Pohyby částic ve vnějším poli A) Homogenní pole. qb m. cyklotronová frekvence. dt = = 0. 2 ω PČ 1
|
|
- Richard Slavík
- před 6 lety
- Počet zobrazení:
Transkript
1 Způsob popisu Pohb částic v poli vnějším Pohb částic v selfkonsistentním poli Kinetické rovnice Hdrodnamické rovnice * tekutin * 1 tekutina * magnetohdrodnamika Pohb částic ve vnějším poli A) Homogenní pole dv a) E = m qv dt = = zˆ mv = qv mv = qv m v = v q = m v v q = m v ω c z q m cklotronová frekvence PČ 1
2 = ± + v = v ep( iω t) v v ep( iω t δ ), c, c m iωc v = v = ± iv e q t v i e ω i ct = ωc v i c =± e ω ω c t Larmorův poloměr r L v = = ω c mv q při kt v = vt = m 1 r L = ( mkt ) q 1/ 1 q q mv mv μ = r Id l = I S = Sn = π n = n T π m q (,,z) grační střed DIAMAGNETIKUM PČ
3 b) E dv m q( E v ) dt = + d v = q E ±ω v dt m c E = ( E,, E ) dv dt z d dt v z = q E m =± ωcv v = ω v z c ω q E E m ω ω v =± c ± cv = c v+ d E E v v + = ωc + dt PČ 3
4 i c v = v e ω v gs - stac. E+ v = t iωct E v =± iv e E gs grační střed v gs = v E drift v E poli obecná síla např. gravitační síla 1 F mg v f = v g = q q gravitační drift různý směr pro elektron a iont ( ) g j = n M + m gravitační proud PČ 4
5 ) Nehomogenní mv mv F ˆ od = r = R R R k drift zakřivení k k F mv R 1 od k vr = = q q Rk div = rot = zakřivené pole nemůže být konstantní a) ( ) grad- drift z = z = +Δ lineární aproimace pole při pohbu částice po Larmorově kružnici F = qv z( ) = qv cos ct ± rl cos ct ( ω ) ( ω ) PČ 5
6 = + ( r ) +... z = + ( z ) +... cos ωct = 1 mv 1 F =± qv rl = v =± v rl 1 často se drift zakřivení a grad- drift doplňují Rk m Rk 1 v v v v + R = + R qr k k b) Magnetická zrcadla clindrická smetrie div = z 1 z z ( rr ) + = r r z => v okolí os r z r r = z r PČ 6
7 v r θ rl mv Fz = qv r = qv = μ? μ = J S Invariantnost μ S μ m = πr = π q v L F μ = (s dráha podél siločár) μ 1 mv μ magnetický moment q qωc q J = = = T π π m dv d 1 v d m = μ m = μ v = μ dt s dt s dt d 1 1 d 1 d d dμ m + m = m + μ = μ + ( μ) = = dt dt dt dt dt adiabatický invariant Kde se odrazí částice s v z oblasti? 1 1 v v v mv = mv v = v = v PČ 7
8 v v = = sin v v θ sin 1 θ m = = m Rm kde Rm je zrcadlový poloměr, definuje únikový kužel pro nezachtí., θ < θm se částice Adiabatický invariant veličina, která se při pomalých prostorových a časových změnách sstému zachovává. Klasická mechanika při periodickém pohbu se akce J = pdq zachovává. Grační pohb p = mv; q = π ω c π mv mπ J = mvd= mv sin ( ωct) dt = = μ μ = konst. ω q Kd se adiabatický invariant nezachovává? a) cklotronový ohřev ω ω c, E, osciluje ω << ωc neplatí μ konst. c PČ 8
9 b) magnetické čerpání se sinusově mění v čase, srážkami se invariantnost μ poruší Pokud ke srážce dojde při kompresi (zvětšení pole), tak v v při epanzi se ale v nezmění c) vstřícná zrcadla uprostřed = ω c = μ konst. PČ 9
10 Druhý adiabatický invariant a,b bod obratu b J = v ds podélný invariant a Třetí adiabatický invariant v,v R, J R k 3 v d - drift ve směru úhlu ϕ = dl 3. adiabat. invariant PČ 1
11 C) Nehomogenní E E = ˆ cos k E = z ˆ dv ( m = q E( ) + v ) = ± rlcosω ct dt E v = = ωc v ωc cos k( ± rlcos ωct) 1 cosk 1 k r 4 L E 1 1 E ve = 1 kr 1 L = + rl 4 4 Polarizační drift (časově proměnné E) E E t = zˆ Et () = Et ˆ PČ 11
12 mv = qe+ qv v= v + v ˆ E+ v ˆ předpoklad v p = konst. p m( v+v ) ˆ ˆ ˆ E = qet + qv qve + qvp mv = qv cklotronová rotace mv v ˆ E = q p v p = polarizační drift = qet ˆ v ˆ s qs E v E E drift Et E E me 1 m v ˆ ˆ E= = v v E = p = = E q q m d M i 1 de v = E J = n e(v v ) = m + q dt Z dt p p e pi pe e PČ 1
13 PONDEROMOTORICKÁ SÍLA = nízkofrekvenční síla, která působí na nabité částice v nehomogenním vsokofrekvenčním poli. Energie oscilací nabitých částic ve vsokofrekvenčním poli je dána polohou částice je ted jakousi potenciální energií U a eistuje síla F = U, která vhání nabité částice z oblasti silného pole. Ponderomotorická síla působí na každé dielektrikum, jehož permitivita závisí na hustotě (elektrostrikce)!! Nejprve odvodíme pro podélné pole E s frekvencí ω : E = E ˆ ( )cosωt m = qe = qe ( )cosωt = = + 1 Provedeme linearizaci změn pole na vzdálenosti 1 a napíšeme pohbové rovnice de m ( + 1) = q E + 1 cosωt d PČ 13
14 qe q de q E de m qe t t t ω ω Na částici ted působí nízkofrekvenční síla F p 1 = cosω 1 = cosω = 1cosω = q d = E 4mω d m m d m d F p = W 1 1 qe 1 q Wosc = mv = m t = E m ω 4 mω osc cos ω síla rovná gradientu potenciální energie Pro příčnou elektromagnetickou vlnu je odvození jiné rot E + = E = E ˆ ( z)cosωt t = ˆ ( z)sinωt Ecosωt+ ωcosωt = z ale síla je dána úplně stejným vzorcem PČ 14
15 qe 1 q F = qv = zˆ t = z E mω mω 1 = E ω z sin ω ˆ 1 q F = zˆ E E mω z 1 q F = zˆ E 4 mω Eistuje též vsokofrekvenční síla s frekvencí ω. Pro pole s frekvencemi síl se součtem a rozdílem ω. PČ 15
m cyklotronová frekvence
Způsob popisu Pohb části poli nějším Pohb části selfonsistentním poli Kinetié ronie Hdrodnamié ronie * teutin * 1 teutina * magnetohdrodnamia Pohb části e nějším poli A) Homogenní pole a) E = d m q dt
qb m cyklotronová frekvence
Způsob popisu Pohb části poli nějším Pohb části selfonsistentním poli Kinetié ronie Hdrodnamié ronie * teutin * 1 teutina * magnetohdrodnamia Pohb části e nějším poli A) Homogenní pole a) E = d m q = =
Plazma v kosmickém prostoru
Plazma v kosmickém prostoru Literatura F. F. Chen, Úvod do fyziky plazmatu Academia, Praha, 1984 D. A. Gurnett, A. Bhattacharjee, Introduction to Plasma Physics: With Space and Laboratory Applications
Gyrační poloměr jako invariant relativistického pohybu. 2 Nerovnoměrný pohyb po kružnici v R 2
Gyrační poloměr jako invariant relativistického pohybu nabité částice v konfiguraci rovnoběžného konstantního vnějšího elektromagnetického pole 1 Popis problému Uvažujme pohyb nabité částice v E 3 v takové
Záření KZ. Význam. Typy netermálního záření. studium zdrojů a vlastností KZ. energetické ztráty KZ. synchrotronní. brzdné.
Zářivé procesy Podmínky vyzařování, Larmorův vzorec, Thomsonův rozptyl, synchrotronní záření, brzdné záření, Comptonův rozptyl, čerenkovské záření, spektum zdroje KZ Záření KZ Význam studium zdrojů a vlastností
Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí
Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí Rovinné vlny 1 Při diskusi o řadě jevů je výhodné vycházet z rovinných vln. Vlny musí splňovat Maxwellovy rovnice
KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.
MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve
Vlny v plazmatu. Narušení rovnováhy, perturbace se šíří prostorem => vlny Vlna musí být řešením příslušných rovnic plazmatu => módy
Vlny v plazmatu Narušení rovnováhy, perturbace se šíří prostorem => vlny Vlna musí být řešením příslušných rovnic plazmatu => módy Jakákoli perturbace A( x,t může být reprezentována jako kombinace rovinných
Úvod do laserové techniky
Úvod do laserové techniky Světlo jako elektromagnetické záření I. část Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze jan.sulc@fjfi.cvut.cz 5. října 2016 Kontakty Ing. Jan
V elektrostatickém poli jsme se zabývali vznikem a vlastnostmi pole v blízkosti nábojů. Elektrické pole jsme popisovali vektorem E.
MAGNETICKÉ POLE V elektrostatickém poli jsme se zabývali vznikem a vlastnostmi pole v blízkosti nábojů. Elektrické pole jsme popisovali vektorem E. Podobně i magnety vytvářejí pole v každém bodě prostoru.
Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r
Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory
Přehled veličin elektrických obvodů
Přehled veličin elektrických obvodů Ing. Martin Černík, Ph.D Projekt ESF CZ.1.7/2.2./28.5 Modernizace didaktických metod a inovace. Elektrický náboj - základní vlastnost některých elementárních částic
Vznik a šíření elektromagnetických vln
Vznik a šíření elektromagnetických vln Hlavní body Rozšířený Coulombův zákon lektromagnetická vlna ve vakuu Zdroje elektromagnetických vln Přehled elektromagnetických vln Foton vlna nebo částice Fermatův
Úvod do laserové techniky
Úvod do laserové techniky Světlo jako elektromagnetické záření I. část Michal Němec Katedra fyzikální elektroniky České vysoké učení technické v Praze michal.nemec@fjfi.cvut.cz Kontakty Ing. Michal Němec,
Přijímací zkouška na navazující magisterské studium 2015
Přijímací zkouška na navazující magisterské studium 205 Studijní program: Studijní obory: Fyzika FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Pro funkci f(x) := e x 2. Určete definiční
Plazma. magnetosféra komety. zbytky po výbuchu supernovy. formování hvězdy. slunce
magnetosféra komety zbytky po výbuchu supernovy formování hvězdy slunce blesk polární záře sluneční vítr - plazma je označována jako čtvrté skupenství hmoty - plazma je plyn s významným množstvím iontů
Laserová technika prosince Katedra fyzikální elektroniky.
Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program
LABORATORNÍ MODULY katedra fyziky FEL ČVUT v Praze
LABORATORNÍ MODULY katedra fyziky FEL ČVUT v Praze Sluneční plachetnice Elektrostatický most Magnetické bludiště Dopplerův jev Doppler effect Planckova konstanta Pohyb elektronu Drifty částic Tyto materiály
b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0
Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:
MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1,
MATEMATIKA III Program - vojný integrál. Vpočtěte dvojrozměrné integrál v obdélníku : + dd = { < > < > } ( 3), (, ) : 0,, 0,, dd = { < > < > } ( 4 ), (, ) :,3,,, + dd = { < > < > } ( ), (, ):,0,,, + dd=
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil Peter Dourmashkin MIT 006, překlad: Jan Pacák (007) Obsah 6. MAGNETICKÁ SÍLA A MOMENT SIL 3 6.1 ÚKOLY 3 ÚLOHA 1: HMOTNOSTNÍ
Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e =
Atom vodíku Nejjednodušší soustava: p + e Řešitelná exaktně Kulová symetrie Potenciální energie mezi p + e V 2 e = 4πε r 0 1 Polární souřadnice využití kulové symetrie atomu Ψ(x,y,z) Ψ(r,θ, φ) x =? y=?
Skalární a vektorový popis silového pole
Skalární a vektorový popis silového pole Elektrické pole Elektrický náboj Q [Q] = C Vlastnost materiálových objektů Interakce (vzájemné silové působení) Interakci (vzájemné silové působení) mezi dvěma
1. Cvičení: Opakování derivace a integrály
. Cvičení: Opakování derivace a integrál Derivace Příklad: Určete derivace následujících funkcí. f() e 5 ( 5 cos + sin ) f () 5e 5 ( 5 cos + sin ) + e 5 (5 sin + cos ) e 5 cos + 65e 5 sin. f() + ( + )
14 Pohyb hmotného bodu v rovině je určen rovnicemi. kde Raωjsoukonstanty.Určeterychlost vazrychlení a.ukažte,že v= ωr,
Kinematika 1 Dvahmotnébody AaBsezačnousoučasnězklidupohybovatstejnýmsměrem pojednépřímce.počátečnívzdálenostbodůbyla s=4m.bod Asepohybuje rovnoměrněpřímočařerychlostí v=6ms 1,bod Bsepohybujerovnoměrně
FYZIKA II. Petr Praus 7. Přednáška stacionární magnetické pole náboj v magnetickém poli
FYZIKA II Petr Praus 7. Přednáška stacionární magnetické pole náboj v magnetickém poli Osnova přednášky Stacionární magnetické pole Lorentzova síla Hallův jev Pohyb a urychlování nabitých částic (cyklotron,
frekvence f (Hz) perioda T = 1/f (s)
1.) Periodický pohyb - každý pohyb, který se opakuje v pravidelných intervalech Poet Poet cykl cykl za za sekundu sekundu frekvence f (Hz) perioda T 1/f (s) Doba Doba trvání trvání jednoho jednoho cyklu
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU
VZÁJEMNÉ SILOVÉ PŮSOBENÍ VODIČŮ S PROUDEM A MAGNETICKÉ POLE
Příklady: 1A. Jakou silou působí homogenní magnetické pole na přímý vodič o délce 15 cm, kterým prochází proud 4 A, a svírá s vektorem magnetické indukce úhel 60? Velikost vektoru magnetické indukce je
Úvod do vln v plazmatu
Úvod do vln v plazmatu Co je to vlna? (fázová a grupová rychlost) Přehled vln v plazmatu Plazmové oscilace Iontové akustické vlny Horní hybridní frekvence Elektrostatické iontové cyklotronové vlny Dolní
Průhyb ocelového nosníku. Nezatížený a rovnoměrně zatížený nosník
EVROPSKÝ SOCIÁLNÍ FOND Průhyb ocelového nosníku. Nezatížený a rovnoměrně zatížený nosník PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI České vysoké učení technické v Praze, Fakulta stavební, Katedra matematiky
13. cvičení z Matematické analýzy 2
. cvičení z atematické analýz 2 5. - 9. května 27. konzervativní pole, potenciál Dokažte, že následující pole jsou konzervativní a najděte jejich potenciál. i F x,, z x 2 +, 2 + x, ze z, ii F x,, z x 2
LABORATORNÍ MODULY katedra fyziky FEL ČVUT v Praze
LABORATORNÍ MODULY katedra fyziky FEL ČVUT v Praze Sluneční plachetnice Elektrostatický most Magnetické bludiště Dopplerův jev Doppler effect Planckova konstanta Pohyb elektronu Drifty částic Tyto materiály
plochy oddělí. Dále určete vzdálenost d mezi místem jeho dopadu na
Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností
Projekty - Vybrané kapitoly z matematické fyziky
Projekty - Vybrané kapitoly z matematické fyziky Klára Švarcová klara.svarcova@tiscali.cz 1 Obsah 1 Průlet tělesa skrz Zemi 3 1.1 Zadání................................. 3 1. Řešení.................................
Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I. Mechanika hmotného bodu
Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I Mechanika hmotného bodu Autor: Kateřina Kárová Text vznikl v rámci bakalářské práce roku 2006. Návod na práci s
Kvantová fyzika atomárních soustav letní semestr VIII. KOTLÁŘSKÁ 23. DUBNA 2014
F40 Kvantová fyzika atomárních soustav letní semestr 03-04 VIII. Vibrace víceatomových molekul cvičení KOTLÁŘSKÁ 3. DUBNA 04 Úvodem capsule o maticích a jejich diagonalisaci definice "vibračních módů"
Příklad 3 (25 bodů) Jakou rychlost musí mít difrakčním úhlu 120? -částice, abychom pozorovali difrakční maximum od rovin d hkl = 0,82 Å na
Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností
1.8. Mechanické vlnění
1.8. Mechanické vlnění 1. Umět vysvětlit princip vlnivého pohybu.. Umět srovnat a zároveň vysvětlit rozdíl mezi periodickým kmitavým pohybem jednoho bodu s periodickým vlnivým pohybem bodové řady. 3. Znát
Diferenciáln. lní geometrie ploch
Diferenciáln lní geometrie ploch Vjádřen ení ploch Eplicitní: z = f(,) ; [,] Ω z Implicitní: F(,,z)=0 + + z = r z = sin 0, π ; 0,1 Implicitní ploch bloob objects,, meta balls Izoploch: F(,,z)=konst. Implicitní
MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)
MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015 doplněné o další úlohy 13. 4. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( e-mail: Frantisek.Mraz@fs.cvut.cz.
1 Rozdělení mechaniky a její náplň
1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů
Theory Česky (Czech Republic)
Q3-1 Velký hadronový urychlovač (10 bodů) Než se do toho pustíte, přečtěte si prosím obecné pokyny v oddělené obálce. V této úloze se budeme bavit o fyzice částicového urychlovače LHC (Large Hadron Collider
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Posuvný proud a Poyntingův vektor
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Posuvný proud a Poyntingův vektor Peter Dourmashkin MIT 006, překlad: Jan Pacák (007) Obsah 10. POSUVNÝ PROUD A POYNTINGŮV VEKTOR 3 10.1 ÚKOLY 3 10. POSUVNÝ
Řešení : Těleso T je elementárním oborem integrace vzhledem k rovině (x,y) a proto lze přímo aplikovat Fubiniovu větu pro trojný integrál.
E. rožíková, M. Kittlerová, F. Mrá: Sbírka příkladů Matematik II (6 III.6. Aplikace trojných integrálů Příklad 6. Užitím vorce pro výpočet objemu tělesa pomocí trojného integrálu (tj.v ddd ukažte, že objem
Úvod do nebeské mechaniky
OPT/AST L09 Úvod do nebeské mechaniky pohyby astronomických těles ve společném gravitačním poli obecně: chaotický systém nestabilní numerické řešení speciální případ: problém dvou těles analytické řešení
F n = F 1 n 1 + F 2 n 2 + F 3 n 3.
Plošný integrál Několik pojmů Při našich úvahách budeme často vužívat skalární součin dvou vektorů. Platí F n F n cos α, kde α je úhel, který svírají vektor F a n. Vidíme, že pokud je tento úhel ostrý,
Mechanika - kinematika
Mechanika - kinematika Hlavní body Úvod do mechaniky, kinematika hmotného bodu Pohyb přímočarý rovnoměrný rovnoměrně zrychlený. Pohyb křivočarý. Pohyb po kružnici rovnoměrný rovnoměrně zrychlený Pohyb
Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Diskontinuity a šoky
Diskontinuity a šoky tok plazmatu Oblast 1 Oblast ( upstream ) ( downstream ) ρu Uu Bu pu ρd Ud Bd pd hranice mezi oblastmi může tu docházet k disipaci (růstu entropie a nevratným změnám) není popsatelná
Necht na hmotný bod působí pouze pružinová síla F 1 = ky, k > 0. Podle druhého Newtonova zákona je pohyb bodu popsán diferenciální rovnicí
Počáteční problémy pro ODR2 1 Lineární oscilátor. Počáteční problémy pro ODR2 Uvažujme hmotný bod o hmotnosti m, na který působí síly F 1, F 2, F 3. Síla F 1 je přitom úměrná výchylce y z rovnovážné polohy
KABELOVÉ VLASTNOSTI BIOLOGICKÝCH VODIČŮ. Helena Uhrová
KABELOVÉ VLASTNOSTI BIOLOGICKÝCH VODIČŮ Helena Uhrová 19. století Lord Kelvin 1870 - Hermann namodelování elektrického napětí na nervovém vlákně 20. stol - Hermann a Cremer nezávisle na sobě rozpracovali
FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D.
s 1 = d t 2 t 1 t 2 = 71 m. (2) t 3 = d v t t 3 = t 1t 2 t 2 t 1 = 446 s. (3) s = v a t 3. d = m.
Řešení úloh 1. kola 58. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů 1.a) Označme v a velikost rychlosti atleta, v t velikost rychlosti trenéra. Trenér do prvního setkání ušel dráhu s 1
TECHNIKA VYSOKÝCH NAPĚŤÍ. #4 Elektrické výboje v elektroenergetice
TECHNIKA VYSOKÝCH NAPĚŤÍ #4 Elektrické výboje v elektroenergetice Korónový výboj V homogenním elektrickém poli dochází k celkovému přeskoku mezi elektrodami najednou U nehomogenních uspořádání dochází
Příklady Kosmické záření
Příklady Kosmické záření Kosmické částice 1. Jakou kinetickou energii získá proton při pádu z nekonečné výšky na Zem? Poloměr Zeměje R Z =637810 3 maklidováenergieprotonuje m p c 2 =938.3MeV. 2. Kosmickékvantum
11. cvičení z Matematické analýzy 2
11. cvičení z Mtemtické nlýzy 1. - 1. prosince 18 11.1 (cylindrické souřdnice) Zpište integrály pomocí cylindrických souřdnic pk je spočítejte: () x x x +y (x + y ) dz dy dx. (b) 1 1 x 1 1 x x y (x + y
S p e c i f i c k ý n á b o j e l e k t r o n u. Z hlediska mechanických účinků je magnetická síla vlastně silou dostředivou.
S p e c i f i c k ý n á b o j e l e k t r o n u Ú k o l : Na základě pohybu elektronu v homogenním magnetickém poli stanovit jeho specifický náboj. P o t ř e b y : Viz seznam v deskách u úlohy na pracovním
Hlavní body - elektromagnetismus
Elektromagnetismus Hlavní body - elektromagnetismus Lorenzova síla, hmotový spektrograf, Hallův jev Magnetická síla na proudovodič Mechanický moment na proudovou smyčku Faradayův zákon elektromagnetické
Derivace goniometrických funkcí
Derivace goniometrických funkcí Shrnutí Jakub Michálek, Tomáš Kučera Odvodí se základní vztahy pro derivace funkcí sinus a cosinus za pomoci věty o třech itách, odvodí se také několik typických it pomocí
Fyzikální korespondenční seminář UK MFF 22. II. S
Fzikální korespondenční seminář UK MFF http://fkosmffcunicz II S ročník, úloha II S Young a vlnová povaha světla (5 bodů; průměr,50; řešilo 6 studentů) a) Jaký tvar interferenčních proužků na stínítku
MATEMATIKA II - vybrané úlohy ze zkoušek v letech
MATEMATIKA II - vybrané úlohy ze zkoušek v letech 2009 2012 doplněné o další úlohy 3. část KŘIVKOVÉ INTEGRÁLY, GREENOVA VĚTA, POTENIÁLNÍ POLE, PLOŠNÉ INTEGRÁLY, GAUSSOVA OSTROGRADSKÉHO VĚTA 7. 4. 2013
14. cvičení z Matematické analýzy 2
4. cvičení z atematické analýzy 2 8. - 2. ledna 28 4. (Greenova věta) Použijte Greenovu větu k nalezení práce síly F (x, y) (2xy 3, 4x 2 y 2 ) vykonané na částici podél křivky Γ, která je hranicí oblasti
Část 3. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič, MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA
HYDROMECHANIKA HYDROSTATIKA základní zákon hdrostatik Část 3 Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič, MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA Hdrostatika - obsah Základn
Fyzika II, FMMI. 1. Elektrostatické pole
Fyzika II, FMMI 1. Elektrostatické pole 1.1 Jaká je velikost celkového náboje (kladného i záporného), který je obsažen v 5 kg železa? Předpokládejme, že by se tento náboj rovnoměrně rozmístil do dvou malých
Úvod do laserové techniky
Úvod do laserové techniky Světlo jako elektromagnetické záření II. část Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze jan.sulc@fjfi.cvut.cz 6. října 016 Kontakty Ing. Jan
Technika vysokých napětí. Elektrické výboje v elektroenergetice
Elektrické výboje v elektroenergetice Korónový výboj V homogenním elektrickém poli dochází k celkovému přeskoku mezi elektrodami najednou U nehomogenních uspořádání dochází k optickým a akustickým projevům
Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.
U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek
Přijímací zkouška na navazující magisterské studium 2017 Studijní program: Fyzika Studijní obory: FFUM
Přijímací zkouška na navazující magisterské studium 207 Studijní program: Fyzika Studijní obory: FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Nechť (a) Spočtěte lim n x n. (b)
PLANCK EINSTEIN BOHR de BROGLIE
KVANTOVÁ MECHANIKA PLANCK 1858-1947 EINSTEIN 1879-1955 BOHR 1885-1962 de BROGLIE 1892-1987 HEISENBERG 1901-1976 SCHRÖDINGER 1887-1961 BORN 1882-1970 JORDAN 1902-1980 PAULI 1900-1958 DIRAC 1902-1984 VŠECHNO
FYZIKA I. Gravitační pole. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERITA OSTRAVA FAKULTA STROJNÍ FYIKA I Gravitační pole Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar Mádrová
Příloha-výpočet motoru
Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ
Téma: Dynamika - Úvod do stavební dynamiky
Počítačová podpora statických výpočtů Téma: Dynamika - Úvod do stavební dynamiky 1) Úlohy stavební dynamiky 2) Základní pojmy z fyziky 3) Základní zákony mechaniky 4) Základní dynamická zatížení Katedra
K přednášce NUFY028 Teoretická mechanika prozatímní učební text, verze 01 10. Spojitá prostředí: rovnice struny Leoš Dvořák, MFF UK Praha, 2014
K přednášce NUFY8 Teoretická mechanika prozatímní učební text, verze 1 1 Spojitá prostředí: rovnice strun Leoš Dvořák, MFF UK Praha, 14 Spojitá prostředí: rovnice strun Dosud jsme se zabývali pohbem soustav
počátek 17. století, Johannes Kepler: 19. století: počátek 20. století: 1951, Ludwig Biermann:
Sluneční vítr počátek 17. století, Johannes Kepler: 19. století: sluneční aktivita ovlivňuje geomagnetickou aktivitu (pozorování Slunce + detekování změn magnetického pole měřeného na Zemi + polární záře)
Vibrace atomů v mřížce, tepelná kapacita pevných látek
Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární
Urychlení KZ. Obecné principy, Fermiho urychlení, druhý řád, první řád, spektrum
Urychlení KZ Obecné principy, Fermiho urychlení, druhý řád, první řád, spektrum Obecné principy Netermální vznik nekompatibilní se spektrem KZ nerealistické teploty E k =3/2 k B T, Univerzalita tvaru spektra
Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m
Řešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1,, 3, 4, 7), J. Jírů (5), P. Šedivý (6) 1.a) Je-li pohyb kuličky rovnoměrně zrychlený, bude pro uraženou dráhu
Neideální plyny. Z e dr dr dr. Integrace přes hybnosti. Neideální chování
eideální plyny b H Q(, V, T )... e dp 3... dpdr... dr! h Integrace přes hybnosti QVT (,, ) pmkt! h 3 / e dr dr dr /... U kt... eideální chování p kt r B ( T) r B ( T) r 3 3 Vyšší koeficinety velice složité
i j antisymetrický tenzor místní rotace částice jako tuhého tělesa. Každý pohyb částice lze rozložit na translaci, deformaci a rotaci.
KOHERENTNÍ STRUKTURY Kinematika proudění Rozhodující je deformace částic tekutiny wi wi ( x j + dx j, t) = wi ( x j, t) + dx j x j tenzor rychlosti deformace: wi 1 w w i j w w i j 1 = + + = sij + r x j
3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky
3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -
ÚVOD DO TERMODYNAMIKY
ÚVOD DO TERMODYNAMIKY Termodynamika: Nauka o obecných zákonitostech, kterými se se řídí transformace CELKOVÉ energie makroskopických systémů v její různé formy. Je založena na výsledcích experimentílních
Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je:
Přijímací zkouška na navazující magisterské studium - 16 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Jak dlouho bude padat
Dvojné a trojné integrály příklad 3. x 2 y dx dy,
Spočtěte = { x, y) ; 4x + y 4 }. Dvojné a trojné integrály příklad 3 x y dx dy, Řešení: Protože obor integrace je symetrický vzhledem k ose x, tj. vzhledem k substituci [x; y] [x; y], a funkce fx, y) je
Vlastní čísla a vlastní vektory
5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi
Funkce dvou proměnných
Funkce dvou proměnných Funkce dvou proměnných harmonická vlna Postupné příčné vlnění T=2, = 2 ( t, ) Asin t 2 Asin t T v t Asin 2 T Počátek koná harmonický pohb, ten se šíří dál řadou oscilátorů ve směru
ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi
ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi Peter Dourmashkin MIT 26, překlad: Vladimír Scholtz (27) Obsah KONTROLNÍ OTÁZKY A ODPOVĚDI 2 OTÁZKA 61: RL OBVOD 2 OTÁZKA 62: LC OBVOD 2 OTÁZKA 63: LC
4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul
Fyzika 20 Otázky za 2 body. Celsiova teplota t a termodynamická teplota T spolu souvisejí známým vztahem. Vyberte dvojici, která tento vztah vyjadřuje (zaokrouhleno na celá čísla) a) T = 253 K ; t = 20
ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0
Kmity základní popis kmitání je periodický pohyb, při kterém těleso pravidelně prochází rovnovážnou polohou mechanický oscilátor zařízení vykonávající kmity Základní veličiny Perioda T [s], frekvence f=1/t
Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů
Kapitoly z fyzikální chemie KFC/KFCH I. Základní pojmy FCH a kinetická teorie plynů RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Zkouška a doporučená literatura Ústní kolokvium Doporučená literatura
Fyzika 6. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. témata / učivo. očekávané výstupy RVP. očekávané výstupy ŠVP
očekávané výstupy RVP témata / učivo 1. Časový vývoj mechanických soustav Studium konkrétních příkladů 1.1 Pohyby družic a planet Keplerovy zákony Newtonův gravitační zákon (vektorový zápis) pohyb satelitů
Řešení úloh 1. kola 47. ročníku fyzikální olympiády. Kategorie B
Řešení úloh 1. kola 47. ročníku fyzikální olympiády. Kategorie B Autořiúloh:P.Šedivý(1,2,4,6,7)aM.Jarešová(3,5) 1. a) Má-li být vlákno stále napnuto, nesmí být amplituda kmitů větší než prodloužení vláknavrovnovážnépoloze.zdeplatí
Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9
Obsah 1 Kmitavý pohyb 1 Kinematika kmitavého pohybu 3 Skládání kmitů 6 4 Dynamika kmitavého pohybu 7 5 Přeměny energie v mechanickém oscilátoru 9 6 Nucené kmity. Rezonance 10 1 Kmitavý pohyb Typy pohybů
Přijímací zkouška pro nav. magister. studium, obor učitelství F-M, 2012, varianta A
Přijímací zkouška pro nav. magister. studium, obor učitelství F-M, 1, varianta A Příklad 1 (5 bodů) Koule o poloměru R1 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční
Jednokapalinové přiblížení (MHD-magnetohydrodynamika)
Jenokapalinové přiblížení (HD-magnetohyroynamika) Zákon zachování hmoty zákony zachování počtu elektronů a iontů násobeny hmotnostmi a sečteny n e + iv = ( nu ) ni + iv( nu i i) = e e iv ( u ) (1) t ρ
I. část - úvod. Iva Petríková
Kmitání mechanických soustav I. část - úvod Iva Petríková Katedra mechaniky, pružnosti a pevnosti Osah Úvod, základní pojmy Počet stupňů volnosti Příklady kmitavého pohyu Periodický pohy Harmonický pohy,
ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 7
ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 7 Peter Dourmashkin MIT 6, překlad: Vítězslav Kříha (7) Obsah SADA 7 ÚLOHA 1: HMOTNOSTNÍ SPEKTROMETR ÚLOHA : LEVITACE CÍVKY ÚLOHA : STŘELKA KOMPASU ŘEŠENÍ ÚLOH 4 ÚLOHA
ÚVOD DO MODELOVÁNÍ V MECHANICE DYNAMIKA ROTUJÍCÍCH SYSTÉMŮ
ÚVOD DO MODELOVÁNÍ V MECHANICE Přednáška č. 3 DYNAMIKA ROTUJÍCÍCH SYSTÉMŮ Prof. Ing. Vladimír Zeman, DrSc. OBSAH 1. Úvod. Základní výpočtový model v rotujícím prostoru 3. Základní výpočtový model rotoru
(1 + v ) (5 bodů) Pozor! Je nutné si uvědomit, že v a f mají opačný směr! Síla působí proti pohybu.
Přijímací zkouška na navazující magisterské studium - 017 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Těleso s hmotností
5.8 Jak se změní velikost elektrické síly mezi dvěma bodovými náboji v případě, že jejich vzdálenost a) zdvojnásobíme, b) ztrojnásobíme?
Elektrostatika 1 1) Co je elektrický náboj? 2) Jaké znáš jednotky elektrického náboje? 3) Co je elementární náboj? Jakou má hodnotu? 4) Jak na sebe silově působí nabité částice? 5) Jak můžeme graficky