STATISTICKÉ TESTY VÝZNAMNOSTI

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "STATISTICKÉ TESTY VÝZNAMNOSTI"

Transkript

1 STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená to, že je velmi nepravděpodobné, že by tento výsledek byl způsobený pouhou náhodou. Rozhodování ve statistických testech má vždy povahu pravděpodobnostní nikdy si nejsme svým rozhodnutím beze zbytku jisti. Pravděpodobnost, že neoprávněně zamítneme nulovou hypotézu, se nazývá hladina významnosti (signifikance). Na druhé straně můžeme neoprávněně přijmout nulovou hypotézu, ačkoliv neplatí. Snižujeme-li riziko první chyby, zvětšuje se riziko druhé chyby a naopak.

2 DRUHY STATISTICKÝCH TESTŮ VÝZNAMNOSTI: Z hlediska náročnosti na znalost předpokladů o rozdělení dělíme testy do dvou základních skupin na testy: PARAMETRICKÉ, které předpokládají naši znalost charakteru rozdělení studovaného statistického znaku (náhodné veličiny, dále v textu NV) a týkají se jednoho nebo více parametrů daného rozdělení (aritmetického průměru, směrodatné odchylky,..) a NEPARAMETRICKÉ, které jsou univerzálnější, robustnější, nevyžadují splnění žádných podmínek, ale nejsou tak silné.

3 Parametrické testy vyžadují splnění řady předpokladů, má-li být jejich užití oprávněné (nejčastěji se požaduje, aby rozdělení náhodné veličiny bylo normální). Jedná se o početně náročnější, avšak silné testy. Parametrické testy jsou však méně robustní než neparametrické testy. Robustnost Neparametrických testů můžeme chápat jako univerzálnost: pokud nejsou splněny předpoklady pro použití parametrických testů, musíme použít univerzálnější neparametrický test, který není tak silný, ale nevyžaduje splnění žádných podmínek.

4 NEPARAMETRICKÉ nevyžadují splnění žádných předpokladů o rozdělení náhodné veličiny. Obvykle se týkají nějaké obecné vlastnosti rozdělení a neparametrické se nazývají proto, že testované hypotézy neobsahují žádná tvrzení o průměrech nebo rozptylech. Můžeme je použít i v případě, že neznáme rozložení náhodné veličiny. Jsou tedy univerzálnější, ale mají menší statistickou účinnost, tj. schopnost rozpoznat i malé odchylky od nulové hypotézy. Výpočetně jsou jednodušší a rychlejší. Obvykle vyžadují větší počet pozorování než parametrické.

5 Podle dalších hledisek dělíme testy na: TESTY JEDNOSTRANNÉ a OBOUSTRANNÉ Podle toho, jakým způsobem formulujeme alternativní hypotézu, resp. zda nás zajímá změna pouze v jednom nebo obou směrech TESTY JEDNOVÝBĚROVÉ, DVOUVÝBĚROVÉ a VÍCEVÝBĚROVÉ Podle počtu výběrů se liší testované hypotézy a použité metody. Viz dále.

6 KVANTITATIVNÍ VELIČINY - JEDNOVÝBĚROVÉ TESTY POROVNÁNÍ MÍRY POLOHY SOUBORU S NĚJAKOU KONKRÉTNÍ HODNOTOU JEDNOVÝBĚROVÝ U-TEST (v Excelu označován jako Z-test) ověřuje, zda střední hodnota (výběrový průměr) se rovná nějaké konstantě, obvykle populačnímu průměru µ. Je nutný předpoklad normality sledované veličiny se známým populačním 2 rozptylem σ a nezávislost měřených hodnot (např. osoby se nesmí v souboru vyskytovat opakovaně).

7 Před provedením testu musíme zvolit hladinu významnosti α a rozhodnout, zda nás zajímá test jednostranný nebo oboustranný. Testovací statistika je: U = ( x µ) σ x n Příklad: Pro skupinu dětí zjistěte, zda nepřekračují hodnotu normy cholesterolu v krvi: 4,1 mmol/l, pokud známe populační rozptyl: 0,5. Formulujeme H 0 : střední hodnota cholesterolu u testované skupiny dětí nepřekračuje hodnotu normy cholesterolu. budeme porovnávat průměr sledované populace s hodnotou 4,1 mmol/l zajímá nás pouze překročení hladiny cholesterolu 4,1 mmol/l - proto test jednostranný hladinu testu (významnosti) volíme α = 0,05

8 Vypočteme střední hodnotu (aritmetický průměr) ve skupině dětí (výběru). Sledovanou veličinu považujeme za normálně rozloženou, můžeme tedy použít JEDNOVÝBĚROVÝ U-TEST Na základě vypočteného výběrového průměru a známé směrodatné odchylky (ze zadání) vypočteme statistiku U dosazením do vzorce ( x µ) n U = (4,302 4,1) 57 σ U = 0,5 = 2,162 Vypočtenou statistiku U porovnáme s kritickou hodnotou u α normálního rozdělení: pro zvolenou hladinu významnosti testu α = 0,05 najdeme hledanou statistiku v programu EXCEL pomocí Distribuční funkce Normálního standardizovaného rozdělení zadáním pravděpodobnosti 1-α = 0,95 x

9 Funkce v programu EXCEL se nazývá: =NORM.S.INV(pravděpodobnost), a za pravděpodobnost dosadíme hladinu spolehlivosti (1-α ), tj. 0,95. Funkce NORM.S.INV je inverzní k distribuční funkci, to znamená, že pro zadanou pravděpodobnost vrátí hodnotu příslušného kvantilu Normálního standardizovaného rozdělení: NORM.S.INV(0,95) = 1,645 Nyní porovnáváme vypočtenou statistiku U s tabulkovou hodnotou: 2,162 > 1,645 U je větší než kritická hodnota, odchylky od normy proto neumíme na hladině významnosti α vysvětlit pouhou náhodou a zamítáme H 0.

10 Jednodušším řešením je výpočet pravděpodobnosti, tzv. p-hodnoty. Všechny statistické programy včetně statistických funkcí v Excelu umí pro testovaná data vypočítat p-hodnotu, tj. pravděpodobnost, s jakou bychom v daném případě zamítli nulovou hypotézu. Tuto p-hodnotu pak porovnáme s předem stanovenou hladinou významnosti (námi zvolená pravděpodobnost tolerované chyby testu), a rozhodneme o platnosti nebo neplatnosti nulové hypotézy. V programu Excel, najdeme ve vzorcích statistickou funkci Z.TEST s parametry: pole (matice), testovaná hodnota a známá směrodatná odchylka základního souboru. Výsledkem funkce Z.TEST je p-hodnota. Vysvětlení: pole - zadáme oblast dat (výběrový soubor) testovaná hodnota - zadáme normu cholesterolu dětí v populaci známá směrodatná odchylka - odmocnina z populačního rozptylu

11 Stejný příklad: Pro skupinu dětí zjistěte, zda nepřekračují hodnotu normy cholesterolu v krvi: 4,1 mmol/l, pokud známe populační rozptyl: 0,5. =Z.TEST(pole;4,1;ODMOCNINA(0,5)) = 0, ,015 Výsledná p-hodnota 0,015 znamená, že nulovou hypotézu zamítáme na zvolené hladině významnosti 0,05. Znamená to přijetí alternativní hypotézy, kterou můžeme formulovat např.: Hodnota cholesterolu ve sledovaném výběru dětí je statisticky významně vyšší než je norma u běžné populace dětí.

12 Proč se v Excelu jmenuje tato funkce Z-test a ne U-test? Jedná se pouze o jiné označení - oba testy předpokládají normální rozdělení testované veličiny a porovnávají naměřené hodnoty se standardizovaným normálním rozdělením. Z-test nebo Z-rozdělení se nazývá podle tzv. z-skórů, tj. přepočtu hodnot x i na z i podle vzorce xi x zi = s, kde x je střední hodnota a s směrodatná odchylka výběru.

13 JEDNOVÝBĚROVÝ T-TEST Protože v praxi často neznáme skutečný rozptyl, ale používáme jeho odhad, místo jednovýběrového U-testu použijeme jednovýběrový t-test, který je založen na Studentově t-rozdělení a testovou statistiku vypočteme podle vzorce t = x µ s x n, kde je x výběrový průměr µ známá střední hodnota populace s x výběrová směrodatná odchylka n počet měření Vypočtenou testovou statistiku t porovnáváme s kritickou hodnotou Studentova rozdělení, kterou zjistíme např. funkcí v programu Excel =T.INV(pravděpodobnost; volnost), kde za pravděpodobnost dosadíme (1-α).

14 Příklad: Pro skupinu dětí zjistěte, zda nepřekračují hodnotu normy cholesterolu v krvi: 4,1 mmol/l. Populační rozptyl není znám, nahraďte jej odhadem výběrového rozptylu. Musíme použít Studentovo rozdělení, protože odhadujeme jeden parametr (rozptyl) a není splněn předpoklad pro použití U-testu. Použijeme vzorec: t = x µ s x n, po dosazení: t = 4,302 4,1 0, = 2,33 Vypočtenou testovou statistiku t = 2,33 porovnáme s kritickou hodnotou Studentova t-rozdělení, kterou vypočteme funkcí =T.INV(pravděp.; volnost), za pravděpodobnost dosadíme 1-α (pro α = 0,05) a za volnost 56 (57 měření-1) =T.INV(0,95;56) = 1,673 Porovnáním 2,33 > 1,673 zjistíme, že test je statisticky významný, H 0 zamítáme.

15 Protože v programu Excel jednovýběrový t-test není, museli bychom zvolit dvouvýběrový t-test a druhý ( fiktivní ) výběr nahradit hodnotou, která ho bude reprezentovat (střední hodnotou µ). T-test však z jedné hodnoty neumí vypočítat rozptyl, proto musí fiktivní druhý výběr obsahovat alespoň 2 hodnoty. Výpočet najdeme v souboru: 5d_priklady_parametricke_1vyberove_testy.xlsx na listu Z-test a t-test

16 V následující tabulce vidíme porovnání t-testu a z-testu, který jsme provedli v Excelu: t test pro různé CHOL_A Srovnávací z - test hodnota (2 výběry) rozptyly (2 výběry) CHOL_A Srovnávací hodnota Stř. hodnota 4,302 4,1 Stř. hodnota 4,302 4,1 Odhad rozptylu 0,430 0,000 Známý rozptyl 0,5 0,00001 Pozorování 57 2 Pozorování 57 2 Hyp. rozdíl stř. hodnot 0 Hyp. rozdíl stř. hodnot 0 Rozdíl*-stupně volnosti 56 t stat 2,330 z 2,162 P(T<=t) (1) 0,012 P(Z<=z) (1) 0,015 t krit (1) 1,673 z krit (1) 1,645 P(T<=t) (2) 0,023 P(Z<=z) (2) 0,031 t krit (2) 2,003 z krit (2) 1,960 Rozdíl* je chybné označení počtu stupňů volnosti - v našem případě (počet měření - 1)

17 Dvouvýběrový t-test pro různé rozptyly proto, že druhý výběr má nulový rozptyl. Testovací statistika pro t-test je 2,33, tj. stejná jako v případě výpočtu dosazením do vzorce t = x µ s x Porovnáním s kritickou hodnotou pro jednostranný test t krit(1) = 1,673 zamítáme nulovou hypotézu o shodě střední hodnoty s hodnotou 4,1 na hladině významnosti 0,05. n T-test a Z-test se liší především kvůli použití různého rozptylu. U Z-testu jsme použili známý rozptyl 0,5, u t-testu jsme rozptyl nahradili výběrovým odhadem.

18 Mohli bychom zamítnout nulovou hypotézu na hladině významnosti 0,01? Vypočtená p-hodnota = 0,012 vypovídá o tom, že nulovou hypotézu bychom v případě přísnějšího testu na hladině významnosti 0,01 nemohli zamítnout. Stejné výsledky nám poskytl i z-test, pro α = 0,01 bychom H 0 nemohli zamítnout (vypočtená p-hodnota = 0,015). Použití Z-testu je podmíněno znalostí populačního rozptylu. Pokud jej neznáme, musíme empirickou funkci (rozdělení výběrového souboru) porovnat se Studentovým t-rozdělením (nemůžeme použít normální rozdělení). Pro větší počet měření je Studentovo t-rozdělení prakticky shodné s normálním rozdělením.

19 SHRNUTÍ: Rozdíl mezi Z-testem a t-testem: t-test je konzervativnější (zamítnutí nulové hypotézy je o trochu přísnější - zamítáme dřív) při použití Z-testu musíme znát populační rozptyl oba tyto testy vyžadují normalitu dat, ale pro n > 20 je možno veličinu považovat za přibližně normální, protože součet většího počtu stejně rozdělených NV je přibližně normální

20 KVANTITATIVNÍ VELIČINY - DVĚ SKUPINY POROVNÁNÍ MÍRY POLOHY DVOU VÝBĚRŮ problém porovnání střední hodnoty dvou skupin: počet pozorování v obou skupinách se může lišit síla testu záleží na menším výběru skupiny se mohou lišit parametrem polohy odhadovaným průměrem skupiny se mohou lišit mírou variability různé rozptyly skupiny se mohou lišit oběmi charakteristikami současně

21 DVOUVÝBĚROVÝ T-TEST Použijeme za předpokladu, že je rozložení obou veličin normální. Nabídka Analýzy dat v Excelu obsahuje tyto možnosti dvouvýběrových t-testů: 1. Dvouvýběrový párový t-test na střední hodnotu 2. Dvouvýběrový t-test pro stejné rozptyly 3. Dvouvýběrový t-test pro různé rozptyly Stejné možnosti nabízí Excelová funkce T.TEST s parametry: Matice1, Matice2, Chvosty, Typ (1-spárované výběry, 2-dva výběry se shodným rozptylem, 3-dva výběry s různým rozptylem) První možnost probereme později, párová data jsou dvě hodnoty naměřené na stejných subjektech obvykle s časovým odstupem.

22 DVOUVÝBĚROVÝ T-TEST PRO STEJNÉ ROZPTYLY Příklad: testujeme shodu středních hodnot naměřených hodnot cholesterolu u dětí ve škole A a B a předpokládáme, že výběry mají stejný rozptyl: Dvouvýběrový t-test s rovností rozptylů CHOL_A CHOL_B Stř. hodnota 4,302 4,334 Rozptyl 0,430 0,520 Pozorování Společný rozptyl 0,470 Hyp. rozdíl stř. hodnot 0 Počet stupňů volnosti (rozdíl) 100 t stat -0,232 P(T<=t) (1) 0,408 t krit (1) 1,660 P(T<=t) (2) 0,817 t krit (2) 1,984 Zeleně je zvýrazněna vypočtená statistika. Pro porovnání s kritickou hodnotou bereme její absolutní hodnotu - kdybychom zaměnili pořadí obou výběrů, statistika by nám vyšla kladně. Modře je probarvena kritická hodnota t-rozdělení Předpokládáme Studentovo rozdělení výběr. souboru.

23 Zajímá nás oboustranný test, protože nevíme, na které škole mají děti nižší (vyšší) hodnoty cholesterolu. Porovnáním vypočtené statistiky a kritické hodnoty pro oboustranný test: -0,232 < 1,984 testovaná statistika nepřekračuje kritickou hodnotu přijímáme nulovou hypotézu, že mezi dětmi z obou škola A a B není statisticky významný rozdíl v naměřených hodnotách cholesterolu. Na základě p-hodnoty (zobrazena červeně) se rozhodujeme stejně: 0,817 > 0,05... p-hodnota je větší než zvolená hladina významnosti testu, tj. hodnota statistiky odpovídající této p-hodnotě nedosáhla kritické hodnoty Počet stupňů volnosti vypočteme tak, že od počtu měření v obou výběrech odečteme 1 a obě hodnoty sečteme ( ).

24 F-TEST PRO POROVNÁNÍ ROZPTYLŮ Příklad: testujeme shodu středních hodnot naměřených hodnot cholesterolu u mladších a starších zaměstnanců, rozdělených do skupiny A (mladší) a skupiny B (starší). Nevíme, zda můžeme použít dvouvýběrový t-test pro stejné rozptyly. Nejprve otestujeme shodu rozptylů pomocí Fischerova F-testu, kde výsledkem 2 je podíl dvou χ rozdělení. Stanovíme hypotézu H 0 - rozptyly obou souborů se statisticky významně neliší, alternativní hypotézu H A - rozptyly obou souborů se statisticky významně liší Pokud H 0 zamítneme, použijeme t-test pro různé rozptyly

25 Dvouvýběrový F-test pro rozptyl CHOL_B CHOL_A Stř. hodnota 4,20 4,33 Rozptyl 0,52 0,34 Pozorování Rozdíl F 1,54 P(F<=f) (1) 0,11 F krit (1) 1,80 Dvouvýběrový F-test pro rozptyl CHOL_A CHOL_B Stř. hodnota 4,33 4,20 Rozptyl 0,34 0,52 Pozorování Rozdíl F 0,65 P(F<=f) (1) 0,11 F krit (1) 0,55 Vidíme, že hodnoty v 1. tabulce odpovídají hodnotám na obrázku. Ve druhé tabulce, kde je přehozeno pořadí výběrů, musíme hodnoty F-rozdělení odečítat na grafu vlevo (v nižších hodnotách). Výsledek obou F-testů je stejný - test je statisticky nevýznamný, H 0 nemůžeme zamítnout.

26 Poznámka: hodnota F-testu (testovací statistika) v druhém výpočtu (po přehození pořadí výběrů) je inverzní hodnota první statistiky, tj. 1 pro obě statistiky platí vztah: F 1 = F Na základě F-testu použijeme opět DVOUVÝBĚROVÝ T-TEST PRO STEJNÉ ROZPTYLY Výběrové soubory otestujeme T-testem také dvakrát (podruhé v opačném pořadí výběrů), abychom zjistili, v čem se bude lišit výsledná tabulka. (Uvidíme, že se bude lišit pouze ve znaménku testovací statistiky t-stat.) Porovnáním absolutní hodnoty t-stat a t-krit (kritická hodnota stanovenou na základě zvolené hladiny významnosti α) zjistíme, že test cholesterolu pro obě skupiny zaměstnanců je statisticky nevýznamný - skupiny se v hodnotách cholesterolu statisticky významně neodlišují. Použili jsme oboustranný test. 2

27 Dvouvýběrový t-test s rovností rozptylů Dvouvýběrový t-test s rovností rozptylů Zaměstnanci CHOL_A CHOL_B Zaměstnanci CHOL_B CHOL_A Stř. hodnota 4,33 4,20 Stř. hodnota 4,20 4,33 Rozptyl 0,34 0,52 Rozptyl 0,52 0,34 Pozorování Pozorování Společný rozptyl 0,46 Společný rozptyl 0,46 Hyp.rozdíl stř.hodn. 0 Hyp.rozdíl stř.hodn. 0 Rozdíl 85 Rozdíl 85 t stat 0,84 t stat -0,84 P(T<=t) (1) 0,20 P(T<=t) (1) 0,20 t krit (1) 1,66 t krit (1) 1,66 P(T<=t) (2) 0,40 P(T<=t) (2) 0,40 t krit (2) 1,99 t krit (2) 1,99

28 Příklad: testujeme shodu středních hodnot naměřených hodnot cholesterolu u dětí ve škole A a C. Dvouvýběrový F-test pro rozptyl CHOL_A CHOL_C Stř. hodnota 4,408 4,483 Rozptyl 0,333 0,676 Pozorování Rozdíl F 0,493 P(F<=f) (1) 0,021 F krit (1) 0,564 Pro výběr t-testu jsme použili nejprve F-test pro porovnání rozptylů. Na hladině významnosti 0,05 jsme zjistili, že se rozptyly obou výběrů významně liší. K testování shody středních hodnot proto musíme použít dvouvýběrový t-test s nerovností rozptylů

29 Dvouvýběrový t-test s nerovností rozptylů CHOL_A CHOL_C Stř. hodnota 4,408 4,483 Rozptyl 0,333 0,676 Pozorování Hyp. rozdíl stř. hodnot 0 Rozdíl - stupně volnosti 61 t stat -0,444 P(T<=t) (1) 0,329 t krit (1) 1,670 P(T<=t) (2) 0,658 t krit (2) 2,000 K vyhodnocení t-testu porovnáme absolutní hodnotu t-stat a t krit(2) t stat < t krit(2) proto t-test není statisticky významný a hypotézu H o o shodě středních hodnot nemůžeme zamítnout. Totéž nám potvrzuje vysoká p-hodnota P(T<=t) (2) > α Počet stupňů volnosti se pro dvouvýběrový t-test s nerovností výběrů počítá složitějším algoritmem a vliv má především rozptyl výběru (čím je větší rozptyl, tím větší váhu má počet hodnot ve výběru).

30 PÁROVÉ POROVNÁNÍ používá se v situaci, kdy chceme prokázat vliv nějakého zásahu na stejné skupině objektů. Pokud máme sledovanou veličinu měřenu dvakrát, stačí vypočítat rozdíl těchto hodnot a testovat jednovýběrovým testem, zda je tato změna = 0. Technickým řešením se párové a nepárové testy neliší, ale z hlediska interpretace jde o zcela odlišné přístupy. Párové testy použijeme v okamžiku, kdy sledovanou charakteristiku pozorujeme na stejném objektu opakovaně (nejčastěji dvakrát) a rozdíl mezi sledovanymi subjekty je větší, než rozdíl mezi pozorováními. Snažíme se zjistit efekt času - obvykle během tohoto časového intervalu je provedena nějaká intervence a ptáme se tedy na její efekt.

31 Např. na skupině školních dětí byla měřena hladina HDL cholesterolu v krvi. Pak došlo ve školní jídelně k změně skladby stravy a po měsíci byla stejným dětem měřena opět hladina HDL cholesterolu. Ptáme se, zda změna jídelníčku snížila hladinu HDL cholesterolu v krvi jednotlivých dětí. Hodnota, o kterou je možno snížit hladinu HDL cholesterolu změnou části dětské stravy zřejmě nebude velká, naopak rozdíly hladiny HDL cholesterolu mezi jednotlivými dětmi mohou být mnohem větší. Pokud bychom porovnali obě skupiny dvouvýběrovým testem, zůstane efekt našeho zásahu skryt variabilitou mezi jedinci a dvouvýběrový test neprokáže významné rozdíly. Dopustili bychom se chyby tím, že bychom neuvažovali závislost hodnot na měřené osobě. Musíme tedy vyloučit vliv variability mezi osobami. Budeme pracovat s rozdíly obou měření a porovnávat změnu ke které došlo za sledované období. To je právě princip párového t-testu, který je zaměřený na odhalení změn u vzájemně spárovaných hodnot - počty měření si musí navzájem odpovídat.

32 Dvouvýběrový párový t-test na střední hodnotu HDL1 HDL2 Stř. hodnota 1,265 1,372 Rozptyl 0,086 0,146 Pozorování Pears. korelace 0,702 Hyp. rozdíl stř. hodnot 0 Rozdíl - počet st. volnosti 38 t stat -2,452 P(T<=t) (1) 0,009 t krit (1) 1,686 P(T<=t) (2) 0,019 t krit (2) 2,024 Stanovíme nulovou hypotézu H 0 : hodnoty HDL-chlesterolu se po třech měsích změny režimu u dětí nezměnily. Počet pozorování je stejný - jednalo se o 39 dětí. Počet stupňů volnosti je n-1, kde n je počet dětí v jednom výběru. Hodnoty 1. a 2. měření jsou spárované. Výsledek testu: Absolutní hodnota t-statistiky je větší než kritická hodnota (2,452 > 1,686), p-hodnota je signifikantně nízká (0,009), proto H 0, že zamítáme na hladině spolehlivosti 95%.

33 Na základě p-hodnoty bychom nulovou hypotézu mohli zamítnout i na hladině významnosti 99% (P(T<=t) (1) < 0,01). Použili jsme jednostranný test, protože jsme předpokládali, že hodnota HDL cholesterolu se pomocí režimových opatření zlepší (bude vyšší - jedná se o tzv. hodný cholesterol ) Další příklady pro řešení PÁROVÝM T-TESTEM jsou: výkon sportovců po určité době tréninků zlepšení výsledků školních dětí v některém předmětu zlepšení zdravotních parametrů po léčbě úbytek hmotnosti po dietních opatřeních zvýšení hmotnosti po úspěšné léčbě anorexie Vždy se musí jednat o spárované hodnoty stejných jedinců.

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testování hypotéz na základě jednoho a dvou výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/004. Testování hypotéz Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru,

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

Statistické metody uţívané při ověřování platnosti hypotéz

Statistické metody uţívané při ověřování platnosti hypotéz Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Testování hypotéz Biolog Statistik: Matematik: Informatik:

Testování hypotéz Biolog Statistik: Matematik: Informatik: Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

IV. CVIENÍ ZE STATISTIKY

IV. CVIENÍ ZE STATISTIKY IV. CVIENÍ ZE STATISTIKY Vážení studenti, úkolem dnešního cviení je nauit se analyzovat data kvantitativní povahy. K tomuto budeme opt používat program Excel 2007 MS Office. 1. Jak mžeme analyzovat kvantitativní

Více

Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy.

Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy. Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy. Z pastí na daném území byla odhadnuta abundance několika druhů: myšice lesní 250, myšice křovinná 200, hraboš polní 150,

Více

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D. Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

KVANTITATIVNÍ METODY V PEDAGOGICKÉM VÝZKUMU

KVANTITATIVNÍ METODY V PEDAGOGICKÉM VÝZKUMU KVANTITATIVNÍ METODY V PEDAGOGICKÉM VÝZKUMU RADEK KRPEC CZ.1.07/2.2.00/29.0006 OSTRAVA, ČERVEN 2013 Studijní opora je jedním z výstupu projektu ESF OP VK. Číslo Prioritní osy: 7.2 Oblast podpory: 7.2.2

Více

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim

Více

Testy dobré shody TESTY DOBRÉ SHODY (angl. goodness-of-fit tests), : veličiny X, Y jsou nezávislé nij eij

Testy dobré shody TESTY DOBRÉ SHODY (angl. goodness-of-fit tests),   : veličiny X, Y jsou nezávislé nij eij Testy dobré shody Máme dvě veličiny a předpokládáme, že jsou nezávislé (platí nulová hypotéza nezávislosti). Často chceme naopak prokázat jejich závislost. K tomu slouží: TESTY DOBRÉ SHODY (angl. goodness-of-fit

Více

Testy pro porovnání vlastností dvou skupin

Testy pro porovnání vlastností dvou skupin Testy pro porovnání vlastností dvou skupin Petr Pošík Části dokumentu jsou převzaty (i doslovně) z Mirko Navara: Pravděpodobnost a matematická statistika, https://cw.felk.cvut.cz/lib/exe/fetch.php/courses/a6m33ssl/pms_print.pdf

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

Modul Analýza síly testu Váš pomocník při analýze dat.

Modul Analýza síly testu Váš pomocník při analýze dat. 6..0 Modul Analýza síly testu Váš pomocník při analýze dat. Power Analysis and Interval Estimation Analýza síly testu Odhad velikosti vzorku Pokročilé techniky pro odhad intervalu spolehlivosti Rozdělení

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

STUDIJNÍ OPORY S PŘEVAŽUJÍCÍMI DISTANČNÍMI PRVKY PRO VÝUKU STATISTIKY PRVNÍ ZKUŠENOSTI. Pavel Praks, Zdeněk Boháč

STUDIJNÍ OPORY S PŘEVAŽUJÍCÍMI DISTANČNÍMI PRVKY PRO VÝUKU STATISTIKY PRVNÍ ZKUŠENOSTI. Pavel Praks, Zdeněk Boháč STUDIJNÍ OPORY S PŘEVAŽUJÍCÍMI DISTANČNÍMI PRVKY PRO VÝUKU STATISTIKY PRVNÍ ZKUŠENOSTI Pavel Praks, Zdeněk Boháč Katedra matematiky a deskriptivní geometrie, VŠB - Technická univerzita Ostrava 17. listopadu

Více

Mannův-Whitneyův(Wilcoxonův) test pořadová obdoba dvouvýběrového t-testu. Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008

Mannův-Whitneyův(Wilcoxonův) test pořadová obdoba dvouvýběrového t-testu. Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008 Statistika (MD30P03Z, MD30P03U) ak. rok 007/008 Karel Zvára karel.zvara@mff.cuni.cz http://www.karlin.mff.cuni.cz/ zvara (naposledy upraveno. listopadu 007) 1(4) Mann-Whitney párový Wilcoxon párový znaménkový

Více

Biostatistika a matematické metody epidemiologie - stručné studijní texty

Biostatistika a matematické metody epidemiologie - stručné studijní texty Biostatistika a matematické metody epidemiologie - stručné studijní texty Bohumír Procházka, SZÚ Praha 1 Co můžeme sledovat Pro charakteristiku nebo vlastnost, kterou chceme sledovat zvolíme termín jev.

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Navrhování experimentů a jejich analýza. Eva Jarošová

Navrhování experimentů a jejich analýza. Eva Jarošová Navrhování experimentů a jejich analýza Eva Jarošová Obsah Základní techniky Vyhodnocení výsledků Experimenty s jedním zkoumaným faktorem Faktoriální experimenty úplné 2 N dílčí 2 N-p Experimenty pro studium

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

StatSoft Jak poznat vliv faktorů vizuálně

StatSoft Jak poznat vliv faktorů vizuálně StatSoft Jak poznat vliv faktorů vizuálně V tomto článku bychom se rádi věnovali otázce, jak poznat již z grafického náhledu vztahy a závislosti v analýze rozptylu. Pomocí následujících grafických zobrazení

Více

Návod na statistický software PSPP část 2. Kontingenční tabulky

Návod na statistický software PSPP část 2. Kontingenční tabulky Návod na statistický software PSPP část 2. Kontingenční tabulky Jiří Šafr FHS UK poslední revize 31. srpna 2010 Logika kontingenčních tabulek... 2 Postup vytváření kontingenčních tabulek v PSPP (SPSS)....

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Modul Základní statistika

Modul Základní statistika Modul Základní statistika Menu: QCExpert Základní statistika Základní statistika slouží k předběžné analýze a diagnostice dat, testování předpokladů (vlastností dat), jejichž splnění je nutné pro použití

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

Semestrální práce z předmětu Matematika 6F

Semestrální práce z předmětu Matematika 6F vypracoval: Jaroslav Nušl dne: 17.6.24 email: nusl@cvut.org Semestrální práce z předmětu Matematika 6F Zádání: Cílem semestrální práce z matematiky 6F bylo zkoumání hudebního signálu. Pluginem ve Winampu

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Tvar dat a nástroj přeskupování

Tvar dat a nástroj přeskupování StatSoft Tvar dat a nástroj přeskupování Chtěli jste někdy použít data v jistém tvaru a STATISTICA Vám to nedovolila? Jistě se najde někdo, kdo se v této situaci již ocitl. Není ale potřeba propadat panice,

Více

VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA

VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA Katedra matematiky STATISTIKA V SPSS Jana Borůvková, Petra Horáčková, Miroslav Hanáček 2014 Jana Borůvková, Petra Horáčková, Miroslav Hanáček STATISTIKA V SPSS 1. vydání

Více

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost

Více

Kurz SPSS: Jednoduchá analýza dat. Jiří Šafr

Kurz SPSS: Jednoduchá analýza dat. Jiří Šafr Kurz SPSS: Jednoduchá analýza dat Jiří Šafr vytvořeno 29. 6. 2009 Dva základní typy statistiky 1. Popisná statistika: metody pro zjišťování a sumarizaci informací grfy, tabulky, popisné chrakteristiky

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Vícerozměrné statistické metody

Vícerozměrné statistické metody Vícerozměrné statistické metody Smysl a cíle vícerozměrné analýzy dat a modelování, vztah jednorozměrných a vícerozměrných statistických metod Jiří Jarkovský, Simona Littnerová Průběh výuky 13 přednášek

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Test obsahoval 7 otevřených otázek a 2 uzavřené alternativní otázky s možností volby ano, ne.

Test obsahoval 7 otevřených otázek a 2 uzavřené alternativní otázky s možností volby ano, ne. ! Cílem vysílání v rámci projektu ŠIK je také předávání praktických informací z oblasti rizikového chování. Vycházíme z přesvědčení, že člověk, který má dostatek pravdivých informací, má také větší "#$%&&%

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

Projekt z předmětu Statistika

Projekt z předmětu Statistika Projekt z předmětu Téma: Typologie hráče české nejvyšší hokejové soutěže VŠB-TU Ostrava:Fakulta Elektrotechniky a informatiky jaro 2011 Martin Dočkal doc068 dockal.martin@gmail.com 1 Obsah 2 Zadání...

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

STATISTIKA LS 2013. Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D.

STATISTIKA LS 2013. Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D. STATISTIKA LS 2013 Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D. Cvičící: Ing. Ondřej Grunt RNDr. Pavel Jahoda, Ph.D. Ing. Kateřina Janurová Mgr. Tereza

Více

Úvod. Struktura respondentů

Úvod. Struktura respondentů Výsledky pilotního průzkumu postojů studentů Policejní akademie ČR v Praze k problematice zálohování dat Ing. Bc. Marek Čandík, Ph.D. JUDr. Štěpán Kalamár, Ph.D. The results of the pilot survey of students

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

META-ANALÝZA Z POHLEDU STATISTIKA. Medicína založená na důkazu - Modul 3B

META-ANALÝZA Z POHLEDU STATISTIKA. Medicína založená na důkazu - Modul 3B META-ANALÝZA Z POHLEDU STATISTIKA Medicína založená na důkazu - Modul 3B OBSAH: Úvodní definice... 2 Ověření homogenity pomocí Q statistiky... 3 Testování homogenity studií pomocí I 2 indexu... 6 Výpočet

Více

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 76

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 76 1 / 76 Méně než minimum ze statistiky Michaela Šedová KPMS MFF UK Principy medicíny založené na důkazech a základy vědecké přípravy Příklad Studie syndromu náhodného úmrtí dětí. Dvě skupiny: Děti, které

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

Masarykova univerzita Ekonomicko správní fakulta. Statistika II

Masarykova univerzita Ekonomicko správní fakulta. Statistika II Masarykova univerzita Ekonomicko správní fakulta Statistika II distanční studijní opora Marie Budíková Brno 2006 Tento projekt byl realizován za finanční podpory Evropské unie v rámci programu SOCRATES

Více

VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA. Katedra matematiky STATISTICA ÚVOD DO ZPRACOVÁNÍ DAT. Jana Borůvková, Petra Horáčková, Miroslav Hanáček

VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA. Katedra matematiky STATISTICA ÚVOD DO ZPRACOVÁNÍ DAT. Jana Borůvková, Petra Horáčková, Miroslav Hanáček VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA Katedra matematiky STATISTICA ÚVOD DO ZPRACOVÁNÍ DAT Jana Borůvková, Petra Horáčková, Miroslav Hanáček 2013 Jana Borůvková, Petra Horáčková, Miroslav Hanáček STATISTICA

Více

Malé statistické repetitorium Verze s řešením

Malé statistické repetitorium Verze s řešením Verze s řešením Příklad : Rozdělení náhodné veličiny základní charakteristiky Rozdělení diskrétní náhodné veličiny X je dáno následující tabulkou x 0 4 5 P(X = x) 005 05 05 0 a) Nakreslete graf distribuční

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

5 ANALÝZA ROZPTYLU. Počet sloupců, K = 7 Počet dat, N = 70 Celkový průměr = 3.9846

5 ANALÝZA ROZPTYLU. Počet sloupců, K = 7 Počet dat, N = 70 Celkový průměr = 3.9846 1 5 ANALÝZA ROZPTYLU Vzorová úloha 5.1 Zkrácený postup jednofaktorové analýzy rozptylu Na úloze B5.02 Porovnání nové metody v sedmi laboratořích ukážeme postup 16 jednofaktorové analýzy rozptylu. Kirchhoefer

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Pravděpodobnost, statistika a operační výzkum

Pravděpodobnost, statistika a operační výzkum Pravděpodobnost, statistika a operační výzkum RNDr. Břetislav Fajmon, Ph.D. Mgr. Jan Koláček, Ph.D. ÚSTAV MATEMATIKY Pravděpodobnost, statistika a operační výzkum 1 Obsah I Statistické metody 7 1 Odhad

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

Ilustrační příklad odhadu SM v SW Gretl

Ilustrační příklad odhadu SM v SW Gretl Ilustrační příklad odhadu SM v SW Gretl Odhad simultánního modelu (SM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná studijní pomůcka MM2011 Úvodní obrazovka Gretlu

Více

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi Geografický seminář 30. března 2011 Pavel Bednář Výchozí stav Sebehodnocení práce s MS Excel studujícími oboru

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI Aleš Linka 1, Petr Volf 2 1 Katedra textilních materiálů, FT TUL, 2 Katedra aplikované matematiky, FP TUL ABSTRAKT. Internetové

Více

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21 Příklad 1 Soutěž o nelepší akost výrobků obeslali čtyři výrobci A, B, C, D celkem 26 výrobky. Porota sestavila toto pořadí (uveden pouze původ výrobku od nelepšího k nehoršímu): Pořadí 1 2 3 4 5 6 7 8

Více

SW podpora při řešení projektů s aplikací statistických metod

SW podpora při řešení projektů s aplikací statistických metod SW podpora při řešení projektů s aplikací statistických metod Jan Král, Josef Křepela Úvod Uplatňování statistických metod vyžaduje počítačovou podporu. V současné době je rozšiřována řada vynikajících

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Úvod do statistiky (interaktivní učební text) - Řešené příklady. Martina Litschmannová

Úvod do statistiky (interaktivní učební text) - Řešené příklady. Martina Litschmannová Vysoká škola báňská Technická univerzita Ostrava Západočeská univerzita v Plzni Úvod do statistiky (interaktivní učební text) - Řešené příklady Martina Litschmannová 1. strana ze 159 1 Explorační analýza

Více

Z metodologie známe dělení proměnných do několika skupin. Nejčastěji se užívá dělení dle S. Stevense. Nicméně nám postačí dělení jednodušší:

Z metodologie známe dělení proměnných do několika skupin. Nejčastěji se užívá dělení dle S. Stevense. Nicméně nám postačí dělení jednodušší: Slovo úvodem Ne všechno, co si řekneme v tomto kurzu, je pravda. Není to proto, že by mým záměrem bylo před posluchači něco tajit nebo je uvádět ve zmatek. Problematika testování statistických hypotéz

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Obsah. 3 Testy 31 3.1 z test... 32 3.2 z test 2... 33 3.3 t test... 34 3.4 t test 2s... 35

Obsah. 3 Testy 31 3.1 z test... 32 3.2 z test 2... 33 3.3 t test... 34 3.4 t test 2s... 35 Obsah 1 Popisná statistika 4 1.1 bas stat........................................ 5 1.2 mean.......................................... 6 1.3 meansq........................................ 7 1.4 sumsq.........................................

Více

ANALÝZA OBTÍŽNOSTI TESTU STUDIJNÍCH PŘEDPOKLADŮ NA EKONOMICKO SPRÁVNÍ A PRÁVNICKÉ FAKULTĚ MASARYKOVY UNIVERZITY V ROCE 2004.

ANALÝZA OBTÍŽNOSTI TESTU STUDIJNÍCH PŘEDPOKLADŮ NA EKONOMICKO SPRÁVNÍ A PRÁVNICKÉ FAKULTĚ MASARYKOVY UNIVERZITY V ROCE 2004. ANALÝZA OBTÍŽNOSTI TESTU STUDIJNÍCH PŘEDPOKLADŮ NA EKONOMICKO SPRÁVNÍ A PRÁVNICKÉ FAKULTĚ MASARYKOVY UNIVERZITY V ROCE 04 Marie Budíková Katedra aplikované matematiky, Přírodovědecká fakulta, Masarykova

Více

počet imigrantů imigranti nedospělí dospělí

počet imigrantů imigranti nedospělí dospělí AAV přednášející Mgr. Patrik Galeta 2. října 2008-2. přednáška + cvičení - test - vypisovací odpovědi, pokaždé v odpovědi bude postup a výsledek, pokud budu mít jen jedno z toho, potom dostanu jen část

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 4: Statistické vlastnosti MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Upřesnění k pojmům a značení

Více

ADZ základní statistické funkce

ADZ základní statistické funkce ADZ základní statistické funkce Základní statistické funkce a znaky v softwaru Excel Znak Stručný popis + Sčítání buněk - Odčítání buněk * Násobení buněk / Dělení buněk Ctrl+c Vyjmutí buňky Ctrl+v Vložení

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do

Více