ZOHLEDNĚNÍ DYNAMICKÝCH ÚČINKŮ KMITÁNÍ K DIMENZOVÁNÍ OSTĚNÍ KOLEKTORU
|
|
- Kateřina Marková
- před 6 lety
- Počet zobrazení:
Transkript
1 Zdeněk Kaláb 1,2, Roman Marek 1 a Martin Stolárik 1 1 VŠB Technická univerzita Ostrava, fakulta stavební 2 Ústav geoniky, v.v.i., Akademie věd České republiky Ostrava ZOHLEDNĚNÍ DYNAMICKÝCH ÚČINKŮ KMITÁNÍ K DIMENZOVÁNÍ OSTĚNÍ KOLEKTORU Abstract Implementation of dynamic manifestations of vibrations to design collector reveal This paper deals with basis of design and actions on structures, especially by dynamic loading. First part represents description of general accesses to including seismic effect into consideration for design of collector reveal. The main part is paid to experimental measurements. First one documents seismic effects generated by traffic (seismic stations were situated both on surface and in collector) and by vibratory roller (surface measurement). Dynamic coefficient is used to introduction of seismic loading into mathematic models. Úvod Příspěvek popisuje základní přístupy, které je možno využít k dimenzování ostění kolektoru. Kolektory jsou specifická podzemní díla menších rozměrů, nacházejí se relativně mělce pod povrchem, často i pod městskou zástavbou. Navrhnout ostění takovéto konstrukce znamená vyřešit otázky zatížení, návrhu výztuže a posouzení. Zatížení se podle svého charakteru nebo podle odezvy konstrukce rozdělují na statická zatížení, která nezpůsobují významná zrychlení kmitání konstrukce nebo konstrukčního prvku, a dynamická zatížení, která způsobují významná zrychlení kmitání konstrukce nebo konstrukčního prvku. Často jsou dynamické účinky zatížení vypočítány z kvazistatických zatížení, která jsou určena navýšením velikosti statických zatížení nebo přidáním ekvivalentních statických zatížení. Některá zatížení, a k nim se počítají také seizmická zatížení, jsou považována za mimořádná nebo nahodilá zatížení. 102
2 Nejsložitější úlohou při výstavbě kolektorů je stanovení zatížení výztuže. U kolektorů jsou nejzávažnější zatížení stálá, a to především tíha ostění, horninový tlak a přitížení stavebními objekty. Z nahodilých dlouhodobých zatížení by měl být brán v potaz hlavně tlak podzemní vody a zatížení technologickým vybavením. Specifickým typem zatížení, jak již bylo uvedeno, jsou zatížení dynamická. Tato nahodilá krátkodobá zatížení mohou být vyvolána např. povrchovou dopravou, hutnícími stroji nebo stroji v továrnách. Specifikem jsou samozřejmě oblasti s aktivní seizmicitou nebo oblasti s indukovanou seizmicitou, například vyvolanou důlní činností. Je však nutné podotknout, že můžeme očekávat i další nepředvídatelné situace. Celkové zatížení musí reprezentovat nejnepříznivější kombinaci jednotlivých zatížení. Zatížení kolektoru Z výše uvedených zatížení je nejobtížněji stanovitelným zatížením kolektoru horninový tlak a dynamické zatížení. K výpočtu zatížení horninovým tlakem existuje mnoho teorií a výpočetních postupů, více či méně složitých. Pro potřeby navrhování kolektorů se však v současnosti nejvíce osvědčily klasické výpočetní teorie, v čele s teoriemi Protodjakonova, Terzaghiho, Bierbaumera, Ketterera ap. Popis těchto metod lze nalézt např. v [1]. Složitější úlohy jsou řešeny matematickým modelováním, nejčastěji metodou konečných prvků, na jejichž základě pracují např. výpočetní programy Plaxis a Caesar. Dynamickému zatížení, ač je jeho vliv na podzemní konstrukce zpravidla mnohonásobně menší než u zatížení horninovým tlakem, se v poslední době začíná věnovat větší pozornost, zvláště pak u dimenzování kolektorů. Tento typ zatížení patří mezi nepřímá zatížení, tj. vynucené nebo omezené deformace nebo vynucené kmitání (přímé zatížení představuje síla působící na konstrukci). Stanovit velikost ovlivnění ostění dynamickým zatížením není jednoduché, nejčastěji jsou uvažovány následující způsoby: Přepočet ze záznamu vlnového obrazu (zpravidla záznam podélných a příčných vln) na tahová a tlaková, resp. smyková napětí [2], ale složitost výpočtu společně s množstvím konstant a neznámých dělá tuto metodu pro praxi nepoužitelnou. Využití výpočetních programů, které dokáží dynamické účinky matematicky modelovat. Vstupními parametry pak jsou základní charakteristiky dynamického 103
3 působení, jako např. převládající frekvence vibrací, maximální amplituda kmitání, rychlosti či zrychlení atd. Mezi takovéto programy patří už dříve zmiňované programové systémy Plaxis, Caesar, ale i další (např. ANSYS). Možnost zavedení dynamického součinitele γ a, který umožňuje zohlednit dynamické zatížení úpravou hodnoty gravitačního zrychlení. V místě navrhované konstrukce je definován vztah mezi gravitačním zrychlením a vyvolanou akcelerací ve tvaru γ a ( a d + g) =, kde a d je dynamické zrychlení [m s -2 ] a g je gravitační g zrychlení [g= 9,80665 m s -2 ]. Poslední uvedený způsob vychází z metody dílčích součinitelů pro navrhování a zatížení konstrukcí podle koncepce mezních stavů. Tento princip je běžně používán podle evropských norem Eurokódů, zásady jsou uvedeny např. v ČSN ENV , kapitola 9. V metodě dílčích součinitelů se ve všech návrhových situacích ověřuje, že mezní stavy nejsou přestoupeny, jestliže se v návrhových modelech pro zatížení, materiálové vlastnosti a geometrické údaje uvažují návrhové hodnoty. Dílčí součinitele spolehlivosti (doporučené v Eurokódech) se z části opírají o teoretické poznatky teorie spolehlivosti, z části o historické a empirické zkušenosti. Volba reprezentativních hodnot a odpovídajících dílčích součinitelů spolehlivosti v kombinacích zatížení je navíc podřízena požadavku snadné a hospodárné aplikace metody dílčích součinitelů při praktickém projektování. Stanovené postupy ověřování spolehlivosti se proto opírají o řadu aproximací a zjednodušení, které zvyšují výslednou spolehlivost konstrukcí. Pro každou návrhovou situaci je však možno jednotlivé součinitele upravit na základě dostupných dat a zkušeností tak, aby bylo dosaženo požadované úrovně spolehlivosti (podle [3]). Návrhová hodnota zatížení F d je vyjádřena obecným vztahem F d =γ F *F REP. V tomto vztahu je γ F tzv. dílčí součinitel uvažovaného zatížení, který přihlíží k možným nepříznivým odchylkám zatížení, k možným nepřesnostem modelu zatížení a k nejistotám v určení účinků zatížení, a F REP je reprezentativní hodnota zatížení. Účinky zatížení E jsou odezvy konstrukce (např. vnitřní síly a momenty, napětí, poměrná přetvoření a posuvy) na působící zatížení. Návrhová hodnota účinku zatížení E d musí být pro každý kritický zatěžovací stav stanovena kombinací všech současně se vyskytujících zatížení (podrobněji viz Eurokód). 104
4 V úvahách o dimenzování ostění kolektorů takto definovaný dynamický součinitel buď upravuje normové charakteristiky zemin a hornin (v případě klenbových teorií nejpravděpodobněji objemovou tíhu) nebo se tímto součinitelem může zvyšovat celkové zatížení navrhovaného ostění. Zde by bylo vhodné uvažovat akceleraci měření přímo na ostění dimenzované konstrukce, pokud máme k dispozici pouze hodnoty akcelerace v místě zdroje nebo v definovaném místě, je nezbytné provést přepočet seizmických parametrů do místa působení. Které metodiky je výhodnější použít a co reálněji zohledňuje dynamické zatížení v diskutovaném případě musí být ověřeno např. matematickým modelováním. Hlavní devizou třetího způsobu zohlednění dynamických účinků na ostění však zůstává jednoduchost a operativnost. Příklady z experimentálních měření Pro ověření metodiky pro stanovení dynamického součinitele byla použita vlastní data ze dvou experimentálních seizmických měření. Ta byla prováděna registračními aparaturami GCR 16, které vyrábí švýcarská firma GeoSIG (podrobněji viz. [4]). Jako senzory kmitání byly použity třísložkový akcelerační senzor SSA 320 nebo rychlostní senzor GSV 310 (podle požadovaného typu záznamu). Po dokončení kolektoru Centrum v Ostravě bylo provedeno experimentální seizmické měření odezvy tramvajové dopravy, jakožto nejintenzivnějšího zdroje technické seizmicity v dané lokalitě. Měření bylo provedeno ve dvou etapách. V první etapě byl akcelerační senzor umístěn pod klenbou kolektoru na vetknutý ocelový nosník (co nejblíže ostění) a orientován byl podél nosníku kolmo na půdorysné vedení díla. Místo měření bylo zvoleno tak, aby se nacházelo přímo pod kolejovým svrškem. Hloubka kolektoru je cca 10 m a jeho nadloží se skládalo z navážky, štěrkovitých zemin a ve spodní úrovni z hornin terciérních. Následně byla provedena druhá etapa měření, při níž byl akcelerometr umístěn na povrchu přibližně nad místem měření v kolektoru. Senzor byl orientován rovnoběžně s vozovkou (vodorovná osa X třísložkového senzoru byla orientována ve směru jízdních pruhů) [5]. Tři nejvyšší naměřené hodnoty akcelerace jsou zachyceny v tab. 1 při umístění senzoru v kolektoru, resp. v tab. 2 pro stanoviště na povrchu. Příklad záznamu kmitání v kolektoru vyvolaného průjezdem tramvaje nad kolektorem je na obr
5 Max. slož. ampl. [mm.s -2 ] Max. slož. ampl. [mm.s -2 ] osa X osa Y osa Z osa X osa Y osa Z 33 75,4 81, ,3 71, ,4 67,4 49,4 93, Tab. 1 Maximální naměřené hodnoty v kolektoru Tab. 2 Maximální naměřené hodnoty na povrchu Druhé představené experimentální seizmické měření, z něhož byla použita data pro stanovení dynamického součinitele, bylo provedeno při zhutňování zeminy velkým tahačovým vibračním válcem [6]. Vibrační válec je zdrojem intenzivnějších, časově omezených vibrací. Tyto vibrace mají charakter déle trvajícího vlnění nebo samostatných impulsů. Měření bylo realizováno na povrchu a pouze s rychlostním snímačem, proto výsledné hodnoty zrychlení musely být dopočítány, v našem případě pomocí softwaru GeoDAS. V tab. 3 jsou uvedeny tři nejvyšší naměřené hodnoty (X, Y horizontální složky podélná a příčná, Z svislá složka). Obr. 1 Příklad záznamu kmitání v kolektoru vyvolaného průjezdem tramvaje nad kolektorem (měřítko amplitud jednotlivých složek je normováno na vlastní maximální hodnotu) Měřící stanoviště byla lokalizována ve vzdálenosti 3,5 a 7 m od nejbližšího hutněného místa, takže měření představuje zdrojovou funkci vibrací. V místě měření se nachází písčité hlíny kvartérního stáří, je však možno, že místy jsou také antropogenní sedimenty. Příklad záznamu 106
6 vyvolaného seizmického projevu je na obr. 2. Charakter záznamu je odlišný od záznamů krátkodobých seizmických jevů (doprava, krátkodobé průmyslové aktivity, trhací práce, ), jeho specifikou je opakující se generování maximálních amplitud. Max. slož. ampl. [mm.s -2 ] osa X osa Y osa Z Tab. 3 Maximální naměřené hodnoty na povrchu V případě měření projevů dopravy v kolektoru bylo maximální naměřené zrychlení na ostění a d =0,081 m s -2 a v případě měření projevů vibračního válce (na povrchu) a d =0,958 m s -2. Z toho lze dopočítat, že dynamický součinitel γ a v případě zatížení kolektoru vibracemi vyvolanými dopravou na povrchu bude roven 1,01, avšak pro vibrace vyvolané vibračním válcem bude mít hodnotu až 1.10 (není zohledněna skutečnost, že měření proběhlo na povrchu v definované vzdálenosti). Posledně uvedená hodnota dynamického součinitele může podstatněji ovlivnit návrhové hodnoty pro dimenzování ostění kolektoru. Obr. 2 Příklad záznamu vyvolaného seizmického projevu vyvolaného vibračním válcem (měřítko amplitud jednotlivých složek je normováno na vlastní maximální hodnotu) 107
7 Závěr V souvislosti s výstavbou a užíváním kolektorů se můžeme setkat s různými druhy technické seizmicity v jejich bezprostřední blízkosti. Některé typy zdrojů technické seizmicity s příslušnými rozsahy akcelerací, vycházejících z normy ISO 4866, jsou uvedeny v tab. 4. K nim jsou vypočítány podle výše uvedeného vztahu příslušné součinitele γ a. Velmi vysoký rozsah amplitudy zrychlení kmitání pro trhací práce dle ISO 4866 vychází z informací, které jednak zohledňují různé hmotnosti odstřelené trhaviny (od dekagramů po desítky tun), jednak epicentrální vzdálenosti (nejbližší stanoviště mohou být velice blízko). Proto předpokládáme, že dynamický součinitel dosáhne maximální hodnoty 2 a ne 6, jak by odpovídalo výpočtu ze vzorce (hodnota v tabulce označena hvězdičkou). Při dimenzování výztuže podzemních konstrukcí se stejně jako u ostatních staveb používá metody mezních stavů. Výztuž dle této metody nesmí dosáhnout meze únosnosti nebo použitelnosti. K zajištění spolehlivosti konstrukce zavádí tato metoda součinitele, kteří eliminují odchylky od normových hodnot. Patří sem součinitelé spolehlivosti zatížení, spolehlivosti materiálu a podmínek působení. Pro podmínky podzemního stavitelství se pak dále specifikují, viz. [1]. K těmto podmínkám může přibýt i dynamický součinitel γ a. Posouzení pak rezultuje v případě podzemního stavitelství z tlakových, tahových a ohybových namáhání (ohybové momenty se na přetvoření podílí z 97%) nebo přímo z napětí ve výztuži respektive jejího přetvoření. Pro 1. mezní stav únosnosti musí být v konečné fázi splněna obecná podmínka, že napětí ve výztuži nesmí dosáhnout únosnosti materiálu a u 2. mezního stavu použitelnosti, ve kterém se však dynamické účinky neuvažují, musí být splněna podmínka maximálního přípustného přetvoření a vzniku trhlin. Rozsah amplitudy Zdroj vibrací zrychlení kmitání [m s -2 ] Dynamický součinitel γ a [-] Pozemní doprava 0,02 1 1,00 1,10 Trhací práce 0, ,00 2,00* Beranění pilot 0,02 2 1,00 1,20 Stroje venku 0,02 1 1,00 1,10 Stroje uvnitř 0,02 1 1,00 1,10 Lidské aktivity a) náraz b) přímé 0,02 5 0,02 0,2 1,00 1,51 1,00 1,02 Tab. 4 Rozsahy akcelerací z ISO 4866 s příslušnými rozsahy γ a (komentář v textu) Tento příspěvek byl zpracován v rámci projektu GAČR číslo 105/05/
8 Literatura: [1] Aldorf, J. (1999): Mechanika podzemních konstrukcí. Skripta FAST VŠB-TU Ostrava. [2] Bulyčev, H.C. (1982): Mechanika podzemnych sooruženij. Moskva NĚDRA. [3] Holický, M. a Marková, J. (2000): Výukové texty a cvičení k novým evropským předpisům pro navrhování. Závěrečná zpráva o výsledcích řešení projektu FRVŠ 2000 č. 1035, ČVUT, Kloknerův ústav Praha, 119 stran, nepublikováno. [4] Kaláb, Z. a Kořínek, R. (2000): Laboratoř zatížení technickou a přirozenou seizmicitou na FAST VŠB-TU Ostrava. Sborník konference Geotechnika 2000 Trendy vývoja geotechnických stavieb v budúcom tisícročí, ORGWARE Bratislava, [5] Stolárik, M. (2006): Studie velikosti seizmického zatížení v Ostravském kolektoru Centrum vyvolaném dopravou. Sborník vědeckých prací Vysoké školy báňské Technické univerzity Ostrava, Řada stavební, č.2, [6] Stolárik, M. (2007): Studie seizmického zatížení při zhutňování zemin těžkou vibrační technikou. Sborník referátů konference JUNIORSTAV 2007, Brno, v tisku. [7] ČSN ENV ( ) Zásady navrhování a zatížení konstrukcí. Český normalizační institut, [8] ISO 4866:1990 Mechanical Vibration and Shock Vibration of Building Guidelines for the Measurement of Vibrations and Evaluation of Their Effects on Building. 109
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2008, ročník VIII, řada stavební článek č.
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2008, ročník VIII, řada stavební článek č. 21 Zdeněk KALÁB 1, Martin STOLÁRIK 2 EXPERIMENTÁLNÍ MĚŘENÍ SEIZMICKÉHO
þÿ E x p e r i m e n t á l n í my e n í a n u m e r þÿ m o d e l d y n a m i c k ý c h ú i n ko v i b r a
DSpace VSB-TUO http://www.dspace.vsb.cz OpenAIRE þÿx a d a s t a v e b n í. 2 0 1 1, r o. 1 1 / C i v i l E n g i n e e r i n g þÿ E x p e r i m e n t á l n í my e n í a n u m e r þÿ m o d e l d y n a
ZATÍŽENÍ STAVEBNÍCH KONSTRUKCÍ
ZATÍŽENÍ STAVEBNÍCH KONSTRUKCÍ Doporučená literatura: ČSN EN 99 Eurokód: zásady navrhování konstrukcí. ČNI, Březen 24. ČSN EN 99-- Eurokód : Zatížení konstrukcí - Část -: Obecná zatížení - Objemové tíhy,
1 ÚVOD 2 SPECIFIKACE PROBLÉMU
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 2, rok 2010, ročník X, řada stavební článek č. 15 Tomáš PETŘÍK 1, Martin STOLÁRIK 2 NUMERICKÉ MODELOVÁNÍ DYNAMICKÝCH ÚČINKŮ
5 Analýza konstrukce a navrhování pomocí zkoušek
5 Analýza konstrukce a navrhování pomocí zkoušek 5.1 Analýza konstrukce 5.1.1 Modelování konstrukce V článku 5.1 jsou uvedeny zásady a aplikační pravidla potřebná pro stanovení výpočetních modelů, které
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2008, ročník VIII, řada stavební článek č.
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 28, ročník VIII, řada stavební článek č. 22 Roman MAREK 1, Eva HRUBEŠOVÁ 2, Robert KOŘÍNEK 3, Martin STOLÁRIK 4 VLIV
ČSN prof. RNDr. Zdeněk Kaláb, CSc. Ing. Markéta Lednická, Ph.D.
ČSN 73 0040 prof. RNDr. Zdeněk Kaláb, CSc. Ing. Markéta Lednická, Ph.D. Přednáška byla zpracována v rámci projektu Inovace studijního oboru Geotechnika, OP VK CZ.1.07/2.2.00/28.0009 1 Literatura k podrobnějšímu
SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 8: Normové předpisy
SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 8: Normové předpisy Drahomír Novák Jan Eliáš 2012 Spolehlivost konstrukcí, Drahomír Novák & Jan Eliáš 1 část 8 Normové předpisy 2012 Spolehlivost konstrukcí,
Spolehlivost a bezpečnost staveb zkušební otázky verze 2010
1 Jaká máme zatížení? 2 Co je charakteristická hodnota zatížení? 3 Jaké jsou reprezentativní hodnoty proměnných zatížení? 4 Jak stanovíme návrhové hodnoty zatížení? 5 Jaké jsou základní kombinace zatížení
Aktuální trendy v oblasti modelování
Aktuální trendy v oblasti modelování Vladimír Červenka Radomír Pukl Červenka Consulting, Praha 1 Modelování betonové a železobetonové konstrukce - tunelové (definitivní) ostění Metoda konečných prvků,
Obecný průjezdný profil
Zatížení ražených dopravních tunelů, ražených tunelů pro uložení potrubí a podzemních vedení (kolektorů) a tunelů s volnou hladinou upřesňuje ČSN 73 7501 Navrhovanie konštrukcií razených tunelových objektov.
Katedra geotechniky a podzemního stavitelství
Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Modelování zatížení tunelů (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního
Zatíženía spolehlivost (K132ZASP)
Zatíženía spolehlivost (K132ZASP) Přednáší: Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 místnost D2034 e-mail: matej.leps@fsv.cvut.cz konzultační hodiny Út 13:00-16:00 Literatura: P. Fajman, J. Kruis:
SEIZMICKÝ EFEKT ŽELEZNIČNÍ DOPRAVY ÚVODNÍ STUDIE
SEIZMICKÝ EFEKT ŽELEZNIČNÍ DOPAVY ÚVODNÍ STUDIE Josef Čejka 1 Abstract In spite of development of road transport, carriage by rail still keeps its significant position on traffic market. It assumes increases
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2012, ročník XII, řada stavební článek č.
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2012, ročník XII, řada stavební článek č. 7 Tomáš PETŘÍK 1, Markéta LEDNICKÁ 2, Zdeněk KALÁB 3, Eva HRUBEŠOVÁ 4 HODNOCENÍ
1 Použité značky a symboly
1 Použité značky a symboly A průřezová plocha stěny nebo pilíře A b úložná plocha soustředěného zatížení (osamělého břemene) A ef účinná průřezová plocha stěny (pilíře) A s průřezová plocha výztuže A s,req
SPOLEHLIVOST KONSTRUKCÍ statistické vyhodnocení materiálových zkoušek
SPOLEHLIVOST KONSTRUKCÍ statistické vyhodnocení materiálových zkoušek Thákurova 7, 166 29 Praha 6 Dejvice Česká republika Program přednášek a cvičení Výuka: Úterý 12:00-13:40, C -219 Přednášky a cvičení:
2. přednáška, Zatížení a spolehlivost. 1) Navrhování podle norem 2) Zatížení podle Eurokódu 3) Zatížení sněhem
2. přednáška, 25.10.2010 Zatížení a spolehlivost 1) Navrhování podle norem 2) Zatížení podle Eurokódu 3) Zatížení sněhem Navrhování podle norem Navrhování podle norem Historickéa empirickémetody Dovolenénapětí
þÿ E x p e r i m e n t á l n í s e i z m i c k é my e uchycení senzoru na kvalitu záznamu
DSpace VSB-TUO http://www.dspace.vsb.cz þÿx a d a s t a v e b n í / C i v i l E n g i n e e r i n g S e r i e s þÿx a d a s t a v e b n í. 2 0 0 9, r o. 9 / C i v i l E n g i n e e r i n g þÿ E x p e r
Některá klimatická zatížení
Některá klimatická zatížení 5. cvičení Klimatické zatížení je nahodilé zatížení vyvolané meteorologickými jevy. Stanoví se podle nejnepříznivějších hodnot mnohaletých měření, odpovídajících určitému zvolenému
MECHANIKA PODZEMNÍCH KONSTRUKCÍ Statické řešení výztuže podzemních děl
STUDIJNÍ PODPORY PRO KOMBINOVANOU FORMU STUDIA NAVAZUJÍCÍHO MAGISTERSKÉHO PROGRAMU STAVEBNÍ INŽENÝRSTVÍ -GEOTECHNIKA A PODZEMNÍ STAVITELSTVÍ MECHANIKA PODZEMNÍCH KONSTRUKCÍ Statické řešení výztuže podzemních
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 2, rok 2012, ročník XII, řada stavební článek č.
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 2, rok 2012, ročník XII, řada stavební článek č. 16 Tomáš PETŘÍK 1, Eva HRUBEŠOVÁ 2, Martin STOLÁRIK 3, Miroslav PINKA 4
Téma 8: Optimalizační techniky v metodě POPV
Téma 8: Optimalizační techniky v metodě POPV Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí 4. ročník bakalářského studia Katedra stavební mechaniky Fakulta stavební Vysoká škola báňská
BEZSTYKOVÁ KOLEJ NA MOSTECH
Ústav železničních konstrukcí a staveb 1 BEZSTYKOVÁ KOLEJ NA MOSTECH Otto Plášek Bezstyková kolej na mostech 2 Obsah Vysvětlení rozdílů mezi předpisem SŽDC S3 a ČSN EN 1991-2 Teoretický základ interakce
Ústav geoniky AV ČR, v.v.i., Ostrava),
Martin STOLÁRIK 1 MATEMATICKÉ MODELOVÁNÍ SEIZMICKÝCH ÚČINKŦ TRHACÍCH PRACÍ PROVÁDĚNÝCH BĚHEM VÝSTAVBY TUNELU KLIMKOVICE MATHEMATICAL MODELING OF SEISMIC EFFECTS OF BLASTS PERFORMED DURING CONSTRUCTION
Posouzení piloty Vstupní data
Posouzení piloty Vstupní data Projekt Akce Část Popis Vypracoval Datum Nastavení Velkoprůměrová pilota 8..07 (zadané pro aktuální úlohu) Materiály a normy Betonové konstrukce Součinitele EN 99 Ocelové
CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření NPS a TZB
CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření NPS a TZB Cvičení Program cvičení 1. Zadání tématu č. 1, část 1 (dále projektu) Střešní vazník: Návrh účinky a kombinace zatížení, návrh
ZATÍŽENÍ KONSTRUKCÍ VŠEOBECNĚ
ZATÍŽENÍ KONSTRUKCÍ VŠEOBECNĚ Charakteristiky zatížení a jejich stanovení Charakteristikami zatížení jsou: a) normová zatížení (obecně F n ), b) součinitele zatížení (obecně y ), c) výpočtová zatížení
Mezní stavy. Obecné zásady a pravidla navrhování. Nejistoty ve stavebnictví. ČSN EN 1990 a ČSN ISO návrhové situace a životnost
Obecné zásady a pravidla navrhování Prof. Ing. Milan Holický, DrSc. Kloknerův ústav ČVUT, Šolínova 7, 66 08 Praha 6 Tel.: 4 353 84, Fax: 4 355 3 E-mail: holicky@klok.cvut.cz Návrhové situace Nejistoty
Ocelobetonové stropní konstrukce vystavené požáru Jednoduchá metoda pro požární návrh
Ocelobetonové stropní konstrukce vystavené požáru požární návrh Cíl návrhové metody požární návrh 2 požární návrh 3 Obsah prezentace za požáru ocelobetonových desek za běžné Model stropní desky Druhy porušení
SPOLEHLIVOST STAVEBNÍCH KONSTRUKCÍ
SPOLEHLIVOST STAVEBNÍCH KONSTRUKCÍ Prof. Ing. Milan Holický, DrSc. Ing. Jana Marková, Ph.D. Ing. Miroslav Sýkora Kloknerův ústav ČVUT Tel.: 224353842, Fax: 224355232 E-mail:holicky@klok.cvut.cz 1 SSK4
CEMVIN FORM Desky pro konstrukce ztraceného bednění
CEMVIN FORM Desky pro konstrukce ztraceného bednění CEMVIN CEMVIN FORM - Desky pro konstrukce ztraceného bednění Vysoká pevnost Třída reakce na oheň A1 Mrazuvzdornost Vysoká pevnost v ohybu Vhodné do vlhkého
Problematika je vyložena ve smyslu normy ČSN 73 0035 Zatížení stavebních konstrukcí.
ZATÍŽENÍ KONSTRUKCÍ 4. cvičení Problematika je vyložena ve smyslu normy ČSN 73 0035 Zatížení stavebních konstrukcí. Definice a základní pojmy Zatížení je jakýkoliv jev, který vyvolává změnu stavu napjatosti
EXPERIMENTÁLNÍ MĚŘENÍ SEIZMICKÉHO ZATÍŽENÍ PATKY MOSTNÍHO PILÍŘE ZPŮSOBENÉ ŽELEZNIČNÍ KOLEJOVOU DOPRAVOU
EXPERIMENTÁLNÍ MĚŘENÍ SEIZMICKÉHO ZATÍŽENÍ PATKY MOSTNÍHO PILÍŘE ZPŮSOBENÉ ŽELEZNIČNÍ KOLEJOVOU DOPRAVOU Zuzana Janderová 1 An experimental measuring of the seismic load bearing down on the foot of the
Nosné konstrukce II - AF01 ednáška Navrhování betonových. použitelnosti
Brno University of Technology, Faculty of Civil Engineering Institute of Concrete and Masonry Structures, Veveri 95, 662 37 Brno Nosné konstrukce II - AF01 1. přednp ednáška Navrhování betonových prvků
Návrh hlubinných základů dle EC 7
Návrh hlubinných základů dle EC 7 PILOTOVÉ ZÁKLADY PLATNOST NORMY, MEZNÍ STAVY, ZATÍŽENÍ A NÁVRHOVÉ PŘÍSTUPY Kapitola 7 je členěna do článků: všeobecné údaje seznam mezních stavů - všeobecné poznámky -
Cvičební texty 2003 programu celoživotního vzdělávání MŠMT ČR Požární odolnost stavebních konstrukcí podle evropských norem
2.5 Příklady 2.5. Desky Příklad : Deska prostě uložená Zadání Posuďte prostě uloženou desku tl. 200 mm na rozpětí 5 m v suchém prostředí. Stálé zatížení je g 7 knm -2, nahodilé q 5 knm -2. Požaduje se
1 Švédská proužková metoda (Pettersonova / Felleniova metoda; 1927)
Teorie K sesuvu svahu dochází často podél tenké smykové plochy, která odděluje sesouvající se těleso sesuvu nad smykovou plochou od nepohybujícího se podkladu. Obecně lze říct, že v nesoudržných zeminách
133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška B2. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí
133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška B2 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Tahové zpevnění spolupůsobení taženého betonu mezi trhlinami
ROBUSTNÍ METODA NÁVRHU ŽELEZOBETONOVÝCH DESEK PRUŽNOU ANALÝZOU METODOU KONEČNÝCH PRVKŮ
20. Betonářské dny (2013) Sborník Sekce ČT1B: Modelování a navrhování 2 ISBN 978-80-87158-34-0 / 978-80-87158-35-7 (CD) ROBUSTNÍ METODA NÁVRHU ŽELEZOBETONOVÝCH DESEK PRUŽNOU ANALÝZOU METODOU KONEČNÝCH
Statický výpočet střešního nosníku (oprava špatného návrhu)
Statický výpočet střešního nosníku (oprava špatného návrhu) Obsah 1 Obsah statického výpočtu... 3 2 Popis výpočtu... 3 3 Materiály... 3 4 Podklady... 4 5 Výpočet střešního nosníku... 4 5.1 Schéma nosníku
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2012, ročník XII, řada stavební článek č.
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2012, ročník XII, řada stavební článek č. 8 Miroslav PINKA 1, Martin STOLÁRIK 2, Roman FOJTÍK 3, Tomáš PETŘÍK 4 EXPERIMENTÁLNÍ
2. přednáška, Zatížení a spolehlivost. 1) Navrhování podle norem 2) Zatížení podle Eurokódu 3) Kombinace
2. přednáška, 4.3.2013 Zatížení a spolehlivost 1) Navrhování podle norem 2) Zatížení podle Eurokódu 3) Kombinace Navrhování podle norem Navrhování podle norem Historické a empirické metody Dovolené napětí
Principy navrhování stavebních konstrukcí
Pružnost a plasticita, 2.ročník kombinovaného studia Principy navrhování stavebních konstrukcí Princip navrhování a posudku spolehlivosti stavebních konstrukcí Mezní stav únosnosti, pevnost stavebních
OPTIMALIZACE NÁVRHU CB VOZOVEK NA ZÁKLADĚ POČÍTAČOVÉHO A EXPERIMENTÁLNÍHO MODELOVÁNÍ. GAČR 103/09/1746 ( )
OPTIMALIZACE NÁVRHU CB VOZOVEK NA ZÁKLADĚ POČÍTAČOVÉHO A EXPERIMENTÁLNÍHO MODELOVÁNÍ. GAČR 103/09/1746 (2009 2011) Dílčí část projektu: Experiment zaměřený na únavové vlastnosti CB desek L. Vébr, B. Novotný,
133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A9. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí
133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška A9 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Obsah přednášky Posuzování betonových sloupů Masivní sloupy
Principy navrhování stavebních konstrukcí
Pružnost a plasticita, 2.ročník bakalářského studia Spolehlivost nosné konstrukce Principy navrhování stavebních konstrukcí Princip navrhování a posudku spolehlivosti stavebních konstrukcí ezní stav únosnosti,
5 Úvod do zatížení stavebních konstrukcí. terminologie stavebních konstrukcí terminologie a typy zatížení výpočet zatížení od vlastní tíhy konstrukce
5 Úvod do zatížení stavebních konstrukcí terminologie stavebních konstrukcí terminologie a typy zatížení výpočet zatížení od vlastní tíhy konstrukce 5.1 Terminologie stavebních konstrukcí nosné konstrukce
PROJEKTOVÁ DOKUMENTACE
PROJEKTOVÁ DOKUMENTACE STUPEŇ PROJEKTU DOKUMENTACE PRO VYDÁNÍ STAVEBNÍHO POVOLENÍ (ve smyslu přílohy č. 5 vyhlášky č. 499/2006 Sb. v platném znění, 110 odst. 2 písm. b) stavebního zákona) STAVBA INVESTOR
Prvky betonových konstrukcí BL01 6 přednáška. Dimenzování průřezů namáhaných posouvající silou prvky se smykovou výztuží, Podélný smyk,
Prvky betonových konstrukcí BL01 6 přednáška Dimenzování průřezů namáhaných posouvající silou prvky se smykovou výztuží, Podélný smyk, Způsoby porušení prvků se smykovou výztuží Smyková výztuž přispívá
CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření NPS a TZB
CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření NPS a TZB Cvičení Program cvičení 1. Výklad: Zadání tématu č. 1, část 1 (dále projektu) Střešní vazník: Návrh účinky a kombinace zatížení,
SEIZMICKÉ ZATÍŽENÍ LOKALITY DOLU JERONÝM V OBDOBÍ KRASLICKÉHO ROJE V ROCE 2008
doc. RNDr. Zdeněk Kaláb, CSc. *, Ing. Markéta Lednická **, T 9 Ing. Jaromír Knejzlík, CSc. *** * Ústav geoniky AV ČR, v.v.i., Ostrava, Studentská 1768, 708 00 Ostrava - Poruba (též FAST, VŠB-Technická
Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3)
Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Projekt DALŠÍ VZDĚLÁVÁNÍ PEDAGOGŮ V OBLASTI NAVRHOVÁNÍ STAVEBNÍCH KONSTRUKCÍ PODLE EVROPSKÝCH NOREM Projekt je spolufinancován
Principy navrhování stavebních konstrukcí
Pružnost a plasticita, 2.ročník bakalářského studia Principy navrhování stavebních konstrukcí Princip navrhování a posudku spolehlivosti stavebních konstrukcí Mezní stav únosnosti, pevnost stavebních materiálů
Principy návrhu 28.3.2012 1. Ing. Zuzana Hejlová
KERAMICKÉ STROPNÍ KONSTRUKCE ČSN EN 1992 Principy návrhu 28.3.2012 1 Ing. Zuzana Hejlová Přechod z národních na evropské normy od 1.4.2010 Zatížení stavebních konstrukcí ČSN 73 0035 = > ČSN EN 1991 Navrhování
7. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger
7. přednáška OCELOVÉ KONSTRUKCE VŠB Technická univerzita Ostrava Fakulta stavební Ludvíka Podéš éště 1875, 708 33 Ostrava - Poruba Miloš Rieger Téma : Spřažené ocelobetonové konstrukce - úvod Spřažené
Výpočet přetvoření a dimenzování pilotové skupiny
Inženýrský manuál č. 18 Aktualizace: 08/2018 Výpočet přetvoření a dimenzování pilotové skupiny Program: Soubor: Skupina pilot Demo_manual_18.gsp Cílem tohoto inženýrského manuálu je vysvětlit použití programu
Průvodní zpráva ke statickému výpočtu
Průvodní zpráva ke statickému výpočtu V následujícím statickém výpočtu jsou navrženy a posouzeny nosné prvky ocelové konstrukce zesílení části stávající stropní konstrukce v 1.a 2. NP objektu ředitelství
VYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: NÁVRH VYZTUŽENÍ ŽELEZOBETONOVÉHO VAZNÍKU S VELKÝM OTVOREM
VYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: NÁVRH VYZTUŽENÍ ŽELEZOBETONOVÉHO VAZNÍKU S VELKÝM OTVOREM Projekt: Dílčí část: Vypracoval: Vyztužování poruchových oblastí železobetonové konstrukce
Téma 12, modely podloží
Téma 1, modely podloží Statika stavebních konstrukcí II., 3.ročník bakalářského studia Úvod Winklerův model podloží Pasternakův model podloží Pružný poloprostor Nosník na pružném Winklerově podloží, řešení
Výpočtová analýza vlivu polohy výztuže na únosnost tenkostěnných střešních panelů
Výpočtová analýza vlivu polohy výztuže na únosnost tenkostěnných střešních panelů Daniel Makovička, ČVUT v Praze, Kloknerův ústav, Šolínova 7, 166 08 Praha 6, Česká republika & Daniel Makovička, jr., Statika
CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření KSS
CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření KSS Cvičení Program cvičení 1. Výklad: Zadání tématu č. 1, část 1 (dále projektu) Střešní vazník: Návrh účinky a kombinace zatížení, návrh
ZÁVĚREČNÁ ZPRÁVA. j Imagine the result
j Imagine the result ZÁVĚREČNÁ ZPRÁVA o seismickém měření dynamického účinku simulované stavební činnosti pro výstavbu vodohospodářského objektu v ul. Na Nábřeží v Českých Budějovicích Číslo zakázky 14
NÁVRH VÝZTUŽE ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM
NÁVRH VÝZTUŽE ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM Předmět: Vypracoval: Modelování a vyztužování betonových konstrukcí ČVUT v Praze, Fakulta stavební Katedra betonových a zděných konstrukcí Thákurova
Návrh a posouzení plošného základu podle mezního stavu porušení ULS dle ČSN EN 1997-1
Návrh a posouzení plošného základu podle mezního stavu porušení ULS dle ČSN EN 1997-1 1. Návrhové hodnoty účinků zatížení Účinky zatížení v mezním stavu porušení ((STR) a (GEO) jsou dány návrhovou kombinací
NK 1 Zatížení 1. Vodojem
NK 1 Zatížení 1 Přednášky: Doc. Ing. Karel Lorenz, CSc., Prof. Ing. Milan Holický, DrSc., Ing. Jana Marková, Ph.D. FA, Ústav nosných konstrukcí, Kloknerův ústav Cvičení: Ing. Naďa Holická, CSc., Fakulta
DRÁTKOBETON PRO PODZEMNÍ STAVBY
DRÁTKOBETON PRO PODZEMNÍ STAVBY ABSTRAKT Václav Ráček 1 Jan Vodička 2 Jiří Krátký 3 Matouš Hilar 4 V příspěvku bude uveden příklad návrhu drátkobetonu pro prefabrikované segmentové ostění tunelu. Bude
K133 - BZKA Variantní návrh a posouzení betonového konstrukčního prvku
K133 - BZKA Variantní návrh a posouzení betonového konstrukčního prvku 1 Zadání úlohy Vypracujte návrh betonového konstrukčního prvku (průvlak,.). Vypracujte návrh prvku ve variantě železobetonová konstrukce
Navrhování stavební konstrukce při zatížení tlakovou vlnu od výbuchu Design of building structure loaded by explosion shock wave
Navrhování stavební konstrukce při zatížení tlakovou vlnu od výbuchu Design of building structure loaded by explosion shock wave Doc. Ing. Daniel Makovička, DrSc. */, Ing. Daniel Makovička **/ */ ČVUT
MEZNÍ STAVY POUŽITELNOSTI PŘEDPJATÝCH PRŮŘEZŮ DLE EUROKÓDŮ
20. Betonářské dny (2013) Sborník Sekce ČT1B: Modelování a navrhování 2 ISBN 978-80-87158-34-0 / 978-80-87158-35-7 (CD) MEZNÍ STAVY POUŽITELNOSTI PŘEDPJATÝCH PRŮŘEZŮ DLE EUROKÓDŮ Jaroslav Navrátil 1,2
Principy navrhování stavebních konstrukcí
Pružnost a plasticita, 2.ročník bakalářského studia Principy navrhování stavebních konstrukcí Princip navrhování a posudku spolehlivosti stavebních konstrukcí Mezní stav únosnosti, pevnost stavebních materiálů
Zatížení obezdívek podzemních staveb. Vysoké nadloží * Protodjakonov * Terzaghi * Kommerel Nízké nadloží * Suquet * Bierbaumer
Zatížení obezdívek podzemních staveb Vysoké nadloží * Protodjakonov * Terzaghi * Kommerel Nízké nadloží * Suquet * Bierbaumer 1 O. Kommerel (1912) Hornina pod horninovou klenbou se postupně nakypřuje (zvětšuje
Požární zkouška v Cardingtonu, ocelobetonová deska
Požární zkouška v Cardingtonu, ocelobetonová deska Modely chování konstrukcí za vysokých teplot při požáru se opírají o omezené množství experimentů na skutečných objektech. Evropské poznání je založeno
Návrh rozměrů plošného základu
Inženýrský manuál č. 9 Aktualizace: 04/2018 Návrh rozměrů plošného základu Program: Soubor: Patky Demo_manual_09.gpa V tomto inženýrském manuálu je představeno, jak jednoduše a efektivně navrhnout železobetonovou
BZKV 10. přednáška RBZS. Opěrné a suterénní stěny
Opěrné a suterénní stěny Opěrné stěny Zachycují účinky zeminy nebo sypké látky za zdí. Zajišťují zeminu proti ujetí ze svahu Gravitační Úhelníkové Žebrové Speciální Opěrné stěny dřík stěny = = hradící
ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ
7. cvičení ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ V této kapitole se probírají výpočty únosnosti průřezů (neboli posouzení prvků na prostou pevnost). K porušení materiálu v tlačených částech průřezu dochází: mezní
φ φ d 3 φ : 5 φ d < 3 φ nebo svary v oblasti zakřivení: 20 φ
KONSTRUKČNÍ ZÁSADY, kotvení výztuže Minimální vnitřní průměr zakřivení prutu Průměr prutu Minimální průměr pro ohyby, háky a smyčky (pro pruty a dráty) φ 16 mm 4 φ φ > 16 mm 7 φ Minimální vnitřní průměr
MATEMATICKÉ MODELOVÁNÍ A SKUTEČNÉ CHOVÁNÍ TUNELŮ REALIZOVANÝCH PODLE PROJEKTŮ IKP Consulting Engineers, s.r.o.
MOŽNOSTI A ÚSPĚŠNOST NUMERICKÉHO MODELOVÁNÍ PODZEMNÍCH STAVEB (JEDNODUŠE I PRO LAIKY) MATEMATICKÉ MODELOVÁNÍ A SKUTEČNÉ CHOVÁNÍ TUNELŮ REALIZOVANÝCH PODLE PROJEKTŮ IKP Consulting Engineers, s.r.o. Ing.
Stěnové nosníky. Obr. 1 Stěnové nosníky - průběh σ x podle teorie lineární pružnosti.
Stěnové nosníky Stěnový nosník je plošný rovinný prvek uložený na podporách tak, že prvek je namáhán v jeho rovině. Porovnáme-li chování nosníků o výškách h = 0,25 l a h = l, při uvažování lineárně pružného
ANALÝZA NAPĚTÍ A DEFORMACÍ PRŮTOČNÉ ČOČKY KLAPKOVÉHO RYCHLOUZÁVĚRU DN5400 A POROVNÁNÍ HODNOCENÍ ÚNAVOVÉ ŽIVOTNOSTI DLE NOREM ČSN EN 13445-3 A ASME
1. Úvod ANALÝZA NAPĚTÍ A DEFORMACÍ PRŮTOČNÉ ČOČKY KLAPKOVÉHO RYCHLOUZÁVĚRU DN5400 A POROVNÁNÍ HODNOCENÍ ÚNAVOVÉ ŽIVOTNOSTI DLE NOREM ČSN EN 13445-3 A ASME Michal Feilhauer, Miroslav Varner V článku se
RBZS Úloha 4 Postup Zjednodušená metoda posouzení suterénních zděných stěn
RBZS Úloha 4 Postup Zjednodušená metoda posouzení suterénních zděných stěn Zdivo zadní stěny suterénu je namáháno bočním zatížením od zeminy (lichoběžníkovým). Obecně platí, že je výhodné, aby bočně namáhaná
Statický výpočet komínové výměny a stropního prostupu (vzorový příklad)
KERAMICKÉ STROPY HELUZ MIAKO Tabulky statických únosností stropy HELUZ MIAKO Obsah tabulka č. 1 tabulka č. 2 tabulka č. 3 tabulka č. 4 tabulka č. 5 tabulka č. 6 tabulka č. 7 tabulka č. 8 tabulka č. 9 tabulka
4 Opěrné zdi. 4.1 Druhy opěrných zdí. 4.2 Navrhování gravitačních opěrných zdí. Opěrné zd i
Opěrné zd i 4 Opěrné zdi 4.1 Druhy opěrných zdí Podle kapitoly 9 Opěrné konstrukce evropské normy ČSN EN 1997-1 se z hlediska návrhu opěrných konstrukcí rozlišují následující 3 typy: a) gravitační zdi,
ČSN EN OPRAVA 1
ČESKÁ TECHNICKÁ NORMA ICS 13.220.50; 91.010.30; 91.080.40 Říjen 2009 Eurokód 2: Navrhování betonových konstrukcí Část 1-2: Obecná pravidla Navrhování konstrukcí na účinky požáru ČSN EN 1992-1-2 OPRAVA
Ing. Jakub Kršík Ing. Tomáš Pail. Navrhování betonových konstrukcí 1D
Ing. Jakub Kršík Ing. Tomáš Pail Navrhování betonových konstrukcí 1D Úvod Nové moduly dostupné v Hlavním stromě Beton 15 Původní moduly dostupné po aktivaci ve Funkcionalitě projektu Staré posudky betonu
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 2, rok 2009, ročník IX, řada stavební článek č.
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 2, rok 2009, ročník IX, řada stavební článek č. 11 Zdeněk KALÁB 1, Jaromír KNEJZLÍK 2 POSOUZENÍ SEIZMICKÉHO ZATÍŽENÍ STONAVY
SILNIČNÍ PLNOSTĚNNÝ SPŘAŽENÝ TRÁMOVÝ OCELOBETONOVÝ MOST
SILNIČNÍ PLNOSTĚNNÝ SPŘAŽENÝ TRÁMOVÝ OCELOBETONOVÝ MOST Stanovte návrhovou hodnotu maximálního ohybového momentu a posouvající síly na nejzatíženějším nosníku silničního mostu pro silnici S 9,5 s pravostranným
ENÁ ŽELEZOBETONOVÁ DESKA S OTVOREM VE SLOUPOVÉM PRUHU
P Ř Í K L A D Č. 4 LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ DESKA S OTVOREM VE SLOUPOVÉM PRUHU Projekt : FRVŠ 011 - Analýza metod výpočtu železobetonových lokálně podepřených desek Řešitelský kolektiv : Ing. Martin
Posouzení za požární situace
ANALÝZA KONSTRUKCE Zdeněk Sokol 1 Posouzení za požární situace Teplotní analýza požárního úseku Přestup tepla do konstrukce Návrhový model ČSN EN 1991-1-2 ČSN EN 199x-1-2 ČSN EN 199x-1-2 2 1 Princip posouzení
Posouzení trapézového plechu - VUT FAST KDK Ondřej Pešek Draft 2017
Posouzení trapézového plechu - UT FAST KDK Ondřej Pešek Draft 017 POSOUENÍ TAPÉOÉHO PLECHU SLOUŽÍCÍHO JAKO TACENÉ BEDNĚNÍ Úkolem je posoudit trapézový plech typu SŽ 11 001 v mezním stavu únosnosti a mezním
VLIVY VIBRACÍ A ZPŮSOBU PROVEDENÍ PRŮMYSLOVÉ DRÁTKOBETONOVÉ PODLAHY NA JEJÍ PORUŠITELNOST
VLIVY VIBRACÍ A ZPŮSOBU PROVEDENÍ PRŮMYSLOVÉ DRÁTKOBETONOVÉ PODLAHY NA JEJÍ PORUŠITELNOST Doc. Ing. Daniel Makovička, DrSc. (1) Ing. Daniel Makovička (2) (1) České vysoké učení technické v Praze, Kloknerův
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 2, rok 2013, ročník XIII, řada stavební článek č.
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 2, rok 2013, ročník XIII, řada stavební článek č. 11 Tomáš PETŘÍK 1, Eva HRUBEŠOVÁ 2 NUMERICKÝ MODEL ODEZVY DYNAMICKÉHO
Aparaturní vybavení pro seizmologická měření
Aparaturní vybavení pro seizmologická měření prof. RNDr. Zdeněk Kaláb, CSc. Ing. Markéta Lednická, Ph.D. Přednáška byla zpracována v rámci projektu Inovace studijního oboru Geotechnika, OP VK CZ.1.07/2.2.00/28.0009
Pilotové základy úvod
Inženýrský manuál č. 12 Aktualizace: 04/2016 Pilotové základy úvod Program: Pilota, Pilota CPT, Skupina pilot Cílem tohoto inženýrského manuálu je vysvětlit praktické použití programů GEO 5 pro výpočet
133YPNB Požární návrh betonových a zděných konstrukcí. 4. přednáška. prof. Ing. Jaroslav Procházka, CSc.
133YPNB Požární návrh betonových a zděných konstrukcí 4. přednáška prof. Ing. Jaroslav Procházka, CSc. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Obsah přednášky Zjednodušené
Advance Design 2017 R2 SP1
Advance Design 2017 R2 SP1 První Service Pack pro Advance Design 2017 R2 přináší řešení pro statické výpočty a posuzování betonových, ocelových a dřevěných konstrukcí v souladu se slovenskými národními
Prvky betonových konstrukcí BL01 3. přednáška
Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování
Klasifikace zatížení
Klasifikace zatížení Stálá G - Vlastní tíha, pevně zabudované součásti - Předpětí - Zatížení vodou a zeminou - Nepřímá zatížení, např. od sedání základů Proměnná - Užitná zatížení - Sníh - Vítr - Nepřímá
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti
NK 1 Zatížení 2. Klasifikace zatížení
NK 1 Zatížení 2 Přednášky: Doc. Ing. Karel Lorenz, CSc., Prof. Ing. Milan Holický, DrSc., Ing. Jana Marková, Ph.D. FA, Ústav nosných konstrukcí, Kloknerův ústav Cvičení: Ing. Naďa Holická, CSc., Fakulta