Matematika pro geometrickou morfometrii (4)

Rozměr: px
Začít zobrazení ze stránky:

Download "Matematika pro geometrickou morfometrii (4)"

Transkript

1 Ján Dupej Laboratoř 3D zobrazovacích a analytických metod Katedra antropologie a genetiky člověka Přírodovědecká fakulta UK v Praze

2 Opakování Warps Na spočtení potřebuji pouze souřadnice vstpních landmarků Principal warpy Tvoří komponenty deformační složky bez ohledu na cílové landmarky 2

3 Opakování - PCA Převod dat do nové báze která maximalizuje variabilitu v prvních komponentách Střed, hlavní komponenty, skóre k 1 k 2 p i p 0 3

4 Opakování PCA Výpočet Konstrukce kovariační matice Hlavní komponenty odpovídají vlastním vektorům Vlastní čísla popisují možství zachycené variability Použití Redukce dimenze pro další metody Separace dat do shluků 4

5 NELANDMARKOVÉ METODY 5

6 Nelandmarkové metody Data Neobsahují výrazné lokální geometrické vlastnosti Obsahují jich mnoho Výběr landmarků silně redukuje množství zachycené informace 8 Mpx fotka = 24 MiB Síť 20k trojúhelníků ~230 KiB CT sken stovky MiB 10 landmarků = 120 B Můžu extrahovat složitější geometrické objekty Práce s hrubými daty 6

7 Geometrická primitiva 2D Body Landmark Čárová Přímka Úsečka spojnice 2 landmarků Lomená čára řetězec landmarků Křivka většinou hladká čára, často aproximována lomenou Plošná Polygony uzavřená lomená čára (jednoduchý = neprotínají se) Uzavřené křivky Nadplochy reprezentují oddělené oblasti 7

8 Geometrická primitiva 3D Body, úsečky, polygony, křivky Roviny Trojúhelníkové sítě Plochy hladké Uzavřené sítě a plochy izoplochy CSG 8

9 Spojitá vs. diskrétní informace Diskrétní Konečně mnoho měření Vejde se do paměti počítače Spojitá Nekonečně měření Libovolné rozlišení Pro každé dva body existuje bod ležící mezi Existují konečné reprezentace spojitých struktur Studium kontur a křivek pro popis tvaru 9

10 Křivky (Parametrická) křivka podmožina R 2 nebo R 3 určená zobrazením f z uzavřené U podmnožiny R do příslušného prostoru y f 0.2 f 0.8 v = x x = f t, f: U R R k R k Zobrazení f bývají spojité, hladké Parametrizace Dle délky oblouku Na 0,1 f 0 x 2D rovinná křivka (plane curve) 3D prostorová (spatial/space curve) 10

11 Plochy Podmnožina R 3 definovaná zobrazením z uzavřené U podmožiny R 2 do R 3 v = x x = f t, f: U R 2 R 3 R 3 Zobrazení f bývají spojité, hladké 11

12 Křivky Úsečka je také křivka (podobně kružnice, elipsa...) f t = ta + b; t 0,1 ; a, b R k Jak definovat libovolnou křivku složitější než úsečka? Analyticky rovnicí Jen speciální typy křivek Pomocí konečně mnoha informací (kontrolní body, koeficienty) a kombinací spojitých funkcí Beziérova křivka, B-spline, Catmull-Rom spline,... Vzorkováním výčet konečného počtu bodů ležících na křivce Ztráta informace Interpolací dopočítám chybějící body Lomená čára lineární interpolace 12

13 Křivka - příklad Chci křivku, která bude: Definována kubickým polynomem f t = at 3 + bt 2 + ct + d p 0 p 0 Začínat v p 0 a končit v p 1 f 0 = d = p 0 Mít v bodech p 0 p 1 tečny p 0 p 1 f x 0 = 3a xt 2 + 2b x t + c x = p 0x Z těchto podmínek můžu sestavit rovnice a získat koeficienty polynomů p 1 p 1 Složitější křivky se sestavují z jednoduchších 13

14 Analýza kontury Hladká hranice, kontura neobsahuje landmarky (jednoznačně definované body) Získání kontury Jak konturu reprezentovat čísly když nemůžu použít landmarky Semilandmarky Body pravidelně rozmístěné na křivce (podle délky nebo úhlu) Transformace na vhodné koeficienty Aproximace nějakou známou křivkou a práce s koeficienty Waveletová / Fourierova transformace vzorkované křivky 14

15 Semilandmarky Dělení podle délky na potřebný počet n úseků Celková délka l = n 1 i=0 p i p i+1 Délka jednoho úseku l 1 = l n 15

16 Semilandmarky Dělení podle úhlu Kdy je vhodné první neho druhé dělení? Položit si otázku jestli mohou existovat dvě křivky které v daném dělení dají stejné semilandmarky. Alternativa sliding semilandmarks FL Bookstein Morphometric tools for Landmark data: Geometry and Biology, Cambridge University Press,

17 Jednoduché transformace Obrovské množství způsobů jak popsat tvar kontury 17

18 Integrální transformace Práce s konturou jako spojitou funkcí Analogie s lineární algebrou, vektorovými prostory Funkce vektor, prostor funkcí vektorový prostor, báze množina bazických funkcí, souřadnice spektrum v = av 1 + bv 2 v f x = a f t g x, t dt v 2 18 v 1 g

19 Fourierova transformace Báze transformace g x, t = e 2πixt = cos 2πxt + i sin (2πxt) Spektrum je komplexní funkce Předpokládá se periodická funkce Diskretizace + použití amplitudového spektra f n = 1 N N 1 k=0 a k e 2iπ N kn a k = Použití na kontury Transformace do jiných souřadnic FT odděleně na složky vektoru souřadnic N 1 n=0 f n e 2iπ N kn 19

20 FT komponenty 20

21 Polární transformace Chci z vektorové funkce vytvoťit 1D funkci a mít jedno spektrum r θ r θ 21

22 Cirkulární harmonické Reprezentace funkce získané polární transformací Kombinace bázických funkcí Báze Y n θ P 0 x = 1 P 1 x P n+1 x = x f θ = a i Y i θ = P n θ cos θ i=0 = 2n+1 xp n x np n 1 x n+1 22

23 Circular Harmonics ukázka 23

24 Waveletová transformace Podobný princip jako FT Hlavní rozdíl je v použité bázi Není jedna kanonická báze jako u FT, pouze předpis jak mají vypadat, pro každou úlohu může být vhodná jiná Báze FT je lokalizovaná ve spektru, u WT je lokalizovaná ve spektru i čase Mateřská funkce + posun a škálování = wavelet 24

25 WT příklady bází Haar Morlet Daubeschies Mexican hat 25

26 Výhody WT Lépe reprezentuje data obsahující ostré hrany Koeficienty lépe odrážejí vliv jednotlivých landmarků Signál nemusí být periodický (uzavřené křivky) Možnost volby báze Méně výpočetně náročná 26

27 METODY NA TROJÚHELNÍKOVÝCH SÍTÍCH 27

28 Registrace Cíl nalezení korespondencí pro statistickou analýzu S pomocí landmarků Deformace + hledání nejbližších bodů Bez landmarků Iterative Closest Point rigidní TPS-RPM elastická Coherent Point Drift rigidní/afinní/elastická Rigidní zarovnání, spojování meshů Elastická zobrazení rozdílů 28

29 Srovnání tvarů Vzdálenosti ve směru osi kamery mezi rigidně zarovnanými meshi RapidForm Zjištění rozdílů mezi skupinami může produkovat zavádějící výsledky 29

30 Dense Mesh Correspondence Statistická analýza meshových dat Stejný algoritmus jako u komerčního produktu MorphoStudio 3.0 Rozšířeno o další funkcie (lineární regrese, asymetrie, export...) Hutton: Dense Surface Models of the Human Face, Ph.D. Thesis, Biomedical Informatics Unit, Eastman Dental Institute, University College London 2004 Princip hledání korespondencí napříč množinou meshů, pak analýza pomocí PCA Morphome3cs DC editor / filter Umí několik typů úloh 30

31 Dense Mesh Correspondence 1. Landmarky kvůli zarovnání meshů 2. GPA rigidní zarovnání meshů 3. Volba base mesh 4. TPS deformace přiblížení meshů k base 5. Hledání korespondencí vrcholů Nejnáročnější část výpočtu, pro každý vrchol se hledá nejbližší bod na base meshi Urychlení vhodnou datovou strukturou (grid, kd-tree) 6. Oprahování 7. Převod topologie 8. PCA s na korespondujících vrcholech 31

32 Dense Mesh Correspondence A B B 32

33 Dense Mesh Correspondence A B B 33

34 Dense Mesh Correspondence Base mesh je zdeformován na jedince Použije se topologie base meshe ale tvar jedince je zachován Korespondující body mají stejný význam Pozorování stejné náhodné proměnné Semilandmarky Použití: Studium variability Lineární modelování tvaru regrese (MLR) Alometrie závislost tvaru na velkosti Analýza lokálních změn tvaru Asymetrie Párová analýza stav před/po terapii 34

35 DCA PCA Studium variability na trojúhelníkových sítích Hlavní komponenty představují črty (features) Drastická redukce dimenze Průměrný tvar 35 Průměr PC1 PC2 PC3 PC4

36 DCA ukázka 36

37 DCA Asymetrie Odchylky od přesné bilaterální symetrie 1. DCA jako obvykle 2. DCA na meshi a jejím zrcadlovým odrazem Barevná mapa ukazuje vzdálenosti (se znaménkem) od korespondujícího zrcadleného bodu Individuální asymetrie a i 37

38 DCA Asymetrie Direkcionální asymetrie Tendence skupiny +1.5mm d = 1 n a i Fluktuační asymetrie Odchylka jedince od DA f i = a i,1 d 1, a i,k d k 0mm FA i = k j=1 f i,j -1.5mm 38

39 UKÁZKY 39

40 DCA Morphome3cs PC2 PC1 40

41 Asymetrie Morphome3cs Krajíček V., Dupej J., Velemínská J., Pelikán J: Morphometric Analysis of Mesh Asymmetry, Journal of WSCG, Vol. 20, No. 1, pp , ISSN , Union Agency 2012 Dupej J., Krajíček V., Velemínská J., Pelikán J., Analysis of Asymmetry in Triangular Meshes, Proceedings of the 33rd Conference on geometry and graphics, (accepted),

42 Křivky Morphome3cs Velemínská J., Krajíček V., Dupej J., Goméz-Valdés J.A., Velemínský P., Šefčáková A., Pelikán J., Sánchez-Mejorada G., Brůžek J.: Geometric morphometrics and sexual dimorphism of the greater sciatic notch in adults from two skeletal collections: the accuracy and reliability of sex classification, Am J Phys Anthropol. 42

Matematika pro geometrickou morfometrii

Matematika pro geometrickou morfometrii Matematika pro geometrickou morfometrii Václav Krajíček Vaclav.Krajicek@mff.cuni.cz Department of Software and Computer Science Education Faculty of Mathematics and Physics Charles University Přednáška

Více

Circular Harmonics. Tomáš Zámečník

Circular Harmonics. Tomáš Zámečník Circular Harmonics Tomáš Zámečník Úvod Circular Harmonics Reprezentace křivky, která je: podmonožinou RxR uzavřená funkcí úhlu na intervalu Dále budeme hovořit pouze o takovýchto křivkách/funkcích

Více

Matematika pro geometrickou morfometrii (3)

Matematika pro geometrickou morfometrii (3) Ján Dupej (jdupej@cgg.mff.cuni.cz) Laboratoř 3D zobrazovacích a analytických metod Katedra antropologie a genetiky člověka Přírodovědecká fakulta UK v Praze Opakování Prokrustovská transformace (analýza,

Více

Matematika pro geometrickou morfometrii

Matematika pro geometrickou morfometrii Matematika pro geometrickou morfometrii Václav Krajíček Vaclav.Krajicek@mff.cuni.cz Department of Software and Computer Science Education Faculty of Mathematics and Physics Charles University Přednáška

Více

Matematika pro geometrickou morfometrii (1)

Matematika pro geometrickou morfometrii (1) Ján Dupej (jdupej@cgg.mff.cuni.cz) Laboratoř 3D zobrazovacích a analytických metod Katedra antropologie a genetiky člověka Přírodovědecká fakulta UK v Praze Sylabus 1) Úvod do problematiky, zobrazovací

Více

Matematika pro geometrickou morfometrii (2)

Matematika pro geometrickou morfometrii (2) Ján Dupej (jdupej@cgg.mff.cuni.cz) Laboratoř 3D zobrazovacích a analytických metod Katedra antropologie a genetiky člověka Přírodovědecká fakulta UK v Praze Opakování 2 Opakování 3 Opakování 4 Opakování

Více

Kristýna Bémová. 13. prosince 2007

Kristýna Bémová. 13. prosince 2007 Křivky v počítačové grafice Kristýna Bémová Univerzita Karlova v Praze 13. prosince 2007 Kristýna Bémová (MFF UK) Křivky v počítačové grafice 13. prosince 2007 1 / 36 Pojmy - křivky a jejich parametrické

Více

Úvod do geometrické morfometrie

Úvod do geometrické morfometrie Úvod do geometrické morfometrie 2011 Josef Pelikán, Václav Krajíček KSVI MFF UK Praha http://cgg.mff.cuni.cz/~pepca/ http://cgg.mff.cuni.cz/~vajicek/ Seminář KDM: Aplikace matematiky pro učitele, 18. 10.

Více

KŘIVKY A PLOCHY. Obrázky (popř. slajdy) převzaty od

KŘIVKY A PLOCHY. Obrázky (popř. slajdy) převzaty od KŘIVKY A PLOCHY JANA ŠTANCLOVÁ jana.stanclova@ruk.cuni.cz Obrázky (popř. slajdy) převzaty od RNDr. Josef Pelikán, CSc., KSVI MFF UK Obsah matematický popis křivek a ploch křivky v rovině implicitní tvar

Více

Výpočet průsečíků paprsku se scénou

Výpočet průsečíků paprsku se scénou Výpočet průsečíků paprsku se scénou 1996-2008 Josef Pelikán, MFF UK Praha http://cgg.ms.mff.cuni.cz/~pepca/ Josef.Pelikan@mff.cuni.cz NPGR004, intersection.pdf 2008 Josef Pelikán, http://cgg.ms.mff.cuni.cz/~pepca

Více

Výpočet průsečíků paprsku se scénou

Výpočet průsečíků paprsku se scénou Výpočet průsečíků paprsku se scénou 1996-2018 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Intersection 2018 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 26 Průsečík

Více

Matematika pro geometrickou morfometrii

Matematika pro geometrickou morfometrii Matematika pro geometrickou morfometrii Václav Krajíček Vaclav.Krajicek@mff.cuni.cz Department of Software and Computer Science Education Faculty of Mathematics and Physics Charles University Přednáška

Více

METODOLOGIE HODNOCENÍ RŮSTU HORNÍ ČELISTI A OBLIČEJE PO ČASNÉ OPERACI ROZŠTĚPU RTU. Jana Velemínská Katedra antropologie a genetiky PřF UK v Praze

METODOLOGIE HODNOCENÍ RŮSTU HORNÍ ČELISTI A OBLIČEJE PO ČASNÉ OPERACI ROZŠTĚPU RTU. Jana Velemínská Katedra antropologie a genetiky PřF UK v Praze METODOLOGIE HODNOCENÍ RŮSTU HORNÍ ČELISTI A OBLIČEJE PO ČASNÉ OPERACI ROZŠTĚPU RTU Jana Velemínská Katedra antropologie a genetiky PřF UK v Praze METODOLOGIE HODNOCENÍ RŮSTU HORNÍ ČELISTI A OBLIČEJE PO

Více

Zobrazování těles. problematika geometrického modelování. základní typy modelů. datové reprezentace modelů základní metody geometrického modelování

Zobrazování těles. problematika geometrického modelování. základní typy modelů. datové reprezentace modelů základní metody geometrického modelování problematika geometrického modelování manifold, Eulerova rovnost základní typy modelů hranový model stěnový model objemový model datové reprezentace modelů základní metody geometrického modelování těleso

Více

Metamorfóza obrázků Josef Pelikán CGG MFF UK Praha

Metamorfóza obrázků Josef Pelikán CGG MFF UK Praha Metamorfóza obrázků 1998-2011 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Morphing 2011 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 21 Metamorfóza obrázků -

Více

Bézierovy křivky Bohumír Bastl KMA/GPM Geometrické a počítačové modelování Bézierovy křivky GPM 1 / 26

Bézierovy křivky Bohumír Bastl KMA/GPM Geometrické a počítačové modelování Bézierovy křivky GPM 1 / 26 Bézierovy křivky Bohumír Bastl (bastl@kma.zcu.cz) KMA/GPM Geometrické a počítačové modelování Bézierovy křivky GPM 1 / 26 Opakování Spline křivky opakování Bézierovy křivky GPM 2 / 26 Opakování Interpolace

Více

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika analytická geometrie. Mgr. Pavel Liška

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika analytická geometrie. Mgr. Pavel Liška Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace

Více

Matematický ústav UK Matematicko-fyzikální fakulta

Matematický ústav UK Matematicko-fyzikální fakulta Geometrické modelování Zbyněk Šír Matematický ústav UK Matematicko-fyzikální fakulta 5. října 2016 Zbyněk Šír (MÚ UK) - Geometrické modelování 5. října 2016 1 / 14 Obsah dnešní přednášky Co je to geometrické

Více

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh Algoritmizace prostorových úloh Vektorová data Daniela Szturcová Prostorová data Geoobjekt entita definovaná v prostoru. Znalost jeho identifikace, lokalizace umístění v prostoru, vlastností vlastních

Více

Matematický ústav UK Matematicko-fyzikální fakulta

Matematický ústav UK Matematicko-fyzikální fakulta Geometrické modelování Zbyněk Šír Matematický ústav UK Matematicko-fyzikální fakulta 2. října 2018 Zbyněk Šír (MÚ UK) - Geometrické modelování 2. října 2018 1 / 15 Obsah dnešní přednášky Co je to geometrické

Více

Elementární křivky a plochy

Elementární křivky a plochy Příloha A Elementární křivky a plochy A.1 Analytický popis geometrických objektů Geometrické vlastnosti, které jsme dosud studovali, se týkaly především základních geometrických objektů bodů, přímek, rovin

Více

GIS Geografické informační systémy

GIS Geografické informační systémy GIS Geografické informační systémy Obsah přednášky Prostorové vektorové modely Špagetový model Topologický model Převody geometrií Vektorový model Reprezentuje reálný svět po jednotlivých složkách popisu

Více

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021 Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,

Více

Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál

Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál Jan Slovák Masarykova univerzita Fakulta informatiky 16. 9. 2008 Obsah přednášky 1 Literatura 2 Funkce a

Více

KMA/GPM Barycentrické souřadnice a

KMA/GPM Barycentrické souřadnice a KMA/GPM Barycentrické souřadnice a trojúhelníkové pláty František Ježek jezek@kma.zcu.cz Katedra matematiky Západočeské univerzity v Plzni, 2008 19. dubna 2009 1 Trojúhelníkové pláty obecně 2 Barycentrické

Více

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky

Více

Aproximační křivky. Trocha historie. geometrické modelování veliký pokrok v oblasti letectví 1944 Roy Liming

Aproximační křivky. Trocha historie. geometrické modelování veliký pokrok v oblasti letectví 1944 Roy Liming Trocha historie geometrické modelování veliký pokrok v oblasti letectví 944 Roy Liming analytik, North American Aviation (výrobce letadel) společně s konstruktérem a designérem Edgardem Schmuedem matematizace

Více

15. listopadu Matematický ústav UK Matematicko-fyzikální fakulta. Hermitovská interpolace

15. listopadu Matematický ústav UK Matematicko-fyzikální fakulta. Hermitovská interpolace Geometrické modelování Zbyněk Šír Matematický ústav UK Matematicko-fyzikální fakulta Hermitovská interpolace 15. listopadu 2017 Zbyněk Šír (MÚ UK) - Geometrické modelování 15. listopadu 2017 1 / 23 Hermiteovská

Více

Přednáška 13 Redukce dimenzionality

Přednáška 13 Redukce dimenzionality Vytěžování Dat Přednáška 13 Redukce dimenzionality Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ČVUT (FEL) Redukce dimenzionality 1 /

Více

Voronoiův diagram. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta

Voronoiův diagram. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta 12 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info Definice V( P) nad množinou bodů P { p v rovině 1,

Více

Křivky a plochy technické praxe

Křivky a plochy technické praxe Kapitola 7 Křivky a plochy technické praxe V technické praxi se setkáváme s tím, že potřebujeme křivky a plochy, které se dají libovolně upravovat a zároveň je jejich matematické vyjádření jednoduché.

Více

PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII

PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII V úvodu analytické geometrie jsme vysvětlili, že její hlavní snahou je popsat geometrické útvary (body, vektory, přímky, kružnice,...) pomocí čísel nebo proměnných.

Více

1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v

1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v . a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z xy 8 = v bodě A =, ]. b) e grafu funkce f najděte tečnou rovinu, která je rovnoběžná s rovinou ϱ. f(x, y) = x + y x, ϱ : x

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

9 Prostorová grafika a modelování těles

9 Prostorová grafika a modelování těles 9 Prostorová grafika a modelování těles Studijní cíl Tento blok je věnován základům 3D grafiky. Jedná se především o vysvětlení principů vytváření modelů 3D objektů, jejich reprezentace v paměti počítače.

Více

Omezení barevného prostoru

Omezení barevného prostoru Úpravy obrazu Omezení barevného prostoru Omezení počtu barev v obraze při zachování obrazového vjemu z obrazu Vytváření barevné palety v některých souborových formátech Různé filtry v grafických programech

Více

Aproximační křivky. Trocha historie. geometrické modelování veliký pokrok v oblasti letectví 1944 Roy Liming

Aproximační křivky. Trocha historie. geometrické modelování veliký pokrok v oblasti letectví 1944 Roy Liming Trocha historie geometrické modelování veliký pokrok v oblasti letectví 944 Roy Liming analytik, North American Aviation (výrobce letadel) společně s konstruktérem a designérem Edgardem Schmuedem matematizace

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

3. Souřadnicové výpočty

3. Souřadnicové výpočty 3. Souřadnicové výpočty 3.1 Délka. 3.2 Směrník. 3.3 Polární metoda. 3.4 Protínání vpřed z úhlů. 3.5 Protínání vpřed z délek. 3.6 Polygonové pořady. 3.7 Protínání zpět. 3.8 Transformace souřadnic. 3.9 Volné

Více

UNIVERZITA PARDUBICE. 4.4 Aproximace křivek a vyhlazování křivek

UNIVERZITA PARDUBICE. 4.4 Aproximace křivek a vyhlazování křivek UNIVERZITA PARDUBICE Licenční Studium Archimedes Statistické zpracování dat a informatika 4.4 Aproximace křivek a vyhlazování křivek Mgr. Jana Kubátová Endokrinologický ústav V Praze, leden 2012 Obsah

Více

KTE/TEVS - Rychlá Fourierova transformace. Pavel Karban. Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni

KTE/TEVS - Rychlá Fourierova transformace. Pavel Karban. Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni KTE/TEVS - Rychlá Fourierova transformace Pavel Karban Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni 10.11.011 Outline 1 Motivace FT Fourierova transformace

Více

Úvod do zpracování signálů

Úvod do zpracování signálů 1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování

Více

Jana Dannhoferová Ústav informatiky, PEF MZLU

Jana Dannhoferová Ústav informatiky, PEF MZLU Počítačová grafika 1. Definice oblasti souvisí: a) s definováním množiny všech bodů, které náleží do hranice a zároveň do jejího vnitřku b) s popisem její hranice c) s definováním množiny všech bodů, které

Více

Tajemství skalárního součinu

Tajemství skalárního součinu Tajemství skalárního součinu Jan Hamhalter http://math.feld.cvut.cz/hamhalte katedra matematiky, FEL ČVUT Otevřené Elektronické Systémy 28. února 2013 Jan Hamhalter http://math.feld.cvut.cz/hamhalte Tajemství

Více

Transformace obrazu Josef Pelikán KSVI MFF UK Praha

Transformace obrazu Josef Pelikán KSVI MFF UK Praha Transformace obrazu 99725 Josef Pelikán KSVI MFF UK Praha email: Josef.Pelikan@mff.cuni.cz WWW: http://cgg.ms.mff.cuni.cz/~pepca/ Transformace 2D obrazu dekorelace dat potlačení závislosti jednotlivých

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

5. Plochy v počítačové grafice. (Bézier, Coons)

5. Plochy v počítačové grafice. (Bézier, Coons) 5. PLOCHY V POČÍAČOVÉ GRAFICE Cíl Po prostudování této kapitoly budete umět popsat plochy používané v počítačové grafice řešit příklady z praxe, kdy jsou použity plochy Výklad Interpolační plochy - plochy,

Více

GIS Geografické informační systémy

GIS Geografické informační systémy GIS Geografické informační systémy Obsah přednášky Prostorové vektorové modely Špagetový model Topologický model Převody geometrií Vektorový model Reprezentuje reálný svět po jednotlivých složkách popisu

Více

Univerzita Pardubice 8. licenční studium chemometrie

Univerzita Pardubice 8. licenční studium chemometrie Univerzita Pardubice 8. licenční studium chemometrie Statistické zpracování dat při managementu jakosti Semestrální práce Metody s latentními proměnnými a klasifikační metody Ing. Jan Balcárek, Ph.D. vedoucí

Více

1. Cvičení: Opakování derivace a integrály

1. Cvičení: Opakování derivace a integrály . Cvičení: Opakování derivace a integrál Derivace Příklad: Určete derivace následujících funkcí. f() e 5 ( 5 cos + sin ) f () 5e 5 ( 5 cos + sin ) + e 5 (5 sin + cos ) e 5 cos + 65e 5 sin. f() + ( + )

Více

Jana Dannhoferová Ústav informatiky, PEF MZLU

Jana Dannhoferová Ústav informatiky, PEF MZLU Počítačová grafika Křivky Jana Dannhoferová (jana.dannhoferova@mendelu.cz) Ústav informatiky, PEF MZLU Základní vlastnosti křivek křivka soustava parametrů nějaké rovnice, která je posléze generativně

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

13 Barvy a úpravy rastrového

13 Barvy a úpravy rastrového 13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody

Více

Geometrické transformace

Geometrické transformace 1/15 Předzpracování v prostoru obrazů Geometrické transformace Václav Hlaváč, Jan Kybic Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

SEZNAM ANOTACÍ. CZ.1.07/1.5.00/ III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA4 Analytická geometrie

SEZNAM ANOTACÍ. CZ.1.07/1.5.00/ III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA4 Analytická geometrie SEZNAM ANOTACÍ Číslo projektu Číslo a název šablony klíčové aktivity Označení sady DUM Tematická oblast CZ.1.07/1.5.00/34.0527 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA4 Analytická

Více

Interpolace pomocí splajnu

Interpolace pomocí splajnu Interpolace pomocí splajnu Interpolace pomocí splajnu Připomenutí U interpolace požadujeme, aby graf aproximující funkce procházel všemi uzlovými body. Interpolační polynom aproximující funkce je polynom

Více

Základní vlastnosti ploch

Základní vlastnosti ploch plocha zpravidla se definuje jako výsledek spojitého pohybu jisté tvořící křivky podél zadané trajektorie lze obohatit o možnost spojitých změn tvaru tvořící křivky x v průběhu pohybu podél trajektorie

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

1 Topologie roviny a prostoru

1 Topologie roviny a prostoru 1 Topologie roviny a prostoru 1.1 Základní pojmy množin Intervaly a okolí Intervaly v rovině nebo prostoru jsou obdélníky nebo hranoly se stranami rovnoběžnými s osami souřadnic. Podmnožiny intervalů se

Více

Přehled vhodných metod georeferencování starých map

Přehled vhodných metod georeferencování starých map Přehled vhodných metod georeferencování starých map ČVUT v Praze, katedra geomatiky 12. 3. 2015 Praha Georeferencování historická mapa vs. stará mapa georeferencování umístění obrazu mapy do referenčního

Více

Obecný princip 3D numerického modelování výrubu

Obecný princip 3D numerického modelování výrubu Obecný princip 3D numerického modelování výrubu Modelovaná situace Svislé zatížení nadloží se přenáší horninovým masivem na bok tunelu Soustava lineárních rovnic Soustavou lineárních rovnic popíšeme určované

Více

Základní topologické pojmy:

Základní topologické pojmy: Křivky Marie Ennemond Camille Jordan (88 9): Křivka je množina bodů, která je surjektivním obrazem nějakého intervalu Giuseppe Peano (858 9): Zobrazení intervalu na čtverec Wacław Franciszek Sierpiński

Více

Signál v čase a jeho spektrum

Signál v čase a jeho spektrum Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě

Více

Globální matice konstrukce

Globální matice konstrukce Globální matice konstrukce Z matic tuhosti a hmotnosti jednotlivých prvků lze sestavit globální matici tuhosti a globální matici hmotnosti konstrukce, které se využijí v řešení základní rovnice MKP: [m]{

Více

Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie

Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie 12. licenční studium PYTHAGORAS Statistické zpracování dat 3.1 Matematické principy vícerozměrných metod statistické analýzy

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Cvičení z matematiky geometrie (CZMg) Systematizace a prohloubení učiva matematiky Planimetrie, Stereometrie, Analytická geometrie, Kombinatorika, Pravděpodobnost a statistika Třída: 4.

Více

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti: Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé

Více

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich

Více

Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory

Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: graf funkce, derivace funkce a její

Více

Euklidovský prostor Stručnější verze

Euklidovský prostor Stručnější verze [1] Euklidovský prostor Stručnější verze definice Eulidovského prostoru kartézský souřadnicový systém vektorový součin v E 3 vlastnosti přímek a rovin v E 3 a) eprostor-v2, 16, b) P. Olšák, FEL ČVUT, c)

Více

Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z:

Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z: PARCIÁLNÍ DERIVACE Jak derivovat reálné funkce více proměnných aby bylo možné tyto derivace použít podobně jako derivace funkcí jedné proměnné? Jestliže se okopíruje definice z jedné proměnné dostane se

Více

Algoritmy pro shlukování prostorových dat

Algoritmy pro shlukování prostorových dat Algoritmy pro shlukování prostorových dat Marta Žambochová Katedra matematiky a informatiky Fakulta sociálně ekonomická Univerzita J. E. Purkyně v Ústí nad Labem ROBUST 21. 26. leden 2018 Rybník - Hostouň

Více

7 Transformace 2D. 7.1 Transformace objektů obecně. Studijní cíl. Doba nutná k nastudování. Průvodce studiem

7 Transformace 2D. 7.1 Transformace objektů obecně. Studijní cíl. Doba nutná k nastudování. Průvodce studiem 7 Transformace 2D Studijní cíl Tento blok je věnován základním principům transformací v rovinné grafice. V následujícím textu bude vysvětlen rozdíl v přístupu k transformacím u vektorového a rastrového

Více

TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY

TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY V PROSTŘEDÍ MATLAB K. Nováková, J. Kukal FJFI, ČVUT v Praze ÚPŘT, VŠCHT Praha Abstrakt Při rozpoznávání D binárních objektů z jejich diskrétní realizace se využívají

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

2. Kinematika bodu a tělesa

2. Kinematika bodu a tělesa 2. Kinematika bodu a tělesa Kinematika bodu popisuje těleso nebo také bod, který se pohybuje po nějaké trajektorii, křivce nebo jinak definované dráze v závislosti na poloze bodu na dráze, rychlosti a

Více

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce. KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový

Více

Topografické mapování KMA/TOMA

Topografické mapování KMA/TOMA Topografické mapování KMA/TOMA ZÁPADOČESKÁ UNIVERZITA V PLZNI Fakulta aplikovaných věd - KMA oddělení geomatiky Ing. Martina Vichrová, Ph.D. vichrova@kma.zcu.cz Vytvoření materiálů bylo podpořeno prostředky

Více

III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce. a = (x 0, y 0 ), h = (h 1, h 2 ).

III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce. a = (x 0, y 0 ), h = (h 1, h 2 ). III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce = f(x 0 + h 1, y 0 + h 2 ) f(x 0, y 0 ) f u (x 0, y 0 ), kde u = (h 1, h 2 ). ( ) = f(x 0 + h 1, y 0 ) f(x 0, y 0 ) x (x 0,

Více

SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE

SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE (Řešení kruţnicových oblouků v souřadnicích) 3. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec 2015

Více

Geometrické transformace obrazu

Geometrické transformace obrazu Geometrické transformace obrazu a související témata 9. přednáška předmětu Zpracování obrazů Martina Mudrová 2004 Téma přednášk O čem bude tato přednáška? Geometrické transformace obrazu Interpolace v

Více

I. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou

I. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou Typy příkladů pro I. část písemky ke zkoušce z MA II I. Diferenciální rovnice. 1. Určete obecné řešení rovnice y = y sin x.. Určete řešení rovnice y = y x splňující počáteční podmínku y(1) = 0. 3. Rovnici

Více

Geometrické transformace pomocí matic

Geometrické transformace pomocí matic Geometrické transformace pomocí matic Pavel Strachota FJFI ČVUT v Praze 2. dubna 2010 Obsah 1 Úvod 2 Geometrické transformace ve 2D 3 Geometrické transformace ve 3D Obsah 1 Úvod 2 Geometrické transformace

Více

Matematika I 12a Euklidovská geometrie

Matematika I 12a Euklidovská geometrie Matematika I 12a Euklidovská geometrie Jan Slovák Masarykova univerzita Fakulta informatiky 3. 12. 2012 Obsah přednášky 1 Euklidovské prostory 2 Odchylky podprostorů 3 Standardní úlohy 4 Objemy Plán přednášky

Více

Minkowského operace a jejich aplikace

Minkowského operace a jejich aplikace KMA FAV ZČU Plzeň 1. února 2012 Obsah Aplikace Minkowského suma Minkowského rozdíl Minkowského součin v E 2 Minkowského součin kvaternionů Akce 22. 6. 1864-12. 1. 1909 Úvod Použití Rozmist ování (packing,

Více

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2 Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.

Více

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů...

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů... [1] Báze Každý lineární (pod)prostor má svou bázi Vzhledem ke zvolené bázi určujeme souřadnice vektorů... a) base, 4, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p.

Více

Geometrické transformace obrazu a související témata. 9. přednáška předmětu Zpracování obrazů

Geometrické transformace obrazu a související témata. 9. přednáška předmětu Zpracování obrazů Geometrické transformace obrazu a související témata 9. přednáška předmětu Zpracování obrazů Martina Mudrová 2004 Téma přednášk O čem bude tato přednáška? Geometrické transformace obrazu Interpolace v

Více

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud

Více

Katedra informatiky, Univerzita Palackého v Olomouci. 27. listopadu 2013

Katedra informatiky, Univerzita Palackého v Olomouci. 27. listopadu 2013 Katedra informatiky, Univerzita Palackého v Olomouci 27. listopadu 2013 Rekonstrukce 3D těles Reprezentace trojrozměrných dat. Hledání povrchu tělesa v těchto datech. Představení několika algoritmů. Reprezentace

Více

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních

Více

AVDAT Mnohorozměrné metody metody redukce dimenze

AVDAT Mnohorozměrné metody metody redukce dimenze AVDAT Mnohorozměrné metody metody redukce dimenze Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Opakování vlastní čísla a vlastní vektory A je čtvercová matice řádu n. Pak

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:

Více

Rasterizace je proces při kterém se vektorově definovaná grafika konvertuje na. x 2 x 1

Rasterizace je proces při kterém se vektorově definovaná grafika konvertuje na. x 2 x 1 Kapitola 4 Rasterizace objektů Rasterizace je proces při kterém se vektorově definovaná grafika konvertuje na rastrově definované obrazy. Při zobrazení reálného modelu ve světových souřadnicích na výstupní

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda okrajových prvků (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více