STATISTICKÉ TESTY VÝZNAMNOSTI

Rozměr: px
Začít zobrazení ze stránky:

Download "STATISTICKÉ TESTY VÝZNAMNOSTI"

Transkript

1 STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená to, že je velmi nepravděpodobné, že by tento výsledek byl způsobený pouhou náhodou. Rozhodování ve statistických testech má vždy povahu pravděpodobnostní nikdy si nejsme svým rozhodnutím beze zbytku jisti. Pravděpodobnost, že neoprávněně zamítneme nulovou hypotézu, se nazývá hladina významnosti (signifikance). Na druhé straně můžeme neoprávněně přijmout nulovou hypotézu, ačkoliv neplatí. Snižujeme-li riziko první chyby, zvětšuje se riziko druhé chyby a naopak.

2 DRUHY STATISTICKÝCH TESTŮ VÝZNAMNOSTI: Z hlediska náročnosti na znalost předpokladů o rozdělení dělíme testy do dvou základních skupin na testy: PARAMETRICKÉ, které předpokládají naši znalost charakteru rozdělení studovaného statistického znaku (náhodné veličiny, dále v textu NV) a týkají se jednoho nebo více parametrů daného rozdělení (aritmetického průměru, směrodatné odchylky,..) a NEPARAMETRICKÉ, které jsou univerzálnější, robustnější, nevyžadují splnění žádných podmínek, ale nejsou tak silné.

3 Parametrické testy vyžadují splnění řady předpokladů, má-li být jejich užití oprávněné (nejčastěji se požaduje, aby rozdělení náhodné veličiny bylo normální). Jedná se o početně náročnější, avšak silné testy. Parametrické testy jsou však méně robustní než neparametrické testy. Robustnost Neparametrických testů můžeme chápat jako univerzálnost: pokud nejsou splněny předpoklady pro použití parametrických testů, musíme použít univerzálnější neparametrický test, který není tak silný, ale nevyžaduje splnění žádných podmínek.

4 NEPARAMETRICKÉ nevyžadují splnění žádných předpokladů o rozdělení náhodné veličiny. Obvykle se týkají nějaké obecné vlastnosti rozdělení a neparametrické se nazývají proto, že testované hypotézy neobsahují žádná tvrzení o průměrech nebo rozptylech. Můžeme je použít i v případě, že neznáme rozložení náhodné veličiny. Jsou tedy univerzálnější, ale mají menší statistickou účinnost, tj. schopnost rozpoznat i malé odchylky od nulové hypotézy. Výpočetně jsou jednodušší a rychlejší. Obvykle vyžadují větší počet pozorování než parametrické.

5 Podle dalších hledisek dělíme testy na: TESTY JEDNOSTRANNÉ a OBOUSTRANNÉ Podle toho, jakým způsobem formulujeme alternativní hypotézu, resp. zda nás zajímá změna pouze v jednom nebo obou směrech TESTY JEDNOVÝBĚROVÉ, DVOUVÝBĚROVÉ a VÍCEVÝBĚROVÉ Podle počtu výběrů se liší testované hypotézy a použité metody. Viz dále.

6 KVANTITATIVNÍ VELIČINY - JEDNOVÝBĚROVÉ TESTY POROVNÁNÍ MÍRY POLOHY SOUBORU S NĚJAKOU KONKRÉTNÍ HODNOTOU JEDNOVÝBĚROVÝ U-TEST (v Excelu označován jako Z-test) ověřuje, zda střední hodnota (výběrový průměr) se rovná nějaké konstantě, obvykle populačnímu průměru µ. Je nutný předpoklad normality sledované veličiny se známým populačním 2 rozptylem σ a nezávislost měřených hodnot (např. osoby se nesmí v souboru vyskytovat opakovaně).

7 Před provedením testu musíme zvolit hladinu významnosti α a rozhodnout, zda nás zajímá test jednostranný nebo oboustranný. Testovací statistika je: U = ( x µ) σ x n Příklad: Pro skupinu dětí zjistěte, zda nepřekračují hodnotu normy cholesterolu v krvi: 4,1 mmol/l, pokud známe populační rozptyl: 0,5. Formulujeme H 0 : střední hodnota cholesterolu u testované skupiny dětí nepřekračuje hodnotu normy cholesterolu. budeme porovnávat průměr sledované populace s hodnotou 4,1 mmol/l zajímá nás pouze překročení hladiny cholesterolu 4,1 mmol/l - proto test jednostranný hladinu testu (významnosti) volíme α = 0,05

8 Vypočteme střední hodnotu (aritmetický průměr) ve skupině dětí (výběru). Sledovanou veličinu považujeme za normálně rozloženou, můžeme tedy použít JEDNOVÝBĚROVÝ U-TEST Na základě vypočteného výběrového průměru a známé směrodatné odchylky (ze zadání) vypočteme statistiku U dosazením do vzorce ( x µ) n U = (4,302 4,1) 57 σ U = 0,5 = 2,162 Vypočtenou statistiku U porovnáme s kritickou hodnotou u α normálního rozdělení: pro zvolenou hladinu významnosti testu α = 0,05 najdeme hledanou statistiku v programu EXCEL pomocí Distribuční funkce Normálního standardizovaného rozdělení zadáním pravděpodobnosti 1-α = 0,95 x

9 Funkce v programu EXCEL se nazývá: =NORM.S.INV(pravděpodobnost), a za pravděpodobnost dosadíme hladinu spolehlivosti (1-α ), tj. 0,95. Funkce NORM.S.INV je inverzní k distribuční funkci, to znamená, že pro zadanou pravděpodobnost vrátí hodnotu příslušného kvantilu Normálního standardizovaného rozdělení: NORM.S.INV(0,95) = 1,645 Nyní porovnáváme vypočtenou statistiku U s tabulkovou hodnotou: 2,162 > 1,645 U je větší než kritická hodnota, odchylky od normy proto neumíme na hladině významnosti α vysvětlit pouhou náhodou a zamítáme H 0.

10 Jednodušším řešením je výpočet pravděpodobnosti, tzv. p-hodnoty. Všechny statistické programy včetně statistických funkcí v Excelu umí pro testovaná data vypočítat p-hodnotu, tj. pravděpodobnost, s jakou bychom v daném případě zamítli nulovou hypotézu. Tuto p-hodnotu pak porovnáme s předem stanovenou hladinou významnosti (námi zvolená pravděpodobnost tolerované chyby testu), a rozhodneme o platnosti nebo neplatnosti nulové hypotézy. V programu Excel, najdeme ve vzorcích statistickou funkci Z.TEST s parametry: pole (matice), testovaná hodnota a známá směrodatná odchylka základního souboru. Výsledkem funkce Z.TEST je p-hodnota. Vysvětlení: pole - zadáme oblast dat (výběrový soubor) testovaná hodnota - zadáme normu cholesterolu dětí v populaci známá směrodatná odchylka - odmocnina z populačního rozptylu

11 Stejný příklad: Pro skupinu dětí zjistěte, zda nepřekračují hodnotu normy cholesterolu v krvi: 4,1 mmol/l, pokud známe populační rozptyl: 0,5. =Z.TEST(pole;4,1;ODMOCNINA(0,5)) = 0, ,015 Výsledná p-hodnota 0,015 znamená, že nulovou hypotézu zamítáme na zvolené hladině významnosti 0,05. Znamená to přijetí alternativní hypotézy, kterou můžeme formulovat např.: Hodnota cholesterolu ve sledovaném výběru dětí je statisticky významně vyšší než je norma u běžné populace dětí.

12 Proč se v Excelu jmenuje tato funkce Z-test a ne U-test? Jedná se pouze o jiné označení - oba testy předpokládají normální rozdělení testované veličiny a porovnávají naměřené hodnoty se standardizovaným normálním rozdělením. Z-test nebo Z-rozdělení se nazývá podle tzv. z-skórů, tj. přepočtu hodnot x i na z i podle vzorce xi x zi = s, kde x je střední hodnota a s směrodatná odchylka výběru.

13 JEDNOVÝBĚROVÝ T-TEST Protože v praxi často neznáme skutečný rozptyl, ale používáme jeho odhad, místo jednovýběrového U-testu použijeme jednovýběrový t-test, který je založen na Studentově t-rozdělení a testovou statistiku vypočteme podle vzorce t = x µ s x n, kde je x výběrový průměr µ známá střední hodnota populace s x výběrová směrodatná odchylka n počet měření Vypočtenou testovou statistiku t porovnáváme s kritickou hodnotou Studentova rozdělení, kterou zjistíme např. funkcí v programu Excel =T.INV(pravděpodobnost; volnost), kde za pravděpodobnost dosadíme (1-α).

14 Příklad: Pro skupinu dětí zjistěte, zda nepřekračují hodnotu normy cholesterolu v krvi: 4,1 mmol/l. Populační rozptyl není znám, nahraďte jej odhadem výběrového rozptylu. Musíme použít Studentovo rozdělení, protože odhadujeme jeden parametr (rozptyl) a není splněn předpoklad pro použití U-testu. Použijeme vzorec: t = x µ s x n, po dosazení: t = 4,302 4,1 0, = 2,33 Vypočtenou testovou statistiku t = 2,33 porovnáme s kritickou hodnotou Studentova t-rozdělení, kterou vypočteme funkcí =T.INV(pravděp.; volnost), za pravděpodobnost dosadíme 1-α (pro α = 0,05) a za volnost 56 (57 měření-1) =T.INV(0,95;56) = 1,673 Porovnáním 2,33 > 1,673 zjistíme, že test je statisticky významný, H 0 zamítáme.

15 Protože v programu Excel jednovýběrový t-test není, museli bychom zvolit dvouvýběrový t-test a druhý ( fiktivní ) výběr nahradit hodnotou, která ho bude reprezentovat (střední hodnotou µ). T-test však z jedné hodnoty neumí vypočítat rozptyl, proto musí fiktivní druhý výběr obsahovat alespoň 2 hodnoty. Výpočet najdeme v souboru: 5d_priklady_parametricke_1vyberove_testy.xlsx na listu Z-test a t-test

16 V následující tabulce vidíme porovnání t-testu a z-testu, který jsme provedli v Excelu: t test pro různé CHOL_A Srovnávací z - test hodnota (2 výběry) rozptyly (2 výběry) CHOL_A Srovnávací hodnota Stř. hodnota 4,302 4,1 Stř. hodnota 4,302 4,1 Odhad rozptylu 0,430 0,000 Známý rozptyl 0,5 0,00001 Pozorování 57 2 Pozorování 57 2 Hyp. rozdíl stř. hodnot 0 Hyp. rozdíl stř. hodnot 0 Rozdíl*-stupně volnosti 56 t stat 2,330 z 2,162 P(T<=t) (1) 0,012 P(Z<=z) (1) 0,015 t krit (1) 1,673 z krit (1) 1,645 P(T<=t) (2) 0,023 P(Z<=z) (2) 0,031 t krit (2) 2,003 z krit (2) 1,960 Rozdíl* je chybné označení počtu stupňů volnosti - v našem případě (počet měření - 1)

17 Dvouvýběrový t-test pro různé rozptyly proto, že druhý výběr má nulový rozptyl. Testovací statistika pro t-test je 2,33, tj. stejná jako v případě výpočtu dosazením do vzorce t = x µ s x Porovnáním s kritickou hodnotou pro jednostranný test t krit(1) = 1,673 zamítáme nulovou hypotézu o shodě střední hodnoty s hodnotou 4,1 na hladině významnosti 0,05. n T-test a Z-test se liší především kvůli použití různého rozptylu. U Z-testu jsme použili známý rozptyl 0,5, u t-testu jsme rozptyl nahradili výběrovým odhadem.

18 Mohli bychom zamítnout nulovou hypotézu na hladině významnosti 0,01? Vypočtená p-hodnota = 0,012 vypovídá o tom, že nulovou hypotézu bychom v případě přísnějšího testu na hladině významnosti 0,01 nemohli zamítnout. Stejné výsledky nám poskytl i z-test, pro α = 0,01 bychom H 0 nemohli zamítnout (vypočtená p-hodnota = 0,015). Použití Z-testu je podmíněno znalostí populačního rozptylu. Pokud jej neznáme, musíme empirickou funkci (rozdělení výběrového souboru) porovnat se Studentovým t-rozdělením (nemůžeme použít normální rozdělení). Pro větší počet měření je Studentovo t-rozdělení prakticky shodné s normálním rozdělením.

19 SHRNUTÍ: Rozdíl mezi Z-testem a t-testem: t-test je konzervativnější (zamítnutí nulové hypotézy je o trochu přísnější - zamítáme dřív) při použití Z-testu musíme znát populační rozptyl oba tyto testy vyžadují normalitu dat, ale pro n > 20 je možno veličinu považovat za přibližně normální, protože součet většího počtu stejně rozdělených NV je přibližně normální

20 KVANTITATIVNÍ VELIČINY - DVĚ SKUPINY POROVNÁNÍ MÍRY POLOHY DVOU VÝBĚRŮ problém porovnání střední hodnoty dvou skupin: počet pozorování v obou skupinách se může lišit síla testu záleží na menším výběru skupiny se mohou lišit parametrem polohy odhadovaným průměrem skupiny se mohou lišit mírou variability různé rozptyly skupiny se mohou lišit oběmi charakteristikami současně

21 DVOUVÝBĚROVÝ T-TEST Použijeme za předpokladu, že je rozložení obou veličin normální. Nabídka Analýzy dat v Excelu obsahuje tyto možnosti dvouvýběrových t-testů: 1. Dvouvýběrový párový t-test na střední hodnotu 2. Dvouvýběrový t-test pro stejné rozptyly 3. Dvouvýběrový t-test pro různé rozptyly Stejné možnosti nabízí Excelová funkce T.TEST s parametry: Matice1, Matice2, Chvosty, Typ (1-spárované výběry, 2-dva výběry se shodným rozptylem, 3-dva výběry s různým rozptylem) První možnost probereme později, párová data jsou dvě hodnoty naměřené na stejných subjektech obvykle s časovým odstupem.

22 DVOUVÝBĚROVÝ T-TEST PRO STEJNÉ ROZPTYLY Příklad: testujeme shodu středních hodnot naměřených hodnot cholesterolu u dětí ve škole A a B a předpokládáme, že výběry mají stejný rozptyl: Dvouvýběrový t-test s rovností rozptylů CHOL_A CHOL_B Stř. hodnota 4,302 4,334 Rozptyl 0,430 0,520 Pozorování Společný rozptyl 0,470 Hyp. rozdíl stř. hodnot 0 Počet stupňů volnosti (rozdíl) 100 t stat -0,232 P(T<=t) (1) 0,408 t krit (1) 1,660 P(T<=t) (2) 0,817 t krit (2) 1,984 Zeleně je zvýrazněna vypočtená statistika. Pro porovnání s kritickou hodnotou bereme její absolutní hodnotu - kdybychom zaměnili pořadí obou výběrů, statistika by nám vyšla kladně. Modře je probarvena kritická hodnota t-rozdělení Předpokládáme Studentovo rozdělení výběr. souboru.

23 Zajímá nás oboustranný test, protože nevíme, na které škole mají děti nižší (vyšší) hodnoty cholesterolu. Porovnáním vypočtené statistiky a kritické hodnoty pro oboustranný test: -0,232 < 1,984 testovaná statistika nepřekračuje kritickou hodnotu přijímáme nulovou hypotézu, že mezi dětmi z obou škola A a B není statisticky významný rozdíl v naměřených hodnotách cholesterolu. Na základě p-hodnoty (zobrazena červeně) se rozhodujeme stejně: 0,817 > 0,05... p-hodnota je větší než zvolená hladina významnosti testu, tj. hodnota statistiky odpovídající této p-hodnotě nedosáhla kritické hodnoty Počet stupňů volnosti vypočteme tak, že od počtu měření v obou výběrech odečteme 1 a obě hodnoty sečteme ( ).

24 F-TEST PRO POROVNÁNÍ ROZPTYLŮ Příklad: testujeme shodu středních hodnot naměřených hodnot cholesterolu u mladších a starších zaměstnanců, rozdělených do skupiny A (mladší) a skupiny B (starší). Nevíme, zda můžeme použít dvouvýběrový t-test pro stejné rozptyly. Nejprve otestujeme shodu rozptylů pomocí Fischerova F-testu, kde výsledkem 2 je podíl dvou χ rozdělení. Stanovíme hypotézu H 0 - rozptyly obou souborů se statisticky významně neliší, alternativní hypotézu H A - rozptyly obou souborů se statisticky významně liší Pokud H 0 zamítneme, použijeme t-test pro různé rozptyly

25 Dvouvýběrový F-test pro rozptyl CHOL_B CHOL_A Stř. hodnota 4,20 4,33 Rozptyl 0,52 0,34 Pozorování Rozdíl F 1,54 P(F<=f) (1) 0,11 F krit (1) 1,80 Dvouvýběrový F-test pro rozptyl CHOL_A CHOL_B Stř. hodnota 4,33 4,20 Rozptyl 0,34 0,52 Pozorování Rozdíl F 0,65 P(F<=f) (1) 0,11 F krit (1) 0,55 Vidíme, že hodnoty v 1. tabulce odpovídají hodnotám na obrázku. Ve druhé tabulce, kde je přehozeno pořadí výběrů, musíme hodnoty F-rozdělení odečítat na grafu vlevo (v nižších hodnotách). Výsledek obou F-testů je stejný - test je statisticky nevýznamný, H 0 nemůžeme zamítnout.

26 Poznámka: hodnota F-testu (testovací statistika) v druhém výpočtu (po přehození pořadí výběrů) je inverzní hodnota první statistiky, tj. 1 pro obě statistiky platí vztah: F 1 = F Na základě F-testu použijeme opět DVOUVÝBĚROVÝ T-TEST PRO STEJNÉ ROZPTYLY Výběrové soubory otestujeme T-testem také dvakrát (podruhé v opačném pořadí výběrů), abychom zjistili, v čem se bude lišit výsledná tabulka. (Uvidíme, že se bude lišit pouze ve znaménku testovací statistiky t-stat.) Porovnáním absolutní hodnoty t-stat a t-krit (kritická hodnota stanovenou na základě zvolené hladiny významnosti α) zjistíme, že test cholesterolu pro obě skupiny zaměstnanců je statisticky nevýznamný - skupiny se v hodnotách cholesterolu statisticky významně neodlišují. Použili jsme oboustranný test. 2

27 Dvouvýběrový t-test s rovností rozptylů Dvouvýběrový t-test s rovností rozptylů Zaměstnanci CHOL_A CHOL_B Zaměstnanci CHOL_B CHOL_A Stř. hodnota 4,33 4,20 Stř. hodnota 4,20 4,33 Rozptyl 0,34 0,52 Rozptyl 0,52 0,34 Pozorování Pozorování Společný rozptyl 0,46 Společný rozptyl 0,46 Hyp.rozdíl stř.hodn. 0 Hyp.rozdíl stř.hodn. 0 Rozdíl 85 Rozdíl 85 t stat 0,84 t stat -0,84 P(T<=t) (1) 0,20 P(T<=t) (1) 0,20 t krit (1) 1,66 t krit (1) 1,66 P(T<=t) (2) 0,40 P(T<=t) (2) 0,40 t krit (2) 1,99 t krit (2) 1,99

28 Příklad: testujeme shodu středních hodnot naměřených hodnot cholesterolu u dětí ve škole A a C. Dvouvýběrový F-test pro rozptyl CHOL_A CHOL_C Stř. hodnota 4,408 4,483 Rozptyl 0,333 0,676 Pozorování Rozdíl F 0,493 P(F<=f) (1) 0,021 F krit (1) 0,564 Pro výběr t-testu jsme použili nejprve F-test pro porovnání rozptylů. Na hladině významnosti 0,05 jsme zjistili, že se rozptyly obou výběrů významně liší. K testování shody středních hodnot proto musíme použít dvouvýběrový t-test s nerovností rozptylů

29 Dvouvýběrový t-test s nerovností rozptylů CHOL_A CHOL_C Stř. hodnota 4,408 4,483 Rozptyl 0,333 0,676 Pozorování Hyp. rozdíl stř. hodnot 0 Rozdíl - stupně volnosti 61 t stat -0,444 P(T<=t) (1) 0,329 t krit (1) 1,670 P(T<=t) (2) 0,658 t krit (2) 2,000 K vyhodnocení t-testu porovnáme absolutní hodnotu t-stat a t krit(2) t stat < t krit(2) proto t-test není statisticky významný a hypotézu H o o shodě středních hodnot nemůžeme zamítnout. Totéž nám potvrzuje vysoká p-hodnota P(T<=t) (2) > α Počet stupňů volnosti se pro dvouvýběrový t-test s nerovností výběrů počítá složitějším algoritmem a vliv má především rozptyl výběru (čím je větší rozptyl, tím větší váhu má počet hodnot ve výběru).

30 PÁROVÉ POROVNÁNÍ používá se v situaci, kdy chceme prokázat vliv nějakého zásahu na stejné skupině objektů. Pokud máme sledovanou veličinu měřenu dvakrát, stačí vypočítat rozdíl těchto hodnot a testovat jednovýběrovým testem, zda je tato změna = 0. Technickým řešením se párové a nepárové testy neliší, ale z hlediska interpretace jde o zcela odlišné přístupy. Párové testy použijeme v okamžiku, kdy sledovanou charakteristiku pozorujeme na stejném objektu opakovaně (nejčastěji dvakrát) a rozdíl mezi sledovanymi subjekty je větší, než rozdíl mezi pozorováními. Snažíme se zjistit efekt času - obvykle během tohoto časového intervalu je provedena nějaká intervence a ptáme se tedy na její efekt.

31 Např. na skupině školních dětí byla měřena hladina HDL cholesterolu v krvi. Pak došlo ve školní jídelně k změně skladby stravy a po měsíci byla stejným dětem měřena opět hladina HDL cholesterolu. Ptáme se, zda změna jídelníčku snížila hladinu HDL cholesterolu v krvi jednotlivých dětí. Hodnota, o kterou je možno snížit hladinu HDL cholesterolu změnou části dětské stravy zřejmě nebude velká, naopak rozdíly hladiny HDL cholesterolu mezi jednotlivými dětmi mohou být mnohem větší. Pokud bychom porovnali obě skupiny dvouvýběrovým testem, zůstane efekt našeho zásahu skryt variabilitou mezi jedinci a dvouvýběrový test neprokáže významné rozdíly. Dopustili bychom se chyby tím, že bychom neuvažovali závislost hodnot na měřené osobě. Musíme tedy vyloučit vliv variability mezi osobami. Budeme pracovat s rozdíly obou měření a porovnávat změnu ke které došlo za sledované období. To je právě princip párového t-testu, který je zaměřený na odhalení změn u vzájemně spárovaných hodnot - počty měření si musí navzájem odpovídat.

32 Dvouvýběrový párový t-test na střední hodnotu HDL1 HDL2 Stř. hodnota 1,265 1,372 Rozptyl 0,086 0,146 Pozorování Pears. korelace 0,702 Hyp. rozdíl stř. hodnot 0 Rozdíl - počet st. volnosti 38 t stat -2,452 P(T<=t) (1) 0,009 t krit (1) 1,686 P(T<=t) (2) 0,019 t krit (2) 2,024 Stanovíme nulovou hypotézu H 0 : hodnoty HDL-chlesterolu se po třech měsích změny režimu u dětí nezměnily. Počet pozorování je stejný - jednalo se o 39 dětí. Počet stupňů volnosti je n-1, kde n je počet dětí v jednom výběru. Hodnoty 1. a 2. měření jsou spárované. Výsledek testu: Absolutní hodnota t-statistiky je větší než kritická hodnota (2,452 > 1,686), p-hodnota je signifikantně nízká (0,009), proto H 0, že zamítáme na hladině spolehlivosti 95%.

33 Na základě p-hodnoty bychom nulovou hypotézu mohli zamítnout i na hladině významnosti 99% (P(T<=t) (1) < 0,01). Použili jsme jednostranný test, protože jsme předpokládali, že hodnota HDL cholesterolu se pomocí režimových opatření zlepší (bude vyšší - jedná se o tzv. hodný cholesterol ) Další příklady pro řešení PÁROVÝM T-TESTEM jsou: výkon sportovců po určité době tréninků zlepšení výsledků školních dětí v některém předmětu zlepšení zdravotních parametrů po léčbě úbytek hmotnosti po dietních opatřeních zvýšení hmotnosti po úspěšné léčbě anorexie Vždy se musí jednat o spárované hodnoty stejných jedinců.

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

Cvičení ze statistiky - 9. Filip Děchtěrenko

Cvičení ze statistiky - 9. Filip Děchtěrenko Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1 Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

Testování hypotéz. 4. přednáška 6. 3. 2010

Testování hypotéz. 4. přednáška 6. 3. 2010 Testování hypotéz 4. přednáška 6. 3. 2010 Základní pojmy Statistická hypotéza Je tvrzení o vlastnostech základního souboru, o jehož pravdivosti se chceme přesvědčit. Předem nevíme, zda je pravdivé nebo

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

diskriminaci žen letní semestr 2012 1 = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme

diskriminaci žen letní semestr 2012 1 = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme motivační příklad Párový Párový Příklad (Platová diskriminace) firma provedla šetření s cílem zjistit, zda dochází k platové diskriminaci žen Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky

Více

Statistické metody uţívané při ověřování platnosti hypotéz

Statistické metody uţívané při ověřování platnosti hypotéz Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy

Více

Statistické testování hypotéz II

Statistické testování hypotéz II PSY117/454 Statistická analýza dat v psychologii Přednáška 9 Statistické testování hypotéz II Přehled testů, rozdíly průměrů, velikost účinku, síla testu Základní výzkumné otázky/hypotézy 1. Stanovení

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testování hypotéz na základě jednoho a dvou výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/004. Testování hypotéz Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru,

Více

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg.

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Inferenční statistika - úvod z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Pravděpodobnost postupy induktivní statistiky vycházejí z teorie pravděpodobnosti pravděpodobnost, že

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Testování hypotéz Biolog Statistik: Matematik: Informatik:

Testování hypotéz Biolog Statistik: Matematik: Informatik: Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

IV. CVIENÍ ZE STATISTIKY

IV. CVIENÍ ZE STATISTIKY IV. CVIENÍ ZE STATISTIKY Vážení studenti, úkolem dnešního cviení je nauit se analyzovat data kvantitativní povahy. K tomuto budeme opt používat program Excel 2007 MS Office. 1. Jak mžeme analyzovat kvantitativní

Více

Protokol č. 1. Tloušťková struktura. Zadání:

Protokol č. 1. Tloušťková struktura. Zadání: Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále

Více

Ilustrační příklad odhadu LRM v SW Gretl

Ilustrační příklad odhadu LRM v SW Gretl Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná

Více

STATISTICA Téma 7. Testy na základě více než 2 výběrů

STATISTICA Téma 7. Testy na základě více než 2 výběrů STATISTICA Téma 7. Testy na základě více než 2 výběrů 1) Test na homoskedasticitu Nalezneme jej v několika submenu. Omezme se na submenu Základní statistiky a tabulky základního menu Statistika. V něm

Více

Cvičení 9: Neparametrické úlohy o mediánech

Cvičení 9: Neparametrické úlohy o mediánech Cvičení 9: Neparametrické úlohy o mediánech Úkol 1.: Párový znaménkový test a párový Wilcoxonův test Při zjišťování kvality jedné složky půdy se používají dvě metody označené A a B. Výsledky: Vzorek 1

Více

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D. Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní

Více

Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy.

Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy. Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy. Z pastí na daném území byla odhadnuta abundance několika druhů: myšice lesní 250, myšice křovinná 200, hraboš polní 150,

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu.

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu. Analýza rozptylu Analýza rozptylu umožňuje ověřit významnost rozdílu mezi výběrovými průměry většího počtu náhodných výběrů, umožňuje posoudit vliv různých faktorů. Podle počtu analyzovaných faktorů rozlišujeme

Více

LINEÁRNÍ REGRESE. Lineární regresní model

LINEÁRNÍ REGRESE. Lineární regresní model LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

Testy pro porovnání vlastností dvou skupin

Testy pro porovnání vlastností dvou skupin Testy pro porovnání vlastností dvou skupin Petr Pošík Části dokumentu jsou převzaty (i doslovně) z Mirko Navara: Pravděpodobnost a matematická statistika, https://cw.felk.cvut.cz/lib/exe/fetch.php/courses/a6m33ssl/pms_print.pdf

Více

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Seminární práce 1 Brno, 2002 Ing. Pavel

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

Biostatistika a matematické metody epidemiologie - stručné studijní texty

Biostatistika a matematické metody epidemiologie - stručné studijní texty Biostatistika a matematické metody epidemiologie - stručné studijní texty Bohumír Procházka, SZÚ Praha 1 Co můžeme sledovat Pro charakteristiku nebo vlastnost, kterou chceme sledovat zvolíme termín jev.

Více

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel: NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule

Více

MSI LS 2006/2007 Ing. Pavla Hošková, Ph.D., 2. test

MSI LS 2006/2007 Ing. Pavla Hošková, Ph.D., 2. test c 2007 Kompost 1 MSI LS 2006/2007 Ing. Pavla Hošková, Ph.D., 2. test Jestliže při testování výsledek (hodnota testového kritéria) padne do kritického oboru: a) musíme nově formulovat nulovou hypotézu,

Více

Testy dobré shody TESTY DOBRÉ SHODY (angl. goodness-of-fit tests), : veličiny X, Y jsou nezávislé nij eij

Testy dobré shody TESTY DOBRÉ SHODY (angl. goodness-of-fit tests),   : veličiny X, Y jsou nezávislé nij eij Testy dobré shody Máme dvě veličiny a předpokládáme, že jsou nezávislé (platí nulová hypotéza nezávislosti). Často chceme naopak prokázat jejich závislost. K tomu slouží: TESTY DOBRÉ SHODY (angl. goodness-of-fit

Více

12. TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ

12. TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ 1. TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ Průvodce studiem Navážeme na předchozí kapitolu 11 a vysvětlíme některé statistické testy. Předpokládané znalosti Pojmy z předchozích kapitol. Cíle Cílem této kapitoly

Více

T E O R I E C H Y B A V Y R O V N Á V A C Í P O

T E O R I E C H Y B A V Y R O V N Á V A C Í P O ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu T E O R I E C H Y B A V Y R O V N Á V A C Í P O Č E T 2 č. úlohy 6 název úlohy T

Více

Poznámky k předmětu Aplikovaná statistika, 9.téma

Poznámky k předmětu Aplikovaná statistika, 9.téma Poznámky k předmětu Aplikovaná statistika, 9téma Princip testování hypotéz, jednovýběrové testy V minulé hodině jsme si ukázali, jak sestavit intervalové odhady pro některé číselné charakteristiky normálního

Více

PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA

PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ HELENA KOUTKOVÁ PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA MODUL GA03 M4 ZÁKLADY TESTOVÁNÍ HYPOTÉZ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU

Více

Modul Analýza síly testu Váš pomocník při analýze dat.

Modul Analýza síly testu Váš pomocník při analýze dat. 6..0 Modul Analýza síly testu Váš pomocník při analýze dat. Power Analysis and Interval Estimation Analýza síly testu Odhad velikosti vzorku Pokročilé techniky pro odhad intervalu spolehlivosti Rozdělení

Více

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;

Více

Biostatistika a matematické metody epidemiologie- stručné studijní texty

Biostatistika a matematické metody epidemiologie- stručné studijní texty Biostatistika a matematické metody epidemiologie- stručné studijní texty Bohumír Procházka, SZÚ Praha 1 Co můžeme sledovat Pro charakteristiku nebo vlastnost, kterou chceme sledovat zvolíme termín jev.

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D. Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Test χ 2 v kontingenční tabulce typu 2 2 Jde vlastně o speciální případ χ 2 testu pro čtyřpolní tabulku.

Více

Mannův-Whitneyův(Wilcoxonův) test pořadová obdoba dvouvýběrového t-testu. Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008

Mannův-Whitneyův(Wilcoxonův) test pořadová obdoba dvouvýběrového t-testu. Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008 Statistika (MD30P03Z, MD30P03U) ak. rok 007/008 Karel Zvára karel.zvara@mff.cuni.cz http://www.karlin.mff.cuni.cz/ zvara (naposledy upraveno. listopadu 007) 1(4) Mann-Whitney párový Wilcoxon párový znaménkový

Více

Analýza dat z dotazníkových šetření

Analýza dat z dotazníkových šetření Analýza dat z dotazníkových šetření Cvičení 6. Rozsah výběru Př. Určete minimální rozsah výběru pro proměnnou věk v souboru dovolena, jestliže 95% interval spolehlivost průměru proměnné nemá být širší

Více

KVANTITATIVNÍ METODY V PEDAGOGICKÉM VÝZKUMU

KVANTITATIVNÍ METODY V PEDAGOGICKÉM VÝZKUMU KVANTITATIVNÍ METODY V PEDAGOGICKÉM VÝZKUMU RADEK KRPEC CZ.1.07/2.2.00/29.0006 OSTRAVA, ČERVEN 2013 Studijní opora je jedním z výstupu projektu ESF OP VK. Číslo Prioritní osy: 7.2 Oblast podpory: 7.2.2

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

STUDIJNÍ OPORY S PŘEVAŽUJÍCÍMI DISTANČNÍMI PRVKY PRO VÝUKU STATISTIKY PRVNÍ ZKUŠENOSTI. Pavel Praks, Zdeněk Boháč

STUDIJNÍ OPORY S PŘEVAŽUJÍCÍMI DISTANČNÍMI PRVKY PRO VÝUKU STATISTIKY PRVNÍ ZKUŠENOSTI. Pavel Praks, Zdeněk Boháč STUDIJNÍ OPORY S PŘEVAŽUJÍCÍMI DISTANČNÍMI PRVKY PRO VÝUKU STATISTIKY PRVNÍ ZKUŠENOSTI Pavel Praks, Zdeněk Boháč Katedra matematiky a deskriptivní geometrie, VŠB - Technická univerzita Ostrava 17. listopadu

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 10. Mgr. David Fiedor 27. dubna 2015 Nelineární závislost - korelační poměr užití v případě, kdy regresní čára není přímka, ale je vyjádřena složitější matematickou funkcí

Více

a) Základní informace o souboru Statistika: Základní statistika a tabulky: Popisné statistiky: Detaily

a) Základní informace o souboru Statistika: Základní statistika a tabulky: Popisné statistiky: Detaily Testování hypotéz Testování hypotéz jsou klasické statistické úsudky založené na nějakém apriorním předpokladu. Vyslovíme-li předpoklad o hodnotě neznámého parametru nebo o zákonu rozdělení sledované náhodné

Více

1 Popisná statistika. 1.1 Základní pojmy. 1.2 Třídění dat. Četnosti. Grafické znázornění. Rozdělení znaků. Statistika I

1 Popisná statistika. 1.1 Základní pojmy. 1.2 Třídění dat. Četnosti. Grafické znázornění. Rozdělení znaků. Statistika I Statistika I 1 Popisná statistika 1.1 Základní pojmy Statistický soubor konečná množina prvků, které jsou nositeli určitého hromadného jevu Rozsah s.s. počet prvků množiny Statistické jednotky prvky s.s.

Více

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Navrhování experimentů a jejich analýza. Eva Jarošová

Navrhování experimentů a jejich analýza. Eva Jarošová Navrhování experimentů a jejich analýza Eva Jarošová Obsah Základní techniky Vyhodnocení výsledků Experimenty s jedním zkoumaným faktorem Faktoriální experimenty úplné 2 N dílčí 2 N-p Experimenty pro studium

Více

Popisná statistika kvantitativní veličiny

Popisná statistika kvantitativní veličiny StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali

Více

Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech.

Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech. Statistics ToolBox Nadstavba pro statistické výpočty Statistics ToolBox obsahuje více než 200 m-souborů které podporují výpočty v následujících oblastech. [manual ST] 1. PROBABILITY DISTRIBUTIONS Statistics

Více

Pravděpodobnost, náhoda, kostky

Pravděpodobnost, náhoda, kostky Pravděpodobnost, náhoda, kostky Radek Pelánek IV122, jaro 2015 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností krátké

Více

Testování hypotéz a jeho metodika 2 Jasnovidec?... 4 Pojmy... 6 Postup... 7 Chyby... 8

Testování hypotéz a jeho metodika 2 Jasnovidec?... 4 Pojmy... 6 Postup... 7 Chyby... 8 Testování hypotéz Petr Pošík Části dokumentu jsou převzaty (i doslovně) z Mirko Navara: Pravděpodobnost a matematická statistika, https://cw.felk.cvut.cz/lib/exe/fetch.php/courses/a6m33ssl/pms_print.pdf

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

VYUŽITÍ SIMULACE PŘI MODELOVÁNÍ PROVOZU NA SVÁŽNÉM PAHRBKU SEŘAĎOVACÍ STANICE

VYUŽITÍ SIMULACE PŘI MODELOVÁNÍ PROVOZU NA SVÁŽNÉM PAHRBKU SEŘAĎOVACÍ STANICE VYUŽITÍ SIMULACE PŘI MODELOVÁNÍ PROVOZU NA SVÁŽNÉM PAHRBKU SEŘAĎOVACÍ STANICE 1 Úvod Michal Dorda, Dušan Teichmann VŠB - TU Ostrava, Fakulta strojní, Institut dopravy Seřaďovací stanice jsou železniční

Více

Induktivní statistika. z-skóry pravděpodobnost

Induktivní statistika. z-skóry pravděpodobnost Induktivní statistika z-skóry pravděpodobnost normální rozdělení Z-skóry umožňují najít a popsat pozici každé hodnoty v rámci rozdělení hodnot a také srovnávání hodnot pocházejících z měření na rozdílných

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové funkce, ze kterého vycházíme,

z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové funkce, ze kterého vycházíme, Úloha 1: V naší studii se zabýváme poptávkovou funkcí životního pojištění, vycházíme z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové

Více

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6 1. Příklad Byly sledovány rodinné stavy nevěst a ženichů při uzavírání sňatků a byla vytvořena následující tabulka četností. Stav Svobodný Rozvedený Vdovec Svobodná 37 10 6 Rozvedená 8 12 8 Vdova 5 8 6

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Návod na statistický software PSPP část 2. Kontingenční tabulky

Návod na statistický software PSPP část 2. Kontingenční tabulky Návod na statistický software PSPP část 2. Kontingenční tabulky Jiří Šafr FHS UK poslední revize 31. srpna 2010 Logika kontingenčních tabulek... 2 Postup vytváření kontingenčních tabulek v PSPP (SPSS)....

Více

3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT

3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT PROKAZOVÁNÍ SHODY VÝROBKŮ část 3, díl 8, kapitola 4, str. 1 3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT Vyjadřování standardní kombinované nejistoty výsledku zkoušky Výsledek zkoušky se vyjadřuje v

Více

Semestrální práce z předmětu Matematika 6F

Semestrální práce z předmětu Matematika 6F vypracoval: Jaroslav Nušl dne: 17.6.24 email: nusl@cvut.org Semestrální práce z předmětu Matematika 6F Zádání: Cílem semestrální práce z matematiky 6F bylo zkoumání hudebního signálu. Pluginem ve Winampu

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých

Více

StatSoft Jak poznat vliv faktorů vizuálně

StatSoft Jak poznat vliv faktorů vizuálně StatSoft Jak poznat vliv faktorů vizuálně V tomto článku bychom se rádi věnovali otázce, jak poznat již z grafického náhledu vztahy a závislosti v analýze rozptylu. Pomocí následujících grafických zobrazení

Více

V PSYCHOLOGII. 1. Úvod

V PSYCHOLOGII. 1. Úvod Kvaternion 1/014, 3 15 3 VYUŽITÍ VÍCEROZMĚRNÉ ANALÝZY ROZPTYLU V PSYCHOLOGII MARIE BUDÍKOVÁ Abstrakt. V příspěvku se zabýváme problémem, jak odhalit rozdíly v úrovni vícerozměrné normálně rozložené proměnné,

Více

Tvar dat a nástroj přeskupování

Tvar dat a nástroj přeskupování StatSoft Tvar dat a nástroj přeskupování Chtěli jste někdy použít data v jistém tvaru a STATISTICA Vám to nedovolila? Jistě se najde někdo, kdo se v této situaci již ocitl. Není ale potřeba propadat panice,

Více

VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA

VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA Katedra matematiky STATISTIKA V SPSS Jana Borůvková, Petra Horáčková, Miroslav Hanáček 2014 Jana Borůvková, Petra Horáčková, Miroslav Hanáček STATISTIKA V SPSS 1. vydání

Více

Kurz SPSS: Jednoduchá analýza dat. Jiří Šafr

Kurz SPSS: Jednoduchá analýza dat. Jiří Šafr Kurz SPSS: Jednoduchá analýza dat Jiří Šafr vytvořeno 29. 6. 2009 Dva základní typy statistiky 1. Popisná statistika: metody pro zjišťování a sumarizaci informací grfy, tabulky, popisné chrakteristiky

Více

Kontingenční tabulky, korelační koeficienty

Kontingenční tabulky, korelační koeficienty Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Mějme kategoriální proměnné X a Y. Vytvoříme tzv. kontingenční tabulku. Budeme tedy testovat hypotézu

Více

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost

Více