Met)
29 Příklady Jak bude vypadat proteinová sekvence? AGA-GGA-GAU Jaká bude komplementární sekvence pro tuto DA? A jak bude vypadat sekvence RA podle této DA? GGA-TTT-TTG-TCC-CGA Řešení: Agrinin-glycin-aspartát DA: CCT-AAA-AAC-AGG-GCT RA: CCU-AAA-AAC-UGG-GCU
Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA
Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA
Nukleové kyseliny Milan Haminger BiGy Brno 2017
ukleové kyseliny Milan aminger BiGy Brno 2017 ukleové kyseliny jsou spolu s proteiny základní a nezbytnou složkou živé hmoty. lavní jejich funkce je uchování genetické informace a její přenos do dceřinné
2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:
Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících
Jsme tak odlišní. Co nás spojuje..? Nukleové kyseliny
Jsme tak odlišní Co nás spojuje..? ukleové kyseliny 1 UKLEVÉ KYSELIY = K anj = A ositelky genetických informací Základní význam pro všechny organismy V buňkách a virech Identifikace v buněčném jádře (nucleos)
Nukleové kyseliny Replikace Transkripce, RNA processing Translace
ukleové kyseliny Replikace Transkripce, RA processing Translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti
6. Nukleové kyseliny
6. ukleové kyseliny ukleové kyseliny jsou spolu s proteiny základní a nezbytnou složkou živé hmoty. lavní jejich funkce je uchování genetické informace a její přenos do dceřinné buňky. ukleové kyseliny
GENETIKA dědičností heredita proměnlivostí variabilitu Dědičnost - heredita podobnými znaky genetickou informací Proměnlivost - variabilita
GENETIKA - věda zabývající se dědičností (heredita) a proměnlivostí (variabilitu ) živých soustav - sleduje rozdílnost a přenos dědičných znaků mezi rodiči a potomky Dědičnost - heredita - schopnost organismu
Molekulárn. rní. biologie Struktura DNA a RNA
Molekulárn rní základy dědičnosti Ústřední dogma molekulárn rní biologie Struktura DNA a RNA Ústřední dogma molekulárn rní genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace
Exprese genetické informace
Exprese genetické informace Tok genetické informace DNA RNA Protein (výjimečně RNA DNA) DNA RNA : transkripce RNA protein : translace Gen jednotka dědičnosti sekvence DNA nutná k produkci funkčního produktu
Exprese genetické informace
Exprese genetické informace Stavební kameny nukleových kyselin Nukleotidy = báze + cukr + fosfát BÁZE FOSFÁT Nukleosid = báze + cukr CUKR Báze Cyklické sloučeniny obsahující dusík puriny nebo pyrimidiny
Úvod do studia biologie. Základy molekulární genetiky
Úvod do studia biologie Základy molekulární genetiky Katedra biologie PdF MU, 2011 - podobor genetiky (genetika je obecnější) Genetika: - nauka o dědičnosti a proměnlivosti - věda 20. století Johann Gregor
Vzdělávací materiál. vytvořený v projektu OP VK. Anotace. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu:
Vzdělávací materiál vytvořený v projektu VK ázev školy: Gymnázium, Zábřeh, náměstí svobození 20 Číslo projektu: ázev projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek pro
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Odvětví genetiky zkoumající strukturu a funkci genů na molekulární úrovni
Otázka: Molekulární genetika a biologie Předmět: Biologie Přidal(a): Tomáš Pfohl Odvětví genetiky zkoumající strukturu a funkci genů na molekulární úrovni Zakladatel klasické genetiky - Johan Gregor Mendel
Základy molekulární a buněčné biologie. Přípravný kurz Komb.forma studia oboru Všeobecná sestra
Základy molekulární a buněčné biologie Přípravný kurz Komb.forma studia oboru Všeobecná sestra Genetický aparát buňky DNA = nositelka genetické informace - dvouvláknová RNA: jednovláknová mrna = messenger
Centrální dogma molekulární biologie
řípravný kurz LF MU 2011/12 Centrální dogma molekulární biologie Nukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Mendel) 1869 objev nukleových kyselin (Miescher) 1944 genetická informace v nukleových
Nukleové kyseliny. obecný přehled
Nukleové kyseliny obecný přehled Nukleové kyseliny objeveny r.1868, izolovány koncem 19.stol., 1953 objasněno jejich složení Watsonem a Crickem (1962 Nobelova cena) biopolymery nositelky genetické informace
Nukleové kyseliny. DeoxyriboNucleic li Acid
Molekulární lární genetika Nukleové kyseliny DeoxyriboNucleic li Acid RiboNucleic N li Acid cukr (deoxyrobosa, ribosa) fosforečný zbytek dusíkatá báze Dusíkaté báze Dvouvláknová DNA Uchovává genetickou
Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza
Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových
Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA).
Typy nukleových kyselin Existují dva typy nukleových kyselin (NA, z anglických slov nucleic acid): deoxyribonukleová (DNA); ribonukleová (RNA). DNA je lokalizována v buněčném jádře, RNA v cytoplasmě a
NUKLEOVÉ KYSELINY. Složení nukleových kyselin. Typy nukleových kyselin:
NUKLEOVÉ KYSELINY Deoxyribonukleová kyselina (DNA, odvozeno z anglického názvu deoxyribonucleic acid) Ribonukleová kyselina (RNA, odvozeno z anglického názvu ribonucleic acid) Definice a zařazení: Nukleové
Úvod do studia biologie. Základy molekulární genetiky
Úvod do studia biologie Základy molekulární genetiky Katedra biologie PdF MU, 2010 Mendel - podobor Genetiky (Genetika je obecnější) Genetika: - nauka o dědičnosti a proměnlivosti - věda 20. století Johann
Nukleové kyseliny. Nukleové kyseliny. Genetická informace. Gen a genom. Složení nukleových kyselin. Centrální dogma molekulární biologie
Centrální dogma molekulární biologie ukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Transkripce D R Translace rotein Mendel) Replikace 1869 objev nukleových kyselin (Miescher) 1944 nukleové kyseliny
Nukleosidy, nukleotidy, nukleové kyseliny, genetická informace
Nukleosidy, nukleotidy, nukleové kyseliny, genetická informace Centrální dogma Nukleové kyseliny Fosfátem spojené nukleotidy (cukr s navázanou bází a fosfátem) Nukleotidy Nukleotidy stavební kameny nukleových
NUKLEOVÉ KYSELINY. Základ života
NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním
Garant předmětu GEN: prof. Ing. Jindřich Čítek, CSc. Garant předmětu GEN1: prof. Ing. Václav Řehout, CSc.
Garant předmětu GEN: prof. Ing. Jindřich Čítek, CSc. Garant předmětu GEN1: prof. Ing. Václav Řehout, CSc. Další vyučující: Ing. l. Večerek, PhD., Ing. L. Hanusová, Ph.D., Ing. L. Tothová Předpoklady: znalosti
Kde se NK vyskytují?
ukleové kyseliny Kde se K vyskytují? Struktura ukleotid H 2 - H báze Zbytek kyseliny fosforečné H Cukerná složka H H H H H H H H H H H ribosa β-d-ribofuranosa H H H H H H H H H H deoxyribosa 2-deoxy-β-D-ribofuranosa
Projekt SIPVZ č.0636p2006 Buňka interaktivní výuková aplikace
Nukleové kyseliny Úvod Makromolekulární látky, které uchovávají a přenášejí informaci. Jsou to makromolekulární látky uspořádané do dlouhých. Řadí se mezi tzv.. Jsou přítomny ve buňkách a virech. Poprvé
Molekulární genetika (Molekulární základy dědičnosti)
Molekulární genetika (Molekulární základy dědičnosti) Struktura nukleové kyseliny Cukerná pentóza: 2-deoxy-D-ribóza D-ribóza Fosfátový zbytek: PO 4 3- Purin Pyrimidin Dusíkatá báze Adenin Guanin Tymin
15. Základy molekulární biologie
15. Základy molekulární biologie DNA je zkratka pro kyselinu deoxyribonukleovou, která je nositelkou genetické informace všech živých buněčných organismů. Je tedy nezbytná pro život pomocí svých informací
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Molekulární genetika (Molekulární základy dědičnosti) 0 Gen - historie 1909 Johanssen
Gymnázium, Brno, Elgartova 3
Gymnázium, Brno, Elgartova 3 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: GE Vyšší kvalita výuky Číslo projektu: CZ.1.07/1.5.00/34.0925 Autor: Mgr. Hana Křivánková Téma:
REPLIKACE A REPARACE DNA
REPLIKACE A REPARACE DNA 1 VÝZNAM REPARACE DNA V MEDICÍNĚ Příklad: Reparace DNA: enzymy reparace nukleotidovou excizí Onemocnění: xeroderma pigmentosum 2 3 REPLIKACE A REPARACE DNA: Replikace DNA: 1. Podstata
Nukleové kyseliny a nadmolekulové komplexy polynukleotidů buněčných struktur
Nukleové kyseliny a nadmolekulové komplexy polynukleotidů buněčných struktur Nukleové kyseliny (polynukleotidy) Objevitelem je Friedrich Miescher (1887) NK stojí v hierarchii látek potřebných k existenci
Genetika zvířat - MENDELU
Genetika zvířat DNA - primární struktura Několik experimentů ve 40. a 50. letech 20. století poskytla důkaz, že genetický materiál je tvořen jedním ze dvou typů nukleových kyselin: DNA nebo RNA. DNA je
Molekulární genetika: Základní stavební jednotkou nukleových kyselin jsou nukleotidy, které jsou tvořeny
Otázka: Molekulární genetika, genetika buněk Předmět: Biologie Přidal(a): jeti52 Molekulární genetika: Do roku 1953 nebylo přesně známa podstata genetické informace, genů, dědičnosti,.. V roce 1953 Watson
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Vztah struktury a funkce nukleových kyselin. Replikace, transkripce
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vztah struktury a funkce nukleových kyselin. Replikace, transkripce Nukleová kyselina gen základní jednotka informace v živých systémech,
Eva Benešová. Genetika
Eva Benešová Genetika Význam nukleotidů - Energetický metabolismus (oběh energie). - Propojení odpovědi buňky na hormony a další stimuly. - Komponenty enzymových kofaktorů a dalších metabolických intermediátů.
Schéma průběhu transkripce
Molekulární základy genetiky PROTEOSYNTÉZA A GENETICKÝ KÓD Proteosyntéza je složitý proces tvorby bílkovin, který zahrnuje proces přepisu genetické informace z DNA do kratšího zápisu v informační mrna
Nukleové kyseliny příručka pro učitele. Obecné informace:
Obecné informace: Nukleové kyseliny příručka pro učitele Téma Nukleové kyseliny je završením základních kapitol z popisné chemie a je tedy zařazeno až na její závěr. Probírá se v rámci jedné, eventuálně
TRANSLACE - SYNTÉZA BÍLKOVIN
TRANSLACE - SYNTÉZA BÍLKOVIN Translace - překlad genetické informace z jazyka nukleotidů do jazyka aminokyselin podle pravidel genetického kódu. Genetický kód - způsob zápisu genetické informace Kód Morseovy
Nukleové kyseliny Replikace DNA Doc. MVDr. Eva Bártová, Ph.D.
Nukleové kyseliny Replikace DNA 2013 Doc. MVDr. Eva Bártová, Ph.D. Nukleové kyseliny 7% cytozin Monomer: NUKLEOTID, tvoří jej: uracil kyselina fosforečná pentóza (ribóza, deoxyribóza) tymin organická dusíkatá
Nukleové kyseliny (polynukleotidy) Nukleové kyseliny a nadmolekulové komplexy polynukleotidů buněčných struktur
Nukleové kyseliny (polynukleotidy) Nukleové kyseliny a nadmolekulové komplexy polynukleotidů buněčných struktur Objevitelem je Friedrich Miescher (1887) NK stojí v hierarchii látek potřebných k existenci
Nukleové kyseliny Replikace Transkripce, RNA processing Translace
ukleové kyseliny Replikace Transkripce, RA processing Translace Život závisí na schopnosti buněk skladovat, získávat a překládat genetickou informaci, která je nezbytná pro udržení života organismů. Prokaryotická
-nukleové kyseliny jsou makromolekulární látky, jejichž základní stavební jednotkou je nukleotid každý nukleotid vzniká spojením:
Otázka: Molekulární základy dědičnosti Předmět: Biologie Přidal(a): Mulek NUKLEOVÉ KYSELINY -nositelkami genetické informace jsou molekuly nukleových kyselin tvořené řetězci vzájemně spojených nukleotidů,
Genetika. Genetika. Nauka o dědid. dičnosti a proměnlivosti. molekulárn. rní buněk organismů populací
Genetika Nauka o dědid dičnosti a proměnlivosti Genetika molekulárn rní buněk organismů populací Dědičnost na úrovni nukleových kyselin Předávání vloh z buňky na buňku Předávání vlastností mezi jednotlivci
6) Transkripce. Bakteriální RNA-polymeráza katalyzuje transkripci všech uvedených typů primárních transkriptů (na rozdíl od eukaryot).
6) Transkripce Transkripce bakteriálního genomu Jde o přenos genetické informace z DNA do RNA. Katalyzuje ji enzym RNA-polymeráza (transkriptáza). Další názvy:dna-řízená RNApolymeráza, DNA-řízená RNA-nukleotidyltransferáza,
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Molekulární základy genetiky
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Molekulární základy genetiky 1/76 GENY Označení GEN se používá ve dvou základních významech: 1. Jako synonymum pro vlohu
Translace (druhý krok genové exprese)
Translace (druhý krok genové exprese) Od RN k proteinu Milada Roštejnská Helena Klímová 1 enetický kód trn minoacyl-trn-synthetasa Translace probíhá na ribosomech Iniciace translace Elongace translace
MOLEKULÁRNÍ ZÁKLADY DĚDIČNOSTI
Maturitní téma č. 33 MOLEKULÁRNÍ ZÁKLADY DĚDIČNOSTI NUKLEOVÉ KYSELINY - jsou to makromolekuly tvořené řetězci vzájemně spojených nukleotidů. Molekula nukleotidu sestává z : - pětiuhlíkatého monosacharidu
Molekulární základ dědičnosti
Molekulární základ dědičnosti Dědičná informace je zakódována v deoxyribonukleové kyselině, která je uložena v jádře buňky v chromozómech. Zlomovým objevem pro další rozvoj molekulární genetiky bylo odhalení
a) Primární struktura NK NUKLEOTIDY Monomerem NK jsou nukleotidy
1 Nukleové kyseliny Nukleové kyseliny (NK) sice tvoří malé procento hmotnosti buňky ale významem v kódování genetické informace a její expresí zcela nezbytným typem biopolymeru všech živých soustav a)
REPLIKACE, BUNĚČNÝ CYKLUS, ZÁNIK BUNĚK
Molekulární základy dědičnosti - rozšiřující učivo REPLIKACE, BUNĚČNÝ CYKLUS, ZÁNIK BUNĚK REPLIKACE deoxyribonukleové kyseliny (zdvojení DNA) je děj, při kterém se tvoří z jedné dvoušoubovice DNA dvě nová
b) Jak se změní sekvence aminokyselin v polypeptidu, pokud dojde v pozici 23 k záměně bázového páru GC za TA (bodová mutace) a s jakými následky?
1.1: Gén pro polypeptid, který je součástí peroxidázy buku lesního, má sekvenci 3'...TTTACAGTCCATTCGACTTAGGGGCTAAGGTACCTGGAGCCCACGTTTGGGTCATCCAG...5' 5'...AAATGTCAGGTAAGCTGAATCCCCGATTCCATGGACCTCGGGTGCAAACCCAGTAGGTC...3'
ENZYMY A NUKLEOVÉ KYSELINY
ENZYMY A NUKLEOVÉ KYSELINY Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 28. 3. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Organické sloučeniny 1 Anotace: Žáci se seznámí
Předmět: KBB/BB1P; KBB/BUBIO
Předmět: KBB/BB1P; KBB/BUBIO Chemické složení buňky Cíl přednášky: seznámit posluchače se složením buňky po chemické stránce Klíčová slova: biogenní prvky, chemické vazby a interakce, uhlíkaté sloučeniny,
POLYPEPTIDY. Provitaminy = organické sloučeniny bez vitaminózního účinku, které se v živočišném těle mění působením ÚV záření nebo enzymů na vitaminy.
POLYPEPTIDY Provitaminy = organické sloučeniny bez vitaminózního účinku, které se v živočišném těle mění působením ÚV záření nebo enzymů na vitaminy. Hormony = katalyzátory v živočišných organismech (jsou
Struktura biomakromolekul
Struktura biomakromolekul ejvýznamnější biomakromolekuly l proteiny l nukleové kyseliny l polysacharidy l lipidy... měli bychom znát stavební kameny života Biomolekuly l proteiny l A DA, RA l lipidy l
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Genetický kód. Jakmile vznikne funkční mrna, informace v ní obsažená může být ihned použita pro syntézu proteinu.
Genetický kód Jakmile vznikne funkční, informace v ní obsažená může být ihned použita pro syntézu proteinu. Pravidla, kterými se řídí prostřednictvím přenos z nukleotidové sekvence DNA do aminokyselinové
jedné aminokyseliny v molekule jednoho z polypeptidů hemoglobinu
Translace a genetický kód Srpkovitý tvar červených krvinek u srpkovité anémie: důsledek záměny Srpkovitý tvar červených krvinek u srpkovité anémie: důsledek záměny jedné aminokyseliny v molekule jednoho
Biosyntéza a metabolismus bílkovin
Bílkoviny Biosyntéza a metabolismus bílkovin lavní stavební materiál buněk a tkání Prakticky jediný zdroj dusíku pro heterotrofní organismy eexistují zásobní bílkoviny nutný dostatečný přísun v potravě
ÚVOD. Úvod ke struktuře nukleových kyselin Struktura DNA Replikace DNA Opravy DNA
NUKLEVÉ KYSELINY ÚVD Úvod ke struktuře nukleových kyselin Struktura DNA Replikace DNA pravy DNA * Základní pojmy struktury nukleových kyselin Nukleotidy mohou být spojovány do řetězců ve formě ribonukleové
MOLEKULÁRNÍ BIOLOGIE PROKARYOT
Informační makromolekuly MOLEKULÁRNÍ BIOLOGIE PROKARYOT Funkce a syntéza informačních makromolekul Regulace metabolické aktivity Nukleové kyseliny Proteiny Pořadí monomerních jednotek nese genetickou informaci
Struktura biomakromolekul
Struktura biomakromolekul ejvýznamnější biomolekuly proteiny nukleové kyseliny polysacharidy lipidy... měli bychom znát stavební kameny života Proteiny Aminokyseliny tvořeny aminokyselinami L-α-aminokyselinami
Molekulární základy dědičnosti
Mendelova genetika v příkladech Molekulární základy dědičnosti Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Stručná historie 1853-65
Nukleové kyseliny Replikace Transkripce translace
Nukleové kyseliny Replikace Transkripce translace Figure 4-3 Molecular Biology of the Cell ( Garland Science 2008) Figure 4-4 Molecular Biology of the Cell ( Garland Science 2008) Figure 4-5 Molecular
6. Nukleové kyseliny a molekulová genetika
6. Nukleové kyseliny a molekulová genetika Obtížnost A Odhadněte celkové nukleotidové složení dvouvláknové DNA, u níž bylo experimentálně stanoveno, že ze 100 deoxynukleotidů tvoří průměrně 22 deoxyadenosin-5
Struktura nukleových kyselin Vlastnosti genetického materiálu
Struktura nukleových kyselin Vlastnosti genetického materiálu V předcházejících kapitolách bylo konstatováno, že geny jsou uloženy na chromozomech a kontrolují fenotypové vlastnosti a že chromozomy se
TEST: GENETIKA, MOLEKULÁRNÍ BIOLOGIE
TEST: GENETIKA, MOLEKULÁRNÍ BIOLOGIE 1) Důležitým biogenním prvkem, obsaženým v nukleových kyselinách nebo ATP a nezbytným při tvorbě plodů je a) draslík b) dusík c) vápník d) fosfor 2) Sousedící nukleotidy
Molekulární základy dědičnosti
Obecná genetika Molekulární základy dědičnosti Doc. RNDr. Ing. Eva PALÁTOVÁ, PhD. Ing. Roman LONGAUER, CSc. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt je spolufinancován Evropským sociálním
Tomáš Oberhuber. Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Buňka buňka je základní stavební prvek všech živých organismů byla objevena Robertem Hookem roku 1665 jednodušší
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Mária Čudejková 2. Transkripce genu a její regulace Transkripce genetické informace z DNA na RNA Transkripce dvou genů zachycená na snímku z elektronového mikroskopu.
Nukleové kyseliny. Struktura DNA a RNA. Milada Roštejnská. Helena Klímová
ukleové kyseliny Struktura DA a RA Milada Roštejnská elena Klímová bsah Typy nukleových kyselin DA a RA jsou tvořeny z nukleotidů Jaký je rozdíl mezi nukleotidem a nukleosidem? Fosfodiesterová vazba Komplementarita
Nukleové kyseliny. Jsou universální složky živých organismů. Jsou odpovědné za uchování a přenos genetické informace.
Nukleové kyseliny Jsou universální složky živých organismů. Jsou odpovědné za uchování a přenos genetické informace. Richard Vytášek 2012 Nukleové kyseliny objeveny v 19.století v mlíčí (rybí sperma) a
1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním
1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním školám Genetika - shrnutí TL2 1. Doplň: heterozygot,
základní znaky živých systémů (definice života výčtem jeho vlastností) složitá organizace a řád regulace a udržování vnitřní homeostázy získávání a
definice života živý organismus je přirozeně se vyskytující sám sebe reprodukující systém, který vykonává řízené manipulace s hmotou, energií a informací základní znaky živých systémů (definice života
Nukleové kyseliny Replikace Transkripce translace
Nukleové kyseliny Replikace Transkripce translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti buněk skladovat,
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Mária Majeská Čudejková 3. Proteosyntéza Centrální dogma molekulární biologie Rozluštění genetického kódu in vitro Marshall Nirenberg a Heinrich Matthaei zjistili,
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Čtvrtek 10:30 11:15 Struktura a replikace DNA (Mgr. M. Majeská Čudejková, Ph.D) Transkripce genu a její regulace (Mgr. M. Majeská Čudejková, Ph.D) Translace a tvorba
Syntéza a postranskripční úpravy RNA
Syntéza a postranskripční úpravy RNA 2016 1 Transkripce Proces tvorby RNA na podkladu struktury DNA Je přepisován pouze jeden řetězec dvoušroubovice DNA templátový řetězec Druhý řetězec se nazývá kódující
DUM č. 10 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika
projekt GML Brno Docens DUM č. 10 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 26.06.2014 Ročník: 6AF, 6BF Anotace DUMu: Procesy následující bezprostředně po transkripci.
Proteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D.
Proteiny Genová exprese 2013 Doc. MVDr. Eva Bártová, Ph.D. Bílkoviny (proteiny), 15% 1g = 17 kj Monomer = aminokyseliny aminová skupina karboxylová skupina α -uhlík postranní řetězec Znát obecný vzorec
Molekulárn. rní genetika
Molekulárn rní genetika Centráln lní dogma molekulárn rní biologie cesta přenosu genetické informace: DNA RNA proteiny výjimkou reverzní transkripce retrovirů: RNA DNA Chemie nukleových kyselin dusíkaté
19.b - Metabolismus nukleových kyselin a proteosyntéza
19.b - Metabolismus nukleových kyselin a proteosyntéza Proteosyntéza vyžaduje především zajištění primární struktury. Informace je uložena v DNA (ev. RNA u některých virů) trvalá forma. Forma uskladnění
Globální pohled na průběh replikace dsdna
Globální pohled na průběh replikace dsdna 3' 5 3 vedoucí řetězec 5 3 prodlužování vedoucího řetězce (polymerace ) DNA-ligáza směr pohybu enzymů DNA-polymeráza I DNA-polymeráza III primozom 5' 3, 5, hotový
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Studijní materiály pro bioinformatickou část ViBuChu. úloha II. Jan Komárek, Gabriel Demo
Studijní materiály pro bioinformatickou část ViBuChu úloha II Jan Komárek, Gabriel Demo Adenin Struktura DNA Thymin 5 konec 3 konec DNA tvořena dvěmi řetězci orientovanými antiparalelně (liší se orientací
Metabolismus proteinů a aminokyselin
Metabolismus proteinů a aminokyselin Proteiny jsou nejdůležitější složkou potravy všech živočichů, nelze je nahradit ani cukry, ani lipidy. Je to proto, že organismus živočichů nedokáže ve svých metabolických
Přenos genetické informace: Centrální dogma. Odstranění intronů sestřihem RNA
Transkripce a úpravy RNA Osnova přednášky Přenos genetické informace: Centrální dogma Proces genové exprese Transkripce u prokaryot Transkripce a úpravy RNA u eukaryot Přerušované geny u eukaryot: exony
Přednáška kurzu Bi4010 Základy molekulární biologie, 2016/17 Transkripce DNA a sestřih
Přednáška kurzu Bi4010 Základy molekulární biologie, 2016/17 Transkripce DNA a sestřih Jan Šmarda Ústav experimentální biologie, PřF MU Genová exprese: cesta od DNA k RNA a proteinu fenotyp je výsledkem
Dědičnost x proměnlivost Neboli heredita je schopnost organismů vytvářet potomky se stejnými nebo podobnými znaky. Je to jedna ze základních
Mgr. Zbyněk Houdek Doporučenálit.: Alberts, B. a kol.: Základy buněčné biologie (1998) Kočárek, E.: Genetika (2008) Kubišta, V.: Buněčné základy životních dějů (1998) Otová, B. a kol.: Lékařská biologie
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Ivo Frébort 1. Struktura a replikace DNA Literatura: Alberts a kol.: Základy buněčné biologie Espero Publishing, 2000 Garrett & Grisham: Biochemistry 2nd ed., Saunders
Bílkoviny a rostlinná buňka
Bílkoviny a rostlinná buňka Bílkoviny Rostliny --- kontinuální diferenciace vytváření orgánů: - mitotická dělení -zvětšování buněk a tvorba buněčné stěny syntéza bílkovin --- fotosyntéza syntéza bílkovin
Základy metod forenzní genetiky. Hana Šumberová, DiS
Základy metod forenzní genetiky Hana Šumberová, DiS Bakalářská práce 2011 PROHLÁŠENÍ AUTORA BAKALÁŘSKÉ PRÁCE Beru na vědomí, že odevzdáním bakalářské práce souhlasím se zveřejněním své práce podle zákona
Metodologie molekulární fylogeneze a taxonomie hmyzu Bi7770
MODULARIZACE VÝUKY EVOLUČNÍ A EKOLOGICKÉ BIOLOGIE CZ.1.07/2.2.00/15.0204 Metodologie molekulární fylogeneze a taxonomie hmyzu Bi7770 Andrea Tóthová Co se tady bude dít.. proč DNA a jak to s ní vlastně