Inovace studia molekulární a buněčné biologie
|
|
- Radim Němec
- před 7 lety
- Počet zobrazení:
Transkript
1 Inovace studia molekulární a buněčné biologie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í reg. č. CZ.1.07/2.2.00/ Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.
2 Předmět: KBB/OGPSB I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.
3 Molekulární základy dědičnosti I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Gen, jeho chemická struktura. Centrální dogma. Exprese genetické informace a její regulace (transkripce, translace, replikace) Dana Šafářová Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.
4 Cíl přednášky: Objasnění chemické struktury genu a molekulární podstaty genetické informace. Exprese genetické informace centrální dogma. Klíčová slova: Nukleová kyselina, DNA, RNA, nukleotid; promotor, heteroduplex; mrna, trna, rrna, ribozóm, genetický kód, triplet; transkripce, translace, replikace.
5 Gen - historie 0 -I. I. II. III. IV. V. VI. VII. VIII. IX. X. XI. XII. XIII. XIV. XV. XVI. XVII. XVIII. XIX. XX Johanssen Gen = Jednotka dědičnosti 1941 Beadle, Tatum - Hypotéza Jeden gen = Jeden enzym 1944 Avery a kol. Důkaz funkce DNA 1953 Popis struktury DNA (NC1962) James Watson, Francis Crick; Rosalind Franklin, Maurice Wilkins
6 Genetická paměť buňky = Genetická informace - zapsána v primární struktuře nukleové kyseliny - Gen jako jednotka Genofory - organely nesoucí genetickou informaci - Informace kódována pomocí jazyka: univerzální genetický kód
7 Struktura nukleové kyseliny Cukerná pentóza: HO O OH OH OH D-ribóza HO O OH OH 2-deoxy-D-ribóza Kyselina fosforečná: H 3 PO 4 HO O P OH OH Dusíkatá Báze Adenin NH 2 Guanin O Tymin O Cytosin NH 2 Uracil O N N N NH H 3 C NH N NH NH N NH N NH 2 NH O NH O NH O puriny komplementarita bází: A - T G - C A - U pyrimidiny
8 Struktura nukleové kyseliny Nukleotid: Zbytek kyseliny fosforečné O 5 O P O CH 2 O O OH (Poly)Nukleotidový řetězec - fosfodiesterová vazba C-O-P-O-C 4 2 OH 1 Dusíkatá báze Cukerná pentóza B B B B CH 2 S P S P S P S OH
9 Struktura nukleové kyseliny O (Poly)Nukleotidový řetězec - fosfodiesterová vazba C 3 -O-P-O-C 5 H 3 C HO O HO P O O O O NH N O NH 2 N N O NH 2 T C B CH 2 S P B S P B S P B S OH O HO P O O O O HO P O O O O HO P O OH N N N N N N O NH N NH 2 A G
10 Nukleové kyseliny DNA deoxyribonukleová kyselina RNA ribonukleová kyselina
11 DNA deoxyribonukleová kyselina 2-deoxy-D-ribóza A,T,G, C 2 vlákna, antiparalelní orientace = dvoušroubovice Chargaffovo pravidlo CH 2 S A T P S G C S P S T A S P S C G S OH CH 2 S OH P P P
12 DNA deoxyribonukleová kyselina Dvoušroubovice 1. Pravotočivá B-dvoušroubovice. 10 bp na závit průměr 23.7 A 2. Pravotočivá A-dvoušroubovice 11 bp na závit průměr 25.5 A 3. Levotočivá Z-dvoušroubovice 12 bp na závit průměr 18.4 A
13
14 model DNA
15 RNA ribonukleová kyselina D-ribóza A,U,G, C Jednovláknová, místní vlásenky CH 2 S P S P S P OH S A G U C
16 RNA ribonukleová kyselina mrna rrna trna snrna mirna sirna tasirna, rasirna
17 Definice genu: Gen je konkrétní úsek DNA (u RNA virů RNA), daný sekvencí (pořadím) nukleotidů, kódující strukturní (polypeptid) nebo funkční (např. rrna, trna) produkt. gen alela lokus Veškerá genetická informace organismu, kompletní sekvence (pořadí dusíkatých bází), soubor veškeré kódující a nekódující informace (jaderné i nejaderné) v jedné kopii, je označována jako genom.
18 Gen Strukturní gen nese informace o struktuře aminokyselinového vlákna / peptidu Gen pro RNA rrna, trna Regulační oblasti (funkční gen)
19 Centrální (ústřední) dogma 1958 F. Crick exprese genetické informace REVERZNÍ TRANSKRIPCE Reverzní transkriptáza DNA REPLIKACE DNA polymeráza TRANSKRIPCE RNA polymeráza RNA TRANSLACE protein
20 Transkripce Přepis genetické informace DNA do molekuly (pre)rna Probíhá v jádře Templátem je NEKÓDUJÍCÍ vlákno DNA v orientaci - Enzym RNA polymeráza
21 Transkripce RNA polymerázy RNA polymeráza prokaryot: Sigma faktor Jádro / holoenzym RNA polymeráza eukaryot: RNA pol I : rrna RNA pol II : mrna, malé regulační RNA RNA pol III : trna a další malé RNA.
22 Transkripce - iniciace promotor terminátor Gen pro RNA
23 Transkripce - iniciace RNApoly promotor terminátor
24 Transkripce - iniciace RNApoly
25 Transkripce - iniciace RNApoly
26 Transkripce - iniciace RNApoly Sigma faktor
27 Transkripce - elongace RNApoly
28 Transkripce - elongace RNApoly
29 Transkripce - elongace Heteroduplex
30 Transkripce - elongace RNApoly prerna
31 Transkripce - terminace RNApoly prerna
32 Transkripce - elongace RNApoly prerna terminátor
33 Transkripce - terminace RNApoly prerna Rho faktor
34 Transkripce - terminace DNA prerna RNApoly Rho faktor
35 Postranskripční úpravy 1) Sestřih exonů exon intron exon - odstranění nekódujících sekvencí, intronů intron exon 2) Úprava pre-rna na RNA mrna metylová čepička polyadenylace trna rrna 3) Editace RNA
36 Translace Překlad genetická informace mrna do sekvence aminokyselin, tj. do primární struktury polypeptidu = proteosyntéza Probíhá v cytoplazmě, na ribozómu Templátem je mrna ve směru - Realizace na základě genetického kódu Wikipedia
37 Translace Genetický kód Aminokyseliny proteinu kódovány trojicemi (triplety/kodony) dusíkatých bází Univerzální Degenerovany Nepřekryvný Bez interpunkce Wikipedia
38 Genetický kód 2. BÁZE U C A G C CUU (Leu/L)Leucin CUC (Leu/L)Leucin CUA (Leu/L)Leucin CUG (Leu/L)Leucin, (Start) CCU (Pro/P)Prolin CCC (Pro/P)Prolin CCA (Pro/P)Prolin CCG (Pro/P)Prolin CAU (His/H)Histidin CAC (His/H)Histidin CAA (Gln/Q)Glutamin CAG (Gln/Q)Glutamin CGU (Arg/R)Arginin CGC (Arg/R)Arginin CGA (Arg/R)Arginin CGG (Arg/R)Arginin A AUU (Ile/I)Isoleucin, (Start) AUC (Ile/I)Isoleucin AUA (Ile/I)Isoleucin AUG (Met/M)Methionin, Start ACU (Thr/T)Threonin ACC (Thr/T)Threonin ACA (Thr/T)Threonin ACG (Thr/T)Threonin AAU (Asn/N)Asparagin AAC (Asn/N)Asparagin AAA (Lys/K)Lysin AAG (Lys/K)Lysin AGU (Ser/S)Serin AGC (Ser/S)Serin AGA (Arg/R)Arginin AGG (Arg/R)Arginin G GUU (Val/V)Valin GUC (Val/V)Valin GUA (Val/V)Valin GUG (Val/V)Valin, (Start) GCU (Ala/A)Alanin GCC (Ala/A)Alanin GCA (Ala/A)Alanin GCG (Ala/A)Alanin GAU (Asp/D)Aspartát GAC (Asp/D)Aspartát GAA (Glu/E)Kys. glutamová GAG (Glu/E)Kys. glutamová GGU (Gly/G)Glycin GGC (Gly/G)Glycin GGA (Gly/G)Glycin GGG (Gly/G)Glycin
39 Translace - mrna - rrna Ribozóm - trna - Energie (ATP, GTP) - Pomocné faktory ribozom E P A mrna G C G A U G G C C U U U A G U U A G trnas AK
40 E P A Translace - iniciace Met U A C G C G A U G G C C A G U
41 Translace - iniciace Met E P A U A C G C G A U G G C C A G U
42 Translace - elongace Met Arg E P A U A C C G G G C G A U G G C C A G U
43 Translace - elongace Met Arg E P A U A C C G G G C G A U G G C C A G U
44 Translace - elongace Met Arg E P A U A C C G G G C G A U G G C C A G U
45 Translace - elongace Met Arg U A C E P A C G G G C G A U G G C C A G U
46 Translace - elongace Met Arg Ser U A C E P A C G G U C A G C G A U G G C C A G U U U U U G A
47 Translace - elongace Met Arg Ser U A C E P A C G G U C A G C G A U G G C C A G U U U U U G A
48 Translace - elongace Met Arg Ser E P A C G G U C A G C G A U G G C C A G U U U U U G A
49 Translace - elongace Met Arg Ser Lys C G G E P A U C A A A A G C G A U G G C C A G U U U U U G A
50 Translace - elongace Met Arg Ser Lys E P A U C A A A A G C G A U G G C C A G U U U U U G A
51 Translace - terminace Met Arg Ser Lys E P A U C A A A A G C G A U G G C C A G U U U U U G A
52 Translace - terminace Met Arg Ser Lys U C A E P A A A A STOP G C G A U G G C C A G U U U U U G A
53 Translace - terminace protein Met Arg Ser Lys mrna G C G A U G G C C A G U U U U U G A trna E P A E P A malá podjednotka ribozómu velká podjednotka ribozómu
54 Exprese genetické informace DNA - GCG ATG GCC AGT TTT TGA - kódující vlákno - CGC TAC CGG TCA AAA ACT - nekódující vlákno mrna - GCG AUG GCC AGU UUU UGA - protein Met Arg Ser Lys
55 Replikace Zdvojování molekuly DNA Probíhá v jádře na základě komplementarity Templátem je vlákno DNA v orientaci - počátek orii Enzymy: DNA polymeráza Primáza Ligáza
56 Replikace - eukaryota Vedoucí vlákno : - Opožďující se vlákno: -
57 Replikace - eukaryota Vedoucí vlákno : - Opožďující se vlákno: - Směr rozvolňování dvoušroubovice
58 Replikace - eukaryota primáza Vedoucí vlákno : - Opožďující se vlákno: - Směr rozvolňování dvoušroubovice
59 Replikace - eukaryota DNA polymeráza Vedoucí vlákno : - Opožďující se vlákno: - Směr rozvolňování dvoušroubovice
60 Replikace - eukaryota DNA polymeráza Vedoucí vlákno : - Opožďující se vlákno: - Směr rozvolňování dvoušroubovice
61 Replikace - eukaryota DNA polymeráza primáza Vedoucí vlákno : - Opožďující se vlákno: - Směr rozvolňování dvoušroubovice
62 Replikace - eukaryota Vedoucí vlákno : - Opožďující se vlákno: - Směr rozvolňování dvoušroubovice
63 Replikace - eukaryota Vedoucí vlákno : - Opožďující se vlákno: - Směr rozvolňování dvoušroubovice
64 Replikace - eukaryota DNA polymeráza Vedoucí vlákno : - Opožďující se vlákno: - Směr rozvolňování dvoušroubovice
65 Replikace - eukaryota DNA polymeráza Okazakiho fragmenty Vedoucí vlákno : - Opožďující se vlákno: - Směr rozvolňování dvoušroubovice
66 Replikace - eukaryota DNA polymeráza Okazakiho fragmenty Vedoucí vlákno : - Opožďující se vlákno: - Směr rozvolňování dvoušroubovice
67 Replikace - eukaryota DNA polymeráza Okazakiho fragmenty Vedoucí vlákno : - Opožďující se vlákno: - Směr rozvolňování dvoušroubovice
68 Replikace - eukaryota DNA polymeráza ligáza Okazakiho fragmenty Vedoucí vlákno : - Opožďující se vlákno: - Směr rozvolňování dvoušroubovice
69 Replikace - eukaryota DNA polymeráza Vedoucí vlákno : - ligáza Opožďující se vlákno: - Okazakiho fragmenty Směr rozvolňování dvoušroubovice
70 Replikace - eukaryota
71 Replikace - eukaryota
72 Replikace - eukaryota Semikonzervativní Komplementární +
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Molekulární genetika (Molekulární základy dědičnosti) 0 Gen - historie 1909 Johanssen
Molekulární genetika (Molekulární základy dědičnosti)
Molekulární genetika (Molekulární základy dědičnosti) Struktura nukleové kyseliny Cukerná pentóza: 2-deoxy-D-ribóza D-ribóza Fosfátový zbytek: PO 4 3- Purin Pyrimidin Dusíkatá báze Adenin Guanin Tymin
Genetický kód. Jakmile vznikne funkční mrna, informace v ní obsažená může být ihned použita pro syntézu proteinu.
Genetický kód Jakmile vznikne funkční, informace v ní obsažená může být ihned použita pro syntézu proteinu. Pravidla, kterými se řídí prostřednictvím přenos z nukleotidové sekvence DNA do aminokyselinové
Molekulárn. rní genetika
Molekulárn rní genetika Centráln lní dogma molekulárn rní biologie cesta přenosu genetické informace: DNA RNA proteiny výjimkou reverzní transkripce retrovirů: RNA DNA Chemie nukleových kyselin dusíkaté
Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA
Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA
Molekulární genetika
Molekulární genetika Upozornění: ukončení semestru ZÁPOČTOVÝ TEST a) Dědičnost krevně skupinových systémů (AB0, MN, Rh) b) Přepis úseku DNA do sekvence aminokyselin c) Populační genetika výpočet frekvence
Exprese genetické informace
Exprese genetické informace Stavební kameny nukleových kyselin Nukleotidy = báze + cukr + fosfát BÁZE FOSFÁT Nukleosid = báze + cukr CUKR Báze Cyklické sloučeniny obsahující dusík puriny nebo pyrimidiny
Struktura a funkce nukleových kyselin
Struktura a funkce nukleových kyselin ukleové kyseliny Deoxyribonukleová kyselina - DA - uchovává genetickou informaci Ribonukleová kyselina RA - genová exprese a biosyntéza proteinů Složení A stavební
Exprese genetické informace
Exprese genetické informace Tok genetické informace DNA RNA Protein (výjimečně RNA DNA) DNA RNA : transkripce RNA protein : translace Gen jednotka dědičnosti sekvence DNA nutná k produkci funkčního produktu
Virtuální svět genetiky 1. Translace
(překlad) je druhým krokem exprese genetické informace a ukončuje dráhu DNA > RNA > protein. probíhá mimo jádro, v cytoplazmě na ribozómech. Výchozími látkami pro translaci je 21 standardních aminokyselin,
Molekulární genetika IV zimní semestr 6. výukový týden ( )
Ústav biologie a lékařské genetiky 1.LF UK a VFN, Praha Molekulární genetika IV zimní semestr 6. výukový týden (5.11. 9.11.2007) Nondisjunkce u Downova syndromu 2 Tři rodokmeny rodin s dětmi postiženými
Molekulárn. rní. biologie Struktura DNA a RNA
Molekulárn rní základy dědičnosti Ústřední dogma molekulárn rní biologie Struktura DNA a RNA Ústřední dogma molekulárn rní genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace
Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza
Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových
Centrální dogma molekulární biologie
řípravný kurz LF MU 2011/12 Centrální dogma molekulární biologie Nukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Mendel) 1869 objev nukleových kyselin (Miescher) 1944 genetická informace v nukleových
Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA).
Typy nukleových kyselin Existují dva typy nukleových kyselin (NA, z anglických slov nucleic acid): deoxyribonukleová (DNA); ribonukleová (RNA). DNA je lokalizována v buněčném jádře, RNA v cytoplasmě a
základní znaky živých systémů (definice života výčtem jeho vlastností) složitá organizace a řád regulace a udržování vnitřní homeostázy získávání a
definice života živý organismus je přirozeně se vyskytující sám sebe reprodukující systém, který vykonává řízené manipulace s hmotou, energií a informací základní znaky živých systémů (definice života
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Vztah struktury a funkce nukleových kyselin. Replikace, transkripce
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vztah struktury a funkce nukleových kyselin. Replikace, transkripce Nukleová kyselina gen základní jednotka informace v živých systémech,
Úvod do studia biologie. Základy molekulární genetiky
Úvod do studia biologie Základy molekulární genetiky Katedra biologie PdF MU, 2011 - podobor genetiky (genetika je obecnější) Genetika: - nauka o dědičnosti a proměnlivosti - věda 20. století Johann Gregor
GENETIKA dědičností heredita proměnlivostí variabilitu Dědičnost - heredita podobnými znaky genetickou informací Proměnlivost - variabilita
GENETIKA - věda zabývající se dědičností (heredita) a proměnlivostí (variabilitu ) živých soustav - sleduje rozdílnost a přenos dědičných znaků mezi rodiči a potomky Dědičnost - heredita - schopnost organismu
Dědičnost x proměnlivost Neboli heredita je schopnost organismů vytvářet potomky se stejnými nebo podobnými znaky. Je to jedna ze základních
Mgr. Zbyněk Houdek Doporučenálit.: Alberts, B. a kol.: Základy buněčné biologie (1998) Kočárek, E.: Genetika (2008) Kubišta, V.: Buněčné základy životních dějů (1998) Otová, B. a kol.: Lékařská biologie
Nukleové kyseliny Replikace Transkripce, RNA processing Translace
ukleové kyseliny Replikace Transkripce, RA processing Translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti
Základy molekulární a buněčné biologie. Přípravný kurz Komb.forma studia oboru Všeobecná sestra
Základy molekulární a buněčné biologie Přípravný kurz Komb.forma studia oboru Všeobecná sestra Genetický aparát buňky DNA = nositelka genetické informace - dvouvláknová RNA: jednovláknová mrna = messenger
Nukleové kyseliny. DeoxyriboNucleic li Acid
Molekulární lární genetika Nukleové kyseliny DeoxyriboNucleic li Acid RiboNucleic N li Acid cukr (deoxyrobosa, ribosa) fosforečný zbytek dusíkatá báze Dusíkaté báze Dvouvláknová DNA Uchovává genetickou
NUKLEOVÉ KYSELINY. Složení nukleových kyselin. Typy nukleových kyselin:
NUKLEOVÉ KYSELINY Deoxyribonukleová kyselina (DNA, odvozeno z anglického názvu deoxyribonucleic acid) Ribonukleová kyselina (RNA, odvozeno z anglického názvu ribonucleic acid) Definice a zařazení: Nukleové
Úvod do studia biologie. Základy molekulární genetiky
Úvod do studia biologie Základy molekulární genetiky Katedra biologie PdF MU, 2010 Mendel - podobor Genetiky (Genetika je obecnější) Genetika: - nauka o dědičnosti a proměnlivosti - věda 20. století Johann
2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:
Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících
Schéma průběhu transkripce
Molekulární základy genetiky PROTEOSYNTÉZA A GENETICKÝ KÓD Proteosyntéza je složitý proces tvorby bílkovin, který zahrnuje proces přepisu genetické informace z DNA do kratšího zápisu v informační mrna
Populační genetika. ) a. Populační genetika. Castle-Hardy-Weinbergova zákonitost. Platí v panmiktické populaci za předpokladu omezujících podmínek
Poulační genetika Poulační genetika ORGANISMUS Součást výše organizované soustavy oulace POPULACE Soubor jedinců jednoho druhu Genotyově heterogenní V určitém čase má řirozeně vymezený rostor Velký očet
Odvětví genetiky zkoumající strukturu a funkci genů na molekulární úrovni
Otázka: Molekulární genetika a biologie Předmět: Biologie Přidal(a): Tomáš Pfohl Odvětví genetiky zkoumající strukturu a funkci genů na molekulární úrovni Zakladatel klasické genetiky - Johan Gregor Mendel
Genetika zvířat - MENDELU
Genetika zvířat DNA - primární struktura Několik experimentů ve 40. a 50. letech 20. století poskytla důkaz, že genetický materiál je tvořen jedním ze dvou typů nukleových kyselin: DNA nebo RNA. DNA je
NUKLEOVÉ KYSELINY. Základ života
NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním
Proteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D.
Proteiny Genová exprese 2013 Doc. MVDr. Eva Bártová, Ph.D. Bílkoviny (proteiny), 15% 1g = 17 kj Monomer = aminokyseliny aminová skupina karboxylová skupina α -uhlík postranní řetězec Znát obecný vzorec
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Garant předmětu GEN: prof. Ing. Jindřich Čítek, CSc. Garant předmětu GEN1: prof. Ing. Václav Řehout, CSc.
Garant předmětu GEN: prof. Ing. Jindřich Čítek, CSc. Garant předmětu GEN1: prof. Ing. Václav Řehout, CSc. Další vyučující: Ing. l. Večerek, PhD., Ing. L. Hanusová, Ph.D., Ing. L. Tothová Předpoklady: znalosti
Jsme tak odlišní. Co nás spojuje..? Nukleové kyseliny
Jsme tak odlišní Co nás spojuje..? ukleové kyseliny 1 UKLEVÉ KYSELIY = K anj = A ositelky genetických informací Základní význam pro všechny organismy V buňkách a virech Identifikace v buněčném jádře (nucleos)
15. Základy molekulární biologie
15. Základy molekulární biologie DNA je zkratka pro kyselinu deoxyribonukleovou, která je nositelkou genetické informace všech živých buněčných organismů. Je tedy nezbytná pro život pomocí svých informací
Nukleové kyseliny Replikace Transkripce translace
Nukleové kyseliny Replikace Transkripce translace Figure 4-3 Molecular Biology of the Cell ( Garland Science 2008) Figure 4-4 Molecular Biology of the Cell ( Garland Science 2008) Figure 4-5 Molecular
Nukleosidy, nukleotidy, nukleové kyseliny, genetická informace
Nukleosidy, nukleotidy, nukleové kyseliny, genetická informace Centrální dogma Nukleové kyseliny Fosfátem spojené nukleotidy (cukr s navázanou bází a fosfátem) Nukleotidy Nukleotidy stavební kameny nukleových
Nukleové kyseliny Replikace DNA Doc. MVDr. Eva Bártová, Ph.D.
Nukleové kyseliny Replikace DNA 2013 Doc. MVDr. Eva Bártová, Ph.D. Nukleové kyseliny 7% cytozin Monomer: NUKLEOTID, tvoří jej: uracil kyselina fosforečná pentóza (ribóza, deoxyribóza) tymin organická dusíkatá
19.b - Metabolismus nukleových kyselin a proteosyntéza
19.b - Metabolismus nukleových kyselin a proteosyntéza Proteosyntéza vyžaduje především zajištění primární struktury. Informace je uložena v DNA (ev. RNA u některých virů) trvalá forma. Forma uskladnění
Nukleové kyseliny. Nukleové kyseliny. Genetická informace. Gen a genom. Složení nukleových kyselin. Centrální dogma molekulární biologie
Centrální dogma molekulární biologie ukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Transkripce D R Translace rotein Mendel) Replikace 1869 objev nukleových kyselin (Miescher) 1944 nukleové kyseliny
Genetika. Genetika. Nauka o dědid. dičnosti a proměnlivosti. molekulárn. rní buněk organismů populací
Genetika Nauka o dědid dičnosti a proměnlivosti Genetika molekulárn rní buněk organismů populací Dědičnost na úrovni nukleových kyselin Předávání vloh z buňky na buňku Předávání vlastností mezi jednotlivci
Eva Benešová. Genetika
Eva Benešová Genetika Význam nukleotidů - Energetický metabolismus (oběh energie). - Propojení odpovědi buňky na hormony a další stimuly. - Komponenty enzymových kofaktorů a dalších metabolických intermediátů.
Nukleové kyseliny Milan Haminger BiGy Brno 2017
ukleové kyseliny Milan aminger BiGy Brno 2017 ukleové kyseliny jsou spolu s proteiny základní a nezbytnou složkou živé hmoty. lavní jejich funkce je uchování genetické informace a její přenos do dceřinné
-nukleové kyseliny jsou makromolekulární látky, jejichž základní stavební jednotkou je nukleotid každý nukleotid vzniká spojením:
Otázka: Molekulární základy dědičnosti Předmět: Biologie Přidal(a): Mulek NUKLEOVÉ KYSELINY -nositelkami genetické informace jsou molekuly nukleových kyselin tvořené řetězci vzájemně spojených nukleotidů,
Nukleové kyseliny. obecný přehled
Nukleové kyseliny obecný přehled Nukleové kyseliny objeveny r.1868, izolovány koncem 19.stol., 1953 objasněno jejich složení Watsonem a Crickem (1962 Nobelova cena) biopolymery nositelky genetické informace
Gymnázium, Brno, Elgartova 3
Gymnázium, Brno, Elgartova 3 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: GE Vyšší kvalita výuky Číslo projektu: CZ.1.07/1.5.00/34.0925 Autor: Mgr. Hana Křivánková Téma:
a) Primární struktura NK NUKLEOTIDY Monomerem NK jsou nukleotidy
1 Nukleové kyseliny Nukleové kyseliny (NK) sice tvoří malé procento hmotnosti buňky ale významem v kódování genetické informace a její expresí zcela nezbytným typem biopolymeru všech živých soustav a)
Molekulární základ dědičnosti
Molekulární základ dědičnosti Dědičná informace je zakódována v deoxyribonukleové kyselině, která je uložena v jádře buňky v chromozómech. Zlomovým objevem pro další rozvoj molekulární genetiky bylo odhalení
MOLEKULÁRNÍ ZÁKLADY DĚDIČNOSTI
Maturitní téma č. 33 MOLEKULÁRNÍ ZÁKLADY DĚDIČNOSTI NUKLEOVÉ KYSELINY - jsou to makromolekuly tvořené řetězci vzájemně spojených nukleotidů. Molekula nukleotidu sestává z : - pětiuhlíkatého monosacharidu
Struktura nukleových kyselin Vlastnosti genetického materiálu
Struktura nukleových kyselin Vlastnosti genetického materiálu V předcházejících kapitolách bylo konstatováno, že geny jsou uloženy na chromozomech a kontrolují fenotypové vlastnosti a že chromozomy se
Molekulární základy dědičnosti
Mendelova genetika v příkladech Molekulární základy dědičnosti Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Stručná historie 1853-65
Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Biosyntéza nukleových kyselin. VY_32_INOVACE_Ch0219.
Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Mária Čudejková 2. Transkripce genu a její regulace Transkripce genetické informace z DNA na RNA Transkripce dvou genů zachycená na snímku z elektronového mikroskopu.
Vzdělávací materiál. vytvořený v projektu OP VK. Anotace. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu:
Vzdělávací materiál vytvořený v projektu VK ázev školy: Gymnázium, Zábřeh, náměstí svobození 20 Číslo projektu: ázev projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek pro
TEST: GENETIKA, MOLEKULÁRNÍ BIOLOGIE
TEST: GENETIKA, MOLEKULÁRNÍ BIOLOGIE 1) Důležitým biogenním prvkem, obsaženým v nukleových kyselinách nebo ATP a nezbytným při tvorbě plodů je a) draslík b) dusík c) vápník d) fosfor 2) Sousedící nukleotidy
Syntéza a postranskripční úpravy RNA
Syntéza a postranskripční úpravy RNA 2016 1 Transkripce Proces tvorby RNA na podkladu struktury DNA Je přepisován pouze jeden řetězec dvoušroubovice DNA templátový řetězec Druhý řetězec se nazývá kódující
Studijní materiály pro bioinformatickou část ViBuChu. úloha II. Jan Komárek, Gabriel Demo
Studijní materiály pro bioinformatickou část ViBuChu úloha II Jan Komárek, Gabriel Demo Adenin Struktura DNA Thymin 5 konec 3 konec DNA tvořena dvěmi řetězci orientovanými antiparalelně (liší se orientací
Nukleové kyseliny Replikace Transkripce translace
Nukleové kyseliny Replikace Transkripce translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti buněk skladovat,
Molekulární genetika. DNA = deoxyribonukleová kyselina. RNA = ribonukleová kyselina
Přehled GMH Seminář z biologie GENETIKA Molekulární genetika Základní dogma molekulární biologie Základním nosičem genetické informace je molekula DNA. Tato molekula se může replikovat (kopírovat). Informace
TRANSLACE - SYNTÉZA BÍLKOVIN
TRANSLACE - SYNTÉZA BÍLKOVIN Translace - překlad genetické informace z jazyka nukleotidů do jazyka aminokyselin podle pravidel genetického kódu. Genetický kód - způsob zápisu genetické informace Kód Morseovy
b) Jak se změní sekvence aminokyselin v polypeptidu, pokud dojde v pozici 23 k záměně bázového páru GC za TA (bodová mutace) a s jakými následky?
1.1: Gén pro polypeptid, který je součástí peroxidázy buku lesního, má sekvenci 3'...TTTACAGTCCATTCGACTTAGGGGCTAAGGTACCTGGAGCCCACGTTTGGGTCATCCAG...5' 5'...AAATGTCAGGTAAGCTGAATCCCCGATTCCATGGACCTCGGGTGCAAACCCAGTAGGTC...3'
Nukleové kyseliny Replikace Transkripce, RNA processing Translace
Nukleové kyseliny Replikace Transkripce, RNA processing Translace Figure 6-2 Molecular Biology of the Cell ( Garland Science 2008) replikace Figure 4-8 Molecular Biology of the Cell ( Garland Science
Molekulární základy dědičnosti
Obecná genetika Molekulární základy dědičnosti Doc. RNDr. Ing. Eva PALÁTOVÁ, PhD. Ing. Roman LONGAUER, CSc. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt je spolufinancován Evropským sociálním
Genetika: cvičení č. 1-2 DNA, RNA, replikace, transkripce, translace a genetický kód, mutace. KBI/GENE Mgr. Zbyněk Houdek
Genetika: cvičení č. 1-2 DNA, RNA, replikace, transkripce, translace a genetický kód, mutace KBI/GENE Mgr. Zbyněk Houdek Témata cvičení 1. DNA, RNA, replikace, transkripce, translace, genetický kód, centrální
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Čtvrtek 10:30 11:15 Struktura a replikace DNA (Mgr. M. Majeská Čudejková, Ph.D) Transkripce genu a její regulace (Mgr. M. Majeská Čudejková, Ph.D) Translace a tvorba
Projekt SIPVZ č.0636p2006 Buňka interaktivní výuková aplikace
Nukleové kyseliny Úvod Makromolekulární látky, které uchovávají a přenášejí informaci. Jsou to makromolekulární látky uspořádané do dlouhých. Řadí se mezi tzv.. Jsou přítomny ve buňkách a virech. Poprvé
6. Nukleové kyseliny
6. ukleové kyseliny ukleové kyseliny jsou spolu s proteiny základní a nezbytnou složkou živé hmoty. lavní jejich funkce je uchování genetické informace a její přenos do dceřinné buňky. ukleové kyseliny
ENZYMY A NUKLEOVÉ KYSELINY
ENZYMY A NUKLEOVÉ KYSELINY Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 28. 3. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Organické sloučeniny 1 Anotace: Žáci se seznámí
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Ivo Frébort 1. Struktura a replikace DNA Literatura: Alberts a kol.: Základy buněčné biologie Espero Publishing, 2000 Garrett & Grisham: Biochemistry 2nd ed., Saunders
Molekulární genetika: Základní stavební jednotkou nukleových kyselin jsou nukleotidy, které jsou tvořeny
Otázka: Molekulární genetika, genetika buněk Předmět: Biologie Přidal(a): jeti52 Molekulární genetika: Do roku 1953 nebylo přesně známa podstata genetické informace, genů, dědičnosti,.. V roce 1953 Watson
6) Transkripce. Bakteriální RNA-polymeráza katalyzuje transkripci všech uvedených typů primárních transkriptů (na rozdíl od eukaryot).
6) Transkripce Transkripce bakteriálního genomu Jde o přenos genetické informace z DNA do RNA. Katalyzuje ji enzym RNA-polymeráza (transkriptáza). Další názvy:dna-řízená RNApolymeráza, DNA-řízená RNA-nukleotidyltransferáza,
REPLIKACE A REPARACE DNA
REPLIKACE A REPARACE DNA 1 VÝZNAM REPARACE DNA V MEDICÍNĚ Příklad: Reparace DNA: enzymy reparace nukleotidovou excizí Onemocnění: xeroderma pigmentosum 2 3 REPLIKACE A REPARACE DNA: Replikace DNA: 1. Podstata
1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním
1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním školám Genetika - shrnutí TL2 1. Doplň: heterozygot,
Nukleové kyseliny a nadmolekulové komplexy polynukleotidů buněčných struktur
Nukleové kyseliny a nadmolekulové komplexy polynukleotidů buněčných struktur Nukleové kyseliny (polynukleotidy) Objevitelem je Friedrich Miescher (1887) NK stojí v hierarchii látek potřebných k existenci
Tomáš Oberhuber. Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Buňka buňka je základní stavební prvek všech živých organismů byla objevena Robertem Hookem roku 1665 jednodušší
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FRAKTÁL V SEKVENCI DNA BAKALÁŘSKÁ PRÁCE FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Čtvrtek 11:30 13:00 1. Struktura a replikace DNA (25.09.2014, Mgr. M. Čudejková, Ph.D) 2. Metody molekulární biologie I (09.10.2014, Doc. Mgr. P. Galuszka, Ph.D)
Přenos genetické informace: Centrální dogma. Odstranění intronů sestřihem RNA
Transkripce a úpravy RNA Osnova přednášky Přenos genetické informace: Centrální dogma Proces genové exprese Transkripce u prokaryot Transkripce a úpravy RNA u eukaryot Přerušované geny u eukaryot: exony
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Molekulární základy genetiky
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Molekulární základy genetiky 1/76 GENY Označení GEN se používá ve dvou základních významech: 1. Jako synonymum pro vlohu
POLYPEPTIDY. Provitaminy = organické sloučeniny bez vitaminózního účinku, které se v živočišném těle mění působením ÚV záření nebo enzymů na vitaminy.
POLYPEPTIDY Provitaminy = organické sloučeniny bez vitaminózního účinku, které se v živočišném těle mění působením ÚV záření nebo enzymů na vitaminy. Hormony = katalyzátory v živočišných organismech (jsou
6. Nukleové kyseliny a molekulová genetika
6. Nukleové kyseliny a molekulová genetika Obtížnost A Odhadněte celkové nukleotidové složení dvouvláknové DNA, u níž bylo experimentálně stanoveno, že ze 100 deoxynukleotidů tvoří průměrně 22 deoxyadenosin-5
Translace (druhý krok genové exprese)
Translace (druhý krok genové exprese) Od RN k proteinu Milada Roštejnská Helena Klímová 1 enetický kód trn minoacyl-trn-synthetasa Translace probíhá na ribosomech Iniciace translace Elongace translace
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
AUG STOP AAAA S S. eukaryontní gen v genomové DNA. promotor exon 1 exon 2 exon 3 exon 4. kódující oblast. introny
eukaryontní gen v genomové DNA promotor exon 1 exon 2 exon 3 exon 4 kódující oblast introny primární transkript (hnrna, pre-mrna) postranskripční úpravy (vznik maturované mrna) syntéza čepičky AUG vyštěpení
Chemie nukleotidů a nukleových kyselin. Centrální dogma molekulární biologie (existují vyjímky)
Chemie nukleotidů a nukleových kyselin Centrální dogma molekulární biologie (existují vyjímky) NH 2 N N báze O N N -O P O - O H 2 C H H O H H cukr OH OH nukleosid nukleotid Nukleosidy vznikají buď syntézou
přepis genetické informace z DNA do RNA, při které DNA slouží jako matrice pro syntézu RNA. Reakci katalyzuje RNA-polymeráza (transkriptáza)
Transkripce přepis genetické informace z DNA do RNA, při které DNA slouží jako matrice pro syntézu RNA. Reakci katalyzuje RNA-polymeráza (transkriptáza) Zpětná transkripce (RT) - přepis genetické informace
ÚVOD. Úvod ke struktuře nukleových kyselin Struktura DNA Replikace DNA Opravy DNA
NUKLEVÉ KYSELINY ÚVD Úvod ke struktuře nukleových kyselin Struktura DNA Replikace DNA pravy DNA * Základní pojmy struktury nukleových kyselin Nukleotidy mohou být spojovány do řetězců ve formě ribonukleové
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Inovace studia molekulární a buněčné biologie. reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. Z.1.07/2.2.00/07.0354 Předmět: KBB/OPSB íl přednášky: Dokončení problematiky Molekulární podstaty genetické informace, objasnění principu replikace
Základy metod forenzní genetiky. Hana Šumberová, DiS
Základy metod forenzní genetiky Hana Šumberová, DiS Bakalářská práce 2011 PROHLÁŠENÍ AUTORA BAKALÁŘSKÉ PRÁCE Beru na vědomí, že odevzdáním bakalářské práce souhlasím se zveřejněním své práce podle zákona
Nukleové kyseliny (polynukleotidy) Nukleové kyseliny a nadmolekulové komplexy polynukleotidů buněčných struktur
Nukleové kyseliny (polynukleotidy) Nukleové kyseliny a nadmolekulové komplexy polynukleotidů buněčných struktur Objevitelem je Friedrich Miescher (1887) NK stojí v hierarchii látek potřebných k existenci
Přednáška kurzu Bi4010 Základy molekulární biologie, 2016/17 Transkripce DNA a sestřih
Přednáška kurzu Bi4010 Základy molekulární biologie, 2016/17 Transkripce DNA a sestřih Jan Šmarda Ústav experimentální biologie, PřF MU Genová exprese: cesta od DNA k RNA a proteinu fenotyp je výsledkem
Bílkoviny a rostlinná buňka
Bílkoviny a rostlinná buňka Bílkoviny Rostliny --- kontinuální diferenciace vytváření orgánů: - mitotická dělení -zvětšování buněk a tvorba buněčné stěny syntéza bílkovin --- fotosyntéza syntéza bílkovin
Metodologie molekulární fylogeneze a taxonomie hmyzu Bi7770
MODULARIZACE VÝUKY EVOLUČNÍ A EKOLOGICKÉ BIOLOGIE CZ.1.07/2.2.00/15.0204 Metodologie molekulární fylogeneze a taxonomie hmyzu Bi7770 Andrea Tóthová Co se tady bude dít.. proč DNA a jak to s ní vlastně
Kde se NK vyskytují?
ukleové kyseliny Kde se K vyskytují? Struktura ukleotid H 2 - H báze Zbytek kyseliny fosforečné H Cukerná složka H H H H H H H H H H H ribosa β-d-ribofuranosa H H H H H H H H H H deoxyribosa 2-deoxy-β-D-ribofuranosa
Nukleové kyseliny. Jsou universální složky živých organismů. Jsou odpovědné za uchování a přenos genetické informace.
Nukleové kyseliny Jsou universální složky živých organismů. Jsou odpovědné za uchování a přenos genetické informace. Richard Vytášek 2012 Nukleové kyseliny objeveny v 19.století v mlíčí (rybí sperma) a