Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně
|
|
- Luděk Špringl
- před 8 lety
- Počet zobrazení:
Transkript
1 Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně Daniel Schwarz Investice do rozvoje vzdělávání
2 Osnova Opakování: signály Systémy: definice, několik příkladů Vlastnosti systémů Konvoluce Impulsní charakteristika Příklady: systém pro hledání bodů zlomu v signálu konvoluce
3 Opakování: signály Definice signálu a jeho matematické vyjádření Klasifikace signálů podle čeho dělíme a na co je dělíme A/D převod z čeho se skládá Vzorkovací věta a aliasing Kvantování a kvantizační šum Systém definice, struktura systému Systém tři základní vlastnosti
4 Vlastnosti systémů lineární x nelineární systémy časově invariantní x časově proměnné systémy kauzální x nekauzální systémy : y[n] = x 2 [n]? y[n] = x[2n]?
5 Vlastnosti systémů lineární x nelineární systémy časově invariantní x časově proměnné systémy kauzální x nekauzální systémy : y[n] = x 2 [n] Nelinární, časově invariantní, kauzální y[n] = n.x[2n] Lineární, časově proměnný, nekauzální
6 LTI systémy Lineární časově invariantní systémy (LTI): disponují elegantní matematické vztahy mezi jeho vstupy a výstupy. lze určit výstupní odezvu systému na jakýkoli vstup lze také určit vstup systému při pozorování jeho výstupu Selský rozum: Znám li odezvu LTI systému na velmi krátký vstupní signál, mohu pomocí těchto velmi krátkých signálů seskládat libovolný vstupní signál a odezvu LTI systému na něj pak seskládat ze známé odezvy na velmi krátký signál.
7 LTI systémy lineární systém Hledáme základní, tj. bázové signály tak, aby: bylo možné reprezentovat libovolné signály jako lineární kombinaci těchto bázových signálů odezva LTI systémů na tyto bázové signály byla jednoduchá a zároveň aby umožňovala dostatečně hluboký vhled
8 Jednotkový diskrétní impulz?
9 Jednotkový diskrétní impulz Jednotkový diskrétní impulz je elementární posloupnost ve tvaru osamělého vzorku jednotkové velikosti Pozn.: Neplést s Diracovým impulsem!
10 Reprezentace DT signálů jednotkovými impulsy
11 Reprezentace DT signálů jednotkovými impulsy Pozn.: Filtrační vlastnost Diracovy distribuce:
12 Odezva systému na jednotkový impuls x[n] LTI systém y[n] Lineární systém: je odezvou systému na:
13 Odezva systému na jednotkový impuls x[n] LTI systém y[n] Lineární a časově invariantní systém s odezvou h[n] na jednotkový impuls:
14 Odezva systému na jednotkový impuls x[n] LTI systém y[n] Lineární a časově invariantní systém s odezvou h[n] na jednotkový impuls: konvoluční suma
15 LTI systémy: konvoluce x[n] LTI systém y[n]
16 LTI systémy: konvoluce x[n] LTI systém y[n] IMPULSNÍ CHARAKTERISTIKA SYSTÉMU
17 LTI systémy: konvoluce x[n] LTI systém y[n] Sečti odezvy přes všechny k
18 LTI systémy: konvoluce x[n] LTI systém y[n]
19 LTI systémy: konvoluce
20 LTI systémy: konvoluce
21 LTI systémy: konvoluce
22 LTI systémy: konvoluce
23 LTI systémy: konvoluce
24 LTI systémy: konvoluce Stabilní systém kritérium v časové oblasti
25 LTI systémy: konvoluce Komutativní vlastnost konvoluce
26 LTI systémy: konvoluce Asociativní vlastnost konvoluce
27 LTI systémy: konvoluce Distributivní vlastnost konvoluce
28 LTI systémy: konvoluce Distributivní vlastnost konvoluce Každý netriviální LTI systém může být rozložen na paralelní spojení jednodušších dílčích LTI systémů.
29 LTI systémy: konvoluce Průměrovací vlastnost konvoluce
30 2. cvičení 1. Realizujte vlastní funkci pro výpočet konvoluce pomocí cyklu, násobení a sčítání. Porovnejte výsledky z Vaší implementace s výsledky z matlabovské funkce conv(). Otestujte, zda je operátor konvoluce komutativní. 2. Realizujte systém představující hranový detektor pro detekce bodů zlomu v signálu. Hranový detektor představuje druhou diferenci. 3. Realizujte systém popsaný touto diferenční rovnicí: y[n] = ( x[n] x[n 1] x[n 2] x[n 3] x[n 4] x[n 5] x[n 6] x[n 7] x[n 8] x[n 9]) / 100. a prozkoumejte jeho odezvu na předložený signál.
31 2. Cvičení - konvoluce
32 2. Cvičení hranový detektor
33 2. cvičení vyhlazování
34 ffgf Otázky? 34
Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy
Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy
Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti
Lineární a adaptivní zpracování dat 3. SYSTÉMY a jejich popis ve frekvenční oblasti Daniel Schwarz Osnova Opakování: systémy a jejich popis v časové oblasti Fourierovy řady Frekvenční charakteristika systémů
Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady, vlastnosti Vzorkovací
Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady,
Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady,
Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita
Lineární a adpativní zpracování dat 3. Lineární filtrace I: Z-transformace, stabilita Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály, systémy, jejich vlastnosti a popis v časové
Úvod do zpracování signálů
1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování
Analýza lineárních regulačních systémů v časové doméně. V Modelice (ale i v Simulinku) máme blok TransfeFunction
Analýza lineárních regulačních systémů v časové doméně V Modelice (ale i v Simulinku) máme blok TransfeFunction Studijní materiály http://physiome.cz/atlas/sim/regulacesys/ Khoo: Physiological Control
[ n. Konvoluce. = 0 jinak. 0 jinak. Užitečné signály (diskrétní verze) Jednotkový skok 1 pro n = 0
Užitečné signály (diskrétní verze) Konvoluce σ Jednotkový skok [ n] Jednotkový impuls (delta funkce) Posunutý jednotkový impuls 1 pro n 0 1 pro n = 0 δ = δ [ n] [ n k] = 0 jinak 0 jinak Proč jsou užitečné?
Modelov an ı syst em u a proces
Modelování systémů a procesů 13. března 2012 Obsah 1 Vnější popis systému 2 Vnitřní popis systému 3 Příklady na stavový popis dynamických systémů Obsah 1 Vnější popis systému 2 Vnitřní popis systému 3
Vlastnosti konvoluce. ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz
Systémy Vlastnosti lineárních systémů. Konvoluce diskrétní a spojitý čas. Vlastnosti konvoluce Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz 1 Systémy obecně: spojení komponentů, zařízení nebo
Číslicové filtry. Honza Černocký, ÚPGM
Číslicové filtry Honza Černocký, ÚPGM Aliasy Digitální filtry Diskrétní systémy Systémy s diskrétním časem atd. 2 Na co? Úprava signálů Zdůraznění Potlačení Detekce 3 Zdůraznění basy 4 Zdůraznění výšky
Diskretizace. 29. dubna 2015
MSP: Domácí příprava č. 3 Vnitřní a vnější popis diskrétních systémů Dopředná Z-transformace Zpětná Z-transformace Řešení diferenčních rovnic Stabilita diskrétních systémů Spojování systémů Diskretizace
Flexibilita jednoduché naprogramování a přeprogramování řídícího systému
Téma 40 Jiří Cigler Zadání Číslicové řízení. Digitalizace a tvarování. Diskrétní systémy a jejich vlastnosti. Řízení diskrétních systémů. Diskrétní popis spojité soustavy. Návrh emulací. Nelineární řízení.
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 8. přednáška 11MSP pondělí 20. dubna 2015 verze: 2015-04-14 12:31
Diskrétní 2D konvoluce
ČVUT FEL v Praze 6ACS. prosince 2006 Martin BruXy Bruchanov bruxy@regnet.cz Diracův impuls jednotkový impulz, δ-impulz, δ-funkce; speciální signál s nulovou šířkou impulzu a nekonečnou amplitudou; platí
Číslicová filtrace. FIR filtry IIR filtry. ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Číslicová filtrace FIR filtry IIR filtry Tyto materiály vznikly za podpory Fondu rozvoje
ÚPGM FIT VUT Brno,
Systémy s diskrétním časem Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz 1 LTI systémy v tomto kursu budeme pracovat pouze se systémy lineárními a časově invariantními. Úvod k nim jsme viděli již
základní vlastnosti, používané struktury návrhové prostředky MATLAB problém kvantování koeficientů
A0M38SPP - Signálové procesory v praxi - přednáška 4 2 Číslicové filtry typu FIR a IIR definice operace filtrace základní rozdělení FIR, IIR základní vlastnosti, používané struktury filtrů návrhové prostředky
DSY-4. Analogové a číslicové modulace. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
DSY-4 Analogové a číslicové modulace Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti DSY-4 analogové modulace základní číslicové modulace vícestavové modulace modulace s rozprostřeným
PSK1-9. Číslicové zpracování signálů. Číslicový signál
Název školy: Autor: Anotace: PSK1-9 Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Princip funkce číslicové filtrace signálu Vzdělávací oblast: Informační a komunikační
Analýza a zpracování digitálního obrazu
Analýza a zpracování digitálního obrazu Úlohy strojového vidění lze přibližně rozdělit do sekvence čtyř funkčních bloků: Předzpracování veškerých obrazových dat pomocí filtrací (tj. transformací obrazové
O řešení diferenční rovnice y(n+2) 1, 25y(n+1)+0, 78125y(n) = x(n + 2) x(n)
O řešení diferenční rovnice yn+), 5yn+)+0, 785yn) xn + ) xn) Prof. RNDr. Josef Diblík, DrSc. a Prof. Ing. Zdeněk Smékal, CSc. V příspěvku je řešena rovnice Abstrakt yn + ), 5yn + ) + 0, 785yn) xn + ) xn)
Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů
Kapitola 1 Signály a systémy 1.1 Klasifikace signálů Signál představuje fyzikální vyjádření informace, obvykle ve formě okamžitých hodnot určité fyzikální veličiny, která je funkcí jedné nebo více nezávisle
22 Základní vlastnosti distribucí
M. Rokyta, MFF UK: Aplikovaná matematika IV kap. 22: Základní vlastnosti distribucí 5 22 Základní vlastnosti distribucí 22.1 Temperované distribuce Definice. O funkci ϕ C (R m ) řekneme, že je rychle klesající
do magisterské etapy programu ELEKTRONIKA A KOMUNIKACE
JMÉNO A PŘÍJMENÍ: 1 VZOROVÝ TEST K PŘIJÍMACÍ ZKOUŠCE do magisterské etapy programu ELEKTRONIKA A KOMUNIKACE Odpovědi na otázky pište do volného místa za každou otázkou. Pro pomocné výpočty použijte čistou
1. března Organizace Základní informace Literatura Úvod Motivace... 3
Modelování systémů a procesů (611MSP) Děčín přednáška 1 Vlček, Kovář, Přikryl 1. března 2012 Obsah 1 Organizace 1 1.1 Přednášející....................................... 1 1.2 Základní informace...................................
MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH. Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky
MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky Při návrhu elektroakustických soustav, ale i jiných systémů, je vhodné nejprve
grupa těleso podgrupa konečné těleso polynomy komutativní generovaná prvkem, cyklická, řád prvku charakteristika tělesa
grupa komutativní podgrupa těleso generovaná prvkem, cyklická, řád prvku Malá Fermatova věta konečné těleso charakteristika tělesa polynomy ireducibilní prvky, primitivní prvky definice: G, je grupa kde
1 Zpracování a analýza tlakové vlny
1 Zpracování a analýza tlakové vlny 1.1 Cíl úlohy Prostřednictvím této úlohy se naučíte a zopakujete: analýzu biologických signálů v časové oblasti, analýzu biologických signálů ve frekvenční oblasti,
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)
Operace s obrazem I. Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno. prezentace je součástí projektu FRVŠ č.
Operace s obrazem I Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 Osnova 1 Filtrování obrazu 2 Lineární a nelineární filtry 3 Fourierova
Jasové transformace. Karel Horák. Rozvrh přednášky:
1 / 23 Jasové transformace Karel Horák Rozvrh přednášky: 1. Úvod. 2. Histogram obrazu. 3. Globální jasová transformace. 4. Lokální jasová transformace. 5. Bodová jasová transformace. 2 / 23 Jasové transformace
Biofyzikální ústav LF MU Brno. jarní semestr 2011
pro obor Ošetřovatelská péče v gerontologii Biofyzikální ústav LF MU Brno jarní semestr 2011 Obsah letmý dotyk teorie systémů klasifikace a analýza biosignálů Co je signál? Co je biosignál? Co si počít
NPGR032 CVIČENÍ III. Šum a jeho odstranění teorie&praxe. Adam Novozámský (novozamsky@utia.cas.cz)
NPGR032 CVIČENÍ III. Šum a jeho odstranění teorie&praxe Adam Novozámský (novozamsky@utia.cas.cz) TEORIE Šum a jeho odstranění ŠUM Co je to šum v obrázku a jak vzniká? Jaké známe typy šumu? ŠUM V obrázku
DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH
DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH Viktor Haškovec, Martina Mudrová Vysoká škola chemicko-technologická v Praze, Ústav počítačové a řídicí techniky Abstrakt Příspěvek je věnován zpracování biomedicínských
Automatizace je proces při němž je řídicí funkce člověka nahrazována činností
Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné
Multimediální systémy
Multimediální systémy Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI přednášky Získání obsahu Jan Outrata (Univerzita Palackého v Olomouci) Multimediální systémy Olomouc, září prosinec
Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,
Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),
Analýza a zpracování signálů. 5. Z-transformace
Analýa a pracování signálů 5. Z-transformace Z-tranformace je mocný nástroj použitelný pro analýu lineárních discretetime systémů Oboustranná Z-transformace X k jf j xk, je komplexní číslo r e r e k Oboustranná
Pro tvorbu samostatně spustitelných aplikací je k dispozici Matlab library.
1.1 Matlab Matlab je interaktivní systém pro vědecké a technické výpočty založený na maticovém kalkulu. Umožňuje řešit velkou oblast numerických problémů, aniž byste museli programovat vlastní program.
Zimní semestr akademického roku 2014/ prosince 2014
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 014/015. prosince 014 Předmluva iii
Úvod do číslicové filtrace
jindrich.zdansky@tul.cz Ústav infromačních technologií a elektroniky Technická univerzita v Liberci 2008 Osnova 1 2 3 4 5 Osnova 1 2 3 4 5 Pojem filtr a filtrace Filtrace je proces, kdy systém (filtr)
Obraz matematický objekt. Spojitý obraz f c : (Ω c R 2 ) R
Obraz matematický objekt Spojitý obraz f c : (Ω c R 2 ) R Obraz matematický objekt Spojitý obraz f c : (Ω c R 2 ) R Diskrétní obraz f d : (Ω {0... n 1 } {0... n 2 }) {0... f max } Obraz matematický objekt
Úvod do kvantového počítání
2. přednáška Katedra počítačů, Fakulta elektrotechnická České vysoké učení technické v Praze 17. března 2005 Opakování Část I Přehled z minulé hodiny Opakování Alternativní výpočetní modely Kvantové počítače
ROZ1 - Cv. 3 - Šum a jeho odstranění ÚTIA - ZOI
Šum Co je to šum v obrázku? Šum Co je to šum v obrázku? V obrázku je přidaná falešná informace nahodilého původu Jak vzniká v digitální fotografii? Šum Co je to šum v obrázku? V obrázku je přidaná falešná
Číslicové obvody základní pojmy
Číslicové obvody základní pojmy V číslicové technice se pracuje s fyzikálními veličinami, které lze popsat při určité míře zjednodušení dvěma stavy. Logické stavy binární proměnné nabývají dvou stavů:
U Úvod do modelování a simulace systémů
U Úvod do modelování a simulace systémů Vyšetřování rozsáhlých soustav mnohdy nelze provádět analytickým výpočtem.často je nutné zkoumat chování zařízení v mezních situacích, do kterých se skutečné zařízení
Odpřednesenou látku naleznete v kapitolách skript Abstraktní a konkrétní lineární algebra.
nad obecným tělesem a lineární kombinace Odpřednesenou látku naleznete v kapitolách 1.1 1.4 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: A7B01LAG 1.10.2015: 1/20 nad obecným tělesem Co
VY_32_INOVACE_E 15 03
Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory
Zpracování obrazů. Honza Černocký, ÚPGM
Zpracování obrazů Honza Černocký, ÚPGM 1D signál 2 Obrázky 2D šedotónový obrázek (grayscale) Několikrát 2D barevné foto 3D lékařské zobrazování, vektorová grafika, point-clouds (hloubková mapa, Kinect)
VĚTY Z LINEÁRNÍ ALGEBRY
VĚTY Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. věta Nechť M = {x 1, x 2,..., x k } je množina vektorů z vektorového prostoru
Laplaceova transformace
Laplaceova transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MSP pondělí 23. března
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cziba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické či jiné
Okruh Lineární rovnice v Z m Těleso Gaussova eliminace (GEM) Okruh Z m. Jiří Velebil: X01DML 19. listopadu 2007: Okruh Z m 1/20
Okruh Z m Jiří Velebil: X01DML 19. listopadu 2007: Okruh Z m 1/20 Minule: 1 Slepování prvků Z modulo m: množina Z m. 2 Operace na Z m : m (sčítání), m (násobení). 3 Speciální prvky: [0] m a [1] m. 4 Vlastnosti
1 Projekce a projektory
Cvičení 3 - zadání a řešení úloh Základy numerické matematiky - NMNM20 Verze z 5. října 208 Projekce a projektory Opakování ortogonální projekce Definice (Ortogonální projekce). Uvažujme V vektorový prostor
polyfázové filtry (multirate filters) cascaded integrator comb filter (CIC) A0M38SPP - Signálové procesory v praxi - přednáška 8 2
A0M38SPP - Signálové procesory v praxi - přednáška 8 2 Decimace snížení vzorkovací frekvence Interpolace zvýšení vzorkovací frekvence Obecné převzorkování signálu faktorem I/D Efektivní způsoby implementace
02 Systémy a jejich popis v časové a frekvenční oblasti
Modul: Analýza a modlování dynamických biologických dat Přdmět: Linární a adaptivní zpracování dat Autor: Danil Schwarz Číslo a názv výukové dnotky: Systémy a ich popis v časové a frkvnční oblasti Výstupy
8 Matice a determinanty
M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou
Základní metody číslicového zpracování signálů pro integrovanou výuku VUT a VŠB-TUO
FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Základní metody číslicového zpracování signálů pro integrovanou výuku VUT a VŠB-TUO Garant předmětu: doc. Ing. Jiří Mišurec,
ALGEBRA. Téma 5: Vektorové prostory
SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)
Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1
Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném
Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n
[1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem
Při návrhu FIR filtru řešíme obvykle následující problémy:
Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.
VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku
VI Maticový počet VI1 Základní operace s maticemi Definice Tabulku a 11 a 12 a 1n a 21 a 22 a 2n, a m1 a m2 a mn kde a ij R, i = 1,, m, j = 1,, n, nazýváme maticí typu m n Zkráceně zapisujeme (a ij i=1m
Systémy. Systém: souhrn souvisejících prvků, sdružený do nějakého smysluplného celku
Systémy Systém: souhrn souvisejících prvků, sdružený do nějakého smysluplného celku Pro nás: krabička něco dělající se signály: xt, xn něco do ní leze vstup ( ) [ ] něco z ní leze ven výstup yt ( ), yn
ROZ1 - Cv. 2 - Fourierova transformace ÚTIA - ZOI
Vzorečky Co to je FT? Vzorečky Co to je FT? Transformace signálu z časové (resp. obrazové) reprezentace f(t) do frekvenční reprezentace F(ψ) a zpět. Díky ní můžeme signál analyzovat ve frekvenční oblasti
Inverzní z-transformace. prof. Miroslav Vlček. 25. dubna 2013
Modelování systémů a procesů 25. dubna 2013 Obsah Inverzní z-transformace 1 Inverzní z-transformace 2 Obsah Inverzní z-transformace 1 Inverzní z-transformace 2 Metody výpočtu inverzní z-transformace Zpětná
1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15
Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních
ZS: 2018/2019 NMAF063 F/3 Josef MÁLEK. Matematika pro fyziky III
ZS: 2018/2019 NMAF063 F/3 Josef MÁLEK Matematika pro fyziky III OBECNÉ INFORMACE A SYLABUS Přednášející: Cvičící: Josef Málek Tomáš Los, Michal Pavelka, Michal Pavelka, Vít Průša Termíny přednášek: čtvrtek
Úvod do medicínské informatiky pro Bc. studium. 6. přednáška
Metody zpracování biosignálů 6. přednáška 1 Biosignály Živé objekty produkují signály biologického původu. Tyto signály mohou být elektrické (např. elektrické potenciály vznikající při svalové činnosti),
Lineární algebra Operace s vektory a maticemi
Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................
DISKRÉTNÍ PROCESY V ELEKTROTECHNICE
Výuka předmětu DISKRÉTNÍ PROCESY V ELEKTROTECHNICE Jaromír Baštinec, Ústav matematiky, Fakulta elektrotechniky a komunikačních technologií, VUT v Brně e-mail: bastinec@feec.vutbr.cz Irena Hlavičková Ústav
Digitalizace převod AS DS (analogový diskrétní signál )
Digitalizace signálu v čase Digitalizace převod AS DS (analogový diskrétní signál ) v amplitudě Obvykle převod spojité předlohy (reality) f 1 (t/x,...), f 2 ()... připomenutí Digitalizace: 1. vzorkování
Modelování a simulace
Modelování a simulace Doc Ing Pavel Václavek, PhD Modelování a simulace Úvod - str /48 Obsah a organizace Obsah a org Cíl předmětu Náplň přednášek Vyučující Hodnocení Literatura Modelování a simulace Úvod
Cvičná bakalářská zkouška, 1. varianta
jméno: studijní obor: PřF BIMAT počet listů(včetně tohoto): 1 2 3 4 5 celkem Cvičná bakalářská zkouška, 1. varianta 1. Matematická analýza Najdětelokálníextrémyfunkce f(x,y)=e 4(x y) x2 y 2. 2. Lineární
Autor by chtìl podìkovat všem svým spolupracovníkùm a kolegùm, kteøí mu pomohli s pøípravou textu. K vydání knihy pøispìla firma Newport Electronics s
Pavel Nevøiva ANALÝZA SIGNÁLÙ A SOUSTAV Praha 2000 Autor by chtìl podìkovat všem svým spolupracovníkùm a kolegùm, kteøí mu pomohli s pøípravou textu. K vydání knihy pøispìla firma Newport Electronics spol.
Grafika na počítači. Bc. Veronika Tomsová
Grafika na počítači Bc. Veronika Tomsová Proces zpracování obrazu Proces zpracování obrazu 1. Snímání obrazu 2. Digitalizace obrazu převod spojitého signálu na matici čísel reprezentující obraz 3. Předzpracování
Teorie systémů TES 3. Sběr dat, vzorkování
Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti. Teorie systémů TES 3. Sběr dat, vzorkování ZS 2011/2012 prof. Ing. Petr Moos, CSc. Ústav informatiky a telekomunikací Fakulta dopravní
Předmět A3B31TES/Př. 13
Předmět A3B31TES/Př. 13 PS 1 1 Katedra teorie obvodů, místnost č. 523, blok B2 Přednáška 13: Kvantování, modulace, stavový popis PS Předmět A3B31TES/Př. 13 květen 2015 1 / 28 Obsah 1 Kvantování 2 Modulace
Integrální transformace obrazu
Integrální transformace obrazu David Bařina 26. února 2013 David Bařina Integrální transformace obrazu 26. února 2013 1 / 74 Obsah 1 Zpracování signálu 2 Časově-frekvenční rozklad 3 Diskrétní Fourierova
Vlastní čísla a vlastní vektory
Vlastní čísla a vlastní vektory 1 Motivace Uvažujme lineární prostor všech vázaných vektorů v rovině, které procházejí počátkem, a lineární zobrazení tohoto prostoru do sebe(lineární transformaci, endomorfismus)
Zavedení a vlastnosti reálných čísel
Zavedení a vlastnosti reálných čísel jsou základním kamenem matematické analýzy. Konstrukce reálných čísel sice není náplní matematické analýzy, ale množina reálných čísel R je pro matematickou analýzu
CW01 - Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2014/2015 tm-ch-spec. 1.p 2014 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a
9. PRINCIPY VÍCENÁSOBNÉHO VYUŽITÍ PŘENOSOVÝCH CEST
9. PRINCIPY VÍCENÁSOBNÉHO VYUŽITÍ PŘENOSOVÝCH CEST Modulace tvoří základ bezdrátového přenosu informací na velkou vzdálenost. V minulosti se ji využívalo v telekomunikacích při vícenásobném využití přenosových
teorie elektronických obvodů Jiří Petržela obvodové funkce
Jiří Petržela obvod jako dvojbran dvojbranem rozumíme elektronický obvod mající dvě brány (vstupní a výstupní) dvojbranem může být zesilovač, pasivní i aktivní filtr, tranzistor v některém zapojení, přenosový
Analýza a zpracování signálů
Analýza a zpracování ů Digital Signal Processing disciplína, která nám umožňuje nahradit (v případě že nezpracováváme vf y) obvody, dříve složené z rezistorů a kapacitorů, dvěma antialiasingovými filtry,
A7B31ZZS 10. PŘEDNÁŠKA Návrh filtrů 1. prosince 2014
A7B3ZZS. PŘEDNÁŠKA Návrh filtrů. prosince 24 Návrhy jednoduchých filtrů Návrhy složitějších filtrů Porovnání FIR a IIR Nástroje pro návrh FIR filtrů v MATLABu Nástroje pro návrh IIR filtrů v MATLABu Kvantování
Konstrukce realizací Lieových algeber
1 České vysoké učení technické v Praze F4 Fakulta jaderná a fyzikálně inženýrská Katedra fyziky Konstrukce realizací Lieových algeber Daniel Gromada Realizace Lieovy algebry 2+ Realizace Lieovy algebry
Předzpracování obrazů v prostoru obrazů, operace v lokálním sousedství
Předzpracování obrazů v prostoru obrazů, operace v lokálním sousedství Václav Hlaváč České vysoké učení technické v Praze Český institut informatiky, robotiky a kybernetiky 166 36 Praha 6, Jugoslávských
Analýza a zpracování signálů. 5. Z-transformace
nalýa a pracování signálů 5. Z-transformace Z-tranformace je mocný nástroj použitelný pro analýu lineárních discretetime systémů Oboustranná Z-transformace X j F j x, je omplexní číslo r e r e Oboustranná
Opakování z předmětu TES
Opakování z předmětu TES A3B35ARI 6..6 Vážení studenti, v následujících měsících budete každý týden z předmětu Automatické řízení dostávat domácí úkol z látky probrané v daném týdnu na přednáškách. Jsme
Dodatky k FT: 1. (2D digitalizace) 2. Více o FT 3. Více k užití filtrů. 7. přednáška předmětu Zpracování obrazů
Dodatky k FT:. (D digitalizace. Více o FT 3. Více k užití filtrů 7. přednáška předmětu Zpracování obrazů Martina Mudrová 4 Pořízení digitálního obrazu Obvykle: Proces transformace spojité předlohy (reality
Pružnost a plasticita II CD03
Pružnost a plasticita II CD3 uděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechanik tel: 5447368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah
ALGORITMY A DATOVÉ STRUKTURY
Název tématického celku: Cíl: ALGORITMY A DATOVÉ STRUKTURY Metodický list č. 1 Časová složitost algoritmů Základním cílem tohoto tematického celku je vysvětlení potřebných pojmů a definic nutných k popisu
Základy algoritmizace
Algoritmus Toto je sice na první pohled pravdivá, ale při bližším prozkoumání nepřesná definice. Například některé matematické postupy by této definici vyhovovaly, ale nejsou algoritmy. Přesné znění definice
Matematické modely a způsoby jejich řešení. Kateřina Růžičková
Matematické modely a způsoby jejich řešení Kateřina Růžičková Rovnice matematické fyziky Přednáška převzata od Doc. Rapanta Parciální diferencíální rovnice Diferencialní rovnice obsahujcí parcialní derivace
7.1. Číslicové filtry IIR
Kapitola 7. Návrh číslicových filtrů Hraniční kmitočty propustného a nepropustného pásma jsou ve většině případů specifikovány v[hz] společně se vzorkovacím kmitočtem číslicového filtru. Návrhové algoritmy