Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně"

Transkript

1 Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání

2 Osnova Opakování: signály a systémy Vlastnosti systémů Systémy a jejich popis v časové doméně: Konvoluce Impulsní charakteristika Systémy a jejich popis ve frekvenční doméně: Fourierovy řady Odezva systému na harmonický signál, frekvenční charakteristika Příklady: systém pro hledání bodů zlomu v signálu výpočet frekvenční charakteristiky systému z jeho diferenční rovnice

3 Opakování: signály Definice signálu a jeho matematické vyjádření Klasifikace signálů podle čeho dělíme a na co je dělíme A/D převod z čeho se skládá Vzorkovací věta a aliasing Kvantování a kvantizační šum Systém definice, struktura systému Systém tři základní vlastnosti

4 Vlastnosti systémů lineární x nelineární systémy časově invariantní x časově proměnné systémy kauzální x nekauzální systémy : y[n] = x 2 [n]? y[n] = x[2n]?

5 Vlastnosti systémů lineární x nelineární systémy časově invariantní x časově proměnné systémy kauzální x nekauzální systémy : y[n] = x 2 [n] Nelinární, časově invariantní, kauzální y[n] = n.x[2n] Lineární, časově proměnný, nekauzální

6 LTI systémy Lineární časově invariantní systémy (LTI): disponují elegantní matematické vztahy mezi jeho vstupy a výstupy. lze určit výstupní odezvu systému na jakýkoli vstup lze také určit vstup systému při pozorování jeho výstupu Selský rozum: Znám-li odezvu LTI systému na velmi krátký vstupní signál, mohu pomocí těchto velmi krátkých signálů seskládat libovolný vstupní signál a odezvu LTI systému na něj pak seskládat ze známé odezvy na velmi krátký signál.

7 LTI systémy lineární systém Hledáme základní, tj. bázové signály tak, aby: bylo možné reprezentovat libovolné signály jako lineární kombinaci těchto bázových signálů odezva LTI systémů na tyto bázové signály byla jednoduchá a zároveň aby umožňovala dostatečně hluboký vhled

8 Jednotkový diskrétní impulz?

9 Jednotkový diskrétní impulz Jednotkový diskrétní impulz je elementární posloupnost ve tvaru osamělého vzorku jednotkové velikosti Pozn.: Neplést s Diracovým impulsem!

10 Reprezentace DT signálů jednotkovými impulsy

11 Reprezentace DT signálů jednotkovými impulsy Pozn.: Filtrační vlastnost Diracovy distribuce:

12 Odezva systému na jednotkový impuls x[n] LTI systém y[n] Lineární systém: je odezvou systému na:

13 Odezva systému na jednotkový impuls x[n] LTI systém y[n] Lineární a časově invariantní systém s odezvou h[n] na jednotkový impuls:

14 Odezva systému na jednotkový impuls x[n] LTI systém y[n] Lineární a časově invariantní systém s odezvou h[n] na jednotkový impuls: konvoluční suma

15 LTI systémy: konvoluce x[n] LTI systém y[n]

16 LTI systémy: konvoluce x[n] LTI systém y[n] IMPULSNÍ CHARAKTERISTIKA SYSTÉMU

17 LTI systémy: konvoluce x[n] LTI systém y[n] Sečti odezvy přes všechny k

18 LTI systémy: konvoluce x[n] LTI systém y[n]

19 LTI systémy: konvoluce

20 LTI systémy: konvoluce

21 LTI systémy: konvoluce

22 LTI systémy: konvoluce

23 LTI systémy: konvoluce

24 LTI systémy: konvoluce Stabilní systém kritérium v časové oblasti

25 LTI systémy: konvoluce Komutativní vlastnost konvoluce

26 LTI systémy: konvoluce Asociativní vlastnost konvoluce

27 LTI systémy: konvoluce Distributivní vlastnost konvoluce

28 LTI systémy: konvoluce Distributivní vlastnost konvoluce Každý netriviální LTI systém může být rozložen na paralelní spojení jednodušších dílčích LTI systémů.

29 LTI systémy: konvoluce Průměrovací vlastnost konvoluce

30 2. cvičení 1. Realizujte vlastní funkci pro výpočet konvoluce pomocí cyklu, násobení a sčítání. Porovnejte výsledky z Vaší implementace s výsledky z matlabovské funkce conv(). Otestujte, zda je operátor konvoluce komutativní. 2. Realizujte systém představující hranový detektor pro detekce bodů zlomu v signálu. Hranový detektor představuje druhou diferenci. 3. Realizujte systém popsaný touto diferenční rovnicí: y[n] = ( x[n] x[n-1] x[n-2] x[n-3] x[n-4] x[n-5] x[n-6] x[n-7] x[n-8] x[n-9]) / 100. a prozkoumejte jeho odezvu na předložený signál.

31 2. Cvičení - konvoluce

32 2. Cvičení hranový detektor

33 2. cvičení vyhlazování 10 9 zaruseny originalni vyhlazeny

34 ffgf SYSTÉMY a jejich popis ve frekvenční oblasti 34

35 LTI systémy lineární systém Hledáme základní, tj. bázové signály tak, aby: bylo možné reprezentovat libovolné signály jako lineární kombinaci těchto bázových signálů odezva LTI systémů na tyto bázové signály byla jednoduchá a zároveň aby umožňovala dostatečně hluboký vhled

36 LTI systémy lineární systém Hledáme základní, tj. bázové signály tak, aby: bylo možné reprezentovat libovolné signály jako lineární kombinaci těchto bázových signálů odezva LTI systémů na tyto bázové signály byla jednoduchá a zároveň aby umožňovala dostatečně hluboký vhled MINULE: NYNÍ: jednotkové impulsy sinusové signály - komplexní exponenciály (harmonické časové řady)

37 Eulerovy vztahy e jx + e jx cos x = 2 e jx e jx sin x = 2 j

38 Harmonická časová řada f f ( ) ( ) n = A sin ω n + ϕ ( n) = A e j, f ( ω n+ ϕ ). f

39 f f ( n) = A sin( ω n + ϕ) ( n) = A e j f, ( ω n+ ϕ ). f Harmonická časová řada

40 Fourierovy řady?

41 Fourierovy řady Fourierova řada slouží k vyjádření rozvoje funkce prostřednictvím harmonických složek vyjádřených goniometrickými funkcemi nebo komplexními exponenciálami.

42 Fourierovy řady Fourierova řada slouží k vyjádření rozvoje funkce prostřednictvím harmonických složek vyjádřených goniometrickými funkcemi nebo komplexními exponenciálami. Fourierovy řady slouží jako teoretický základ pro analýzu signálů a systémů ve frekvenční oblasti.

43 Fourierovy řady ( n ) = x a e 0 k k = N jkω n FŘ diskrétní posloupnosti x(n) ω 0 základní úhlová frekvence 2π/N N počet vzorků v jedné periodě a k koeficienty FŘ

44 Fourierovy řady x[n] LTI systém y[n] ( ) jkω n = ( ) = ( jkω ) 0 n ake y n H e 0 jkω0n x ake k = N k = N FŘ diskrétní posloupnosti x(n) ω 0 základní úhlová frekvence 2π/N N počet vzorků v jedné periodě a k koeficienty FŘ

45 Fourierovy řady Vlastnosti FŘ: LINEARITA: KOMPLEXNÍ SDRUŽENÍ: je reálná je sudá, pak je sudá, pak je. je.

46 Fourierovy řady Vlastnosti FŘ: LINEARITA: KOMPLEXNÍ SDRUŽENÍ: je reálná je sudá, pak je sudá, pak je lichá. je lichá.

47 Fourierovy řady Vlastnosti FŘ: LINEARITA: KOMPLEXNÍ SDRUŽENÍ: je reálná je sudá, pak je sudá, pak je lichá. je lichá. POSUNUTÍ V ČASE: fázový posun úměrný t 0

48 Fourierovy řady Vlastnosti FŘ: LINEARITA: KOMPLEXNÍ SDRUŽENÍ: je reálná je sudá, pak je sudá, pak je lichá. je lichá. POSUNUTÍ V ČASE: fázový posun úměrný t 0 Příklad: posun o půl periody..

49 Fourierovy řady Vlastnosti FŘ: LINEARITA: KOMPLEXNÍ SDRUŽENÍ: je reálná je sudá, pak je sudá, pak je lichá. je lichá. POSUNUTÍ V ČASE: fázový posun úměrný t 0 Příklad: posun o půl periody.

50 Fourierovy řady Vlastnosti FŘ: PARCEVALŮVTEORÉM:

51 Fourierovy řady Vlastnosti FŘ: PARCEVALŮVTEORÉM: Průměrný výkon signálu Výkon k-té harmonické složky

52 Fourierovy řady Vlastnosti FŘ: PARCEVALŮVTEORÉM: Průměrný výkon signálu Výkon k-té harmonické složky Energie, ať měřená v časové nebo frekvenční oblasti, zůstává stejná.

53 Fourierovy řady Vlastnosti FŘ: PARCEVALŮVTEORÉM: Průměrný výkon signálu Výkon k-té harmonické složky Energie, ať měřená v časové nebo frekvenční oblasti, zůstává stejná. NÁSOBENÍ: x(t) i y(t) jsou periodické signály s periodou T. důkaz:

54 Fourierovy řady Vlastnosti FŘ: PERIODICKÁ KONVOLUCE: x(t), y(t) jsou periodické signály s periodou T.... i z(t) je periodický signál s periodou T. Nezáleží na tom, nad kterou periodou se integruje.

55 Fourierovy řady Vlastnosti FŘ: PERIODICKÁ KONVOLUCE: x(t), y(t) jsou periodické signály s periodou T.... i z(t) je periodický signál s periodou T. Nezáleží na tom, nad kterou periodou se integruje. Násobení ve frekvenční oblasti!!!

56 Fourierovy řady Poznámka o Fourierověřadě a Fourierově transformaci:. aneb k čemu mi je analýza periodických signálů, když většina signálů, které znám, jsou neperiodické? (EKG, epidemiologické trendy, apod.)

57 Fourierovy řady Poznámka o Fourierověřadě a Fourierově transformaci: periodické signály Fourierova řada aperiodické signály. Fourierova transformace periodické s ω 0 = 0 a T =. 8 diskrétní posloupnost koeficientů pro ω 0, 2ω 0, 3ω 0,

58 Fourierovy řady Poznámka o Fourierověřadě a Fourierově transformaci: periodické signály Fourierova řada aperiodické signály. Fourierova transformace periodické s ω 0 = 0 a T =. 8 diskrétní posloupnost koeficientů pro ω 0, 2ω 0, 3ω 0, Integrace přes nekonečno a výsledkem bude spojitý obraz spojité funkce x(t):

59 Fourierovy řady Fourierova reprezentace diskrétních signálů x[n] periodický signál se základní periodou N.

60 Fourierovy řady Fourierova reprezentace diskrétních signálů x[n] periodický signál se základní periodou N. řada

61 Fourierovy řady Fourierova reprezentace diskrétních signálů x[n] periodický signál se základní periodou N. konečná řada

62 Fourierovy řady Fourierova reprezentace diskrétních signálů x[n] periodický signál se základní periodou N. konečná řada suma přes N kterýchkoliv po sobě jdoucích hodnot k.

63 Fourierovy řady Fourierova reprezentace diskrétních signálů x[n] periodický signál se základní periodou N. konečná řada a k =? suma přes N kterýchkoliv po sobě jdoucích hodnot k.

64 Fourierovy řady a k =? N rovnic o N neznámých

65 Fourierovy řady a k =? Konečné geometrické řady:

66 Fourierovy řady a k =? Konečné geometrické řady:.. spec. vlastnost u diskrétních signálů

67 Fourierovy řady Poznámka o Fourierověřadě diskrétního signálu a DTFT (discrete-time Fourier transform):.

68 Fourierovy řady Poznámka o Fourierověřadě diskrétního signálu a DTFT (discrete-time Fourier transform): DTFT nějaké posloupnosti se počítá úplně stejně jako se počítají koeficienty Fourierovy řady této posloupnosti

69 Periodické signály a LTI systémy

70 Periodické signály a LTI systémy zesílení amplituda fáze

71 Periodické signály a LTI systémy zesílení amplituda fáze LTI systém nevytváří nové frekvenční složky, ale pouze zesiluje nebo potlačuje frekvenční komponenty existující ve vstupním signálu.

72 Periodické signály a LTI systémy Frekvenční charakteristika: G(ω) =

73 Periodické signály a LTI systémy Frekvenční charakteristika: G(ω) = je periodická funkce, jejíž výpočet odpovídá výpočtu koeficientů Fourierovy řady impulsní charakteristiky h.

74 Frekvenční charakteristika PŘÍKLAD: vyhlazovací systém

75 Frekvenční charakteristika PŘÍKLAD: vyhlazovací systém..

76 Frekvenční charakteristika PŘÍKLAD: vyhlazovací systém..

77 Frekvenční charakteristika PŘÍKLAD: vyhlazovací systém

78 3. cvičení 1. Vypočtěte frekvenční charakteristiku jednoduchého systému, který aproximuje derivaci signálu: 2. Vypočtěte frekvenční charakteristiku jednoduchého systém, který provádí dvouvzorkové vyhlazování: 3. Aplikujte vyhlazovací a derivovací systém na učitelem dodané 1-D a 2-D signály a sledujte jak frekvenční charakteristika systémů ovlivňuje povahu výstupních signálů.

79 3. cvičení

80 3. cvičení Magnitude Response (db) 5 0 Magnitude (db) Normalized Frequency ( π rad/sample)

81 3. cvičení Incidence Mortalita

82 ffgf Otázky? 82

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy

Více

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály Systémy: definice, několik příkladů Vlastnosti systémů

Více

Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti

Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti Lineární a adaptivní zpracování dat 3. SYSTÉMY a jejich popis ve frekvenční oblasti Daniel Schwarz Osnova Opakování: systémy a jejich popis v časové oblasti Fourierovy řady Frekvenční charakteristika systémů

Více

Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita

Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita Lineární a adpativní zpracování dat 3. Lineární filtrace I: Z-transformace, stabilita Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály, systémy, jejich vlastnosti a popis v časové

Více

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady, vlastnosti Vzorkovací

Více

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady,

Více

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady,

Více

Úvod do zpracování signálů

Úvod do zpracování signálů 1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování

Více

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

Analýza lineárních regulačních systémů v časové doméně. V Modelice (ale i v Simulinku) máme blok TransfeFunction

Analýza lineárních regulačních systémů v časové doméně. V Modelice (ale i v Simulinku) máme blok TransfeFunction Analýza lineárních regulačních systémů v časové doméně V Modelice (ale i v Simulinku) máme blok TransfeFunction Studijní materiály http://physiome.cz/atlas/sim/regulacesys/ Khoo: Physiological Control

Více

Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015

Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015 Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 8. přednáška 11MSP pondělí 20. dubna 2015 verze: 2015-04-14 12:31

Více

Flexibilita jednoduché naprogramování a přeprogramování řídícího systému

Flexibilita jednoduché naprogramování a přeprogramování řídícího systému Téma 40 Jiří Cigler Zadání Číslicové řízení. Digitalizace a tvarování. Diskrétní systémy a jejich vlastnosti. Řízení diskrétních systémů. Diskrétní popis spojité soustavy. Návrh emulací. Nelineární řízení.

Více

ÚPGM FIT VUT Brno,

ÚPGM FIT VUT Brno, Systémy s diskrétním časem Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz 1 LTI systémy v tomto kursu budeme pracovat pouze se systémy lineárními a časově invariantními. Úvod k nim jsme viděli již

Více

SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A LINEÁRNÍ SYSTÉMY SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cziba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické

Více

1 Zpracování a analýza tlakové vlny

1 Zpracování a analýza tlakové vlny 1 Zpracování a analýza tlakové vlny 1.1 Cíl úlohy Prostřednictvím této úlohy se naučíte a zopakujete: analýzu biologických signálů v časové oblasti, analýzu biologických signálů ve frekvenční oblasti,

Více

Signál v čase a jeho spektrum

Signál v čase a jeho spektrum Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě

Více

SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A LINEÁRNÍ SYSTÉMY SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické či jiné

Více

KTE/TEVS - Rychlá Fourierova transformace. Pavel Karban. Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni

KTE/TEVS - Rychlá Fourierova transformace. Pavel Karban. Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni KTE/TEVS - Rychlá Fourierova transformace Pavel Karban Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni 10.11.011 Outline 1 Motivace FT Fourierova transformace

Více

[ n. Konvoluce. = 0 jinak. 0 jinak. Užitečné signály (diskrétní verze) Jednotkový skok 1 pro n = 0

[ n. Konvoluce. = 0 jinak. 0 jinak. Užitečné signály (diskrétní verze) Jednotkový skok 1 pro n = 0 Užitečné signály (diskrétní verze) Konvoluce σ Jednotkový skok [ n] Jednotkový impuls (delta funkce) Posunutý jednotkový impuls 1 pro n 0 1 pro n = 0 δ = δ [ n] [ n k] = 0 jinak 0 jinak Proč jsou užitečné?

Více

Modelov an ı syst em u a proces

Modelov an ı syst em u a proces Modelování systémů a procesů 13. března 2012 Obsah 1 Vnější popis systému 2 Vnitřní popis systému 3 Příklady na stavový popis dynamických systémů Obsah 1 Vnější popis systému 2 Vnitřní popis systému 3

Více

Funkce komplexní proměnné a integrální transformace

Funkce komplexní proměnné a integrální transformace Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na

Více

Diskretizace. 29. dubna 2015

Diskretizace. 29. dubna 2015 MSP: Domácí příprava č. 3 Vnitřní a vnější popis diskrétních systémů Dopředná Z-transformace Zpětná Z-transformace Řešení diferenčních rovnic Stabilita diskrétních systémů Spojování systémů Diskretizace

Více

Číslicové filtry. Honza Černocký, ÚPGM

Číslicové filtry. Honza Černocký, ÚPGM Číslicové filtry Honza Černocký, ÚPGM Aliasy Digitální filtry Diskrétní systémy Systémy s diskrétním časem atd. 2 Na co? Úprava signálů Zdůraznění Potlačení Detekce 3 Zdůraznění basy 4 Zdůraznění výšky

Více

Laplaceova transformace

Laplaceova transformace Laplaceova transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MSP pondělí 23. března

Více

Analýza a zpracování digitálního obrazu

Analýza a zpracování digitálního obrazu Analýza a zpracování digitálního obrazu Úlohy strojového vidění lze přibližně rozdělit do sekvence čtyř funkčních bloků: Předzpracování veškerých obrazových dat pomocí filtrací (tj. transformací obrazové

Více

DSY-4. Analogové a číslicové modulace. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

DSY-4. Analogové a číslicové modulace. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti DSY-4 Analogové a číslicové modulace Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti DSY-4 analogové modulace základní číslicové modulace vícestavové modulace modulace s rozprostřeným

Více

Při návrhu FIR filtru řešíme obvykle následující problémy:

Při návrhu FIR filtru řešíme obvykle následující problémy: Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.

Více

ÚPGM FIT VUT Brno, periodické a harmonické posloupnosti. konvoluce Fourierova transformace s diskrétním časem

ÚPGM FIT VUT Brno, periodické a harmonické posloupnosti. konvoluce Fourierova transformace s diskrétním časem Diskrétní signály a jejich frekvenční analýza. Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz opakování základy o diskrétních signálech. periodické a harmonické posloupnosti operace s diskrétními

Více

Transformace obrazu Josef Pelikán KSVI MFF UK Praha

Transformace obrazu Josef Pelikán KSVI MFF UK Praha Transformace obrazu 99725 Josef Pelikán KSVI MFF UK Praha email: Josef.Pelikan@mff.cuni.cz WWW: http://cgg.ms.mff.cuni.cz/~pepca/ Transformace 2D obrazu dekorelace dat potlačení závislosti jednotlivých

Více

Osnova. Idea ASK/FSK/PSK ASK Amplitudové... Strana 1 z 16. Celá obrazovka. Konec Základy radiotechniky

Osnova. Idea ASK/FSK/PSK ASK Amplitudové... Strana 1 z 16. Celá obrazovka. Konec Základy radiotechniky Pulsní kódová modulace, amplitudové, frekvenční a fázové kĺıčování Josef Dobeš 24. října 2006 Strana 1 z 16 Základy radiotechniky 1. Pulsní modulace Strana 2 z 16 Pulsní šířková modulace (PWM) PAM, PPM,

Více

SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A LINEÁRNÍ SYSTÉMY SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz, Kamenice 3, 4. patro, dv.č.424 INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz IV. FREKVENČNÍ TRASFORMACE SPOJITÉ

Více

Vlastnosti konvoluce. ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz

Vlastnosti konvoluce. ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz Systémy Vlastnosti lineárních systémů. Konvoluce diskrétní a spojitý čas. Vlastnosti konvoluce Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz 1 Systémy obecně: spojení komponentů, zařízení nebo

Více

1. března Organizace Základní informace Literatura Úvod Motivace... 3

1. března Organizace Základní informace Literatura Úvod Motivace... 3 Modelování systémů a procesů (611MSP) Děčín přednáška 1 Vlček, Kovář, Přikryl 1. března 2012 Obsah 1 Organizace 1 1.1 Přednášející....................................... 1 1.2 Základní informace...................................

Více

Periodicita v časové řadě, její popis a identifikace, exponenciální vyrovnáván

Periodicita v časové řadě, její popis a identifikace, exponenciální vyrovnáván Periodicita v časové řadě, její popis a identifikace, exponenciální vyrovnávání Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Periodicita v časových

Více

Parciální diferenciální rovnice

Parciální diferenciální rovnice Parciální diferenciální rovnice Obsah kurzu Co bude obsahovat... úvod do PDR odvození některých PDR klasická teorie lineárních PDR 1. a 2. řádu řešení poč. a okraj. úloh vlastnosti řešení souvislost s

Více

Biofyzikální ústav LF MU Brno. jarní semestr 2011

Biofyzikální ústav LF MU Brno. jarní semestr 2011 pro obor Ošetřovatelská péče v gerontologii Biofyzikální ústav LF MU Brno jarní semestr 2011 Obsah letmý dotyk teorie systémů klasifikace a analýza biosignálů Co je signál? Co je biosignál? Co si počít

Více

Při návrhu FIR filtru řešíme obvykle následující problémy:

Při návrhu FIR filtru řešíme obvykle následující problémy: Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.

Více

Fourierova transformace

Fourierova transformace Fourierova transformace Jean Baptiste Joseph Fourier (768-83) Jeho obdivovatel (nedatováno) Opáčko harmonických signálů Spojitý harmonický signál ( ) = cos( ω + ϕ ) x t C t C amplituda ω úhlová frekvence

Více

VY_32_INOVACE_E 15 03

VY_32_INOVACE_E 15 03 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory

Více

Multimediální systémy

Multimediální systémy Multimediální systémy Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI přednášky Získání obsahu Jan Outrata (Univerzita Palackého v Olomouci) Multimediální systémy Olomouc, září prosinec

Více

Diskrétní 2D konvoluce

Diskrétní 2D konvoluce ČVUT FEL v Praze 6ACS. prosince 2006 Martin BruXy Bruchanov bruxy@regnet.cz Diracův impuls jednotkový impulz, δ-impulz, δ-funkce; speciální signál s nulovou šířkou impulzu a nekonečnou amplitudou; platí

Více

Číslicová filtrace. FIR filtry IIR filtry. ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická

Číslicová filtrace. FIR filtry IIR filtry. ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Číslicová filtrace FIR filtry IIR filtry Tyto materiály vznikly za podpory Fondu rozvoje

Více

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné

Více

Dodatky k FT: 1. (2D digitalizace) 2. Více o FT 3. Více k užití filtrů. 7. přednáška předmětu Zpracování obrazů

Dodatky k FT: 1. (2D digitalizace) 2. Více o FT 3. Více k užití filtrů. 7. přednáška předmětu Zpracování obrazů Dodatky k FT:. (D digitalizace. Více o FT 3. Více k užití filtrů 7. přednáška předmětu Zpracování obrazů Martina Mudrová 4 Pořízení digitálního obrazu Obvykle: Proces transformace spojité předlohy (reality

Více

Příloha č. 1. amplitudová charakteristika filtru fázová charakteristika filtru / frekvence / Hz. 1. Určení proudové hustoty

Příloha č. 1. amplitudová charakteristika filtru fázová charakteristika filtru / frekvence / Hz. 1. Určení proudové hustoty Příloha č. 1 Při hodnocení expozice nízkofrekvenčnímu elektromagnetickému poli (0 Hz 10 MHz) je určující veličinou modifikovaná proudová hustota J mod indukovaná v tělesné tkáni. Jak je uvedeno v nařízení

Více

25.z-6.tr ZS 2015/2016

25.z-6.tr ZS 2015/2016 Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace Typové členy 2 25.z-6.tr ZS 2015/2016 2015 - Ing. Václav Rada, CSc. TEORIE ŘÍZENÍ třetí část tématu předmětu pokračuje. A oblastí

Více

Digitalizace převod AS DS (analogový diskrétní signál )

Digitalizace převod AS DS (analogový diskrétní signál ) Digitalizace signálu v čase Digitalizace převod AS DS (analogový diskrétní signál ) v amplitudě Obvykle převod spojité předlohy (reality) f 1 (t/x,...), f 2 ()... připomenutí Digitalizace: 1. vzorkování

Více

základní vlastnosti, používané struktury návrhové prostředky MATLAB problém kvantování koeficientů

základní vlastnosti, používané struktury návrhové prostředky MATLAB problém kvantování koeficientů A0M38SPP - Signálové procesory v praxi - přednáška 4 2 Číslicové filtry typu FIR a IIR definice operace filtrace základní rozdělení FIR, IIR základní vlastnosti, používané struktury filtrů návrhové prostředky

Více

Vlastnosti Fourierovy transformace

Vlastnosti Fourierovy transformace Vlastnosti Fourierovy transformace Linearita Fourierova transformace je lineární (všechny druhy :-) ), je tedy homogenní a aditivní Homogenita: změna amplitudy v časové oblasti způsobí stejnou změnu amplitudy

Více

I. část - úvod. Iva Petríková

I. část - úvod. Iva Petríková Kmitání mechanických soustav I. část - úvod Iva Petríková Katedra mechaniky, pružnosti a pevnosti Osah Úvod, základní pojmy Počet stupňů volnosti Příklady kmitavého pohyu Periodický pohy Harmonický pohy,

Více

22 Základní vlastnosti distribucí

22 Základní vlastnosti distribucí M. Rokyta, MFF UK: Aplikovaná matematika IV kap. 22: Základní vlastnosti distribucí 5 22 Základní vlastnosti distribucí 22.1 Temperované distribuce Definice. O funkci ϕ C (R m ) řekneme, že je rychle klesající

Více

Operace s obrazem I. Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno. prezentace je součástí projektu FRVŠ č.

Operace s obrazem I. Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno. prezentace je součástí projektu FRVŠ č. Operace s obrazem I Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 Osnova 1 Filtrování obrazu 2 Lineární a nelineární filtry 3 Fourierova

Více

P7: Základy zpracování signálu

P7: Základy zpracování signálu P7: Základy zpracování signálu Úvodem - Signál (lat. signum) bychom mohli definovat jako záměrný fyzikální jev, nesoucí informaci o nějaké události. - Signálem je rovněž funkce, která převádí nezávislou

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace

Více

Základní metody číslicového zpracování signálu a obrazu část II.

Základní metody číslicového zpracování signálu a obrazu část II. A4M38AVS Aplikace vestavěných systémů Přednáška č. 8 Základní metody číslicového zpracování signálu a obrazu část II. Radek Sedláček, katedra měření, ČVUT FEL, 2015 Obsah přednášky Převzorkování decimace,

Více

Obraz matematický objekt. Spojitý obraz f c : (Ω c R 2 ) R

Obraz matematický objekt. Spojitý obraz f c : (Ω c R 2 ) R Obraz matematický objekt Spojitý obraz f c : (Ω c R 2 ) R Obraz matematický objekt Spojitý obraz f c : (Ω c R 2 ) R Diskrétní obraz f d : (Ω {0... n 1 } {0... n 2 }) {0... f max } Obraz matematický objekt

Více

ZPRACOVÁNÍ SIGNÁLŮ Z MECHANICKÝCH. Jiří Tůma

ZPRACOVÁNÍ SIGNÁLŮ Z MECHANICKÝCH. Jiří Tůma ZPRACOVÁNÍ SIGNÁLŮ Z MECHANICKÝCH SYSTÉMŮ UŽITÍM FFT Jiří Tůma Štramberk 1997 ii Anotace Cílem této knihy je systematicky popsat metody analýzy signálů z mechanických systémů a strojních zařízení. Obsahem

Více

Opakování z předmětu TES

Opakování z předmětu TES Opakování z předmětu TES A3B35ARI 6..6 Vážení studenti, v následujících měsících budete každý týden z předmětu Automatické řízení dostávat domácí úkol z látky probrané v daném týdnu na přednáškách. Jsme

Více

Nauka o Kmitání Přednáška č. 4

Nauka o Kmitání Přednáška č. 4 Nauka o Kmitání Přednáška č. 4 Odezva lineárního systému na obecnou periodickou budící funkci Ing. Antonín Skarolek, Ph.D. Katedra mechaniky, pružnosti a pevnosti Technická Univerzita v Liberci 213 Ustálená

Více

Základy a aplikace digitálních. Katedra radioelektroniky (13137), blok B2, místnost 722

Základy a aplikace digitálních. Katedra radioelektroniky (13137), blok B2, místnost 722 Základy a aplikace digitálních modulací Josef Dobeš Katedra radioelektroniky (13137), blok B2, místnost 722 dobes@fel.cvut.cz 6. října 2014 České vysoké učení technické v Praze, Fakulta elektrotechnická

Více

MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH. Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky

MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH. Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky Při návrhu elektroakustických soustav, ale i jiných systémů, je vhodné nejprve

Více

31ZZS 9. PŘEDNÁŠKA 24. listopadu 2014

31ZZS 9. PŘEDNÁŠKA 24. listopadu 2014 3ZZS 9. PŘEDNÁŠKA 24. listopadu 24 SPEKTRÁLNÍ ANALÝZA Fourierovy řady Diskrétní Fourierovy řady Fourierova transformace Diskrétní Fourierova transformace Spektrální analýza Zobrazení signálu ve frekvenční

Více

ZS: 2018/2019 NMAF063 F/3 Josef MÁLEK. Matematika pro fyziky III

ZS: 2018/2019 NMAF063 F/3 Josef MÁLEK. Matematika pro fyziky III ZS: 2018/2019 NMAF063 F/3 Josef MÁLEK Matematika pro fyziky III OBECNÉ INFORMACE A SYLABUS Přednášející: Cvičící: Josef Málek Tomáš Los, Michal Pavelka, Michal Pavelka, Vít Průša Termíny přednášek: čtvrtek

Více

teorie elektronických obvodů Jiří Petržela obvodové funkce

teorie elektronických obvodů Jiří Petržela obvodové funkce Jiří Petržela obvod jako dvojbran dvojbranem rozumíme elektronický obvod mající dvě brány (vstupní a výstupní) dvojbranem může být zesilovač, pasivní i aktivní filtr, tranzistor v některém zapojení, přenosový

Více

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů Kapitola 1 Signály a systémy 1.1 Klasifikace signálů Signál představuje fyzikální vyjádření informace, obvykle ve formě okamžitých hodnot určité fyzikální veličiny, která je funkcí jedné nebo více nezávisle

Více

ALGEBRA. Téma 5: Vektorové prostory

ALGEBRA. Téma 5: Vektorové prostory SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)

Více

Základní metody číslicového zpracování signálů pro integrovanou výuku VUT a VŠB-TUO

Základní metody číslicového zpracování signálů pro integrovanou výuku VUT a VŠB-TUO FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Základní metody číslicového zpracování signálů pro integrovanou výuku VUT a VŠB-TUO Garant předmětu: doc. Ing. Jiří Mišurec,

Více

Systémy. Systém: souhrn souvisejících prvků, sdružený do nějakého smysluplného celku

Systémy. Systém: souhrn souvisejících prvků, sdružený do nějakého smysluplného celku Systémy Systém: souhrn souvisejících prvků, sdružený do nějakého smysluplného celku Pro nás: krabička něco dělající se signály: xt, xn něco do ní leze vstup ( ) [ ] něco z ní leze ven výstup yt ( ), yn

Více

Základní pojmy o signálech

Základní pojmy o signálech Základní pojmy o signálech klasifikace signálů transformace časové osy energie a výkon periodické signály harmonický signál jednotkový skok a impuls Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

MĚŘENÍ ÚHLOVÝCH KMITŮ ZA ROTACE

MĚŘENÍ ÚHLOVÝCH KMITŮ ZA ROTACE 26. mezinárodní konference DIAGO 27 TECHNICKÁ DIAGNOSTIKA STROJŮ A VÝROBNÍCH ZAŘÍZENÍ MĚŘENÍ ÚHLOVÝCH KMITŮ ZA ROTACE Jiří TŮMA VŠB Technická Univerzita Ostrava Osnova Motivace Kalibrace měření Princip

Více

Vlastnosti členů regulačních obvodů Osnova kurzu

Vlastnosti členů regulačních obvodů Osnova kurzu Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Statické vlastnosti členů regulačních obvodů 6) Dynamické vlastnosti členů

Více

FOURIEROVA TRANSFORMACE FOURIEROVA VĚTA

FOURIEROVA TRANSFORMACE FOURIEROVA VĚTA FOURIEROVA TRANSFORMACE FOURIEROVA VĚTA V kapitole o Fourierových řadách byla dokázána Fourierova věta (připomeňte si, že f(x = (f(x + + f(x /2: VĚTA Necht f je po částech hladká na R a R f konverguje

Více

Poznámky k Fourierově transformaci

Poznámky k Fourierově transformaci Poznámky k Fourierově transformaci V těchto poznámkách jsou uvedeny základní vlastnosti jednorozměrné Fourierovy transformace a její aplikace na jednoduché modelové případy. Pro určitost jsou sdružené

Více

Číslicové zpracování signálů a Fourierova analýza.

Číslicové zpracování signálů a Fourierova analýza. Číslicové zpracování signálů a Fourierova analýza www.kme.zcu.cz/kmet/exm 1 Obsah prezentace 1. Úvod a motivace 2. Data v časové a frekvenční oblasti 3. Fourierova analýza teoreticky 4. Fourierova analýza

Více

02 Systémy a jejich popis v časové a frekvenční oblasti

02 Systémy a jejich popis v časové a frekvenční oblasti Modul: Analýza a modlování dynamických biologických dat Přdmět: Linární a adaptivní zpracování dat Autor: Danil Schwarz Číslo a názv výukové dnotky: Systémy a ich popis v časové a frkvnční oblasti Výstupy

Více

Přehled veličin elektrických obvodů

Přehled veličin elektrických obvodů Přehled veličin elektrických obvodů Ing. Martin Černík, Ph.D Projekt ESF CZ.1.7/2.2./28.5 Modernizace didaktických metod a inovace. Elektrický náboj - základní vlastnost některých elementárních částic

Více

0 = 2e 1 (z 3 1)dz + 3z. z=0 z 3 4z 2 + 3z + rez. 4. Napište Fourierův rozvoj vzhledem k trigonometrickému systému periodickému

0 = 2e 1 (z 3 1)dz + 3z. z=0 z 3 4z 2 + 3z + rez. 4. Napište Fourierův rozvoj vzhledem k trigonometrickému systému periodickému 2 1 1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 x 1 2 Jméno a příjmení: ID.č. 9.5.2016 1. Řešte diferenciální rovnici: y + 2xy x 2 + 3 = sin x x 2 + 3. y = C cos x x 2 + 1 2. Vypočtěte z 2 e z dz, kde je křivka

Více

9. PRINCIPY VÍCENÁSOBNÉHO VYUŽITÍ PŘENOSOVÝCH CEST

9. PRINCIPY VÍCENÁSOBNÉHO VYUŽITÍ PŘENOSOVÝCH CEST 9. PRINCIPY VÍCENÁSOBNÉHO VYUŽITÍ PŘENOSOVÝCH CEST Modulace tvoří základ bezdrátového přenosu informací na velkou vzdálenost. V minulosti se ji využívalo v telekomunikacích při vícenásobném využití přenosových

Více

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek

Více

FOURIEROVA TRANSFORMACE

FOURIEROVA TRANSFORMACE FOURIEROVA TRANSFORMACE FOURIEROVA VĚTA V kapitole o Fourierových řadách byla dokázána (připomeňte si, že f(x) = (f(x + ) + f(x ))/2): VĚTA. Necht f je po částech hladká na R a R f konverguje. Potom f(x)

Více

Fourierova transformace

Fourierova transformace Fourierova transformace EO Přednáška Pavel Máša ÚVODEM Známe Fourierovy řady v komplexním tvaru f(t) = 1X k= 1 A k e jk! t Spektrum této řady je diskrétní A k = 1 T Obvody tedy musíme řešit v HUS člen

Více

Lékařská fakulta Masarykovy univerzity Brno. MUDr. Jaromír Šrámek (BFÚ LF MU) Biosignál / 35

Lékařská fakulta Masarykovy univerzity Brno. MUDr. Jaromír Šrámek (BFÚ LF MU) Biosignál / 35 Biosignál MUDr. Jaromír Šrámek Biofyzikální ústav Lékařská fakulta Masarykovy univerzity Brno 2012 MUDr. Jaromír Šrámek (BFÚ LF MU) Biosignál 2012 1 / 35 Obsah co nás dnes čeká... Opakování základních

Více

Circular Harmonics. Tomáš Zámečník

Circular Harmonics. Tomáš Zámečník Circular Harmonics Tomáš Zámečník Úvod Circular Harmonics Reprezentace křivky, která je: podmonožinou RxR uzavřená funkcí úhlu na intervalu Dále budeme hovořit pouze o takovýchto křivkách/funkcích

Více

7.1. Číslicové filtry IIR

7.1. Číslicové filtry IIR Kapitola 7. Návrh číslicových filtrů Hraniční kmitočty propustného a nepropustného pásma jsou ve většině případů specifikovány v[hz] společně se vzorkovacím kmitočtem číslicového filtru. Návrhové algoritmy

Více

2 Teoretický úvod Základní princip harmonické analýzy Podmínky harmonické analýzy signálů Obdelník Trojúhelník...

2 Teoretický úvod Základní princip harmonické analýzy Podmínky harmonické analýzy signálů Obdelník Trojúhelník... Obsah 1 Zadání 1 2 Teoretický úvod 1 2.1 Základní princip harmonické analýzy.................. 1 2.2 Podmínky harmonické analýzy signálů................. 1 3 Obecné matematické vyjádření 2 4 Konkrétní

Více

9. cvičení z Matematické analýzy 2

9. cvičení z Matematické analýzy 2 9. cvičení z Matematické analýzy 7. listopadu -. prosince 7 9. Určete Fourierovu řadu periodického rozšíření funkce ft = t na, a její součet. Definice: Necht f je -periodická funkce, která je integrabilní

Více

3 METODY PRO POTLAČENÍ ŠUMU U ŘE- ČOVÉHO SIGNÁLU

3 METODY PRO POTLAČENÍ ŠUMU U ŘE- ČOVÉHO SIGNÁLU 3 METODY PRO POTLAČENÍ ŠUMU U ŘE- ČOVÉHO SIGNÁLU V současné době se pro potlačení šumu u řečového signálu používá mnoho různých metod. Jedná se například o metody spektrálního odečítání, Wienerovy filtrace,

Více

Teorie měření a regulace

Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace 22.z-3.tr ZS 2015/2016 2015 - Ing. Václav Rada, CSc. TEORIE ŘÍZENÍ druhá část tématu předmětu pokračuje. oblastí matematických pomůcek

Více

Z transformace. Definice. Z transformací komplexní posloupnosti f = { } f n z n, (1)

Z transformace. Definice. Z transformací komplexní posloupnosti f = { } f n z n, (1) Z transformace Definice Z transformací komplexní posloupnosti f = { roumíme funkci F ( definovanou vtahem F ( = n, ( pokud řada vpravo konverguje aspoň v jednom bodě 0 C Náev Z transformace budeme také

Více

Geometrické transformace

Geometrické transformace 1/15 Předzpracování v prostoru obrazů Geometrické transformace Václav Hlaváč, Jan Kybic Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/

Více

Jasové transformace. Karel Horák. Rozvrh přednášky:

Jasové transformace. Karel Horák. Rozvrh přednášky: 1 / 23 Jasové transformace Karel Horák Rozvrh přednášky: 1. Úvod. 2. Histogram obrazu. 3. Globální jasová transformace. 4. Lokální jasová transformace. 5. Bodová jasová transformace. 2 / 23 Jasové transformace

Více

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních

Více

12 - Frekvenční metody

12 - Frekvenční metody 12 - Frekvenční metody Michael Šebek Automatické řízení 218 28-3-18 Proč frekvenční metody? Řídicích systémy se posuzují z časových odezev na určité vstupní signály Naopak v komunikačních systémech častěji

Více

Zvuk. 1. základní kmitání. 2. šíření zvuku

Zvuk. 1. základní kmitání. 2. šíření zvuku Zvuk 1. základní kmitání - vzduchem se šíří tlakové vzruchy (vzruchová vlna), zvuk je systémem zhuštěnin a zředěnin - podstatou zvuku je kmitání zdroje zvuku a tím způsobené podélné vlnění elastického

Více

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického

Více

Posloupnosti a řady. 28. listopadu 2015

Posloupnosti a řady. 28. listopadu 2015 Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj

Více

A7B31ZZS 10. PŘEDNÁŠKA Návrh filtrů 1. prosince 2014

A7B31ZZS 10. PŘEDNÁŠKA Návrh filtrů 1. prosince 2014 A7B3ZZS. PŘEDNÁŠKA Návrh filtrů. prosince 24 Návrhy jednoduchých filtrů Návrhy složitějších filtrů Porovnání FIR a IIR Nástroje pro návrh FIR filtrů v MATLABu Nástroje pro návrh IIR filtrů v MATLABu Kvantování

Více

Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb

Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb Jan Slovák Masarykova univerzita Fakulta informatiky 23. 10. 2006 Obsah

Více

O řešení diferenční rovnice y(n+2) 1, 25y(n+1)+0, 78125y(n) = x(n + 2) x(n)

O řešení diferenční rovnice y(n+2) 1, 25y(n+1)+0, 78125y(n) = x(n + 2) x(n) O řešení diferenční rovnice yn+), 5yn+)+0, 785yn) xn + ) xn) Prof. RNDr. Josef Diblík, DrSc. a Prof. Ing. Zdeněk Smékal, CSc. V příspěvku je řešena rovnice Abstrakt yn + ), 5yn + ) + 0, 785yn) xn + ) xn)

Více