Spektrální analyzátory a analyzátory signálu

Rozměr: px
Začít zobrazení ze stránky:

Download "Spektrální analyzátory a analyzátory signálu"

Transkript

1 Spektrální analyzátory a analyzátory signálu Osciloskopy a zapisovače popsané v předchozí kapitole zobrazují průběh signálu v závislosti na čase x(t), takže umožňují analýzu v tzv. časové oblasti (nebo časové doméně). V tomto případě je horizontální osou čas. Existuje ještě další možnost analýzy signálu. Signál může být charakterizován jako funkce frekvence; takovému vyjádření signálu se říká frekvenční spektrum a toto spektrum umožňuje tzv. Analýzu ve frekvenční oblasti (frekvenční doménč). Vzájemnou souvislost signálu a jeho spektra vyjadřuje tzv. Fourierova transformace (vztah (4). V případě periodických signálů x(t) je možno frekvenční spektrum A(kf), kde f=1/ je frekvence základní harmonické složky a k je celé číslo, nalézt pomocí rozvoje funkce do Fourierovy řady. Vyjádříme-li tuto řadu v komplexním tvaru, platí pro A(kf) = Ck: x t = C k e jk2 π ft 1 C k = 1 x t e j2 π kft dt 2 0 Často se používá Fourierova řada s reálnými koeficienty, pro kterou platí x(t )= k =0 a k cos(k ω t)+b k sin(k ωt) k= (3a) x t = a k cos k t φ k k=0 3b a k = 2 0 x t cos k t dt, b k = 2 0 x t sin k t dt 3c A k = a k 2 b k 2 3d Výsledné spektrum se nazývá čárové spektrum, protože je tvořeno čárami o délce rovné amplitudám (případné efektivním hodnotám) jednotlivých harmonických složek, vzdálenými od sebe o hodnotu f rovnou frekvenci signálu (f= 1/). Je-li signál neperiodický, používá se pro nalezení jeho frekvenčního spektra Fourierova transformace, definovaná vztahem X f = x t e j2 π ft dt 4 Spektrum X(f) je zde spojitá funkce frekvence a v obecném případě jde o komplexní funkci reálné proměnné (frekvence). Pokud máme k dispozici posloupnost vzorků měřeného signálu, získaných ekvidistantním vzorkováním se vzorkovacím intervalem S, použije se pro výpočet spektra tzv. diskrétní Fourierova transformace (DF). Jejím výsledkem je posloupnost hodnot diskrétního frekvenčního spektra, vzdálených od sebe o hodnotu Δf=1/(NS). Přitom N je počet bodů DF, pro které je proveden výpočet, a N.S je celková doba měření (doba vzorkování signálu). I pro nejdůležitější případ reálného signálu (kdy x(t) resp. x(ns) jsou reálná čísla) jsou hodnoty Ck, X(f) a X(kΔf) v obecném případě komplexní čísla. Vyjádříme-li je v polárním tvaru, můžeme znázornit dva druhy spekter: tzv. amplitudové spektrum X(f), X(kAf) nebo Ck a trs. fázové spektrum φ(f) nebo φ(kδf). Všechny spektrální analyzátory měří amplitudové spektrum. Některé (ty, které jsou založeny na DF) měří i fázové spektrum. Spektrální analyzátory mohou být rozděleny do dvou velkých skupin: a) spektrální analyzátory využívající filtrace signálu (analogové nebo číslicové); b) spektrální analyzátory využívající výpočtu DF (tzv. FF analyzátory, pouze číslicové). Podle druhu zpracovávaného signálu a použitého způsobu zpracování signálu mohou být spektrální analyzátory rozděleny na analogové spektrální analyzátory a číslicové spektrální analyzátory. Základní charakteristiky (parametry) spektrálních analyzátorů jsou: - frekvenční rozsah, - typ frekvenční stupnice (lineární nebo logaritmická), - dynamický rozsah. Frekvenční rozsah závisí na typu analyzátoru a v současné době je přibližně 0-100kHz u FF analyzátorů a několik khz až několik GHz u analogových heterodynních analyzátorů. Uvedené dva typy jsou dnes nejdůležitějšími druhy frekvenčních analyzátorů. Frekvenční stupnice FF analyzátorů je lineární, analyzátory využívající frekvenční filtrace mají frekvenční stupnici většinou logaritmickou. Dynamický rozsah je určen šumovým prahem analyzátoru Umin (amplitudovou úrovní nakreslenou na stínítku analyzátoru bez přítomnosti měřeného signálu a odpovídající pouze šumu) a úrovní maximálního měřitelného signálu Umax Hodnota Umax je určena velikostí signálu, který nezpůsobí generování rušivých signálů (angl. spurious signals) vyvolaných nelinearitami obvodu. Dynamický rozsah je dán poměrem 1 / 5

2 Umax/Umin a vyjadřuje se obvykle v db: DR=20log U max db 5 U min Dynamický rozsah souvisí s nastaveným frekvenčním rozlišením analyzátoru; čím horší je frekvenční selektivita, tím vyšší je šumový práh. Dynamické rozsahy dnešních analyzátorů bývají 60 db až 100 db. U FF analyzátorů lze zvýšit dynamický rozsah snížením šumového prahu pomocí průměrování signálu (výpočtem průměru z nastaveného počtu opakovaných měření). Spektrální analyzátory se vyrábějí jako samostatné přístroje a jako zásuvné karty s příslušným programovým vybavením pro počítače PC (FF analyzátory). Donedávna se vyráběly i jako zásuvné jednotky do analogových osciloskopů modulární konstrukce. 1. Analogové spektrální analyzátory Analogové spektrální analyzátory nevyužívají vztahů (1) až (4), ale získávají frekvenční spektrum signálu pomocí (analogových) filtrů. Měří pouze amplitudové spektrum, nikoliv spektrum fázové. Používá se buď jeden nebo několik filtrů typu pásmová propust. (Pásmová propust je frekvenčně selektivní filtr, který propouští na výstup pouze ty frekvenční složky signálu, které leží v tzv. propustném pásmu filtru. Ostatní složky jsou potlačeny, čili nejsou obsaženy ve výstupním signálu.) Analogové spektrální analyzátory mají tzv. stálou poměrnou šířku pásma, čili šířka pásmové propusti je například volitelná z řady 1 %, 3 %, 10 %, 33 % a 100 % střední frekvence filtru. Frekvenční stupnice je logaritmická a při stálé poměrné šířce pásma analyzátoru je rozlišovací schopnost analyzátoru na logaritmické stupnici frekvence konstantní. Nejjednodušším analogovým spektrálním analyzátorem je analyzátor s přepínanými filtry (angl. steppedfilter analyzer), obr. 1: Obr.1: Blok. schéma analyzátoru s přepínanými filtry (IA-vstupní zesilovač, PPk-k-tá pásmová propust, D-demodulátor, OA-výstupní zesilovač) Propustná pásma sousedních filtrů mají totožné mezní frekvence, aby bylo analyzováno celé pásmo bez přerušení. Přepínáním přepínače P volíme (ručně) jednu z N měřitelných frekvenčních složek spektra. Velmi podobný princip je využit v selektivním voltmetru, který je použitelný také jako spektrální analyzátor. en místo soustavy pevně naladěných pásmových propustí využívá jeden přeladitelný filtr. Jde o pásmovou propust se stálou poměrnou frekvenční selektivitou, charakterizovanou číselně tzv. oktávovou selektivitou. (Oktávová selektivita 40 db znamená, že přenos filtru na frekvenci dvojnásobné a poloviční proti nastavené je zmenšen o 40 db, tedy stokrát.) Při měření frekvenční složky na frekvenci f0 se nastaví střední frekvence filtru na f0 a změří se střední hodnota usměrněného výstupního napětí. Obr.2: Frekvenční analyzátor s přeladitelným filtrem: a) základní blokové schéma b) realizace analyzátoru s využitím heterodynního principu Stejný princip je použit i ve frekvenčním analyzátoru s přeladitelným filtrem a je znázorněn v obr.2a. V tomto spektrálním analyzátoru je signál zesílen zesilovačem IA. Střední frekvence pásmové propusti LPPf i je plynule přelaďována pomocí elektrického signálu. Výstupní napětí analyzátoru za demodulátorem D a výstupním zesilovačem OA se přivádí k vertikálním destičkám obrazovky, zatímco přelaďující pilovité 2 / 5

3 napětí se přivádí k horizontálním destičkám obrazovky. Měřené frekvenční spektrum je opakovaně kresleno na stínítku obrazovky. Je-li takový analyzátor vybaven navíc sledovacím generátorem (generátorem harmonického signálu konstantní amplitudy s frekvencí přelaďovanou současně s přelaďováním filtru, angl. tracking oscillator), je možno připojením tohoto generátoru na vstup určitého dvojbranu a výstupního signálu tohoto dvojbranu na vstup analyzátoru měřit frekvenční charakteristiky elektrických obvodů. Praktickou realizací tohoto analyzátoru je heterodynní spektrální analyzátor v obr.2b. V něm se používá pásmová propust MFF naladěná na pevnou frekvenci fi (zvanou mezifrekvence) a analyzované frekvenční pásmo signálu je posunuto přes tuto propust s využitím směšovače S (angl. mixer) a napětím řízeného oscilátoru NŘO. NŘO je napájen z generátoru pilového napětí GP. Jako směšovač je možno využít např. analogovou násobičku. Násobíme li dva harmonické (sinusové nebo kosinusové) signály, jeden s frekvencí fx a druhý s frekvencí f0, dostaneme součet dvou harmonických signálů s frekvencemi fx ± f0 a f0 - fx. Přes MFF se dostane pouze složka s frekvencí rovnou propustné frekvenci mezifrekvenčního filtru a amplituda (nebo efektivní hodnota) této složky je detekována a zobrazena na stínítku obrazovky. Je-li frekvence napěťově řízeného oscilátoru X lineárně zvyšována, frekvence fx (na které se měří složka spektra) se také lineárně zvyšuje. Frekvenční rozlišovací schopnost analyzátoru (šířka propustného pásma pásmové propusti) se nastavuje přepínáním šířky pásma mezifrekvenčního filtru. Heterodynní analyzátory jsou dnes nejrozšířenějším typem spektrálních analyzátorů pro frekvence nad 100 khz. Doposud diskutované spektrální analyzátory byly tzv. sekvenční (sériové) analyzátory. y neměří celé spektrum najednou, ale měří postupně jeho jednotlivé složky. Proto je lze používat pouze pro stacionární signály. (Stacionární signály jsou takové, jejichž statistické parametry, např. střední a efektivní hodnota nebo frekvenční spektrum, se nemění s časem.) Pro měření spekter nestacionárních signálů (např. signálu řeči na výstupu z mikrofonu) je nutno používat spektrální analyzátory pracující v reálném čase. V případě analogových analyzátorů jde o tzv. paralelní analyzátory (obr. 3): Obr.3: Blok. schéma paralelního analogového spektrálního analyzátoru (IA-vstupní zesilovač, PPk-k-tá pásmová propust, Dk-k-tý demodulátor) yto analyzátory pracují obdobně jako analyzátor s přepínanými filtry (obr.1), ale neobsahují přepínač a všechny filtry pracují současně. Každý z filtrů analyzuje jednu část analyzovaného frekvenčního pásma. Spektrum je získáno mnohem rychleji než pomocí sekvenčního analyzátoru. ento typ analyzátoru je ale drahý. Využívá se pouze pro akustické pásmo, pro tzv. třetinooktávovou a oktávovou analýzu, kde se vystačí se zhruba třiceti filtry. Dnes je tento typ analyzátoru prakticky nahrazen analyzátory s číslicovými filtry. 2. Číslicové spektrální analyzátory Číslicové spektrální analyzátory využívají metod číslicového zpracování digitalizovaného signálu. Jejich blokové schéma odpovídá v podstatě měřícím přístrojům využívajících číslicového zpracování signálu. Analogový vstupní signál je zesílen nebo zeslaben v bloku VZ tak, aby dosáhl požadované úrovně, a frekvenční složky nad polovinou vzorkovací frekvence f S jsou odstraněny antialiasingovým filtrem AAF - analogovou dolnofrekvenční propustí. Filtrovaný signál je poté vzorkován ve vzorkovači V se vzorkovací periodou S = l/f S a převeden na posloupnost číselných hodnot pomocí analogově-číslicového převodníku AČP. Následující číslicové zpracování závisí na tom, o který typ číslicového spektrálního analyzátoru se jedná. Existují dvě skupiny těchto analyzátorů - spektrální analyzátory využívající číslicové filtry a FF spektrální analyzátory Spektrální analyzátory používající číslicové filtry Blokové schéma číslicového analyzátoru využívajícího číslicové filtry je na obr.4. V tomto obrázku je: VZ-vstupní zesilovač, AAF-antialiasingový filtr, V-vzorkovač s pamětí, AČP-analogově-číslicový převodník, ČF-číslicové filtry, ČP-číslicová paměť, ZJ-zobraz. jednotka, ŘJ-řídicí jednotka a KO-krystalový oscilátor. V analyzátoru použité číslicové filtry ČF sestávají z pásmové propusti a dolnofrekvenční propusti; koeficienty těchto filtrů se mění během procesu číslicové filtrace. Proto může jeden (číslicový) hardwarový filtr sloužit jako několik filtrů, jestliže jeho výstupní signál je opakovaně uchováván v paměti a opětně posílán na vstup filtru. Změny vlastností filtru lze dosáhnout změnou číselných hodnot koeficientů a změnou vzorkovací frekvence. 3 / 5

4 Obr.4: Blokové schéma číslicového analyzátoru používajícího číslicové filtry: Vstupní signál je po zesílení a odfiltrování složek nad polovinou vzorkovací frekvence převeden na číselnou posloupnost. ato posloupnost se filtruje blokem číslicového filtru sestávajícím z číslicové pásmové propusti, Číslicové dolní propusti, vyrovnávací paměti a dvou multiplexerů na vstupech obou filtrů. Frekvence je znázorněna v logaritmickém měřítku. U vyráběných analyzátorů tohoto typu je oktávová pásmová propust včtsinou dále rozdělena na tři třetinooktávové filtry (pásmové propusti), realizované jediným obvodem s postupně měněnými koeficienty. Výstupní zobrazení analyzátoru je tvořeno svislými sloupci (kterých je zhruba 40) odpovídajícími jednotlivým spektrálním složkám (zobrazují se většinou efektivní hodnoty jednotlivých složek). yto spektrální analyzátory se většinou používají pro akustické pásmo FF spektrální analyzátory yto analyzátory počítají diskrétní Fourierovu transformaci (DF) posloupnosti vstupních vzorků. Přímý výpočet podle základního vztahu N 1 X k f = 1 S x n N S exp j2 n k n=0 N ; k=0,1,..., N 1 (viz ČA převodníky, vztah č.12) trvá pro větší počty vzorků (např. 1024) příliš dlouho (počet potřebných matematických operací je pro N-bodovou transformaci úměrný N 2 ). Od 70.let se DF počítá pomocí speciálních algoritmů, které umožňují podstatně zmenšit počet potřebných operací a tím zkrátit výpočet. ěchto algoritmů je celá řada a souhrnně se nazývají rychlá Fourierova transformace. Označují se FF (z angl. Fast Fourier ransform). Výpočet FF je možno provést pomocí mikroprocesorů používaných v běžných počítačích typu PC, ale protože FF analyzátory pracují většinou v tzv. reálném čase (změny ve vstupním signálu se prakticky okamžitě projeví v průběhu spektra), potřebují výpočet provést velmi rychle. K tomu se dnes nejčastěji používají speciální mikropočítače (tzv. číslicové signálové procesory, DSP obr.5), u kterých jedna instrukce trvá např. 50 ns a všechny instrukce (včetně násobení) trvají stejně dlouho. Číslicový signálový procesor může být umístěn na zvláštní zásuvné kartě do PC. Kromě toho existují i speciální obvody určené pouze pro rychlý výpočet FF. Výhodou FF analyzátorů je, že kromě amplitudového spektra poskytují i fázové spektrum signálu. Blokové schéma uvádí obr.5. Význam shodně označených bloků v tomto obrázku je stejný jako v obr.4, DSP je číslicový signálový procesor, ČAP jsou číslicově-analogové převodníky. Obr.5: Blokové schéma FF spektrálního analyzátoru Používá-li se vzorkovací frekvence f s, je změřeno spektrum pro frekvence 0-f s /2 a zobrazeno je buď celé toto pásmo, nebo jeho větší část (tzv. frekvenční pásmo analyzátoru). Frekvenční rozlišení analyzátoru je konstantní podél celé osy frekvencí (stupnice frekvencí je u FF analyzátorů lineární). Frekvenční rozlišení (vzdálenost mezi sousedními čarami frekvenčního spektra) je Δf=1/(N s ), kde N je počet bodů, na které je aplikována FF, a s je vzorkovací interval ( s = l/f s ). FF spektrální analyzátory používají kromě základního režimu také režim tzv. frekvenční lupy (angl. zoom), umožňující roztáhnout zvolený detail spektra přes celé stínítko. Zabudovaný mikropočítač umožňuje na displeji zobrazit nejen průběh spektra, ale používat kurzory (ukazovátka) v obou osách s číselnou hodnotou vyjadřující polohu ukazovátka v souřadnicích U-f a řadu dalších režimů usnadňujících měření (např. přeskakování mezi sousedními vrcholy spektra). FF spektrální analyzátory dnes ovládly spektrální analýzu v pásmu 0 až 100 khz. Používají většinou 4 / 5

5 16-bitové AČP, vzorkovací frekvence bývá většinou okolo 250 khz. Dynamický rozsah těchto analyzátorů závisí na velikosti signálu a bývá 60 až 90 db. 3. Analyzátory signálu FF analyzátory mají často dva identické vstupní kanály. V takovém případě neměří pouze frekvenční spektrum, ale měří a zobrazují i další speciální funkce (např. autokorelační funkci, vzájemnou korelační funkci, výkonovou spektrální hustotu signálu a koherenční funkci. Umožňují také zobrazit původní časový průběh signálu. yto přístroje se nazývají analyzátory signálu. Počítají nejen přímou DF, ale také tzv. inverzní DF a mohou tak přecházet z časové oblasti do frekvenční oblasti i zpět. Naměřená data je často možno uložit na disketu a dodatečně analyzovat na počítači. Zapojení analyzátoru do měřícího systému a přenos dat do počítače umožňuje také standardizované přístrojové rozhraní, kterým jsou tyto přístroje vybaveny. 5 / 5

Spektrální analyzátory

Spektrální analyzátory Radioelektronická měření (MREM, LREM) Spektrální analyzátory 6. přednáška Jiří Dřínovský Ústav radioelektroniky FEKT VUT v Brně Úvod Spektrální analyzátory se používají pro zobrazení nejrůznějších signálů

Více

31SCS Speciální číslicové systémy Antialiasing

31SCS Speciální číslicové systémy Antialiasing ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE 2006/2007 31SCS Speciální číslicové systémy Antialiasing Vypracoval: Ivo Vágner Email: Vagnei1@seznam.cz 1/7 Převod analogového signálu na digitální Složité operace,

Více

2. GENERÁTORY MĚŘICÍCH SIGNÁLŮ II

2. GENERÁTORY MĚŘICÍCH SIGNÁLŮ II . GENERÁTORY MĚŘICÍCH SIGNÁLŮ II Generátory s nízkým zkreslením VF generátory harmonického signálu Pulsní generátory X38SMP P 1 Generátory s nízkým zkreslením Parametry, které se udávají zkreslení: a)

Více

Číslicové multimetry. základním blokem je stejnosměrný číslicový voltmetr

Číslicové multimetry. základním blokem je stejnosměrný číslicový voltmetr Měření IV Číslicové multimetry základním blokem je stejnosměrný číslicový voltmetr Číslicové multimetry VD vstupní dělič a Z zesilovač slouží ke změně rozsahů a úpravu signálu ST/SS usměrňovač převodník

Více

Signál v čase a jeho spektrum

Signál v čase a jeho spektrum Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě

Více

doc. Dr. Ing. Elias TOMEH Elias Tomeh / Snímek 1

doc. Dr. Ing. Elias TOMEH   Elias Tomeh / Snímek 1 doc. Dr. Ing. Elias TOMEH e-mail: elias.tomeh@tul.cz Elias Tomeh / Snímek 1 Frekvenční spektrum Dělení frekvenčního pásma (počet čar) Průměrování Časovou váhovou funkci Elias Tomeh / Snímek 2 Vzorkovací

Více

A/D převodníky - parametry

A/D převodníky - parametry A/D převodníky - parametry lineární kvantování -(kritériem je jednoduchost kvantovacího obvodu), parametry ADC : statické odstup signálu od kvantizačního šumu SQNR, efektivní počet bitů n ef, dynamický

Více

Úvod do zpracování signálů

Úvod do zpracování signálů 1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování

Více

KTE/TEVS - Rychlá Fourierova transformace. Pavel Karban. Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni

KTE/TEVS - Rychlá Fourierova transformace. Pavel Karban. Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni KTE/TEVS - Rychlá Fourierova transformace Pavel Karban Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni 10.11.011 Outline 1 Motivace FT Fourierova transformace

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2014/2015 tm-ch-spec. 1.p 2014 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a

Více

Spektrální analyzátory

Spektrální analyzátory Lubomír Slavík TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Materiál vznikl v rámci projektu ESF (CZ.1.07/2.2.00/07.0247), který je spolufinancován Evropským

Více

Návrh frekvenčního filtru

Návrh frekvenčního filtru Návrh frekvenčního filtru Vypracoval: Martin Dlouhý, Petr Salajka 25. 9 2010 1 1 Zadání 1. Navrhněte co nejjednodušší přenosovou funkci frekvenčního pásmového filtru Dolní propusti typu Bessel, která bude

Více

Direct Digital Synthesis (DDS)

Direct Digital Synthesis (DDS) ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Direct Digital Synthesis (DDS) Přímá číslicová syntéza Tyto materiály vznikly za podpory

Více

2 Teoretický úvod Základní princip harmonické analýzy Podmínky harmonické analýzy signálů Obdelník Trojúhelník...

2 Teoretický úvod Základní princip harmonické analýzy Podmínky harmonické analýzy signálů Obdelník Trojúhelník... Obsah 1 Zadání 1 2 Teoretický úvod 1 2.1 Základní princip harmonické analýzy.................. 1 2.2 Podmínky harmonické analýzy signálů................. 1 3 Obecné matematické vyjádření 2 4 Konkrétní

Více

Otázka 22(42) Přístroje pro měření signálů, metody pro měření v časové a frekvenční doméně. Přístroje

Otázka 22(42) Přístroje pro měření signálů, metody pro měření v časové a frekvenční doméně. Přístroje Otázka 22(42) Přístroje pro měření signálů, metody pro měření v časové a frekvenční doméně Rozmanitost signálů v komunikační technice způsobuje, že rozdělení měřicích metod není jednoduché a jednoznačné.

Více

Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti

Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti Lineární a adaptivní zpracování dat 3. SYSTÉMY a jejich popis ve frekvenční oblasti Daniel Schwarz Osnova Opakování: systémy a jejich popis v časové oblasti Fourierovy řady Frekvenční charakteristika systémů

Více

filtry FIR zpracování signálů FIR & IIR Tomáš Novák

filtry FIR zpracování signálů FIR & IIR Tomáš Novák filtry FIR 1) Maximální překývnutí amplitudové frekvenční charakteristiky dolní propusti FIR řádu 100 je podle obr. 1 na frekvenci f=50hz o velikosti 0,15 tedy 1,1dB; přechodové pásmo je v rozsahu frekvencí

Více

Analogové měřicí přístroje

Analogové měřicí přístroje Měření 3-4 Analogové měřicí přístroje do 60. let jediné měřicí přístroje pro měření proudů a napětí princip měřená veličina působí silou nebo momentem síly na pohyblivou část přístroje proti této síle

Více

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

P7: Základy zpracování signálu

P7: Základy zpracování signálu P7: Základy zpracování signálu Úvodem - Signál (lat. signum) bychom mohli definovat jako záměrný fyzikální jev, nesoucí informaci o nějaké události. - Signálem je rovněž funkce, která převádí nezávislou

Více

Osnova. Idea ASK/FSK/PSK ASK Amplitudové... Strana 1 z 16. Celá obrazovka. Konec Základy radiotechniky

Osnova. Idea ASK/FSK/PSK ASK Amplitudové... Strana 1 z 16. Celá obrazovka. Konec Základy radiotechniky Pulsní kódová modulace, amplitudové, frekvenční a fázové kĺıčování Josef Dobeš 24. října 2006 Strana 1 z 16 Základy radiotechniky 1. Pulsní modulace Strana 2 z 16 Pulsní šířková modulace (PWM) PAM, PPM,

Více

VOLBA ČASOVÝCH OKEN A PŘEKRYTÍ PRO VÝPOČET SPEKTER ŠIROKOPÁSMOVÝCH SIGNÁLŮ

VOLBA ČASOVÝCH OKEN A PŘEKRYTÍ PRO VÝPOČET SPEKTER ŠIROKOPÁSMOVÝCH SIGNÁLŮ VOLBA ČASOVÝCH OKEN A PŘEKRYTÍ PRO VÝPOČET SPEKTER ŠIROKOPÁSOVÝCH SIGNÁLŮ Jiří TŮA, VŠB Technická univerzita Ostrava Petr Czyž, Halla Visteon Autopal Services, sro Nový Jičín 2 Anotace: Referát se zabývá

Více

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů Kapitola 1 Signály a systémy 1.1 Klasifikace signálů Signál představuje fyzikální vyjádření informace, obvykle ve formě okamžitých hodnot určité fyzikální veličiny, která je funkcí jedné nebo více nezávisle

Více

Fourierova transformace

Fourierova transformace Fourierova transformace EO Přednáška Pavel Máša ÚVODEM Známe Fourierovy řady v komplexním tvaru f(t) = 1X k= 1 A k e jk! t Spektrum této řady je diskrétní A k = 1 T Obvody tedy musíme řešit v HUS člen

Více

Analogově číslicové převodníky

Analogově číslicové převodníky Verze 1 Analogově číslicové převodníky Doplněná inovovaná přednáška Zpracoval: Vladimír Michna Pracoviště: Katedra textilních a jednoúčelových strojů TUL Tento materiál vznikl jako součást projektu In-TECH

Více

MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH. Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky

MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH. Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky Při návrhu elektroakustických soustav, ale i jiných systémů, je vhodné nejprve

Více

základní vlastnosti, používané struktury návrhové prostředky MATLAB problém kvantování koeficientů

základní vlastnosti, používané struktury návrhové prostředky MATLAB problém kvantování koeficientů A0M38SPP - Signálové procesory v praxi - přednáška 4 2 Číslicové filtry typu FIR a IIR definice operace filtrace základní rozdělení FIR, IIR základní vlastnosti, používané struktury filtrů návrhové prostředky

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 8. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská

Více

ochranným obvodem, který chrání útlumové články před vnějším náhodným přetížením.

ochranným obvodem, který chrání útlumové články před vnějším náhodným přetížením. SG 2000 je vysokofrekvenční generátor s kmitočtovým rozsahem 100 khz - 1 GHz (s option až do 2 GHz), s možností amplitudové i kmitočtové modulace. Velmi užitečnou funkcí je také rozmítání výstupního kmitočtu

Více

1 SENZORY V MECHATRONICKÝCH SOUSTAVÁCH

1 SENZORY V MECHATRONICKÝCH SOUSTAVÁCH 1 V MECHATRONICKÝCH SOUSTAVÁCH Senzor - důležitá součást většiny moderních elektronických zařízení. Účel: Zjišťovat přítomnost různých fyzikálních, většinou neelektrických veličin, a umožnit další zpracování

Více

Základy a aplikace digitálních. Katedra radioelektroniky (13137), blok B2, místnost 722

Základy a aplikace digitálních. Katedra radioelektroniky (13137), blok B2, místnost 722 Základy a aplikace digitálních modulací Josef Dobeš Katedra radioelektroniky (13137), blok B2, místnost 722 dobes@fel.cvut.cz 6. října 2014 České vysoké učení technické v Praze, Fakulta elektrotechnická

Více

SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A LINEÁRNÍ SYSTÉMY SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cziba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické

Více

Nízkofrekvenční (do 1 MHz) Vysokofrekvenční (stovky MHz až jednotky GHz) Generátory cm vln (až desítky GHz)

Nízkofrekvenční (do 1 MHz) Vysokofrekvenční (stovky MHz až jednotky GHz) Generátory cm vln (až desítky GHz) Provazník oscilatory.docx Oscilátory Oscilátory dělíme podle několika hledisek (uvedené třídění není zcela jednotné - bylo použito vžitých názvů, které vznikaly v různém období vývoje a za zcela odlišných

Více

Měření na nízkofrekvenčním zesilovači. Schéma zapojení:

Měření na nízkofrekvenčním zesilovači. Schéma zapojení: Číslo úlohy: Název úlohy: Jméno a příjmení: Třída/Skupina: / Měřeno dne: Měření na nízkofrekvenčním zesilovači Spolupracovali ve skupině Zadání úlohy: Na zadaném Nf zesilovači proveďte následující měření

Více

Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita

Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita Lineární a adpativní zpracování dat 3. Lineární filtrace I: Z-transformace, stabilita Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály, systémy, jejich vlastnosti a popis v časové

Více

31ZZS 9. PŘEDNÁŠKA 24. listopadu 2014

31ZZS 9. PŘEDNÁŠKA 24. listopadu 2014 3ZZS 9. PŘEDNÁŠKA 24. listopadu 24 SPEKTRÁLNÍ ANALÝZA Fourierovy řady Diskrétní Fourierovy řady Fourierova transformace Diskrétní Fourierova transformace Spektrální analýza Zobrazení signálu ve frekvenční

Více

SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A LINEÁRNÍ SYSTÉMY SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické či jiné

Více

Měřená veličina. Rušení vyzařováním: magnetická složka (9kHz 150kHz), magnetická a elektrická složka (150kHz 30MHz) Rušivé elektromagnetické pole

Měřená veličina. Rušení vyzařováním: magnetická složka (9kHz 150kHz), magnetická a elektrická složka (150kHz 30MHz) Rušivé elektromagnetické pole 13. VYSOKOFREKVENČNÍ RUŠENÍ 13.1. Klasifikace vysokofrekvenčního rušení Definice vysokofrekvenčního rušení: od 10 khz do 400 GHz Zdroje: prakticky všechny zdroje rušení Rozdělení: rušení šířené vedením

Více

popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu

popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu 9. Čidla napětí a proudu Čas ke studiu: 15 minut Cíl Po prostudování tohoto odstavce budete umět popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu Výklad

Více

18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry

18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry 18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry Digitální voltmetry Základním obvodem digitálních voltmetrů je A/D

Více

APLIKACE ALGORITMŮ ČÍSLICOVÉHO ZPRACOVÁNÍ SIGNÁLŮ 1. DÍL

APLIKACE ALGORITMŮ ČÍSLICOVÉHO ZPRACOVÁNÍ SIGNÁLŮ 1. DÍL David Matoušek, Bohumil Brtník APLIKACE ALGORITMÙ ÈÍSLICOVÉHO ZPRACOVÁNÍ SIGNÁLÙ 1 Praha 2014 David Matoušek, Bohumil Brtník Aplikace algoritmù èíslicového zpracování signálù 1. díl Bez pøedchozího písemného

Více

Modulační parametry. Obr.1

Modulační parametry. Obr.1 Modulační parametry Specifickou skupinou měřicích problémů je měření modulačních parametrů digitálních komunikačních systémů. Většinu modulačních metod používaných v digitálních komunikacích lze realizovat

Více

VY_32_INOVACE_E 15 03

VY_32_INOVACE_E 15 03 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory

Více

3. Měření efektivní hodnoty, výkonu a spotřeby energie

3. Měření efektivní hodnoty, výkonu a spotřeby energie 3. Měření efektivní hodnoty, výkonu a spotřeby energie přednášky A3B38SME Senzory a měření zdroje převzatých obrázků: pokud není uvedeno jinak, zdrojem je monografie Haasz, Sedláček: Elektrická měření

Více

Vektorové obvodové analyzátory

Vektorové obvodové analyzátory Radioelektronická měření (MREM, LREM) Vektorové obvodové analyzátory 9. přednáška Jiří Dřínovský Ústav radioelektroniky FEKT VUT v Brně Úvod Jedním z nejběžnějších inženýrských problémů je měření parametrů

Více

4. MĚŘENÍ NA SMĚŠOVAČI A MEZIFREKVENČNÍM FILTRU

4. MĚŘENÍ NA SMĚŠOVAČI A MEZIFREKVENČNÍM FILTRU 4. MĚŘENÍ NA SMĚŠOVAČI A MEZIFREKVENČNÍM FILTRU Cíl měření Seznámit se s vlastnostmi dvojitě vyváženého směšovače a stanovit: 1) spektrum výstupního signálu a vliv mezifrekvenčního filtru na tvar spektra,

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY. OPTICKÝ SPOJ LR-830/1550 Technický popis

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY. OPTICKÝ SPOJ LR-830/1550 Technický popis VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY OPTICKÝ SPOJ LR-830/1550 Technický popis BRNO, 2009 1 Návrh a konstrukce dálkového spoje 1.1 Optická

Více

Oscilátory. Oscilátory s pevným kmitočtem Oscilátory s proměnným kmitočtem (laditelné)

Oscilátory. Oscilátory s pevným kmitočtem Oscilátory s proměnným kmitočtem (laditelné) Oscilátory Oscilátory Oscilátory s pevným kmitočtem Oscilátory s proměnným kmitočtem (laditelné) mechanicky laditelní elektricky laditelné VCO (Voltage Control Oscillator) Typy oscilátorů RC většinou neharmonické

Více

Zvuk. 1. základní kmitání. 2. šíření zvuku

Zvuk. 1. základní kmitání. 2. šíření zvuku Zvuk 1. základní kmitání - vzduchem se šíří tlakové vzruchy (vzruchová vlna), zvuk je systémem zhuštěnin a zředěnin - podstatou zvuku je kmitání zdroje zvuku a tím způsobené podélné vlnění elastického

Více

Analýza a zpracování ultrazvukových signálů

Analýza a zpracování ultrazvukových signálů KAPITOLA 6 Analýza a zpracování ultrazvukových signálů Tato kapitola se zaměřuje zejména na metody číslicového zpracování a analýzy ultrazvukových signálů. V dnešních ultrazvukových přístrojích převažuje

Více

Multimediální systémy

Multimediální systémy Multimediální systémy Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI přednášky Získání obsahu Jan Outrata (Univerzita Palackého v Olomouci) Multimediální systémy Olomouc, září prosinec

Více

elektrické filtry Jiří Petržela filtry založené na jiných fyzikálních principech

elektrické filtry Jiří Petržela filtry založené na jiných fyzikálních principech Jiří Petržela filtry založené na jiných fyzikálních principech piezoelektrický jev při mechanickém namáhání krystalu ve správném směru na něm vzniká elektrické napětí po přiložení elektrického napětí se

Více

- DAC - Úvod A/D převodník převádějí analogové (spojité) veličiny na digitální (nespojitou) informaci. Základní zapojení převodníku ukazuje obr.

- DAC - Úvod A/D převodník převádějí analogové (spojité) veličiny na digitální (nespojitou) informaci. Základní zapojení převodníku ukazuje obr. - DAC - Úvod A/D převodník převádějí analogové (spojité) veličiny na digitální (nespojitou) informaci. Základní zapojení převodníku ukazuje obr. Řada zdrojů informace vytváří signál v analogové formě,

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 1. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská

Více

doc. Dr. Ing. Elias TOMEH Elias Tomeh / Snímek 1

doc. Dr. Ing. Elias TOMEH   Elias Tomeh / Snímek 1 doc. Dr. Ing. Elias TOMEH e-mail: elias.tomeh@tul.cz Elias Tomeh / Snímek 1 Elias Tomeh / Snímek 2 Elias Tomeh / Snímek 3 Elias Tomeh / Snímek 4 ZÁKLADNÍ VIBRODIAGNOSTICKÉ MĚŘICÍ METODY Měření celkových

Více

DIPLOMOVÁ PRÁCE Lock-in zesilovač 500 khz 10 MHz

DIPLOMOVÁ PRÁCE Lock-in zesilovač 500 khz 10 MHz DIPLOMOVÁ PRÁCE Lock-in zesilovač 500 khz 10 MHz Petr Sládek Princip a použití lock-in zesilovače Im koherentní demodulátor f r velmi úzkopásmový Re příjem typ. 0,01 Hz 3 Hz zesilování harmonických měřený

Více

1 Zadání. 2 Teoretický úvod. 7. Využití laboratorních přístrojů v elektrotechnické praxi

1 Zadání. 2 Teoretický úvod. 7. Využití laboratorních přístrojů v elektrotechnické praxi 1 7. Využití laboratorních přístrojů v elektrotechnické praxi 1 Zadání Zapojte pracoviště podle pokynů v pracovním postupu. Seznamte se s ovládáním přístrojů na pracovišti a postupně realizujte jednotlivé

Více

ZPRACOVÁNÍ SIGNÁLŮ Z MECHANICKÝCH. Jiří Tůma

ZPRACOVÁNÍ SIGNÁLŮ Z MECHANICKÝCH. Jiří Tůma ZPRACOVÁNÍ SIGNÁLŮ Z MECHANICKÝCH SYSTÉMŮ UŽITÍM FFT Jiří Tůma Štramberk 1997 ii Anotace Cílem této knihy je systematicky popsat metody analýzy signálů z mechanických systémů a strojních zařízení. Obsahem

Více

Dodatek k uživatelském manuálu Adash 4202 Revize 040528MK

Dodatek k uživatelském manuálu Adash 4202 Revize 040528MK Vyvažovací analyzátory Adash 4200 Dodatek k uživatelském manuálu Adash 4202 Revize 040528MK Email: info@adash.cz Obsah: Popis základních funkcí... 3 On Line Měření... 3 On Line Metr... 3 Časový záznam...

Více

Experiment s FM přijímačem TDA7000

Experiment s FM přijímačem TDA7000 Experiment s FM přijímačem TDA7 (návod ke cvičení) ílem tohoto experimentu je zkonstruovat FM přijímač s integrovaným obvodem TDA7 a ověřit jeho základní vlastnosti. Nejprve se vypočtou prvky mezifrekvenčního

Více

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického

Více

Teoretický úvod: [%] (1)

Teoretický úvod: [%] (1) Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy Číslo úlohy ZESILOVAČ OSCILÁTOR 101-4R Zadání 1. Podle přípravku

Více

8. Sběr a zpracování technologických proměnných

8. Sběr a zpracování technologických proměnných 8. Sběr a zpracování technologických proměnných Účel: dodat v částečně předzpracovaném a pro další použití vhodném tvaru ucelenou informaci o procesu pro následnou analyzu průběhu procesu a pro rozhodování

Více

Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora

Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora Číslo projektu Číslo materiálu Název školy Autor Název Téma hodiny Předmět Ročník /y/ CZ.1.07/1.5.00/34.0394 VY_3_INOVACE_EM_.0_měření kmitočtové charakteristiky zesilovače Střední odborná škola a Střední

Více

Transformace obrazu Josef Pelikán KSVI MFF UK Praha

Transformace obrazu Josef Pelikán KSVI MFF UK Praha Transformace obrazu 99725 Josef Pelikán KSVI MFF UK Praha email: Josef.Pelikan@mff.cuni.cz WWW: http://cgg.ms.mff.cuni.cz/~pepca/ Transformace 2D obrazu dekorelace dat potlačení závislosti jednotlivých

Více

Příloha č. 3 TECHNICKÉ PARAMETRY PRO DODÁVKU TECHNOLOGIE: UNIVERZÁLNÍ MĚŘICÍ ÚSTŘEDNA

Příloha č. 3 TECHNICKÉ PARAMETRY PRO DODÁVKU TECHNOLOGIE: UNIVERZÁLNÍ MĚŘICÍ ÚSTŘEDNA Příloha č. 3 TECHNICKÉ PARAMETRY PRO DODÁVKU TECHNOLOGIE: UNIVERZÁLNÍ MĚŘICÍ ÚSTŘEDNA 1. Technická specifikace Možnost napájení ze sítě nebo akumulátoru s UPS funkcí - alespoň 2 hodiny provozu z akumulátorů

Více

Modulace a šum signálu

Modulace a šum signálu Modulace a šum signálu PATRIK KANIA a ŠTĚPÁN URBAN Nejlepší laboratoř molekulové spektroskopie vysokého rozlišení Ústav analytické chemie, VŠCHT Praha kaniap@vscht.cz a urbans@vscht.cz http://www.vscht.cz/anl/lmsvr

Více

5. A/Č převodník s postupnou aproximací

5. A/Č převodník s postupnou aproximací 5. A/Č převodník s postupnou aproximací Otázky k úloze domácí příprava a) Máte sebou USB flash-disc? b) Z jakých obvodů se v principu skládá převodník s postupnou aproximací? c) Proč je v zapojení použit

Více

VY_32_INOVACE_ENI_2.MA_05_Modulace a Modulátory

VY_32_INOVACE_ENI_2.MA_05_Modulace a Modulátory Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_ENI_2.MA_05_Modulace a Modulátory Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická

Více

Základní metody číslicového zpracování signálu a obrazu část II.

Základní metody číslicového zpracování signálu a obrazu část II. A4M38AVS Aplikace vestavěných systémů Přednáška č. 8 Základní metody číslicového zpracování signálu a obrazu část II. Radek Sedláček, katedra měření, ČVUT FEL, 2015 Obsah přednášky Převzorkování decimace,

Více

Měření nelineárních parametrů

Měření nelineárních parametrů Mikrovlnné měřicí systémy Měření nelineárních parametrů A. Popis nelineárních jevů Přenosové charakteristiky obvodů mohou být z mnoha důvodu nelineární. Použité komponenty vykazují závislosti některých

Více

Digitalizace převod AS DS (analogový diskrétní signál )

Digitalizace převod AS DS (analogový diskrétní signál ) Digitalizace signálu v čase Digitalizace převod AS DS (analogový diskrétní signál ) v amplitudě Obvykle převod spojité předlohy (reality) f 1 (t/x,...), f 2 ()... připomenutí Digitalizace: 1. vzorkování

Více

Hlavní parametry rádiových přijímačů

Hlavní parametry rádiových přijímačů Hlavní parametry rádiových přijímačů Zpracoval: Ing. Jiří Sehnal Pro posouzení základních vlastností rádiových přijímačů jsou zavedena normalizovaná kritéria parametry, podle kterých se rádiové přijímače

Více

Při návrhu FIR filtru řešíme obvykle následující problémy:

Při návrhu FIR filtru řešíme obvykle následující problémy: Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.

Více

Nízkofrekvenční měřič komplexního napěťového přenosu

Nízkofrekvenční měřič komplexního napěťového přenosu ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Katedra mikroelektroniky Diplomová práce Nízkofrekvenční měřič komplexního napěťového přenosu květen 2010 Student: Vedoucí práce: Martin Olejár

Více

r Odvoď te přenosovou funkci obvodů na obr.2.16, je-li vstupem napě tí u 1 a výstupem napě tí u 2. Uvaž ujte R = 1Ω, L = 1H a C = 1F.

r Odvoď te přenosovou funkci obvodů na obr.2.16, je-li vstupem napě tí u 1 a výstupem napě tí u 2. Uvaž ujte R = 1Ω, L = 1H a C = 1F. Systé my, procesy a signály I - sbírka příkladů NEŘ EŠENÉPŘ ÍKADY r 223 Odvoď te přenosovou funkci obvodů na obr26, je-li vstupem napě tí u a výstupem napě tí Uvaž ujte Ω, H a F u u u a) b) c) u u u d)

Více

11. Logické analyzátory. 12. Metodika měření s logickým analyzátorem

11. Logické analyzátory. 12. Metodika měření s logickým analyzátorem +P12 11. Logické analyzátory Základní srovnání logického analyzátoru a číslicového osciloskopu Logický analyzátor blokové schéma, princip funkce Časová analýza, glitch mód a transitional timing, chyba

Více

Měření frekvence a času

Měření frekvence a času Radioelektronická měření (MREM, LREM) Měření frekvence a času 7. přednáška Jiří Dřínovský Ústav radioelektroniky FEKT VUT v Brně Úvod Tyto dvě fyzikální veličiny frekvence a čas jsou navzájem svázány.

Více

Číslicové zpracování signálů a Fourierova analýza.

Číslicové zpracování signálů a Fourierova analýza. Číslicové zpracování signálů a Fourierova analýza www.kme.zcu.cz/kmet/exm 1 Obsah prezentace 1. Úvod a motivace 2. Data v časové a frekvenční oblasti 3. Fourierova analýza teoreticky 4. Fourierova analýza

Více

Středoškolská technika SCI-Lab

Středoškolská technika SCI-Lab Středoškolská technika 2016 Setkání a prezentace prací středoškolských studentů na ČVUT SCI-Lab Kamil Mudruňka Gymnázium Dašická 1083 Dašická 1083, Pardubice O projektu SCI-Lab je program napsaný v jazyce

Více

Základy práce s osciloskopem

Základy práce s osciloskopem Základy práce s osciloskopem 1 Cíle měření Cílem toho měření je seznámit se s generátorem funkcí a naučit se pracovat s osciloskopem. Pracovní úkoly 1. Zobrazení časového průběhu signálu pomocí osciloskopu.

Více

Technická kybernetika. Obsah. Principy zobrazení, sběru a uchování dat. Měřicí řetězec. Principy zobrazení, sběru a uchování dat

Technická kybernetika. Obsah. Principy zobrazení, sběru a uchování dat. Měřicí řetězec. Principy zobrazení, sběru a uchování dat Akademický rok 2016/2017 Připravil: Radim Farana Technická kybernetika Principy zobrazení, sběru a uchování dat 2 Obsah Principy zobrazení, sběru a uchování dat strana 3 Snímač Měřicí řetězec Měřicí obvod

Více

Quantization of acoustic low level signals. David Bursík, Miroslav Lukeš

Quantization of acoustic low level signals. David Bursík, Miroslav Lukeš KVANTOVÁNÍ ZVUKOVÝCH SIGNÁLŮ NÍZKÉ ÚROVNĚ Abstrakt Quantization of acoustic low level signals David Bursík, Miroslav Lukeš Při testování kvality A/D převodníků se používají nejrůznější testovací signály.

Více

Analogové modulace. Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206

Analogové modulace. Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206 EVROPSKÝ SOCIÁLNÍ FOND Analogové modulace PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206 Modulace Co je to modulace?

Více

9. PRINCIPY VÍCENÁSOBNÉHO VYUŽITÍ PŘENOSOVÝCH CEST

9. PRINCIPY VÍCENÁSOBNÉHO VYUŽITÍ PŘENOSOVÝCH CEST 9. PRINCIPY VÍCENÁSOBNÉHO VYUŽITÍ PŘENOSOVÝCH CEST Modulace tvoří základ bezdrátového přenosu informací na velkou vzdálenost. V minulosti se ji využívalo v telekomunikacích při vícenásobném využití přenosových

Více

polyfázové filtry (multirate filters) cascaded integrator comb filter (CIC) A0M38SPP - Signálové procesory v praxi - přednáška 8 2

polyfázové filtry (multirate filters) cascaded integrator comb filter (CIC) A0M38SPP - Signálové procesory v praxi - přednáška 8 2 A0M38SPP - Signálové procesory v praxi - přednáška 8 2 Decimace snížení vzorkovací frekvence Interpolace zvýšení vzorkovací frekvence Obecné převzorkování signálu faktorem I/D Efektivní způsoby implementace

Více

Vlastnosti a modelování aditivního

Vlastnosti a modelování aditivního Vlastnosti a modelování aditivního bílého šumu s normálním rozdělením kacmarp@fel.cvut.cz verze: 0090913 1 Bílý šum s normálním rozdělením V této kapitole se budeme zabývat reálným gaussovským šumem n(t),

Více

MATURITNÍ ZKOUŠKA Z ELEKTROTECHNICKÝCH MĚŘENÍ

MATURITNÍ ZKOUŠKA Z ELEKTROTECHNICKÝCH MĚŘENÍ MATURITNÍ ZKOUŠKA Z ELEKTROTECHNICKÝCH MĚŘENÍ Třída: A4 Školní rok: 2010/2011 1 Vlastnosti měřících přístrojů - rozdělení měřících přístrojů, stupnice měřících přístrojů, značky na stupnici - uložení otočné

Více

Frekvenční charakteristiky

Frekvenční charakteristiky Frekvenční charakteristiky EO2 Přednáška Pavel Máša ÚVODEM Frekvenční charakteristiky popisují závislost poměru amplitudy výstupního ku vstupnímu napětí a jejich fázový posun v závislosti na frekvenci

Více

Rádiové funkční bloky X37RFB Krystalové filtry

Rádiové funkční bloky X37RFB Krystalové filtry Rádiové funkční bloky X37RFB Dr. Ing. Pavel Kovář Obsah Úvod Krystalový rezonátor Diskrétní krystalové filtry Monolitické krystalové filtry Aplikace 2 Typické použití filtrů Rádiový přijímač preselektor

Více

Praktikum II Elektřina a magnetismus

Praktikum II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF K Praktikum II Elektřina a magnetismus Úloha č. V Název: Měření osciloskopem Pracoval: Matyáš Řehák stud.sk.: 13 dne: 1.1.28 Odevzdal dne:...

Více

Měření spektra vf signálu spektrálním analyzátorem laboratorní úloha RF Signal Spectrum Measurement with Spectrum Analyzer Laboratory Exercise

Měření spektra vf signálu spektrálním analyzátorem laboratorní úloha RF Signal Spectrum Measurement with Spectrum Analyzer Laboratory Exercise VŠB - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra kybernetiky a biomedicínského inženýrství Měření spektra vf signálu spektrálním analyzátorem laboratorní úloha RF Signal

Více

4. Měření rychlosti zvuku ve vzduchu. A) Kalibrace tónového generátoru

4. Měření rychlosti zvuku ve vzduchu. A) Kalibrace tónového generátoru 4. Měření rychlosti zvuku ve vzduchu Pomůcky: 1) Generátor normálové frekvence 2) Tónový generátor 3) Digitální osciloskop 4) Zesilovač 5) Trubice s reproduktorem a posuvným mikrofonem 6) Konektory A)

Více

I. Současná analogová technika

I. Současná analogová technika IAS 2010/11 1 I. Současná analogová technika Analogové obvody v moderních komunikačních systémech. Vývoj informatických technologií v poslední dekádě minulého století digitalizace, zvýšení objemu přenášených

Více

13. Další měřicí přístroje, etalony elektrických veličin.

13. Další měřicí přístroje, etalony elektrických veličin. 13. Další měřicí přístroje, etalony elektrických veličin. přednášky A3B38SME Senzory a měření zdroje převzatých obrázků: pokud není uvedeno jinak, zdrojem je monografie Haasz, Sedláček: Elektrická měření

Více

3 METODY PRO POTLAČENÍ ŠUMU U ŘE- ČOVÉHO SIGNÁLU

3 METODY PRO POTLAČENÍ ŠUMU U ŘE- ČOVÉHO SIGNÁLU 3 METODY PRO POTLAČENÍ ŠUMU U ŘE- ČOVÉHO SIGNÁLU V současné době se pro potlačení šumu u řečového signálu používá mnoho různých metod. Jedná se například o metody spektrálního odečítání, Wienerovy filtrace,

Více

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady, vlastnosti Vzorkovací

Více

1. Základy teorie přenosu informací

1. Základy teorie přenosu informací 1. Základy teorie přenosu informací Úvodem citát o pojmu informace Informace je název pro obsah toho, co se vymění s vnějším světem, když se mu přizpůsobujeme a působíme na něj svým přizpůsobováním. N.

Více

Měření neelektrických veličin. Fakulta strojního inženýrství VUT v Brně Ústav konstruování

Měření neelektrických veličin. Fakulta strojního inženýrství VUT v Brně Ústav konstruování Měření neelektrických veličin Fakulta strojního inženýrství VUT v Brně Ústav konstruování Obsah Struktura měřicího řetězce Senzory Technické parametry senzorů Obrazová příloha Měření neelektrických veličin

Více

Projektová dokumentace ANUI

Projektová dokumentace ANUI Projektová dokumentace NUI MULTI CONTROL s.r.o., Mírová 97/4, 703 00 Ostrava-Vítkovice, tel/fax: 596 614 436, mobil: +40-777-316190 http://www.multicontrol.cz/ e-mail: info@multicontrol.cz ROZŠÍŘENĚ MĚŘENÍ

Více