Lesson 02. Ing. Marek Hrúz Ph.D. Univ. of West Bohemia, Faculty of Applied Sciences, Dept. of Cybernetics. Lesson 02

Rozměr: px
Začít zobrazení ze stránky:

Download "Lesson 02. Ing. Marek Hrúz Ph.D. Univ. of West Bohemia, Faculty of Applied Sciences, Dept. of Cybernetics. Lesson 02"

Transkript

1 Ing. Marek Hrúz Ph.D. Univ. of West Bohemia, Faculty of Applied Sciences, Dept. of Cybernetics 30. září 2016

2 Mean-shift Úvod Definice Modely Optimalizace Příklad - segmentace obrazu Kriteriální funkce Princip konstrukce a řezu grafu Implementace Aplikace metody graph-cut

3 a method for non-parametric probability density estimation a single parameter - size and shape of the kernel symmetrical kernels are used normal kernel K(x) = ck( x 2 ) (1) K N (x) = c exp( 1 2 x 2 ) (2) Obrázek: Normal kernel and its profile (without normalization)

4 we have n vectors x i in d-dimensional space R d the multidimensional estimator of kernel density is defined as f h,k (x) = 1 nh d n ( x xi K h i=1 ), (3) Obrázek: Set of points from a distribution

5 Obrázek: First point to compute f 1 h,k (x) = c nh d exp( 1 2 x x 1 h 2 ), (4)

6 Obrázek: The rest of the points to compute f h,k (x) = 1 nh d n ( x xi K h i=1 ), (5)

7 for all the xs we obtain Obrázek: Estimated density for h = 1

8 for all the xs we obtain Obrázek: Estimated density for h = 0.05

9 for all the xs we obtain Obrázek: Estimated density for h = 0.3

10 we want to estimate the modes (peaks) of the distribution those are local extrema points x where f h,k (x) = 0 f h,k (x) = 1 nh d n ( x xi K h i=1 this will enable clustering of unknown points we need to compute K K = c exp( 1 2 x 2 ) profile k = exp( 1 2 x) ), (6) K = G = x exp ( 12 ) x2 (7)

11 1 [ ( f h,k (x) = n x x nh d i=1 ck i 2)] h = 1 ( n nh d i=1 2c (x x h 2 i )k x x i 2) h ( n nh d+2 i=1 (x x i)k x x i 2) h ) x, = 2c = 2c nh d+2 ( n i=1 k i) ( n i=1 x i k i n i=1 k i (8) k i = k this estimator estimates the gradient of the density function where it equals zero, there is a peak we will utilize this for clustering f h,k (x) = 2c ( n nh d+2 i=1 k x x i 2) i h is estimator m h,k (x) = n i=1 x i k i n i=1 k i x is mean-shift

12 Obrázek: Mean shift iteration

13 Obrázek: Mean shift iteration

14 Obrázek: Mean shift iteration

15 Obrázek: Mean shift iteration

16 Obrázek: Mean shift iteration

17 Obrázek: Mean shift iteration

18 Obrázek: Mean shift iteration

19 Obrázek: Mean shift iteration

20 Obrázek: Mean shift iteration

21 Obrázek: Mean shift iteration

22 Obrázek: Mean shift iteration

23 Obrázek: Mean shift iteration

24 Obrázek: Mean shift iteration

25 Obrázek: Mean shift iteration

26 Obrázek: Mean shift iteration

27 Obrázek: Mean shift iteration

28 MRF - motivace svět kolem nás je hladký - změny většinou nepříchází naráz ale pozvolna změny počasí změny terénu příklad z oblasti zpracování obrazu: pokud určitý pixel patří jednomu objektu, je pravděpodobné, že sousední pixely budou patřit témuž objektu pokud se objekt v jednom framu videa vyskytuje na pozici (x, y), bude se i v následujícím framu vyskytovat bĺızko této pozice kontext = souvislost sousedních bodů, tj. význam bodu je závislý na významech bodů sousedních využití kontextu je velmi cenné pro analýzu obrazu nástroj pro využití kontextu - podmíněné pravděpodobnosti

29 MRF - intro Problém přiřazení labelů extrakce příznaků z obrazu každý pixel p je definován příznakovým vektorem f p množina všech příznakových vektorů... f = { f p : p I} množina labelů L label určitým způsobem klasifikuje pixel, kterému je přidělen např. L = {hrana, nehrana } {obj, bgd} disparita pixelů... z hlediska Markovských modelů představuje label skrytou proměnnou každému pixelu p je přiřazen jeden label ωp konfigurace pole... ω = {ωp : p I} obrázek o rozměrech NxM L NM = Ω možných výsledků jak vybrat ten správný?

30 Pravděpodobnostní přístup dána pozorovaná data f (obrázek, stereo snímky,... ) definovat pravděpodobnostní míru (pravděpodobnost olabelování) pravděpodobnost konfigurace ω je určena jako P(ω f ) určit nejpravděpodobnější olabelování chceme najít ω maximalizující P(ω f ) Odhad maximální aposteriorní pravděpodobnosti (MAP): ω MAP = arg max ω Ω P(ω f ) Bayesovo pravidlo: P(ω f ) = P(f ω)p(ω) P(f ) pro neměnná data f je P(f ) konstanta P(ω f ) P(f ω)p(ω) určení P(ω) a P(f ω) MRF

31 MRF - definice náhodné pole může být definováno jako graf G = (V, E): E je množina hran mezi uzly: (p, q) E q Np V = {1, 2,..., N}... množina uzlů každému uzlu odpovídá jedna náhodná proměnná Ω p, která může nabývat hodnoty ω p L MRF musí splňovat dvě nutné podmínky: 1. pozitivita... P(ω) > 0, ω Ω (Ω je prostor všech možných konfigurací) 2. Markovianita... P(ω p {ω q } q V\p ) = P(ω p {ω q } q Np ) = P(ω p ω Np )

32 Markovianita popisuje tzv. knock-on efekt: pomocí explicitních závislostí bĺızkých uzlů jsou implicitně popsány závislosti vzdálených uzlů obrovská motivace pro používáni MRF Markovianita popisuje kontextuální informaci - výsledek jednoho uzlu je závislý na sousedních uzlech určení sdružené ppsti P(ω) je problém - naštěstí existuje Hammersley-Cliffordův teorém

33 Hammersley-Cliffordův teorém definuje ekvivalenci mezi MRF a Gibbsovým rozložením Gibbsovo rozložení ppsti poskytuje matematické nástroje pro určení sdružené ppsti P(ω) P(ω) = 1 Z e 1 T E(ω) Z = e 1 T E(ω)... normalizační koeficient ω Ω T... teplota = parametr určující špičatost rozložení důvodem použití Gibbsova rozložení je možnost vyjádřit energii konfigurace pole E(ω) pomocí potenciálů klik v grafu: E(ω) = V c (ω) c C C... množina všech klik 1 v grafu maximalizace P(ω) minimalizace energie E(ω) klasický optimalizační problém, jehož cílem je najít konfiguraci pole s minimální energíı 1 pojem klika vysvětlen na následujícím slidu

34 Graf a jeho vlastnosti mějme graf G(V, E) uzel p V může reprezentovat pixel, voxel, superpixel, objekt Mějme množinu c V. Pokud každý uzel této množiny je sousedem zbylých uzlů této množiny, pak je tato množina nazývána klika grafu. matematicky: c V je klika grafu G p, q c, p q : p N q podle počtu uzlů se kliky děĺı na singletony, doubletony systém sousednosti je definován explicitně pomocí množiny hran E

35 Systémy sousedství a příslušné kliky: okoĺı singletony doubletony tripletony quadrupletony

36 Energie MRF Gibbsovo rozložení je dáno vztahem P(ω) = 1 Z e 1 T E(ω) energie MRF je možné vyjádřit pomocí klik grafu: E(ω) = V c (ω) = c C = V 1 (ω p ) + V 2 (ω p, ω q ) {p} C 1 {p,q} C 2 V n (ω p, ω q...) {p,q...} C n omezením se na čtyřokoĺı 2 jsou uvažovány pouze singletony a horizontální a vertikální doubletony: E(ω) = V 1 (ω p ) + V 2 (ω p, ω q ) = {p} C 1 {p,q} C 2 E data (ω) + E smoothness (ω) E data (ω)... shoda konfigurace a dat Esmoothness (ω)... zastupuje spojitost reálného světa, tzn. preferuje homogenní oblasti 2často používané kvůli efektivnosti výpočtu

37 Isingův model jedná se o binární model vzhledem k počtu labelů, tzn. L = {0, 1} E(ω) = V 1 (ω p ) + V 2 (ω p, ω q ) {p} C 1 {p,q} C 2 interakční člen V 2 (ω p, ω q ) modeluje diskontinuity v olabelování: V2 (ω p, ω q ) = β ω p ω q = βδ(ω p, ω q ) { 1 if ωp ω δ(f p, f q ) = q... Kroneckerova delta 0 if ω p = ω q parametr β definuje míru penalizace za diskontinuitu, tzn. větší β preferuje kompaktní objekty (a) β = 0.7 (b) β = 1.1 (c) β = 2

38 Pottsův model Isingův model je velmi používaný, velkým omezením je jeho binárnost v úlohách s větším počtem labelů se používá Pottsův model množina labelů L = {1, 2,..., M} E(ω) = V 1 (ω p ) + V 2 (ω p, ω q ) {p} C 1 {p,q} C 2 interakční člen V 2 (ω p, ω q ) definován následovně: { β if ωp ω V p,q (ω p, ω q ) = q β if ω p = ω q parametr β má stejný význam jako u Isingova modelul = definuje míru penalizace za diskontinuitu

39 Optimalizace jakmile máme vybraný model a definované všechny hrany uzlu, resp. E(ω) smoothness a E(ω) data, je třeba vybrat optimální konfiguraci pole celá řada optimalizačních metod: gradientní metody simulované žíhání genetické algoritmy graph cut - state of the art metoda, bude popsána některé metody jsou pouze lokálního charakteru, tzn. nutno ošetřit problém uváznutí v lokálním extrému - např. vícenásobná inicializace metody hledající globální extrém jsou výpočetně mnohem náročnější metoda graph cut 3 garantuje nalezení extrému, který je nejhůře c-krát horší, než globální extrém, přičemž c je předem známo 3 resp. varianty využívající tzv. large moves: α expansion a α β swap

40 Segmentace 1/3 neznáme: MRF segmentační model, parametry modelu

41 Segmentace 2/3 1. Určení MRF modelu třídy určeny pomocí Gaussova rozdělení: ) 1 (fs µωs )2 P(f s ω s ) = 2πσωs exp ( 2σωs 2 potenciály klik: singleton: log(p(f ω)) doubleton: upřednostňují stejné labely u { sousedů; V C2 (j, i) = βδ(ω i, ω j ) = β, ω i = ω j β, ω i ω j 2. Určení parametrů modelu interakční potenciál β - a priori počet tříd L - poskytne uživatel každá třída λ reprezentována Gaussem N(µ λ, σ λ )

42 Segmentace 3/3 pravděpodobnost konfigurace ω: P(ω) = 1 Z exp( E(ω)) = 1 Z exp( c C V c (ω)) definice energie: E(ω) = (log( ) 2πσ ωs ) + (fs µωs ) 2 + βδ(ω 2σ s ωs 2 s, ω r ) s,r ω MAP = arg max P(ω f ) = arg min E(ω) ω Ω ω Ω následuje optimalizace např. metodou graph cut

43 Kriteriální funkce C(L) = λ R(L) + B(L) R(L) váží oblast (region) B(L) váží okraje segmentace(boundary), penalizuje samostatné pixely λ váží vliv oblasti a okraje na výsledné kritérium B(L) = δ(l p, L q ) = R(L) = p P R p (L p ) {p,q} N { B {p,q} δ(l p, L q ) 1 pokud L p L q 0 jinak

44 Možný návrh kriteriální funkce C(L) = R(L) + B(L) R(L) je míra vzdálenosti každého pixelu k barevnému prototypu dané třídy c(k) R(L) = [m,n] Image B(L) je ohodnocení sousedství třídy i a j S c (i, j) = (f (m, n) c(k) ) 2 }{{} D c B(L) = S c (i, j) { 0, i = j γ, i j [ ] 0 γ S c = γ 0

45 Matice D c

46 Ukázky výpočtu kritéria λ = 1 [ ] 0 1 S c = 1 0 size (D c ) = 3 3 2

47 Ukázky výpočtu kritéria λ = 1 [ ] 0 1 S c = 1 0 size (D c ) = 3 3 2

48 Ukázky výpočtu kritéria E(A) = λr(a) + B(A) [ ] 0 1 λ = 1, S c = 1 0 R(A) = = B(A) = 3 E(A) = = 38

49 Ukázky výpočtu kritéria E(A) = λr(a) + B(A) [ ] 0 1 λ = 1, S c = 1 0 R(A) = = B(A) = 5 E(A) = = 48

50 Ukázky výpočtu kritéria E(A) = λr(a) + B(A) [ ] 0 1 λ = 1, S c = 1 0 R(A) = = B(A) = 6 E(A) = = 49

51 Ukázky výpočtu kritéria E(A) = λr(a) + B(A) [ ] 0 1 λ = 1, S c = 1 0 R(A) = = B(A) = 4 E(A) = = 12

52 Konstrukce grafu T-linky spojují (p, t) a určují oblastní část kritéria R(L) N-linky spojují (p, q) a určují hranovou část kritéria B(L)

53 Interaktivita Neinteraktivní podoba Pixely o kterých nic nevíme Interaktivní podoba Pixely o kterých nic nevíme Pixely popředí Pixely pozadí

54 Volba vah v grafu K = 1 + max p I q:(p,q) N B (p,q) Hrana Váha (p, q) B (p,q) pro (p, q) N (s, p) λr p (bgd) pro p I, P / (O B) K pro p O 0 pro p B (p, t) λr p (obj) pro p I, P / (O B) 0 pro p O K pro p B Tabulka: Váhy jednotlivých typů hran při konstrukci grafu pro segmentaci pomocí Grap-Cut

55 Hledání minimálního řezu - Graph Cut Grow stage Augment stage Adopt stage Details in: Yuri Boykov and Vladimir Kolmogorov: An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision

56 Hledání minimálního řezu - alternativa

57 Pravděpodobnostní model R p (obj) = ln P(I p O) R p (bgd) = ln P(I p B) ( ) B(p, q) = exp (I p I q ) 2 1 2σ 2 p, q Kde P(I O) a P(I B) reprezentují míru věrohodnosti, že pixel náleží objektu, nebo pozadí. Výraz p, q znamená vzdálenost mezi pixely a σ 2 představuje očekávaný rozptyl jasových hodnot.

58 Segmentace pomocí Graph-Cut v Matlabu img = [ ] ; lambda = 1 ; Dc ( :, :, 1 ) = lambda ( img ) ; Dc ( :, :, 2 ) = lambda (10 img ) ; Sc = [ ] ; [ gch ] = GraphCut ( open, Dc, Sc ) ; [ gch L ] = GraphCut ( expand, gch ) ; [ gch ] = GraphCut ( c l o s e, gch ) ;

59 Výpočet hodnoty kritéria v Matlabu img = [ ] ; lambda = 1 ; Dc ( :, :, 1 ) = lambda ( img ) ; Dc ( :, :, 2 ) = lambda (10 img ) ; Sc = [ ] ; l a b e l s = [ ] ; [ gch ] = GraphCut ( open, Dc, Sc ) ; [ gch ] = GraphCut ( set, gch, l a b e l s ) [ gch se de ] = GraphCut ( energy, gch ) ; [ gch ] = GraphCut ( c l o s e, gch ) ;

60 Úlohy řesené pomocí Graph-Cut Segmentace Restaurace Syntéza Stereovidění

61 Segmentace - Jednoduchá

62 Segmentace

63 Restaurace

64 Syntéza

65 Stereovidění Pro detaily viz [?]

66 Interaktivní segmentace Interaktivní segmentace tumoru Interaktivní segmentace jater Interaktivní 3D segmentace

Zpracování digitalizovaného obrazu (ZDO) - Segmentace II

Zpracování digitalizovaného obrazu (ZDO) - Segmentace II Zpracování digitalizovaného obrazu (ZDO) - Segmentace II Další metody segmentace Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Zpracování digitalizovaného

Více

Obr. 1: Vizualizace dat pacientů, kontrolních subjektů a testovacího subjektu.

Obr. 1: Vizualizace dat pacientů, kontrolních subjektů a testovacího subjektu. Řešení příkladu - klasifikace testovacího subjektu pomocí Bayesova klasifikátoru: ata si vizualizujeme (Obr. ). Objem mozkových komor 9 8 7 6 5 pacienti kontroly testovací subjekt 5 6 Objem hipokampu Obr.

Více

Interaktivní segmentace obrazu s využitím algoritmu pro maximalizaci toku v síti.

Interaktivní segmentace obrazu s využitím algoritmu pro maximalizaci toku v síti. 1/5 Interaktivní segmentace obrazu s využitím algoritmu pro maximalizaci toku v síti. Semestrální projekt: MI-DZO - Digitální zpracování obrazu Zpracoval: Tomáš Borovička. LS 2011 Úvod Metoda segmentace

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Bayesovské modely Doc. RNDr. Iveta Mrázová, CSc.

Více

Apriorní rozdělení. Jan Kracík.

Apriorní rozdělení. Jan Kracík. Apriorní rozdělení Jan Kracík jan.kracik@vsb.cz Apriorní rozdělení Apriorní rozdělení (spolu s modelem) reprezentuje informaci o neznámém parametru θ, která je dostupná předem, tj. bez informace z dat.

Více

Odečítání pozadí a sledování lidí z nehybné kamery. Ondřej Šerý

Odečítání pozadí a sledování lidí z nehybné kamery. Ondřej Šerý Odečítání pozadí a sledování lidí z nehybné kamery Ondřej Šerý Plán Motivace a popis úlohy Rozdělení úlohy na tři části Detekce pohybu Detekce objektů Sledování objektů Rozbor každé z částí a nástin několika

Více

Metody analýzy dat I. Míry a metriky - pokračování

Metody analýzy dat I. Míry a metriky - pokračování Metody analýzy dat I Míry a metriky - pokračování Literatura Newman, M. (2010). Networks: an introduction. Oxford University Press. [168-193] Zaki, M. J., Meira Jr, W. (2014). Data Mining and Analysis:

Více

oddělení Inteligentní Datové Analýzy (IDA)

oddělení Inteligentní Datové Analýzy (IDA) Vytěžování dat Filip Železný Katedra počítačů oddělení Inteligentní Datové Analýzy (IDA) 22. září 2014 Filip Železný (ČVUT) Vytěžování dat 22. září 2014 1 / 25 Odhad rozdělení Úloha: Vstup: data D = {

Více

PRAVDĚPODOBNOST A STATISTIKA. Bayesovské odhady

PRAVDĚPODOBNOST A STATISTIKA. Bayesovské odhady PRAVDĚPODOBNOST A STATISTIKA Bayesovské odhady Bayesovské odhady - úvod Klasický bayesovský přístup: Klasický přístup je založen na opakování pokusech sledujeme rekvenci nastoupení zvolených jevů Bayesovský

Více

Úvod do optimalizace, metody hladké optimalizace

Úvod do optimalizace, metody hladké optimalizace Evropský sociální fond Investujeme do vaší budoucnosti Úvod do optimalizace, metody hladké optimalizace Matematika pro informatiky, FIT ČVUT Martin Holeňa, 13. týden LS 2010/2011 O čem to bude? Příklady

Více

Ústav matematiky a statistiky Masarykova univerzita Brno. workshopy Finanční matematika v praxi III Matematické modely a aplikace Podlesí

Ústav matematiky a statistiky Masarykova univerzita Brno. workshopy Finanční matematika v praxi III Matematické modely a aplikace Podlesí Ústav matematiky a statistiky Masarykova univerzita Brno workshopy Finanční matematika v praxi III Matematické modely a aplikace Podlesí 3. 6. září 2013 Obsah 1 2 3 4 y Motivace y 10 0 10 20 30 40 0 5

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,

Více

Detekce interakčních sil v proudu vozidel

Detekce interakčních sil v proudu vozidel Detekce interakčních sil v proudu vozidel (ANEB OBECNĚJŠÍ POHLED NA POJEM VZDÁLENOSTI V MATEMATICE) Doc. Mgr. Milan Krbálek, Ph.D. Katedra matematiky Fakulta jaderná a fyzikálně inženýrská České vysoké

Více

Klasifikace a rozpoznávání. Bayesovská rozhodovací teorie

Klasifikace a rozpoznávání. Bayesovská rozhodovací teorie Klasifikace a rozpoznávání Bayesovská rozhodovací teorie Extrakce příznaků 3 25 2 Granáty Jablka Četnost 15 1 5 2 3 4 5 6 7 8 Váha [dkg] Pravděpodobnosti - diskrétní příznaky Uvažujme diskrétní příznaky

Více

Algoritmy pro shlukování prostorových dat

Algoritmy pro shlukování prostorových dat Algoritmy pro shlukování prostorových dat Marta Žambochová Katedra matematiky a informatiky Fakulta sociálně ekonomická Univerzita J. E. Purkyně v Ústí nad Labem ROBUST 21. 26. leden 2018 Rybník - Hostouň

Více

OPTIMALIZAČNÍ ÚLOHY. Modelový příklad problém obchodního cestujícího:

OPTIMALIZAČNÍ ÚLOHY. Modelový příklad problém obchodního cestujícího: OPTIMALIZAČNÍ ÚLOHY Problém optimalizace v různých oblastech: - minimalizace času, materiálu, - maximalizace výkonu, zisku, - optimalizace umístění komponent, propojení,... Modelový příklad problém obchodního

Více

Zpracování digitalizovaného obrazu (ZDO) - Segmentace

Zpracování digitalizovaného obrazu (ZDO) - Segmentace Zpracování digitalizovaného obrazu (ZDO) - Segmentace úvod, prahování Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Zpracování digitalizovaného obrazu

Více

Algoritmy a struktury neuropočítačů ASN - P11

Algoritmy a struktury neuropočítačů ASN - P11 Aplikace UNS při rozpoznání obrazů Základní úloha segmentace obrazu rozdělení obrazu do několika významných oblastí klasifikační úloha, clusterová analýza target Metody Kohonenova metoda KSOM Kohonenova

Více

3. Třídy P a NP. Model výpočtu: Turingův stroj Rozhodovací problémy: třídy P a NP Optimalizační problémy: třídy PO a NPO MI-PAA

3. Třídy P a NP. Model výpočtu: Turingův stroj Rozhodovací problémy: třídy P a NP Optimalizační problémy: třídy PO a NPO MI-PAA Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

Optimální rozdělující nadplocha 4. Support vector machine. Adaboost.

Optimální rozdělující nadplocha 4. Support vector machine. Adaboost. Optimální rozdělující nadplocha. Support vector machine. Adaboost. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics Opakování Lineární diskriminační

Více

Optimalizace & soft omezení: algoritmy

Optimalizace & soft omezení: algoritmy Optimalizace & soft omezení: algoritmy Soft propagace Klasická propagace: eliminace nekonzistentních hodnot z domén proměnných Soft propagace: propagace preferencí (cen) nad k-ticemi hodnot proměnných

Více

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami. 3.1. 3.2. Třikrát vystřelíme na cíl. Pravděpodobnost zásahu při každém výstřelu je p = 0,7. Určete: a) pravděpodobnostní funkci počtu zásahů při třech nezávislých výsledcích, b) distribuční funkci a její

Více

Náhodné vektory a matice

Náhodné vektory a matice Náhodné vektory a matice Jiří Militký Katedra textilních materiálů Technická Universita Liberec, Červeně označené slide jsou jen pro doplnění informací a nezkouší se. Symbolika A B Jev jistý S (nastane

Více

KOMPRESE OBRAZŮ. Václav Hlaváč, Jan Kybic. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání.

KOMPRESE OBRAZŮ. Václav Hlaváč, Jan Kybic. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. 1/25 KOMPRESE OBRAZŮ Václav Hlaváč, Jan Kybic Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac KOMPRESE OBRAZŮ, ÚVOD

Více

Usuzování za neurčitosti

Usuzování za neurčitosti Usuzování za neurčitosti 25.11.2014 8-1 Usuzování za neurčitosti Hypotetické usuzování a zpětná indukce Míry postačitelnosti a nezbytnosti Kombinace důkazů Šíření pravděpodobnosti v inferenčních sítích

Více

Odhady Parametrů Lineární Regrese

Odhady Parametrů Lineární Regrese Odhady Parametrů Lineární Regrese Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké

Více

4. Na obrázku je rozdělovací funkce (hustota pravděpodobnosti) náhodné veličiny X. Jakou hodnotu musí mít parametr k?

4. Na obrázku je rozdělovací funkce (hustota pravděpodobnosti) náhodné veličiny X. Jakou hodnotu musí mít parametr k? A 1. Stanovte pravděpodobnost, že náhodná veličina X nabyde hodnoty menší než 6: P( X 6). Veličina X má rozdělení se střední hodnotou 6 a směrodatnou odchylkou 5: N(6,5). a) 0 b) 1/3 c) ½ 2. Je možné,

Více

MATEMATICKÁ STATISTIKA - XP01MST

MATEMATICKÁ STATISTIKA - XP01MST MATEMATICKÁ STATISTIKA - XP01MST 1. Úvod. Matematická statistika (statistics) se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného

Více

Implementace Bayesova kasifikátoru

Implementace Bayesova kasifikátoru Implementace Bayesova kasifikátoru a diskriminačních funkcí v prostředí Matlab J. Havlík Katedra teorie obvodů Fakulta elektrotechnická České vysoké učení technické v Praze Technická 2, 166 27 Praha 6

Více

VK CZ.1.07/2.2.00/

VK CZ.1.07/2.2.00/ Robotika Tvorba map v robotice - MRBT 3. března 2015 Ing. František Burian Komplexní inovace studijních programů a zvyšování kvality výuky na FEKT VUT v Brně OP VK CZ.1.07/2.2.00/28.0193 v pojetí mobilní

Více

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou

Více

4EK311 Operační výzkum. 1. Úvod do operačního výzkumu

4EK311 Operační výzkum. 1. Úvod do operačního výzkumu 4EK311 Operační výzkum 1. Úvod do operačního výzkumu Mgr. Jana SEKNIČKOVÁ, Ph.D. Nová budova, místnost 433 Konzultační hodiny InSIS E-mail: jana.seknickova@vse.cz Web: jana.seknicka.eu/vyuka Garant kurzu:

Více

UČENÍ BEZ UČITELE. Václav Hlaváč

UČENÍ BEZ UČITELE. Václav Hlaváč UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení

Více

Základy ekonometrie. XI. Vektorové autoregresní modely. Základy ekonometrie (ZAEK) XI. VAR modely Podzim / 28

Základy ekonometrie. XI. Vektorové autoregresní modely. Základy ekonometrie (ZAEK) XI. VAR modely Podzim / 28 Základy ekonometrie XI. Vektorové autoregresní modely Základy ekonometrie (ZAEK) XI. VAR modely Podzim 2015 1 / 28 Obsah tématu 1 Prognózování s VAR modely 2 Vektorové modely korekce chyb (VECM) 3 Impulzní

Více

Odhad parametrů N(µ, σ 2 )

Odhad parametrů N(µ, σ 2 ) Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný

Více

EM algoritmus. Proč zahrnovat do modelu neznámé veličiny

EM algoritmus. Proč zahrnovat do modelu neznámé veličiny EM algoritmus používá se pro odhad nepozorovaných veličin. Jde o iterativní algoritmus opakující dva kroky: Estimate, který odhadne hodnoty nepozorovaných dat, a Maximize, který maximalizuje věrohodnost

Více

AVDAT Klasický lineární model, metoda nejmenších

AVDAT Klasický lineární model, metoda nejmenších AVDAT Klasický lineární model, metoda nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model y i = β 0 + β 1 x i1 + + β k x ik + ε i (1) kde y i

Více

Charakterizace rozdělení

Charakterizace rozdělení Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf

Více

Téma 4: Stratifikované a pokročilé simulační metody

Téma 4: Stratifikované a pokročilé simulační metody 0.007 0.006 0.005 0.004 0.003 0.002 0.001 Dlouhodobé nahodilé Std Distribution: Gumbel Min. EV I Mean Requested: 140 Obtained: 141 Std Requested: 75.5 Obtained: 73.2-100 0 100 200 300 Mean Std Téma 4:

Více

Markov Chain Monte Carlo. Jan Kracík.

Markov Chain Monte Carlo. Jan Kracík. Markov Chain Monte Carlo Jan Kracík jan.kracik@vsb.cz Princip Monte Carlo integrace Cílem je (přibližný) výpočet integrálu I(g) = E f [g(x)] = g(x)f (x)dx. (1) Umíme-li generovat nezávislé vzorky x (1),

Více

Princip gradientních optimalizačních metod

Princip gradientních optimalizačních metod Princip gradientních optimalizačních metod Tomáš Kroupa 20. května 2014 Tento studijní materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Obsah Úkol a základní

Více

Řízení projektů. Konstrukce síťového grafu pro řízení projektů Metoda CPM Metoda PERT

Řízení projektů. Konstrukce síťového grafu pro řízení projektů Metoda CPM Metoda PERT Řízení projektů Konstrukce síťového grafu pro řízení projektů Metoda CPM Metoda PERT 1 Úvod základní pojmy Projekt souhrn činností, které musí být všechny realizovány, aby byl projekt dokončen Činnost

Více

GIS Geografické informační systémy

GIS Geografické informační systémy GIS Geografické informační systémy Obsah přednášky Prostorové vektorové modely Špagetový model Topologický model Převody geometrií Vektorový model Reprezentuje reálný svět po jednotlivých složkách popisu

Více

Téma 3 Metoda LHS, programový systém Atena-Sara-Freet

Téma 3 Metoda LHS, programový systém Atena-Sara-Freet Spolehlivost a bezpečnost staveb, 4.ročník bakalářského studia Téma 3 Metoda LHS, programový systém Atena-Sara-Freet Parametrická rozdělení Metoda Latin Hypercube Sampling (LHS) aplikovaná v programu Freet

Více

Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a

Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a báli jste se zeptat Jedinečnou funkcí statistiky je, že umožňuje vědci číselně vyjádřit nejistotu v jeho závěrech. (G. W. Snedecor)

Více

Trénování sítě pomocí učení s učitelem

Trénování sítě pomocí učení s učitelem Trénování sítě pomocí učení s učitelem! předpokládá se, že máme k dispozici trénovací množinu, tj. množinu P dvojic [vstup x p, požadovaný výstup u p ]! chceme nastavit váhy a prahy sítě tak, aby výstup

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

Lineární diskriminační funkce. Perceptronový algoritmus.

Lineární diskriminační funkce. Perceptronový algoritmus. Lineární. Perceptronový algoritmus. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics P. Pošík c 2012 Artificial Intelligence 1 / 12 Binární klasifikace

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr

Více

Metody analýzy dat I (Data Analysis I) Rozsáhlé struktury a vlastnosti sítí (Large-scale Structures and Properties of Networks) - pokračování

Metody analýzy dat I (Data Analysis I) Rozsáhlé struktury a vlastnosti sítí (Large-scale Structures and Properties of Networks) - pokračování Metody analýzy dat I (Data Analysis I) Rozsáhlé struktury a vlastnosti sítí (Large-scale Structures and Properties of Networks) - pokračování Základní (strukturální) vlastnosti sítí Stupně vrcholů a jejich

Více

Markovovy modely v Bioinformatice

Markovovy modely v Bioinformatice Markovovy modely v Bioinformatice Outline Markovovy modely obecně Profilové HMM Další použití HMM v Bioinformatice Analýza biologických sekvencí Biologické sekvence: DNA,RNA,protein prim.str. Sekvenování

Více

Jasové transformace. Karel Horák. Rozvrh přednášky:

Jasové transformace. Karel Horák. Rozvrh přednášky: 1 / 23 Jasové transformace Karel Horák Rozvrh přednášky: 1. Úvod. 2. Histogram obrazu. 3. Globální jasová transformace. 4. Lokální jasová transformace. 5. Bodová jasová transformace. 2 / 23 Jasové transformace

Více

Prostorová variabilita

Prostorová variabilita Prostorová variabilita prostorová závislost (autokorelace) reprezentuje korelaci mezi hodnotami určité náhodné proměnné v místě i a hodnotami téže proměnné v jiném místě j; prostorová heterogenita je strukturální

Více

1. Přednáška. Ing. Miroslav Šulai, MBA

1. Přednáška. Ing. Miroslav Šulai, MBA N_OFI_2 1. Přednáška Počet pravděpodobnosti Statistický aparát používaný ve financích Ing. Miroslav Šulai, MBA 1 Počet pravděpodobnosti -náhodné veličiny 2 Počet pravděpodobnosti -náhodné veličiny 3 Jevy

Více

Roman Juránek. Fakulta informačních technologíı. Extrakce obrazových příznaků 1 / 30

Roman Juránek. Fakulta informačních technologíı. Extrakce obrazových příznaků 1 / 30 Extrakce obrazových příznaků Roman Juránek Ústav počítačové grafiky a multimédíı Fakulta informačních technologíı Vysoké Učení technické v Brně Extrakce obrazových příznaků 1 / 30 Motivace Účelem extrakce

Více

Bayesovská klasifikace

Bayesovská klasifikace Bayesovská klasifikace založeno na Bayesově větě P(H E) = P(E H) P(H) P(E) použití pro klasifikaci: hypotéza s maximální aposteriorní pravděpodobností H MAP = H J právě když P(H J E) = max i P(E H i) P(H

Více

Diskrétní náhodná veličina

Diskrétní náhodná veličina Lekce Diskrétní náhodná veličina Výsledek náhodného pokusu může být vyjádřen slovně to vede k zavedení pojmu náhodného jevu Výsledek náhodného pokusu můžeme někdy vyjádřit i číselně, což vede k pojmu náhodné

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Třídy složitosti P a NP, NP-úplnost

Třídy složitosti P a NP, NP-úplnost Třídy složitosti P a NP, NP-úplnost Cíle přednášky: 1. Definovat, za jakých okolností můžeme problém považovat za efektivně algoritmicky řešitelný. 2. Charakterizovat určitou skupinu úloh, pro které není

Více

Fakulta informačních technologíı. Extrakce obrazových příznaků 1 / 39

Fakulta informačních technologíı. Extrakce obrazových příznaků 1 / 39 Extrakce obrazových příznaků Ing. Aleš Láník, Ing. Jiří Zuzaňák Ústav počítačové grafiky a multimédíı Fakulta informačních technologíı Vysoké Učení technické v Brně Extrakce obrazových příznaků 1 / 39

Více

Klasifikace a rozpoznávání. Lineární klasifikátory

Klasifikace a rozpoznávání. Lineární klasifikátory Klasifikace a rozpoznávání Lineární klasifikátory Opakování - Skalární součin x = x1 x 2 w = w T x = w 1 w 2 x 1 x 2 w1 w 2 = w 1 x 1 + w 2 x 2 x. w w T x w Lineární klasifikátor y(x) = w T x + w 0 Vyber

Více

Minikurz aplikované statistiky. Minikurz aplikované statistiky p.1

Minikurz aplikované statistiky. Minikurz aplikované statistiky p.1 Minikurz aplikované statistiky Marie Šimečková, Petr Šimeček Minikurz aplikované statistiky p.1 Program kurzu základy statistiky a pravděpodobnosti regrese (klasická, robustní, s náhodnými efekty, ev.

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Numerické metody optimalizace - úvod

Numerické metody optimalizace - úvod Numerické metody optimalizace - úvod Petr Tichý 16. února 2015 1 Organizace přednášek a cvičení 13 přednášek a cvičení. Zápočet: úloha programování a testování úloh v Matlabu. Další informace na blogu

Více

Výběrové charakteristiky a jejich rozdělení

Výběrové charakteristiky a jejich rozdělení Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový

Více

Přednáška. Diskrétní náhodná proměnná. Charakteristiky DNP. Základní rozdělení DNP

Přednáška. Diskrétní náhodná proměnná. Charakteristiky DNP. Základní rozdělení DNP IV Přednáška Diskrétní náhodná proměnná Charakteristiky DNP Základní rozdělení DNP Diskrétní náhodná veličina Funkce definovaná na Ω, přiřazující každému elementárnímu jevu E prvky X(E) D R kde D je posloupnost

Více

Počítačové simulace a statistická mechanika

Počítačové simulace a statistická mechanika Počítačové simulace a statistická mechanika Model = soubor aproximaci přijatých za účelem popisu určitého systému okrajové podmínky mezimolekulové interakce Statistické zpracování průměrování ve fázovém

Více

Kybernetika a umělá inteligence, cvičení 10/11

Kybernetika a umělá inteligence, cvičení 10/11 Kybernetika a umělá inteligence, cvičení 10/11 Program 1. seminární cvičení: základní typy klasifikátorů a jejich princip 2. počítačové cvičení: procvičení na problému rozpoznávání číslic... body za aktivitu

Více

Ctislav Fiala: Optimalizace a multikriteriální hodnocení funkční způsobilosti pozemních staveb

Ctislav Fiala: Optimalizace a multikriteriální hodnocení funkční způsobilosti pozemních staveb 16 Optimální hodnoty svázaných energií stropních konstrukcí (Graf. 6) zde je rozdíl materiálových konstant, tedy svázaných energií v 1 kg materiálu vložek nejmarkantnější, u polystyrénu je téměř 40krát

Více

Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group

Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Vytěžování dat Miroslav Čepek, Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme

Více

Poznámky k předmětu Aplikovaná statistika, 4. téma

Poznámky k předmětu Aplikovaná statistika, 4. téma Poznámky k předmětu Aplikovaná statistika, 4. téma 4. Náhodné vektory V praxi se nám může hodit postihnout více vlastností jednoho objektu najednou, např. výšku, váhu a pohlaví člověka; rychlost chemické

Více

SIFT: Scale Invariant Feature Transform Automatické nalezení korespondencí mezi dvojicí obrázků

SIFT: Scale Invariant Feature Transform Automatické nalezení korespondencí mezi dvojicí obrázků SIFT: Scale Invariant Feature Transform Automatické nalezení korespondencí mezi dvojicí obrázků lukas.mach@gmail.com Přílohy (videa, zdrojáky, ) ke stažení na: http://mach.matfyz.cz/sift Korespondence

Více

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce

Více

2 Hlavní charakteristiky v analýze přežití

2 Hlavní charakteristiky v analýze přežití 2 Hlavní charakteristiky v analýze přežití Předpokládané výstupy z výuky: 1. Student umí definovat funkci přežití, rizikovou funkci a kumulativní rizikovou funkci a zná funkční vazby mezi nimi 2. Student

Více

Algoritmy pro spojitou optimalizaci

Algoritmy pro spojitou optimalizaci Algoritmy pro spojitou optimalizaci Vladimír Bičík Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze 10.6.2010 Vladimír Bičík (ČVUT Praha) Algoritmy pro spojitou optimalizaci

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz IV. LINEÁRNÍ KLASIFIKACE PRINCIPY KLASIFIKACE pomocí diskriminačních funkcí funkcí,

Více

Agent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu odhaduje, jak se svět může vyvíjet.

Agent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu odhaduje, jak se svět může vyvíjet. Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Dnešní program Agent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu

Více

SRE 03 - Statistické rozpoznávání

SRE 03 - Statistické rozpoznávání SRE 03 - Statistické rozpoznávání vzorů II Lukáš Burget ÚPGM FIT VUT Brno, burget@fit.vutbr.cz FIT VUT Brno SRE 03 - Statistické rozpoznávání vzorů II Lukáš Burget, ÚPGM FIT VUT Brno, 2006/07 1/29 Opakování

Více

Potlačování šumu v mikroskopických snímcích pomocí adaptivního non-local means filtru

Potlačování šumu v mikroskopických snímcích pomocí adaptivního non-local means filtru Potlačování šumu v mikroskopických snímcích pomocí adaptivního non-local means filtru Jarní škola 2013 Krušné hory, Mariánská 28. května 2013 Motivace Časosběrná fluorescenční mikroskopie detekce částic

Více

Poznámky k předmětu Aplikovaná statistika, 4. téma

Poznámky k předmětu Aplikovaná statistika, 4. téma Poznámky k předmětu Aplikovaná statistika, 4. téma 4. Náhodné vektory V praxi se nám může hodit postihnout více vlastností jednoho objektu najednou, např. výšku, váhu a pohlaví člověka; rychlost chemické

Více

Úvod do zpracování signálů

Úvod do zpracování signálů 1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování

Více

Statistika II. Jiří Neubauer

Statistika II. Jiří Neubauer Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Zaměříme se především na popis dvourozměrných náhodných veličin (vektorů). Definice Nechť X a Y jsou

Více

Konvoluční model dynamických studií ledvin. seminář AS UTIA

Konvoluční model dynamických studií ledvin. seminář AS UTIA Konvoluční model dynamických studií ledvin Ondřej Tichý seminář AS UTIA.. Obsah prezentace Scintigrafická obrazová sekvence a její analýza Konstrukce standardního modelu a jeho řešení Experiment Ovlivnění

Více

Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma

Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky

Více

Odhady - Sdružené rozdělení pravděpodobnosti

Odhady - Sdružené rozdělení pravděpodobnosti Odhady - Sdružené rozdělení pravděpodobnosti 4. listopadu 203 Kdybych chtěl znát maximum informací o náhodné veličině, musel bych znát všechny hodnoty, které mohou padnout, a jejich pravděpodobnosti. Tedy

Více

Globální matice konstrukce

Globální matice konstrukce Globální matice konstrukce Z matic tuhosti a hmotnosti jednotlivých prvků lze sestavit globální matici tuhosti a globální matici hmotnosti konstrukce, které se využijí v řešení základní rovnice MKP: [m]{

Více

a způsoby jejího popisu Ing. Michael Rost, Ph.D.

a způsoby jejího popisu Ing. Michael Rost, Ph.D. Podmíněná pravděpodobnost, náhodná veličina a způsoby jejího popisu Ing. Michael Rost, Ph.D. Podmíněná pravděpodobnost Pokud je jev A vázán na uskutečnění jevu B, pak tento jev nazýváme jevem podmíněným

Více

Binární vyhledávací stromy pokročilé partie

Binární vyhledávací stromy pokročilé partie Binární vyhledávací stromy pokročilé partie KMI/ALS lekce Jan Konečný 30.9.204 Literatura Cormen Thomas H., Introduction to Algorithms, 2nd edition MIT Press, 200. ISBN 0-262-5396-8 6, 3, A Knuth Donald

Více

Geoinformatika. IX GIS modelování

Geoinformatika. IX GIS modelování Geoinformatika IX GIS modelování jaro 2017 Petr Kubíček kubicek@geogr.muni.cz Laboratory on Geoinformatics and Cartography (LGC) Institute of Geography Masaryk University Czech Republic Geoinformatika

Více

Řízení rychlosti vozu Formule 1 pomocí rozhodovacího diagramu

Řízení rychlosti vozu Formule 1 pomocí rozhodovacího diagramu Řízení rychlosti vozu Formule 1 pomocí rozhodovacího diagramu Jiří Vomlel Ústav teorie informace a automatizace (ÚTIA) Akademie věd České republiky http://www.utia.cz/vomlel Praha, 29. února 2016 Fyzikální

Více

Lineární klasifikátory

Lineární klasifikátory Lineární klasifikátory Lineární klasifikátory obsah: perceptronový algoritmus základní verze varianta perceptronového algoritmu přihrádkový algoritmus podpůrné vektorové stroje Lineární klasifikátor navrhnout

Více

13. Lineární programování

13. Lineární programování Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2017/2018 Tutoriál č. 2:, náhodný vektor Jan Kracík jan.kracik@vsb.cz náhodná veličina rozdělení pravděpodobnosti náhodné

Více

DSS a De Novo programming

DSS a De Novo programming De Novo Programming DSS a De Novo programming DSS navrhují žádoucí budoucnost a cesty k jejímu uskutečnění Optimalizační modely vhodné nástroje pro identifikaci optimálního řešení problému Je ale problém

Více

Stavový model a Kalmanův filtr

Stavový model a Kalmanův filtr Stavový model a Kalmanův filtr 2 prosince 23 Stav je veličina, kterou neznáme, ale chtěli bychom znát Dozvídáme se o ní zprostředkovaně prostřednictvím výstupů Příkladem může býapř nějaký zašuměný signál,

Více

MATEMATICKÁ STATISTIKA

MATEMATICKÁ STATISTIKA MATEMATICKÁ STATISTIKA 1. Úvod. Matematická statistika se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného procesu, se snažíme popsat

Více

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni BAYESOVSKÉ ODHADY V NĚKTERÝCH MODELECH Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Slunce Řidiči IQ Regrese Přežití Obvyklý model Pozorování X = (X 1,..., X

Více

AVDAT Mnohorozměrné metody, metody klasifikace

AVDAT Mnohorozměrné metody, metody klasifikace AVDAT Mnohorozměrné metody, metody klasifikace Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Mnohorozměrné metody Regrese jedna náhodná veličina je vysvětlována pomocí jiných

Více