Exprese genetické informace
|
|
- Karla Říhová
- před 9 lety
- Počet zobrazení:
Transkript
1 Exprese genetické informace
2 Stavební kameny nukleových kyselin Nukleotidy = báze + cukr + fosfát BÁZE FOSFÁT Nukleosid = báze + cukr CUKR
3 Báze Cyklické sloučeniny obsahující dusík puriny nebo pyrimidiny uracil adenin cytosin thymin PYRIMIDIN PURIN guanin
4 Cukry PENTÓZA β-d-ribóza ribonukleová kyselina číslování uhlíků 1-5 β-d-2-deoxyribóza deoxyribonukleová kyselina
5 Spojení nukleotidů v nukleových kyselinách fosfodiesterová vazba
6 DNA a její replikace
7 DNA Deoxyribonukleová kyselina Kóduje a uchovává genetickou informaci buňky gen A gen B gen C genová exprese
8 Dvouvláknová DNA DNA dvojšroubovice antiparalelní řetězce Komplementární párování bazí Kostra z cukrů a fosfátů Párování bazí pomocí vodíkových můstků
9 Komplementární párování bazí A T dva vodíkové můstky G C tři vodíkové můstky
10 Replikace DNA Zdvojení DNA před dělením buňky Každé ze dvou vláken DNA slouží jako templát pro syntézu nových dvou vláken semikonzervativní replikace
11 semikonzervativní replikace každá dceřinná dvoušroubovice je tvořena jedním rodičovským a jedním novým vláknem
12 prekurzory jsou deoxynukleotidtrifosfáty DNA polymeráza katalyzuje postupné přidávání deoxyribonukleotidů ke 3 - OH konci polynukleotidového řetězce syntéza nového řetězce ve směru 5 3 reakce poháněna energií uvolněnou hydrolýzou fosfátových skupin
13
14 replikační počátek místo na DNA, kde začíná replikace DNA prokaryot jeden počátek otevření dvojšroubovice pomocí iniciačních proteinů DNA eukaryotického chromozómu mnoho replikačních počátků (lidský genom asi ) replikace obousměrná jde na obě strany od replikačního počátku
15 Replikační vidlička úsek DNA, který se právě replikuje je asymetrická vedoucí vlákno replikace probíhá plynule opožďující se (váznoucí) vlákno replikace probíhá po malých kouscích = Okazakiho fragmenty vedoucí vlákno nově syntetizovaná DNA zpožďující se vlákno s Okazakiho fragmenty
16 začíná syntéza vedoucích řetězců asymetrie replikační vidličky začíná syntéza váznoucích řetězců váznoucí řetězec vidličky 1 vedoucí řetězec vidličky 2 vedoucí řetězec vidličky 1 váznoucí řetězec vidličky 2 VIDLIČKA 1 VIDLIČKA 2
17 replikační vidličky na kruhovém chromozómu
18 váznoucí vlákno templátu RNA primer nový RNA primer syntetizovaný DNA primázou DNA polymeráza prodlouží vlákno a vytvoří nový Okazakiho fragment DNA polymeráza dokončí fragment DNA RNA primer je odbourán zvláštní RNAázou primery DNA polymeráza neumí začít nové vlákno, umí jen napojovat DNA primáza = RNA polymeráza, nasyntetizuje krátký úsek RNA, na který DNA polymeráza naváže RNA primerem začíná i každý Okazakiho fragment mezera je zaplněna DNA ligázou
19 templát vedoucího vlákna nově syntetizované vlákno DNA polymeráza na vedoucím vlákně DNA primáza svírací protein protein vážící jednovláknovou DNA rodičovská DNA dvojšroubovice DNA helikáza templát váznoucího vlákna RNA primer nový Okazakiho fragment DNA polymeráza na vedoucím vlákně právě dokončuje Okazakiho fragment nově syntetizované vlákno
20 polymeráza připojí nesprávný nukleotid opravná (korektorská) funkce DNA polymerázy 3-5 exonukleázovou aktivitou DNA polymerázy je chybný nukleotid odstraněn po opravě je četnost chyb 1/10 7 další opravné mechanismy 1/10 9 DNA polymeráza pokračuje v syntéze nového vlákna
21 replikace konců lineárních chromozómů úplný konec chromozómu nelze zreplikovat, není kam umístit Okazakiho fragment pro váznoucí vlákno konec chromozómu = telomera (TTAGGG 100x 1000x) udržován enzymem telomeráza syntetizuje DNA podle předlohy RNA, kterou si nese v sobě
22 rodičovské vlákno naváže se telomeráza telomeráza prodlouží 3 konec nedokončené váznoucí vlákno směr syntézy telomery telomeráza s vestavěným RNA templátem DNA polymeráza dokončí replikaci váznoucího řetězce DNA polymeráza
23 RNA, transkripce a translace
24 Tok genetické informace DNA RNA Protein (výjimečně RNA DNA) DNA RNA : transkripce RNA protein : translace
25 Gen jednotka dědičnosti sekvence DNA nutná k produkci funkčního produktu produktem je protein (strukturní geny) nebo jen RNA
26 Transkripce proces přepisu informace z DNA do RNA RNA jednovláknová její cukry ribonukleotidy místo thyminu obsahuje uracil uracil páruje s adeninem
27 Transkripce enzym RNA polymeráza katalyzuje tvorbu vlákna RNA komplementárního k jednomu vláknu DNA templátové vlákno TRANSKRIPCE
28 Hlavní typy RNA messenger RNA (mrna, také informační) nese informaci pro tvorbu proteinů, která bude přeložena během procesu translace ribozomální RNA (rrna) tvoří součást ribozómu a katalyzuje syntézu proteinů transferová RNA (trna) adaptorová molekula mezi mrna a aminokyselinami
29 další typy RNA small nuclear RNA (snrna) různé úlohy při zpracování RNA
30 3 stadia Proces transkripce iniciace navázání RNA polymerázy elongace syntéza RNA podle templátu DNA terminace uvolnění vzniklé molekuly RNA a uvolnění RNA polymerázy z DNA
31 iniciace transkripce RNA polymeráza rozpozná sekvenci v DNA zvanou promotor u eukaryot je k tomu potřeba ještě řada dalších proteinů transkripčních faktorů příležitost k regulaci genové exprese
32 není jádro transkripce u prokaryot vznikající mrna hned překládána jedna mrna může nést informaci pro více proteinů
33 transkripce u eukaryot transkripce v jádře, translace v cytoplazmě jedna mrna nese informaci pro jeden protein informace není souvislá, kódující sekvence exony jsou přerušovány nekódujícími sekvencemi introny přepisem vznikne tzv. pre-mrna, ta je dále upravována
34 úpravy pre-mrna přidání čepičky na 5 -konec (atypický guaninový nukleotid s methylovou skupinou) polyadenylace 3 -konce přidání řady A sestřih - vystřižení intronů, spojení exonů
35 sestřih pre-mrna exony mnohem kratší než introny introny přesně vyštěpeny, exony pospojovány k sobě
36
37 sestřih může být alternativní TRANKRIPCE, ČEPIČKA, POLYADENYLACE, SESTŘIH mrna příčně pruhovaný sval hladký sval fibroblasty fibroblasty mozek
38 Translace Překlad genetické informace - ze sekvence nukleotidů do sekvence aminokyselin 4 nukleotidy v NK kódují informaci pro 20 aminokyselin v proteinu Genetický kód
39 Genetický kód je třípísmenný (triplety nukleotidů) 4 nukleotidy (A,U,G,C) = 4 3 = 64 možných kombinací trojice nukleotidů se nazývá kodón kodón kóduje 1 aminokyselinu, případně konec translace
40 Genetický kód kodón AUG (kóduje Met) je používán jako startovní kodón UAA, UAG, UGA jsou terminační místa stop kodóny podle dohody se kodón vždy píše ve směru 5 -AAA-3 genetický kód je tzv. degenerovaný (nebo také redundantní) jedna aminokyselinaje většinou kódována více než jedním tripletem
41 Genetický kód je univerzální společný všem organismům (drobné odchylky v mitochondriích) zelenou fluorescenci myšek způsobuje protein původem z medúzy,vnesený do jejich genomu
42 čtecí rámec kódu tenpestamšelsám 1.čtecí rámec ten pes tam šel sám 2.čtecí rámec...t enp est amš els ám... 3.čtecí rámec...te npe sta mše lsá m... obvykle jen jeden čtecí rámec kóduje funkční protein, existují výjimky rámec dán pozicí startovního kodónu: 5 -AUG
43 transferové RNA -trna adaptorové molekuly charakteristická sekundární a terciární struktura vazebné místo pro aminokyselinu antikodón sekvence komplementární ke kodónu
44 primární, sekundární a terciární struktura trna připojená aminokyselina (Phe) 3 konec 5 konec D smyčka akceptorové raménko T smyčka antikodó -nová smyčka antikodón jetelový list
45 trna syntetázy připojení správné aminokyseliny ke správné trna první krok v překladu kódu enzymy trna syntetázy
46 wobble kolísavé párování mezi kodónem a antikodónem některé aminokyseliny kódovány více kodóny, ale každý kodón nemusí mít nutně svou vlastní trna nepřesnost se toleruje na třetí pozici kodónu lidské trna nesou 48 různých antikodónů pro 61 možných kodónů
47 ribozóm
48 ribozóm 3 vazebná místa pro trna: vazebné místo pro mrna velká podjednotka ribozómu malá podjednotka ribozómu A místo pro aminoacyl-trna (trna nabitá aminokyselinou) P místo pro peptidyl-trna (trna s připojeným rostoucím polypeptidovým řetězcem E místo = exit
49 proces translace iniciace navázání ribozomálních podjednotek a první aminoacyl-trna na mrna elongace syntéza polypeptidového řetězce terminace ukončení syntézy polypeptidu, uvolnění mrna a ribozomálních podjednotek
50 iniciace translace (eukaryota) 1. na malou podjednotku ribozómu se připojí iniciační trna, která nese methionin 2. malá podjednotka s iniciační trna se naváže na 5 -konec mrna (rozpozná čepičku) 3. komplex se posunuje po mrna, až najde první iniciační AUG kodóm 4. připojí se velká ribozomální podjednotka
51 první polypeptidová zazba vytvoří se mezi methiononem a následující aminokyselinou
52 elongace 4 kroky cyklu ribozómu KROK 1 rostoucí polypeptidový řetězec nově vázaná trna krok 1 použitá trna se uvolňuje z E místa, aminoacyl-trna se váže do A místa uvolněná trna KROK 2 E P A krok 2 vytvoří se peptidová vazba (katalyzováno peptidyl transferázou obsaženou ve velké podjednotce)
53 elongace 4 kroky cyklu ribozómu KROK 3 KROK 4 krok 3 velká podjednotka se posune vůči malé podjednotce o jeden kodón krok 4 následuje malá podjednotka s navázanými trna může se opakovat krok 1- do místa A se může navázat nová aminoacyl trna
54 terminace translace do A-místa se naváže uvolňovací faktor místo další aminokyseliny je k polypeptidu přidána voda polypeptid se uvolní komplex se rozpadne
55 skládání a posttranslační modifikace vzniklý protein se musí složit do správné konformace, případně se stát součástí většího komplexu může být upraven přidáním různých chemických skupin (glykosylace, fosforylace, acetylace aj.)
Exprese genetické informace
Exprese genetické informace Tok genetické informace DNA RNA Protein (výjimečně RNA DNA) DNA RNA : transkripce RNA protein : translace Gen jednotka dědičnosti sekvence DNA nutná k produkci funkčního produktu
Proteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D.
Proteiny Genová exprese 2013 Doc. MVDr. Eva Bártová, Ph.D. Bílkoviny (proteiny), 15% 1g = 17 kj Monomer = aminokyseliny aminová skupina karboxylová skupina α -uhlík postranní řetězec Znát obecný vzorec
Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA
Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA
Molekulárn. rní. biologie Struktura DNA a RNA
Molekulárn rní základy dědičnosti Ústřední dogma molekulárn rní biologie Struktura DNA a RNA Ústřední dogma molekulárn rní genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace
ENZYMY A NUKLEOVÉ KYSELINY
ENZYMY A NUKLEOVÉ KYSELINY Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 28. 3. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Organické sloučeniny 1 Anotace: Žáci se seznámí
2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:
Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících
Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Biosyntéza nukleových kyselin. VY_32_INOVACE_Ch0219.
Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek
Struktura a funkce nukleových kyselin
Struktura a funkce nukleových kyselin ukleové kyseliny Deoxyribonukleová kyselina - DA - uchovává genetickou informaci Ribonukleová kyselina RA - genová exprese a biosyntéza proteinů Složení A stavební
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Vztah struktury a funkce nukleových kyselin. Replikace, transkripce
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vztah struktury a funkce nukleových kyselin. Replikace, transkripce Nukleová kyselina gen základní jednotka informace v živých systémech,
Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza
Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových
Eva Benešová. Genetika
Eva Benešová Genetika Význam nukleotidů - Energetický metabolismus (oběh energie). - Propojení odpovědi buňky na hormony a další stimuly. - Komponenty enzymových kofaktorů a dalších metabolických intermediátů.
Schéma průběhu transkripce
Molekulární základy genetiky PROTEOSYNTÉZA A GENETICKÝ KÓD Proteosyntéza je složitý proces tvorby bílkovin, který zahrnuje proces přepisu genetické informace z DNA do kratšího zápisu v informační mrna
TRANSLACE - SYNTÉZA BÍLKOVIN
TRANSLACE - SYNTÉZA BÍLKOVIN Translace - překlad genetické informace z jazyka nukleotidů do jazyka aminokyselin podle pravidel genetického kódu. Genetický kód - způsob zápisu genetické informace Kód Morseovy
Nukleové kyseliny. DeoxyriboNucleic li Acid
Molekulární lární genetika Nukleové kyseliny DeoxyriboNucleic li Acid RiboNucleic N li Acid cukr (deoxyrobosa, ribosa) fosforečný zbytek dusíkatá báze Dusíkaté báze Dvouvláknová DNA Uchovává genetickou
Základy molekulární a buněčné biologie. Přípravný kurz Komb.forma studia oboru Všeobecná sestra
Základy molekulární a buněčné biologie Přípravný kurz Komb.forma studia oboru Všeobecná sestra Genetický aparát buňky DNA = nositelka genetické informace - dvouvláknová RNA: jednovláknová mrna = messenger
Bílkoviny a rostlinná buňka
Bílkoviny a rostlinná buňka Bílkoviny Rostliny --- kontinuální diferenciace vytváření orgánů: - mitotická dělení -zvětšování buněk a tvorba buněčné stěny syntéza bílkovin --- fotosyntéza syntéza bílkovin
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Translace, techniky práce s DNA
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Translace, techniky práce s DNA Translace překlad z jazyka nukleotidů do jazyka aminokyselin dá se rozdělit na 5 kroků aktivace aminokyslin
Přípravný kurz z biologie MUDr. Jana Kolářová, CSc. témata 1 Mgr. Kateřina Caltová témata 3-5 doc. PharmDr. Emil Rudolf, Ph.D. 2 + 6-10 materiály k
Přípravný kurz z biologie MUDr. Jana Kolářová, CSc. témata 1 Mgr. Kateřina Caltová témata 3-5 doc. PharmDr. Emil Rudolf, Ph.D. 2 + 6-10 materiály k přípravnému kurzu: stránka Ústavu lékařské biologie a
Genetický kód. Jakmile vznikne funkční mrna, informace v ní obsažená může být ihned použita pro syntézu proteinu.
Genetický kód Jakmile vznikne funkční, informace v ní obsažená může být ihned použita pro syntézu proteinu. Pravidla, kterými se řídí prostřednictvím přenos z nukleotidové sekvence DNA do aminokyselinové
Odvětví genetiky zkoumající strukturu a funkci genů na molekulární úrovni
Otázka: Molekulární genetika a biologie Předmět: Biologie Přidal(a): Tomáš Pfohl Odvětví genetiky zkoumající strukturu a funkci genů na molekulární úrovni Zakladatel klasické genetiky - Johan Gregor Mendel
DUM č. 10 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika
projekt GML Brno Docens DUM č. 10 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 26.06.2014 Ročník: 6AF, 6BF Anotace DUMu: Procesy následující bezprostředně po transkripci.
Nukleové kyseliny (polynukleotidy) Nukleové kyseliny a nadmolekulové komplexy polynukleotidů buněčných struktur
Nukleové kyseliny (polynukleotidy) Nukleové kyseliny a nadmolekulové komplexy polynukleotidů buněčných struktur Objevitelem je Friedrich Miescher (1887) NK stojí v hierarchii látek potřebných k existenci
-nukleové kyseliny jsou makromolekulární látky, jejichž základní stavební jednotkou je nukleotid každý nukleotid vzniká spojením:
Otázka: Molekulární základy dědičnosti Předmět: Biologie Přidal(a): Mulek NUKLEOVÉ KYSELINY -nositelkami genetické informace jsou molekuly nukleových kyselin tvořené řetězci vzájemně spojených nukleotidů,
Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA).
Typy nukleových kyselin Existují dva typy nukleových kyselin (NA, z anglických slov nucleic acid): deoxyribonukleová (DNA); ribonukleová (RNA). DNA je lokalizována v buněčném jádře, RNA v cytoplasmě a
Centrální dogma molekulární biologie
řípravný kurz LF MU 2011/12 Centrální dogma molekulární biologie Nukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Mendel) 1869 objev nukleových kyselin (Miescher) 1944 genetická informace v nukleových
Nukleové kyseliny Replikace Transkripce translace
Nukleové kyseliny Replikace Transkripce translace Figure 4-3 Molecular Biology of the Cell ( Garland Science 2008) Figure 4-4 Molecular Biology of the Cell ( Garland Science 2008) Figure 4-5 Molecular
Molekulární genetika (Molekulární základy dědičnosti)
Molekulární genetika (Molekulární základy dědičnosti) Struktura nukleové kyseliny Cukerná pentóza: 2-deoxy-D-ribóza D-ribóza Fosfátový zbytek: PO 4 3- Purin Pyrimidin Dusíkatá báze Adenin Guanin Tymin
Garant předmětu GEN: prof. Ing. Jindřich Čítek, CSc. Garant předmětu GEN1: prof. Ing. Václav Řehout, CSc.
Garant předmětu GEN: prof. Ing. Jindřich Čítek, CSc. Garant předmětu GEN1: prof. Ing. Václav Řehout, CSc. Další vyučující: Ing. l. Večerek, PhD., Ing. L. Hanusová, Ph.D., Ing. L. Tothová Předpoklady: znalosti
Nukleové kyseliny a nadmolekulové komplexy polynukleotidů buněčných struktur
Nukleové kyseliny a nadmolekulové komplexy polynukleotidů buněčných struktur Nukleové kyseliny (polynukleotidy) Objevitelem je Friedrich Miescher (1887) NK stojí v hierarchii látek potřebných k existenci
Translace (druhý krok genové exprese)
Translace (druhý krok genové exprese) Od RN k proteinu Milada Roštejnská Helena Klímová 1 enetický kód trn minoacyl-trn-synthetasa Translace probíhá na ribosomech Iniciace translace Elongace translace
6) Transkripce. Bakteriální RNA-polymeráza katalyzuje transkripci všech uvedených typů primárních transkriptů (na rozdíl od eukaryot).
6) Transkripce Transkripce bakteriálního genomu Jde o přenos genetické informace z DNA do RNA. Katalyzuje ji enzym RNA-polymeráza (transkriptáza). Další názvy:dna-řízená RNApolymeráza, DNA-řízená RNA-nukleotidyltransferáza,
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Molekulární genetika (Molekulární základy dědičnosti) 0 Gen - historie 1909 Johanssen
MOLEKULÁRNÍ ZÁKLADY DĚDIČNOSTI
Maturitní téma č. 33 MOLEKULÁRNÍ ZÁKLADY DĚDIČNOSTI NUKLEOVÉ KYSELINY - jsou to makromolekuly tvořené řetězci vzájemně spojených nukleotidů. Molekula nukleotidu sestává z : - pětiuhlíkatého monosacharidu
Těsně před infarktem. Jak předpovědět infarkt pomocí informatických metod. Jan Kalina, Marie Tomečková
Těsně před infarktem Jak předpovědět infarkt pomocí informatických metod Jan Kalina, Marie Tomečková Program, osnova sdělení 13,30 Úvod 13,35 Stručně o ateroskleróze 14,15 Měření genových expresí 14,00
19.b - Metabolismus nukleových kyselin a proteosyntéza
19.b - Metabolismus nukleových kyselin a proteosyntéza Proteosyntéza vyžaduje především zajištění primární struktury. Informace je uložena v DNA (ev. RNA u některých virů) trvalá forma. Forma uskladnění
jedné aminokyseliny v molekule jednoho z polypeptidů hemoglobinu
Translace a genetický kód Srpkovitý tvar červených krvinek u srpkovité anémie: důsledek záměny Srpkovitý tvar červených krvinek u srpkovité anémie: důsledek záměny jedné aminokyseliny v molekule jednoho
Nukleové kyseliny. obecný přehled
Nukleové kyseliny obecný přehled Nukleové kyseliny objeveny r.1868, izolovány koncem 19.stol., 1953 objasněno jejich složení Watsonem a Crickem (1962 Nobelova cena) biopolymery nositelky genetické informace
15. Základy molekulární biologie
15. Základy molekulární biologie DNA je zkratka pro kyselinu deoxyribonukleovou, která je nositelkou genetické informace všech živých buněčných organismů. Je tedy nezbytná pro život pomocí svých informací
Lesnická genetika. Dušan Gömöry, Roman Longauer
Lesnická genetika Dušan Gömöry, Roman Longauer Brno 2014 1 Tento studijní materiál byl vytvořen v rámci projektu InoBio Inovace biologických a lesnických disciplín pro vyšší konkurence schopnost, registrační
Nukleosidy, nukleotidy, nukleové kyseliny, genetická informace
Nukleosidy, nukleotidy, nukleové kyseliny, genetická informace Centrální dogma Nukleové kyseliny Fosfátem spojené nukleotidy (cukr s navázanou bází a fosfátem) Nukleotidy Nukleotidy stavební kameny nukleových
GENETIKA dědičností heredita proměnlivostí variabilitu Dědičnost - heredita podobnými znaky genetickou informací Proměnlivost - variabilita
GENETIKA - věda zabývající se dědičností (heredita) a proměnlivostí (variabilitu ) živých soustav - sleduje rozdílnost a přenos dědičných znaků mezi rodiči a potomky Dědičnost - heredita - schopnost organismu
Molekulární základy dědičnosti
Mendelova genetika v příkladech Molekulární základy dědičnosti Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Stručná historie 1853-65
Molekulární základy dědičnosti
Obecná genetika Molekulární základy dědičnosti Doc. RNDr. Ing. Eva PALÁTOVÁ, PhD. Ing. Roman LONGAUER, CSc. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt je spolufinancován Evropským sociálním
Úvod do studia biologie. Základy molekulární genetiky
Úvod do studia biologie Základy molekulární genetiky Katedra biologie PdF MU, 2011 - podobor genetiky (genetika je obecnější) Genetika: - nauka o dědičnosti a proměnlivosti - věda 20. století Johann Gregor
Nukleové kyseliny Replikace Transkripce translace
Nukleové kyseliny Replikace Transkripce translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti buněk skladovat,
a) Primární struktura NK NUKLEOTIDY Monomerem NK jsou nukleotidy
1 Nukleové kyseliny Nukleové kyseliny (NK) sice tvoří malé procento hmotnosti buňky ale významem v kódování genetické informace a její expresí zcela nezbytným typem biopolymeru všech živých soustav a)
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Mária Čudejková 2. Transkripce genu a její regulace Transkripce genetické informace z DNA na RNA Transkripce dvou genů zachycená na snímku z elektronového mikroskopu.
NUKLEOVÉ KYSELINY. Složení nukleových kyselin. Typy nukleových kyselin:
NUKLEOVÉ KYSELINY Deoxyribonukleová kyselina (DNA, odvozeno z anglického názvu deoxyribonucleic acid) Ribonukleová kyselina (RNA, odvozeno z anglického názvu ribonucleic acid) Definice a zařazení: Nukleové
Syntéza a postranskripční úpravy RNA
Syntéza a postranskripční úpravy RNA 2016 1 Transkripce Proces tvorby RNA na podkladu struktury DNA Je přepisován pouze jeden řetězec dvoušroubovice DNA templátový řetězec Druhý řetězec se nazývá kódující
1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním
1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním školám Genetika - shrnutí TL2 1. Doplň: heterozygot,
Nukleové kyseliny Replikace Transkripce, RNA processing Translace
ukleové kyseliny Replikace Transkripce, RA processing Translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti
Genetika zvířat - MENDELU
Genetika zvířat DNA - primární struktura Několik experimentů ve 40. a 50. letech 20. století poskytla důkaz, že genetický materiál je tvořen jedním ze dvou typů nukleových kyselin: DNA nebo RNA. DNA je
Genetika - maturitní otázka z biologie (2)
Genetika - maturitní otázka z biologie (2) by jx.mail@centrum.cz - Ned?le, B?ezen 01, 2015 http://biologie-chemie.cz/genetika-maturitni-otazka-z-biologie-2/ Otázka: Genetika I P?edm?t: Biologie P?idal(a):
Úvod do studia biologie. Základy molekulární genetiky
Úvod do studia biologie Základy molekulární genetiky Katedra biologie PdF MU, 2010 Mendel - podobor Genetiky (Genetika je obecnější) Genetika: - nauka o dědičnosti a proměnlivosti - věda 20. století Johann
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Nukleové kyseliny Replikace Transkripce, RNA processing Translace
Nukleové kyseliny Replikace Transkripce, RNA processing Translace Figure 6-2 Molecular Biology of the Cell ( Garland Science 2008) replikace Figure 4-8 Molecular Biology of the Cell ( Garland Science
DUM č. 11 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika
projekt GML Brno Docens DUM č. 11 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 30.06.2014 Ročník: 6AF, 6BF Anotace DUMu: Princip genové exprese, intenzita překladu
MOLEKULÁRNÍ BIOLOGIE PROKARYOT
Informační makromolekuly MOLEKULÁRNÍ BIOLOGIE PROKARYOT Funkce a syntéza informačních makromolekul Regulace metabolické aktivity Nukleové kyseliny Proteiny Pořadí monomerních jednotek nese genetickou informaci
Základy metod forenzní genetiky. Hana Šumberová, DiS
Základy metod forenzní genetiky Hana Šumberová, DiS Bakalářská práce 2011 PROHLÁŠENÍ AUTORA BAKALÁŘSKÉ PRÁCE Beru na vědomí, že odevzdáním bakalářské práce souhlasím se zveřejněním své práce podle zákona
6. Nukleové kyseliny a molekulová genetika
6. Nukleové kyseliny a molekulová genetika Obtížnost A Odhadněte celkové nukleotidové složení dvouvláknové DNA, u níž bylo experimentálně stanoveno, že ze 100 deoxynukleotidů tvoří průměrně 22 deoxyadenosin-5
Molekulárn. rní genetika
Molekulárn rní genetika Centráln lní dogma molekulárn rní biologie cesta přenosu genetické informace: DNA RNA proteiny výjimkou reverzní transkripce retrovirů: RNA DNA Chemie nukleových kyselin dusíkaté
Molekulární základ dědičnosti
Molekulární základ dědičnosti Dědičná informace je zakódována v deoxyribonukleové kyselině, která je uložena v jádře buňky v chromozómech. Zlomovým objevem pro další rozvoj molekulární genetiky bylo odhalení
Genetika. Genetika. Nauka o dědid. dičnosti a proměnlivosti. molekulárn. rní buněk organismů populací
Genetika Nauka o dědid dičnosti a proměnlivosti Genetika molekulárn rní buněk organismů populací Dědičnost na úrovni nukleových kyselin Předávání vloh z buňky na buňku Předávání vlastností mezi jednotlivci
Nukleové kyseliny. Jsou universální složky živých organismů. Jsou odpovědné za uchování a přenos genetické informace.
Nukleové kyseliny Jsou universální složky živých organismů. Jsou odpovědné za uchování a přenos genetické informace. Richard Vytášek 2012 Nukleové kyseliny objeveny v 19.století v mlíčí (rybí sperma) a
Jsme tak odlišní. Co nás spojuje..? Nukleové kyseliny
Jsme tak odlišní Co nás spojuje..? ukleové kyseliny 1 UKLEVÉ KYSELIY = K anj = A ositelky genetických informací Základní význam pro všechny organismy V buňkách a virech Identifikace v buněčném jádře (nucleos)
7. Regulace genové exprese, diferenciace buněk a epigenetika
7. Regulace genové exprese, diferenciace buněk a epigenetika Aby mohl mnohobuněčný organismus efektivně fungovat, je třeba, aby se jednotlivé buňky specializovaly na určité funkce. Nový jedinec přitom
b) Jak se změní sekvence aminokyselin v polypeptidu, pokud dojde v pozici 23 k záměně bázového páru GC za TA (bodová mutace) a s jakými následky?
1.1: Gén pro polypeptid, který je součástí peroxidázy buku lesního, má sekvenci 3'...TTTACAGTCCATTCGACTTAGGGGCTAAGGTACCTGGAGCCCACGTTTGGGTCATCCAG...5' 5'...AAATGTCAGGTAAGCTGAATCCCCGATTCCATGGACCTCGGGTGCAAACCCAGTAGGTC...3'
Virtuální svět genetiky 1. Translace
(překlad) je druhým krokem exprese genetické informace a ukončuje dráhu DNA > RNA > protein. probíhá mimo jádro, v cytoplazmě na ribozómech. Výchozími látkami pro translaci je 21 standardních aminokyselin,
AUG STOP AAAA S S. eukaryontní gen v genomové DNA. promotor exon 1 exon 2 exon 3 exon 4. kódující oblast. introny
eukaryontní gen v genomové DNA promotor exon 1 exon 2 exon 3 exon 4 kódující oblast introny primární transkript (hnrna, pre-mrna) postranskripční úpravy (vznik maturované mrna) syntéza čepičky AUG vyštěpení
Kontrola genové exprese
Základy biochemie KBC/BC Kontrola genové exprese Inovace studia biochemie prostřednictvím e-learningu CZ.04.1.03/3.2.15.3/0407 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem
Nukleové kyseliny. Nukleové kyseliny. Genetická informace. Gen a genom. Složení nukleových kyselin. Centrální dogma molekulární biologie
Centrální dogma molekulární biologie ukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Transkripce D R Translace rotein Mendel) Replikace 1869 objev nukleových kyselin (Miescher) 1944 nukleové kyseliny
Studijní materiály pro bioinformatickou část ViBuChu. úloha II. Jan Komárek, Gabriel Demo
Studijní materiály pro bioinformatickou část ViBuChu úloha II Jan Komárek, Gabriel Demo Adenin Struktura DNA Thymin 5 konec 3 konec DNA tvořena dvěmi řetězci orientovanými antiparalelně (liší se orientací
Projekt SIPVZ č.0636p2006 Buňka interaktivní výuková aplikace
Nukleové kyseliny Úvod Makromolekulární látky, které uchovávají a přenášejí informaci. Jsou to makromolekulární látky uspořádané do dlouhých. Řadí se mezi tzv.. Jsou přítomny ve buňkách a virech. Poprvé
Molekulární genetika: Základní stavební jednotkou nukleových kyselin jsou nukleotidy, které jsou tvořeny
Otázka: Molekulární genetika, genetika buněk Předmět: Biologie Přidal(a): jeti52 Molekulární genetika: Do roku 1953 nebylo přesně známa podstata genetické informace, genů, dědičnosti,.. V roce 1953 Watson
Organizace genomu eukaryot a prokaryot GENE Mgr. Zbyněk Houdek Stavba prokaryotické buňky Prokaryotické jádro nukleoid 1 molekula 2-řetězcové DNA (chromozom kružnicová struktura), bez jaderné membrány.
Globální pohled na průběh replikace dsdna
Globální pohled na průběh replikace dsdna 3' 5 3 vedoucí řetězec 5 3 prodlužování vedoucího řetězce (polymerace ) DNA-ligáza směr pohybu enzymů DNA-polymeráza I DNA-polymeráza III primozom 5' 3, 5, hotový
Přednáška kurzu Bi4010 Základy molekulární biologie, 2016/17 Transkripce DNA a sestřih
Přednáška kurzu Bi4010 Základy molekulární biologie, 2016/17 Transkripce DNA a sestřih Jan Šmarda Ústav experimentální biologie, PřF MU Genová exprese: cesta od DNA k RNA a proteinu fenotyp je výsledkem
Gymnázium, Brno, Elgartova 3
Gymnázium, Brno, Elgartova 3 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: GE Vyšší kvalita výuky Číslo projektu: CZ.1.07/1.5.00/34.0925 Autor: Mgr. Hana Křivánková Téma:
Biosyntéza a metabolismus bílkovin
Bílkoviny Biosyntéza a metabolismus bílkovin lavní stavební materiál buněk a tkání Prakticky jediný zdroj dusíku pro heterotrofní organismy eexistují zásobní bílkoviny nutný dostatečný přísun v potravě
Přenos genetické informace: Centrální dogma. Odstranění intronů sestřihem RNA
Transkripce a úpravy RNA Osnova přednášky Přenos genetické informace: Centrální dogma Proces genové exprese Transkripce u prokaryot Transkripce a úpravy RNA u eukaryot Přerušované geny u eukaryot: exony
DNA TECHNIKY IDENTIFIKACE ŽIVOČIŠNÝCH DRUHŮ V KRMIVU A POTRAVINÁCH. Michaela Nesvadbová
DNA TECHNIKY IDENTIFIKACE ŽIVOČIŠNÝCH DRUHŮ V KRMIVU A POTRAVINÁCH Michaela Nesvadbová Význam identifikace živočišných druhů v krmivu a potravinách povinností každého výrobce je řádně a pravdivě označit
ANOTACE vytvořených/inovovaných materiálů
ANOTACE vytvořených/inovovaných materiálů Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Formát Druh učebního materiálu Druh interaktivity CZ.1.07/1.5.00/34.0722 III/2 Inovace a
přepis genetické informace z DNA do RNA, při které DNA slouží jako matrice pro syntézu RNA. Reakci katalyzuje RNA-polymeráza (transkriptáza)
Transkripce přepis genetické informace z DNA do RNA, při které DNA slouží jako matrice pro syntézu RNA. Reakci katalyzuje RNA-polymeráza (transkriptáza) Zpětná transkripce (RT) - přepis genetické informace
NUKLEOVÉ KYSELINY. Základ života
NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním
Digitální učební materiál
Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tematická Odborná biologie, část biologie Společná pro
Test pro přijímací řízení magisterské studium Biochemie Napište vzorce aminokyselin Q a K
Test pro přijímací řízení magisterské studium Biochemie 2017 1. Napište vzorce aminokyselin Q a K Dále zakroužkujte správné tvrzení (pouze jedna správná odpověď) 2. Enzym tyrozinkinasu řadíme do třídy
Svět RNA a proteinů REGULACE TRANSLACE. Požadavky kladené na funkční translaci
Svět RNA a proteinů REGULACE TRANSLACE Požadavky kladené na funkční translaci Bezchybný přepis genetické informace Regulace translace jak převést informaci obsaženou ve struktuře mrna do odlišné struktury
REPLIKACE A REPARACE DNA
REPLIKACE A REPARACE DNA 1 VÝZNAM REPARACE DNA V MEDICÍNĚ Příklad: Reparace DNA: enzymy reparace nukleotidovou excizí Onemocnění: xeroderma pigmentosum 2 3 REPLIKACE A REPARACE DNA: Replikace DNA: 1. Podstata
Molekulární mechanismy řídící expresi proteinů
Molekulární mechanismy řídící expresi proteinů Aleš ampl Proteiny Proteios - první místo (řecky) = Bílkoviny u většiny buněčných typů tvoří nejméně 50% jejich suché hmoty hrají klíčovou úlohu ve většině
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ ANALÝZA VARIABILITY INTRONŮ BAKALÁŘSKÁ PRÁCE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT
Svět RNA a bílkovin. RNA svět, 1. polovina. RNA svět. Doporučená literatura. Struktura RNA. Transkripce. Regulace transkripce.
RNA svět, 1. polovina Struktura RNA Regulace transkripce Zrání pre-mrna Svět RNA a bílkovin Sestřih pre-mrna Transport a lokalizace RNA Stabilita RNA Doporučená literatura RNA svět Alberts B., et al.:
Nukleové kyseliny Replikace DNA Doc. MVDr. Eva Bártová, Ph.D.
Nukleové kyseliny Replikace DNA 2013 Doc. MVDr. Eva Bártová, Ph.D. Nukleové kyseliny 7% cytozin Monomer: NUKLEOTID, tvoří jej: uracil kyselina fosforečná pentóza (ribóza, deoxyribóza) tymin organická dusíkatá
6. Nukleové kyseliny
6. ukleové kyseliny ukleové kyseliny jsou spolu s proteiny základní a nezbytnou složkou živé hmoty. lavní jejich funkce je uchování genetické informace a její přenos do dceřinné buňky. ukleové kyseliny
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti NUKLEOVÉ KYSELINY
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti NUKLEOVÉ KYSELINY 3 složky Nukleotidy dusík obsahující báze (purin či pyrimidin) pentosa fosfát Fosfodiesterová vazba. Vyskytuje se mezi
ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv
Urbanová Anna ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv strukturní rysy mrna proces degradace každá mrna v
Masarykova univerzita v Brně, Fakulta lékařská
Masarykova univerzita v Brně, Fakulta lékařská Obor: Všeobecné lékařství Biologie Testy předpokládají znalost středoškolské biologie. Hlavním podkladem při jejich přípravě byl "Přehled biologie" (Rosypal,