Téma 2: Pravděpodobnostní vyjádření náhodných veličin
|
|
- Veronika Soukupová
- před 7 lety
- Počet zobrazení:
Transkript
1 Nominální napětí v pásnici Std Mean Std Téma 2: Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí 4. ročník bakalářského studia Katedra stavební mechaniky Fakulta stavební Vysoká škola báňská Technická univerzita Ostrava
2 Osnova přednášky Náhodný jev, pravděpodobnost náhodného jevu Náhodná veličina: diskrétní spojitá Základní pojmy teorie : Rozdělení : Parametrické Neparametrické (empirické) Pravděpodobnostní funkce Hustota rozdělení Distribuční funkce Aproximace omezených rozdělení, histogramy Náhodná veličina v pravděpodobnostním výpočtu Pravděpodobnostní vyjádření náhodných veličin 1 / 22
3 Pravděpodobnost Náhodným jevem se rozumí opakovatelná činnost prováděná za stejných (nebo přibližně stejných) podmínek, jejíž výsledek je nejistý a závisí na náhodě. Příklady mohou být například házení kostkou, střelba do terče nebo losování loterie. Pravděpodobnost náhodného jevu je číslo, udávající s jakou jistotou lze daný náhodný jev očekávat. Míra náleží do uzavřeného intervalu <0, 1>, kde nula znamená, že událost nemůže nastat a jednička, že jev je jistý. Lze vyjádřit i procentuálně (po vynásobení 100) V teorii spolehlivosti konstrukcí např. kde P f P s P f... pravděpodobnost, že nastane porucha P s... pravděpodobnost, že konstrukce zůstane zachovaná Základní principy teorie 2 / 22 1
4 Náhodná veličina Náhodná veličina je libovolná reálná funkce X definovaná na množině elementárních jevů ω pravděpodobnostního prostoru Ω. Náhodná veličina je určena rozdělením. Spojité a diskrétní veličiny: Náhodné veličiny lze rozdělit na nespojité (diskrétní) a spojité. Diskrétní veličiny mohou nabývat pouze početný počet hodnot (konečný i nekonečný), zatímco spojité veličiny nabývají hodnoty z intervalu (konečného nebo nekonečného). Obor všech hodnot náhodné veličiny se nazývá definičním oborem. Příklad: Výskyt daného jevu lze označit hodnotou 1. Pokud k výskytu daného jevu nedojde, náhodné veličině se přiřadí hodnota 0. Jedná se tedy o diskrétní náhodnou veličinu, která nabývá pouze hodnoty 0 nebo 1. Základní principy teorie 3 / 22
5 Náhodná veličina P (x ) 0,180 0,165 Pravděpodobnostní funkce hodu kostkou Rozdělení diskrétní náhodné veličiny 0,150 0,135 0,120 0,105 0,090 0,075 0,060 0,045 0,030 0,015 0, x Rozdělení spojité náhodné veličiny Základní principy teorie 4 / 22
6 Rozdělení, pravděpodobnostní funkce Rozdělení náhodné veličiny je pravidlo, kterým se každému jevu popisovanému touto veličinou přiřadí určitá pravděpodobnost. Rozdělení náhodné veličiny lze získat, pokud se každé hodnotě diskrétní náhodné veličiny, popř. intervalu hodnot spojité náhodné veličiny, přiřadí pravděpodobnost s pomocí pravděpodobnostní funkce P(x). Znalost pravděpodobnostní funkce lze použít k výpočtu. Např. pravdě- x podobnost, že náhodná veličina X leží mezi hodnotami x 1 a x 2 se určí: P 2 x x x Px 1 2 x xx 1 P(x) x 1 P(x 1 ) x 2 P(x 2 ) x n P(x n ) Základní principy teorie 5 / 22
7 Distribuční funkce diskrétní veličiny Pomocí pravděpodobnostní funkce lze zavést tzv. distribuční funkci vztahem: F x P X x Distribuční funkce je neklesající a je spojitá zleva. Hodnoty distribuční funkce leží v rozsahu x 1 0 F Pro diskrétní náhodnou veličinu X lze pro libovolné reálné číslo x vyjádřit distribuční funkci vztahem F x tx P t Vlastnosti Jestliže hodnoty náhodné veličiny leží v intervalu <a,b), pak F(a) = 0 a F(b) = 1. Základní principy teorie 6 / 22
8 Pravděpodobnostní a distribuční funkce hodu kostkou P (x ) 0,180 Pravděpodobnostní funkce hodu kostkou Pravděpodobnostní funkce 0,165 0,150 0,135 0,120 0,105 0,090 0,075 0,060 0,045 F (x ) 1,000 Distribuční funkce hodu kostkou 0,030 0,015 0,800 0, x 0,600 0,400 0,200 Distribuční funkce 0, x Základní principy teorie 7 / 22
9 Hustota rozdělení Rozdělení spojité náhodné veličiny se určuje prostřednictvím funkce, kterou označujeme jako hustota rozdělení (hustota ). Je-li (x) hustota spojité náhodné veličiny X, pak platí kde Ω je definiční obor veličiny X. xdx 1 (Pro hodnoty x mimo definiční obor Ω je hustota nulová). Ze znalosti hustoty (x) lze určit pravděpodobnost, že náhodná veličina X bude mít hodnotu z intervalu <x 1,x 2 >, tedy P 2 x X x x 1 2 dx x x 1 Základní principy teorie 8 / 22
10 Distribuční funkce spojité veličiny Pro spojitou náhodnou veličinu s hustotou (x) lze definovat distribuční funkci vztahem F x t dt Vlastnosti Platí, že F 0 a F 1. Distribuční funkci lze použít k výpočtu, neboť P x X x Fx F x1 Lze dokázat, že mezi hustotou (x) a distribuční funkcí F(x) platí vztah x x df dx Základní principy teorie 9 / 22
11 Distribuční funkce spojité veličiny Pravděpodobnostní funkce Distribuční funkce Základní principy teorie 10 / 22
12 Parametrická rozdělení spojité náhodné veličiny Důležitá spojitá rozdělení : Rovnoměrné rozdělení Normální rozdělení (Gaussovo rozdělení) Exponenciální rozdělení Laplaceovo rozdělení Std Variable 1 Mean Std Logistické rozdělení Charakteristiky rozdělení náhodné veličiny - Maxwellovo rozdělení parametry (např. střední hodnota a směrodatná Studentovo rozdělení odchylka) Fischerovo-Snedecorovo rozdělení χ² rozdělení (Chí kvadrát) Pravděpodobnostní vyjádření náhodných veličin 11 / 22
13 Parametrická rozdělení spojité náhodné veličiny Obecný vzorec funkce hustoty normálního (Gaussova) rozdělení... střední hodnota... směrodatná odchylka f x 1 2 2, x e 2 2 0,1 0,09 0,08 0,07 1 n n i 1 ln x i s=0.5 s=0.75 s=1 Obecný vzorec funkce hustoty lognormálního rozdělení f ln x 1 2 2, x x e 2 2 0,06 0,05 0,04 0,03 0,02 0, lnx i n i 1 0,1 1,1 2,1 3,1 4,1 5,1 n 2 Pravděpodobnostní vyjádření náhodných veličin 12 / 22
14 (Ne)parametrické rozdělení Parametrická rozdělení popsány analytickou funkcí např. obecný vzorec funkce hustoty normálního (Gaussova) rozdělení Parametry - charakteristiky rozdělení náhodné veličiny (např. střední hodnota a směrodatná odchylka) f x 1 2 2, x e 2 2 Nominální napětí v pásnici Neparametrické (empirické) rozdělení 0.02 Std Mean Std Mez kluzu Std Mean Std definovány na základě měření, často i dlouhodobých Pravděpodobnostní vyjádření náhodných veličin 13 / 22
15 Omezení definičního oboru rozdělení spojité náhodné veličiny Neomezený obor rozdělení náhodné spojité veličiny Omezený obor rozdělení náhodné spojité veličiny Pravděpodobnostní vyjádření náhodných veličin 14 / 22
16 Omezení definičního oboru rozdělení Omezení rozsahu definičního oboru rozdělení z důvodu počítačové interpretace: Rozsah datových typů: Celočíselné typy: Byte (8 bitů 1 bajt) 0 až 255 Integer (16 bitů 2 bajty) až Word (16 bitů 2 bajty) 0 až Integer (32 bitů 4 bajty) až Typy s plovoucí čárkou: Float (32 bitů 4 bajty) ±3, až 3, Double (64 bitů 8 bajtů) ±1, až 1, Long double (80 bitů 10 bajtů) ±3, až 3, Pravděpodobnostní vyjádření náhodných veličin 15 / 22
17 Aproximace omezených rozdělení, histogramy 1. Původní (originální) rozdělení 2. Diskrétní (discrete) rozdělení 3. Čistě diskrétní (pure discrete) rozdělení 4. Po částech rovnoměrné rozdělení Pravděpodobnost (četnost) Intenzita Pravděpodobnostní vyjádření náhodných veličin 16 / 22
18 Náhodná veličina v pravděpodobnostním výpočtu Stochastické vyjádření náhodné veličiny - variabilní hodnotou (matematickým popisem náhodných vlastností): Pravděpodobnostní funkcí Rozdělením Histogramem Pravděpodobnostní vyjádření náhodných veličin 17 / 22
19 Histogram omezeného rozdělení Histogram omezeného diskrétního (discrete) rozdělení Pravděpodobnostní vyjádření náhodných veličin 18 / 22
20 Histogram omezeného rozdělení Histogram aproximace parametrického rozdělení omezeným diskrétním (discrete) rozdělením Pravděpodobnostní vyjádření náhodných veličin 19 / 22
21 Histogram čistě diskrétního rozdělení Histogram čistě diskrétního (pure discrete) rozdělení Pravděpodobnostní vyjádření náhodných veličin 20 / 22
22 Struktura datového souboru s definicí histogramu Textový soubor s příponou *.dis (distribution), jenž obsahuje údaje následujícího tvaru: [Description] (1. oddíl datového souboru) Identification= volitelný popis datového souboru Type= Pure Discrete Discrete Continuous (typ empirického rozdělení) [Parameters] (2. oddíl datového souboru) Min= minimální funkční hodnota Max= maximální funkční hodnota Bins= celkový počet tříd daného histogramu Total= součet četností ve všech třídách [Bins] (3. oddíl datového souboru) četnost v 1. třídě četnost ve 2. třídě atd.... Pravděpodobnostní vyjádření náhodných veličin 21 / 22
23 Závěry Přednáška: byla zaměřena na základní pojmy teorie, které souvisejí s pravděpodobností náhodného jevu, ukázala možnosti pravděpodobnostního vyjádření náhodné veličiny, zmínila omezení definičního oboru rozdělení v pravděpodobnostních výpočtech vlivem aproximace rozdělení náhodných veličin, stručně zmínila způsoby definice histogramu náhodné veličiny v datových souborech pravděpodobnostních výpočtů. Závěry 22 / 22
24 Nominální napětí v pásnici Std Mean Std Děkuji za pozornost!
Téma 2: Pravděpodobnostní vyjádření náhodných veličin
0.05 0.0 0.05 0.0 0.005 Nominální napětí v pásnici Std Mean 40 60 80 00 0 40 60 Std Téma : Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník
VíceTéma 1: Spolehlivost a bezpečnost stavebních nosných konstrukcí
Téma 1: Spolehlivost a bezpečnost stavebních nosných konstrukcí Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník bakalářského studia Katedra stavební mechaniky Fakulta stavební Vysoká škola
VícePravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti
VíceMatematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 4. října 2018 Podmíněná pravděpodobnost Při počítání pravděpodobnosti můžeme k náhodnému pokusu přidat i nějakou dodatečnou podmínku. Podmíněná pravděpodobnost
Více7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
VíceROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN
ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) f( x) distribuční funkce 0 x a F( x) a x b b a 1 x b b 1 a x a a x b
VíceJiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou
VíceZáklady teorie pravděpodobnosti
Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie
VíceTéma 2: Pravděpodobnostní vyjádření náhodných veličin
0.025 0.02 0.015 0.01 0.005 Nominální napětí v pásnici Std Mean 140 160 180 200 220 240 260 Std Téma 2: Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb
VíceNÁHODNÁ VELIČINA. 3. cvičení
NÁHODNÁ VELIČINA 3. cvičení Náhodná veličina Náhodná veličina funkce, která každému výsledku náhodného pokusu přiřadí reálné číslo. Je to matematický model popisující více či méně dobře realitu, který
VíceTéma 5: Parametrická rozdělení pravděpodobnosti spojité náhodné veličiny
0.05 0.0 0.05 0.0 0.005 Nomnální napětí v pásnc Std Mean 40 60 80 00 0 40 60 Std Téma 5: Parametrcká rozdělení pravděpodobnost spojté náhodné velčn Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí
VíceP13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové
VíceI. D i s k r é t n í r o z d ě l e n í
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
Vícep(x) = P (X = x), x R,
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
VíceChyby měření 210DPSM
Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů
VíceNěkdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet?
Náhodné veličiny Náhodné veličiny Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Příklad Vytáhneme tři karty z balíčku zajímá nás, kolik je mezi nimi es.
VíceTéma 22. Ondřej Nývlt
Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené
VíceDiskrétní náhodná veličina. November 12, 2008
Diskrétní náhodná veličina November 12, 2008 (Náhodná veličina (náhodná proměnná)) Náhodná veličina (nebo též náhodná proměnná) je veličina X, jejíž hodnota je jednoznačně určena výsledkem náhodného pokusu.
Více9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).
VíceNáhodná veličina Číselné charakteristiky diskrétních náhodných veličin Spojitá náhodná veličina. Pravděpodobnost
Pravděpodobnost Náhodné veličiny a jejich číselné charakteristiky Petr Liška Masarykova univerzita 19.9.2014 Představme si, že provádíme pokus, jehož výsledek dokážeme ohodnotit číslem. Před provedením
VíceNáhodné (statistické) chyby přímých měření
Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně
Více9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud
VíceTéma 1: Spolehlivost a bezpečnost stavebních nosných konstrukcí
Téma 1: Spolehlivost a bezpečnost stavebních nosných konstrukcí Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí 4. ročník bakalářského studia Katedra stavební mechaniky Fakulta stavební Vysoká
VíceNáhodné chyby přímých měření
Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná.
VíceVýběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
VíceDefinice spojité náhodné veličiny zjednodušená verze
Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f
VíceNáhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
VíceKGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení
VíceInovace bakalářského studijního oboru Aplikovaná chemie
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Základy zpracování dat chemometrie, statistika Doporučenáliteratura
VícePRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Náhodná proměnná Náhodná veličina slouží k popisu výsledku pokusu. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáme. Přesto bychom chtěli tento pokus
VíceMATEMATICKÁ STATISTIKA
MATEMATICKÁ STATISTIKA 1. Úvod. Matematická statistika se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného procesu, se snažíme popsat
VíceKMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC
Přednáška 03 Přírodovědecká fakulta Katedra matematiky KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC jiri.cihlar@ujep.cz Diskrétní rozdělení Důležitá diskrétní rozdělení pravděpodobnosti
VíceTéma 10: Spolehlivost a bezpečnost stavebních nosných konstrukcí
Téma 10: Spolehlivost a bezpečnost stavebních nosných konstrukcí Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí 4. ročník bakalářského studia Katedra stavební mechaniky Fakulta stavební
VíceNÁHODNÁ VELIČINA. Podle typu výběrového prostoru rozlišujeme dva základní druhy NV Diskrétní (nespojitou) náhodnou veličinu Spojitou náhodnou veličinu
NÁHODNÁ VELIČINA NÁHODNÁ VELIČINA Provedeme náhodný pokus (vybereme nějaké lidi, výrobky) A jejich výsledkem je nějaké reálné číslo (počet VŠ, počet vadných výrobků) Kdyţ je moţné přiřadit číslo můţeme
VíceCvičení 2. Vyjádření náhodně proměnných veličin, Posudek spolehlivosti metodou SBRA, Posudek metodou LHS.
Spolehlivost a bezpečnost staveb 4. ročník bakalářského studia Cvičení 2 Vyjádření náhodně proměnných veličin, Posudek spolehlivosti metodou SBRA, Posudek metodou LHS. Zpracování naměřených dat Tvorba
Vícepravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti.
3.1 Základy teorie pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. Co se dozvíte Náhodný pokus a náhodný jev. Pravděpodobnost, počítání s pravděpodobnostmi.
Více10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.
0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti
VícePravděpodobnost a matematická statistika
Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n
VíceAVDAT Náhodný vektor, mnohorozměrné rozdělení
AVDAT Náhodný vektor, mnohorozměrné rozdělení Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Opakování, náhodná veličina, rozdělení Náhodná veličina zobrazuje elementární
VíceStřední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.
Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která
VícePravděpodobnost a statistika I KMA/K413
Pravděpodobnost a statistika I KMA/K413 Konzultace 3 Přírodovědecká fakulta Katedra matematiky jiri.cihlar@ujep.cz Kovariance, momenty Definice kovariance: Kovariance náhodných veličin Dále můžeme dokázat:,
VíceUrčete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.
3.1. 3.2. Třikrát vystřelíme na cíl. Pravděpodobnost zásahu při každém výstřelu je p = 0,7. Určete: a) pravděpodobnostní funkci počtu zásahů při třech nezávislých výsledcích, b) distribuční funkci a její
Více1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost
1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost Ve světě kolem nás eistují děje, jejichž výsledek nelze předem jednoznačně určit. Například nemůžete předem určit, kolik
VíceNáhodná veličina. Michal Fusek. 10. přednáška z ESMAT. Ústav matematiky FEKT VUT, Michal Fusek
Náhodná veličina Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 10. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 71 Obsah 1 Náhodná veličina 2 Diskrétní náhodná veličina 3
Více8 Střední hodnota a rozptyl
Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení
VíceNáhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která
Náhodná veličina a její charakteristiky Náhodná veličina a její charakteristiky Představte si, že provádíte náhodný pokus, jehož výsledek jste schopni ohodnotit nějakým číslem. Před provedením pokusu jeho
VíceJAK MODELOVAT VÝSLEDKY NÁH. POKUSŮ? Martina Litschmannová
JAK MODELOVAT VÝSLEDKY NÁH. POKUSŮ? Martina Litschmannová Opakování Základní pojmy z teorie pravděpodobnosti Co je to náhodný pokus? Děj, jehož výsledek není předem jednoznačně určen podmínkami, za nichž
Vícea způsoby jejího popisu Ing. Michael Rost, Ph.D.
Podmíněná pravděpodobnost, náhodná veličina a způsoby jejího popisu Ing. Michael Rost, Ph.D. Podmíněná pravděpodobnost Pokud je jev A vázán na uskutečnění jevu B, pak tento jev nazýváme jevem podmíněným
VíceTomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
VícePraktická statistika. Petr Ponížil Eva Kutálková
Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo
VíceTéma 3 Metoda LHS, programový systém Atena-Sara-Freet
Spolehlivost a bezpečnost staveb, 4.ročník bakalářského studia Téma 3 Metoda LHS, programový systém Atena-Sara-Freet Parametrická rozdělení Metoda Latin Hypercube Sampling (LHS) aplikovaná v programu Freet
VícePRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Náhodná proměnná Náhodná veličina slouží k popisu výsledku pokusu. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáme. Přesto bychom chtěli tento pokus
VíceDesign Experimentu a Statistika - AGA46E
Design Experimentu a Statistika - AGA46E Czech University of Life Sciences in Prague Department of Genetics and Breeding Summer Term 2015 Matúš Maciak (@ A 211) Office Hours: M 14:00 15:30 W 15:30 17:00
VíceE(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =
Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní
Více2. přednáška - PRAVDĚPODOBNOST
2. přednáška - PRAVDĚPODOBNOST NÁHODNÝ POKUS A JEV Každá opakovatelná činnost prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě, se nazývá náhodný pokus.
VíceJAK MODELOVAT VÝSLEDKY
JAK MODELOVAT VÝSLEDKY NÁHODNÝCH POKUSŮ? Martina Litschmannová Opakování Základní pojmy z teorie pravděpodobnosti Co je to náhodný pokus? Děj, jehož výsledek není předem jednoznačně určen podmínkami, za
VíceVybraná rozdělení náhodné veličiny
3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.
VíceRozdělení náhodné veličiny. Distribuční funkce. Vlastnosti distribuční funkce
Náhodná veličina motivace Náhodná veličina Často lze výsledek náhodného pokusu vyjádřit číslem: číslo, které padlo na kostce, výška náhodně vybraného studenta, čas strávený čekáním na metro, délka života
VícePravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2017/2018 Tutoriál č. 2:, náhodný vektor Jan Kracík jan.kracik@vsb.cz náhodná veličina rozdělení pravděpodobnosti náhodné
VíceMe neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 33
1 / 33 Méně než minimum ze statistiky Michaela Šedová KPMS MFF UK Principy medicíny založené na důkazech a základy vědecké přípravy Příklad Studie syndromu náhodného úmrtí dětí. Dvě skupiny: Děti, které
VíceLékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik
VíceMgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc.
Náhodné veličiny III Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc. Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman
VícePřednáška. Diskrétní náhodná proměnná. Charakteristiky DNP. Základní rozdělení DNP
IV Přednáška Diskrétní náhodná proměnná Charakteristiky DNP Základní rozdělení DNP Diskrétní náhodná veličina Funkce definovaná na Ω, přiřazující každému elementárnímu jevu E prvky X(E) D R kde D je posloupnost
Vícespolehlivosti stavebních nosných konstrukcí
Principy posuzování spolehlivosti stavebních nosných konstrukcí Spolehlivost a bezpečnost staveb 4. ročník bakalářského studia Ing. Martin Krejsa, Ph.D. Katedra stavební mechaniky Fakulta stavební Vysoká
VíceSPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI. 7. cvičení
SPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI 7. cvičení Intenzita poruch Funkce modelující dobu do výskytu události životnost, dobu do poruchy, dobu do relapsu (návratu onemocnění), apod. používáme spolu s distribuční
VíceRovnoměrné rozdělení
Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot
Víceletní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika
Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 1 1 Založeno na materiálech doc. Michala Kulicha veličina Definice Funkci
VíceCvičení 5. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.
5 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v
Více7 Pravděpodobnostní modely úvod
7 Pravděpodobnostní modely úvod 7 Pravděpodobnostní modely úvod Břetislav Fajmon, UMAT FEKT, VUT Brno Nyní ve druhé polovině kursu bude obsahem odlišná matematická disciplína, která snad má s numerickými
VíceLimitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností
VíceMATEMATICKÁ STATISTIKA - XP01MST
MATEMATICKÁ STATISTIKA - XP01MST 1. Úvod. Matematická statistika (statistics) se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného
VíceNÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?
NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU
VíceROZDĚLENÍ NÁHODNÝCH VELIČIN
ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)
Více1 Rozptyl a kovariance
Rozptyl a kovariance Nechť X je náhodná veličina s konečnou střední hodnotou EX Potom rozptyl náhodné veličiny X definujeme jako: DX E(X EX, pokud střední hodnota na pravé straně existuje Podobně jako
VíceIDENTIFIKACE BIMODALITY V DATECH
IDETIFIKACE BIMODALITY V DATECH Jiří Militky Technická universita v Liberci e- mail: jiri.miliky@vslib.cz Milan Meloun Universita Pardubice, Pardubice Motto: Je normální předpokládat normální data? Zvláštnosti
VícePřednáška. Další rozdělení SNP. Limitní věty. Speciální typy rozdělení. Další rozdělení SNP Limitní věty Speciální typy rozdělení
VI Přednáška Další rozdělení SNP Limitní věty Speciální typy rozdělení Rovnoměrné rozdělení R(a,b) Příklad Obejít celý areál trvá strážnému 30 minut. Jaká je pravděpodobnost, že u vrátnice budete čekat
Více4. cvičení 4ST201. Pravděpodobnost. Obsah: Pravděpodobnost Náhodná veličina. Co je třeba znát z přednášek
cvičící 4. cvičení 4ST201 Obsah: Pravděpodobnost Náhodná veličina Vysoká škola ekonomická 1 Pravděpodobnost Co je třeba znát z přednášek 1. Náhodný jev, náhodný pokus 2. Jev nemožný, jev jistý 3. Klasická
VíceMATEMATIKA III V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 7 Rozdělení pravděpodobnosti spojité náhodné veličiny Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka
VíceGENEROVÁNÍ NÁHODNÝCH ČÍSEL PSEUDONÁHODNÁ ČÍSLA
GENEROVÁNÍ NÁHODNÝCH ČÍSEL PSEUDONÁHODNÁ ČÍSLA Oblasti využití generátorů náhodných čísel Statistika Loterie Kryptografie (kryptologie) Simulace Simulační modely DETERMINISTICKÉ STOCHASTICKÉ (činnost systému
VíceMatematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace
Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Jan Slovák Masarykova univerzita Fakulta informatiky 28. 11 2. 12. 2016 Obsah přednášky 1 Literatura 2 Střední
VíceNÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:
NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného
VíceX = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní
..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X
VícePRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
Více8. Normální rozdělení
8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, 2 ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) 2 e 2 2, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá
VíceLIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení
LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení Způsoby statistického šetření Vyčerpávající šetření prošetření všech jednotek statistického souboru (populace) Výběrové šetření ze základního souboru
VíceUniverzita Palackého v Olomouci
Univerzita Palackého v Olomouci Modifikace profilu absolventa biologických studijních oborů na PřF UP: rozšíření praktické výuky a molekulárních, evolučních a cytogenetických oborů CZ.1.07/2.2.00/28.0158
VíceStatistika II. Jiří Neubauer
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Zaměříme se především na popis dvourozměrných náhodných veličin (vektorů). Definice Nechť X a Y jsou
VíceCvičení 3. Posudek únosnosti ohýbaného prutu. Software FREET Simulace metodou Monte Carlo Simulace metodou LHS
Spolehlivost a bezpečnost staveb, 4. ročník bakalářského studia (všechny obory) Cvičení 3 Posudek únosnosti ohýbaného prutu Software FREET Simulace metodou Monte Carlo Simulace metodou LHS Katedra stavební
VíceInženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti.
Přednáška č. 1 Úvod do statistiky a počtu pravděpodobnosti Statistika Statistika je věda a postup jak rozvíjet lidské znalosti použitím empirických dat. Je založena na matematické statistice, která je
VícePRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]
PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické
VíceNáhodné vektory a matice
Náhodné vektory a matice Jiří Militký Katedra textilních materiálů Technická Universita Liberec, Červeně označené slide jsou jen pro doplnění informací a nezkouší se. Symbolika A B Jev jistý S (nastane
VíceÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.
VíceVšechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a báli jste se zeptat Jedinečnou funkcí statistiky je, že umožňuje vědci číselně vyjádřit nejistotu v jeho závěrech. (G. W. Snedecor)
VíceTECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Základní pojmy diagnostiky a statistických metod vyhodnocení Učební text Ivan Jaksch Liberec 2012 Materiál vznikl
VíceMinikurz aplikované statistiky. Minikurz aplikované statistiky p.1
Minikurz aplikované statistiky Marie Šimečková, Petr Šimeček Minikurz aplikované statistiky p.1 Program kurzu základy statistiky a pravděpodobnosti regrese (klasická, robustní, s náhodnými efekty, ev.
VícePočet pravděpodobnosti
PSY117/454 Statistická analýza dat v psychologii Přednáška 4 Počet pravděpodobnosti Je známo, že když muž použije jeden z okrajových pisoárů, sníží se pravděpodobnost, že bude pomočen o 50%. anonym Pravděpodobnost
Víceina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)
Náhodná velčna na Výsledek náhodného pokusu, daný reálným číslem je hodnotou náhodné velčny. Náhodná velčna je lbovolná reálná funkce defnovaná na množně elementárních E pravděpodobnostního prostoru S.
Více