Fyzika III Optika. A. Geometrická optika. Kamil Postava. Institut fyziky, VŠB Technická univerzita Ostrava (A931,tel.

Rozměr: px
Začít zobrazení ze stránky:

Download "Fyzika III Optika. A. Geometrická optika. Kamil Postava. kamil.postava@vsb.cz. Institut fyziky, VŠB Technická univerzita Ostrava (A931,tel."

Transkript

1 Fyzika III Optika A. Geometrická optika Kamil Postava Institut fyziky, VŠB Technická univerzita Ostrava (A931,tel.3104) 11. března K. Postava: Fyzika III Optika A. Geometrická optika

2 Obsah přednášky 1 Úvod, zákony geometrické optiky Předmět optiky, aplikace Členění přístupů v optice Světlo, jako elektromagnetické vlnění Postuláty geometrické optiky, Fermatův princip 2 Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika 3 Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled 4 Úvod, variační metody Paprsková a eikonálová rovnice 2 K. Postava: Fyzika III Optika A. Geometrická optika

3 Aplikace optiky Úvod, zákony geometrické optiky Předmět optiky, aplikace Členění přístupů v optice Světlo, jako elektromagnetické vlnění Postuláty geometrické optiky, Fermatův princip Předmět studia optiky Optika popisuje vznik, šíření a detekci světla. vysvětluje světelné jevy v přírodě, vlastnosti vidění optické přístroje dalekohled, mikroskop, fotoaparát, projekční a fokusační zařízení využívá se k přenosu informací a internetových sítích optická vlákna, zdroje, detektory, spínače využití v metrologii, analýze a charakterizaci materiálů optická spektroskopie, interfereometrie, měření posuvu, drsnosti, pohybu optické zpracování a záznam informace 3 K. Postava: Fyzika III Optika A. Geometrická optika

4 Aplikace optiky tenké vrstvy Předmět optiky, aplikace Členění přístupů v optice Světlo, jako elektromagnetické vlnění Postuláty geometrické optiky, Fermatův princip 4 K. Postava: Fyzika III Optika A. Geometrická optika

5 Aplikace optiky Úvod, zákony geometrické optiky Předmět optiky, aplikace Členění přístupů v optice Světlo, jako elektromagnetické vlnění Postuláty geometrické optiky, Fermatův princip Zdroje světla tepelné Slunce, žárovky luminiscenční zářivky, LED koherentní lasery 5 K. Postava: Fyzika III Optika A. Geometrická optika

6 Aplikace optiky Úvod, zákony geometrické optiky Předmět optiky, aplikace Členění přístupů v optice Světlo, jako elektromagnetické vlnění Postuláty geometrické optiky, Fermatův princip Optické vláknové komunikace přenos informace světlem 6 K. Postava: Fyzika III Optika A. Geometrická optika

7 Předmět optiky, aplikace Členění přístupů v optice Světlo, jako elektromagnetické vlnění Postuláty geometrické optiky, Fermatův princip Návaznosti v dalších předmětech oboru Nanotechnologie Tenké vrstvy 5. semestr Bc. povinně volitelný 2+2(Postava) Spektroskopie nanostruktur 1. semestr NMgr. přednášky 3 + praktikum 3(Postava) Optoelektronika a integrovaná optika 2. semestr NMgr. fyzikální větev 2+2(Ciprian, Hlubina) Fotonické krystaly 3. semestr NMgr. fyzikální větev 2+2(Hlubina, Ciprian) 7 K. Postava: Fyzika III Optika A. Geometrická optika

8 Členění přístupů v optice Předmět optiky, aplikace Členění přístupů v optice Světlo, jako elektromagnetické vlnění Postuláty geometrické optiky, Fermatův princip interakce záření a látky polarizace 4. Kvantová(fotonová) optika 3. Elektromagnetická optika interference, difrakce odraz, lom 2. Skalární vlnová optika 1. Paprsková(geometrická) optika 8 K. Postava: Fyzika III Optika A. Geometrická optika

9 Členění přístupů v optice Předmět optiky, aplikace Členění přístupů v optice Světlo, jako elektromagnetické vlnění Postuláty geometrické optiky, Fermatův princip 1. Paprsková(geometrická) optika Kvantová optika Elektromagnetická Skalární vlnová Paprsková Světlo se šíří ve formě paprsků (trajektorie částic světla) přímočaré šíření, odraz, lom, optické zobrazení čočky, zrcadla, oko, lupa, dalekohled, mikroskop Fermatův princip B δ A nds=0 Zákon odrazu a lomu ε=ε nsinε=n sin ε 9 K. Postava: Fyzika III Optika A. Geometrická optika

10 Členění přístupů v optice Předmět optiky, aplikace Členění přístupů v optice Světlo, jako elektromagnetické vlnění Postuláty geometrické optiky, Fermatův princip 2. Skalární vlnová optika Kvantová optika Elektromagnetická Skalární vlnová Paprsková Světlosešíříveforměvln,vlnoplochy jsou kolmé k paprskům jevy interference a difrakce skládání vlnění Huygensův princip (Huygens-Fresnelův) Skalární vlnová rovnice 2 u 1 c 2 2 u t 2=0 u vlnováfunkce 10 K. Postava: Fyzika III Optika A. Geometrická optika

11 Členění přístupů v optice Předmět optiky, aplikace Členění přístupů v optice Světlo, jako elektromagnetické vlnění Postuláty geometrické optiky, Fermatův princip 3. Elektromagnetická optika Kvantová optika Elektromagnetická Skalární vlnová Paprsková Světlo je elektromagnetickým vlněním jevy polarizace světla, optika anizotropního prostředí Maxwelovy rovnice roth D t rote+ B t Vlnová rovnice 11 K. Postava: Fyzika III Optika A. Geometrická optika =j divd=0 =0 divb=0 2 E 1 c 2 2 E t 2 =0

12 Členění přístupů v optice Předmět optiky, aplikace Členění přístupů v optice Světlo, jako elektromagnetické vlnění Postuláty geometrické optiky, Fermatův princip 4. Kvantová(fotonová) optika Kvantová optika Elektromagnetická Skalární vlnová Paprsková Světlo je tvořeno fotony, je reprezentováno částicově a také vlnově jevy generace světla (laser), kvantová povaha světla, nelineární optika kvantová elektrodynamika operátoryê,ĥ energie a hybnost fotonů E= hf= ω, p= k = h 2π = Jsje Diracova konstanta 12 K. Postava: Fyzika III Optika A. Geometrická optika

13 Předmět optiky, aplikace Členění přístupů v optice Světlo, jako elektromagnetické vlnění Postuláty geometrické optiky, Fermatův princip Úvod kde se setkáváme s elektromagnetickým polem Optické elektromagnetické záření zahrnuje viditelné, infračervené a ultrafialovézáření(λ=10nm 100 µm). 13 K. Postava: Fyzika III Optika A. Geometrická optika

14 Elektromagnetické vlny Předmět optiky, aplikace Členění přístupů v optice Světlo, jako elektromagnetické vlnění Postuláty geometrické optiky, Fermatův princip Rozdíly jsou ve vlnové délce λ a frekvenci vlnění 14 K. Postava: Fyzika III Optika A. Geometrická optika

15 Předmět optiky, aplikace Členění přístupů v optice Světlo, jako elektromagnetické vlnění Postuláty geometrické optiky, Fermatův princip Spektrální rozsahy energiefotonů E(eV) E= hf= ω, h=6, JsjePlanckovakonstanta, f je frekvence(hz) = h 2π = JsjeDiracovakonstanta, ω = 2πf je úhlová frekvence 1eV= J vlnovádélka λ(nm) λ= c f = h c E λ(nm)=1240/e(ev). vlnovéčíslo k 0 = 2π λ,vlnočet 1 λ (cm 1 ) používá se zejména v infračervené obasti vlnočet(cm 1 )=E(eV) 10 7 / K. Postava: Fyzika III Optika A. Geometrická optika

16 Předmět optiky, aplikace Členění přístupů v optice Světlo, jako elektromagnetické vlnění Postuláty geometrické optiky, Fermatův princip Spektrální rozsahy energiefotonů E(eV) E= hf= ω, h=6, JsjePlanckovakonstanta, f je frekvence(hz) = h 2π = JsjeDiracovakonstanta, ω = 2πf je úhlová frekvence 1eV= J vlnovádélka λ(nm) λ= c f = h c E λ(nm)=1240/e(ev). vlnovéčíslo k 0 = 2π λ,vlnočet 1 λ (cm 1 ) používá se zejména v infračervené obasti vlnočet(cm 1 )=E(eV) 10 7 / K. Postava: Fyzika III Optika A. Geometrická optika

17 Předmět optiky, aplikace Členění přístupů v optice Světlo, jako elektromagnetické vlnění Postuláty geometrické optiky, Fermatův princip Spektrální rozsahy energiefotonů E(eV) E= hf= ω, h=6, JsjePlanckovakonstanta, f je frekvence(hz) = h 2π = JsjeDiracovakonstanta, ω = 2πf je úhlová frekvence 1eV= J vlnovádélka λ(nm) λ= c f = h c E λ(nm)=1240/e(ev). vlnovéčíslo k 0 = 2π λ,vlnočet 1 λ (cm 1 ) používá se zejména v infračervené obasti vlnočet(cm 1 )=E(eV) 10 7 / K. Postava: Fyzika III Optika A. Geometrická optika

18 Předmět optiky, aplikace Členění přístupů v optice Světlo, jako elektromagnetické vlnění Postuláty geometrické optiky, Fermatův princip Postuláty geometrické optiky Fermatův princip světlo se šíří ve formě paprsků optické prostředí charakterizujeme indexem lomu n = c/v součin nd se nazývá optická dráha, je úměrná času, který světlo potřebuje, aby prošlo vzdálenost d Fermatův princip SvětlosešířízboduAdoboduBtakovýmipaprsky,abypotřebná optická dráha byla minimální B δ A nds=0 A ds B 16 K. Postava: Fyzika III Optika A. Geometrická optika

19 Optická prostředí index lomu Předmět optiky, aplikace Členění přístupů v optice Světlo, jako elektromagnetické vlnění Postuláty geometrické optiky, Fermatův princip n=1 vákuum,vzduch(n 1) n=1,5 sklo n=1,3 voda n=2,2 safír,diamant n=4 Si,Ge,GaAs n je komplexní ztrátové, absorbující materialy kovy n < 0 speciální nanostrukturované materiály 17 K. Postava: Fyzika III Optika A. Geometrická optika

20 Disperze disperzní hranol Předmět optiky, aplikace Členění přístupů v optice Světlo, jako elektromagnetické vlnění Postuláty geometrické optiky, Fermatův princip Závislost indexu lomu n na vlnové délce využití: disperzní hranol rozklad světla ve spektrálních přístrojích 18 K. Postava: Fyzika III Optika A. Geometrická optika

21 Disperze indexu lomu v přírodě Předmět optiky, aplikace Členění přístupů v optice Světlo, jako elektromagnetické vlnění Postuláty geometrické optiky, Fermatův princip vznik duhy na vodních kapkách 19 K. Postava: Fyzika III Optika A. Geometrická optika

22 Předmět optiky, aplikace Členění přístupů v optice Světlo, jako elektromagnetické vlnění Postuláty geometrické optiky, Fermatův princip Barevná aberace čoček, barevná disperze optických vláken negativní důsledky disperze: barevná aberace čoček zhoršení kvality optického zobrazení barevná disperze optických vláken omezení rychlosti přenosu informace optickými vlákny 20 K. Postava: Fyzika III Optika A. Geometrická optika

23 Důsledky Fermatova principu Předmět optiky, aplikace Členění přístupů v optice Světlo, jako elektromagnetické vlnění Postuláty geometrické optiky, Fermatův princip přímočaré šíření paprsků v homogenním prostředí odraz a lom na rozhraní dvou prostředí Zákon odrazu a Snellův zákon lomu θ 1 = θ 3, n 1 sin θ 1 = n 2 sin θ 2 21 K. Postava: Fyzika III Optika A. Geometrická optika

24 Zákon lomu Úvod, zákony geometrické optiky Předmět optiky, aplikace Členění přístupů v optice Světlo, jako elektromagnetické vlnění Postuláty geometrické optiky, Fermatův princip n 1 > n 2 θ 1 < θ 2 lomodkolmici n 1 < n 2 θ 1 > θ 2 lomkekolmice 22 K. Postava: Fyzika III Optika A. Geometrická optika

25 Předmět optiky, aplikace Členění přístupů v optice Světlo, jako elektromagnetické vlnění Postuláty geometrické optiky, Fermatův princip znaménková konvence v optice paraxiální aproximace v optice Rozvoj geometrických funkcí v Taylorovu mocninnou řadu f(x)= n=0 f (n) (a) (x a) n n! sin α=α α3 3! + α5 5! α7 7! + α9 9! Promaléúhly α <5 :sin x x,tan x x,cos x K. Postava: Fyzika III Optika A. Geometrická optika

26 Předmět optiky, aplikace Členění přístupů v optice Světlo, jako elektromagnetické vlnění Postuláty geometrické optiky, Fermatův princip znaménková konvence v optice paraxiální aproximace v optice Rozvoj geometrických funkcí v Taylorovu mocninnou řadu f(x)= n=0 f (n) (a) (x a) n n! sin α=α α3 3! + α5 5! α7 7! + α9 9! Promaléúhly α <5 :sin x x,tan x x,cos x K. Postava: Fyzika III Optika A. Geometrická optika

27 Zrcadla Úvod, zákony geometrické optiky Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika rovinné zrcadlo 24 K. Postava: Fyzika III Optika A. Geometrická optika

28 Zrcadla Úvod, zákony geometrické optiky Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika parabolické zrcadlo eliptické zrcadlo 25 K. Postava: Fyzika III Optika A. Geometrická optika

29 Kulové zrcadlo Úvod, zákony geometrické optiky Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika zobrazeníbodua A kulovýmzrcadlem: C střed křivosti, r poloměr křivosti kulového zrcadla a, a polohapředmětuaobrazu P ε ε α α α 0 A C A V h a r a 26 K. Postava: Fyzika III Optika A. Geometrická optika

30 Kulové zrcadlo Úvod, zákony geometrické optiky Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika Zobrazovací rovnice kulového zrcadla(paraxiální aproximace) ε ε α α α 0 A C A a r 1 a +1 a = 2 r a= a = f = r 2 ohniskovávzdálenost a P V h duté zrcadlo r <0 vypuklé zrcadlo r >0 27 K. Postava: Fyzika III Optika A. Geometrická optika

31 Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika Zobrazení dutým a vypuklým zrcadlem 28 K. Postava: Fyzika III Optika A. Geometrická optika

32 Příklad zobrazení zrcadlem v přírodě Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika Hlubokomořská ryba Strašík(Dolichopteryx longpes) využívá zrcadlového oka k zachycení slabých luminiscenčních signálů, zrcadlo v oku je tvořeno látkou guanin 29 K. Postava: Fyzika III Optika A. Geometrická optika

33 Rovinné rozhraní totální odraz Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika Snellůvzákon: n 1 sinθ 1 = n 2 sin θ 2 θ c =arcsin n 2 n 1, sklo vzduch θ c K. Postava: Fyzika III Optika A. Geometrická optika

34 Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika Využití totálního odrazu odrazné hranoly Pravoúhlý hranol Doveův hranol Rhombický hranol Pentagonální hranol Koutový odražeč 31 K. Postava: Fyzika III Optika A. Geometrická optika

35 Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika Využití totálního odrazu optické vlákno n 1 ε a ε ε c n 2 n 1 > n 2 Numerickáapertura: NA=sin ε a = n 2 1 n2 2 Využití optických vlnovodů pro přenos světla a informace v optických komunikačních systémech 32 K. Postava: Fyzika III Optika A. Geometrická optika

36 Kulové rozhraní Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika zobrazeníbodua A kulovýmrozhranímmezioptickými prostředími n, n : C střed křivosti, r poloměr křivosti kulového rozhraní a, a polohapředmětuaobrazu n ε n ε h σ κ σ A V C A a r a 33 K. Postava: Fyzika III Optika A. Geometrická optika

37 Kulové rozhraní Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika Zobrazovací rovnice kulového rozhraní(paraxiální aproximace) n n r = n a n a n ε n ε h σ κ σ A V C A a r a 34 K. Postava: Fyzika III Optika A. Geometrická optika

38 Příčné měřítko zobrazení(zvětšení) Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika n n y A ε ε A y a a Příčné měřítko zobrazení(zvětšení) β= y y = n a n a 35 K. Postava: Fyzika III Optika A. Geometrická optika

39 Významné body optické soustavy Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika ohniskaf,f,ohniskovéroviny ϕ, ϕ hlavníbodyp,p,hlavníroviny η, η (β=1) ϕ η η ϕ n 1 n j P F P F f a P d a P f a F a F 36 K. Postava: Fyzika III Optika A. Geometrická optika

40 Významné body optické soustavy Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika ohniskaf,f,ohniskovéroviny ϕ, ϕ obrazovéohniskof obrazboduv předmětové ohnisko zobrazí se do + hlavníbodyp,p,hlavníroviny η, η předmětovýhlavníbodpsezobrazívobrazovýhlavníbodp a jejich β=1 hlavnímibodyprocházejíhlavníroviny η, η ohniskovévzdálenosti f, f obrazováohniskovávzdálenost f vzdálenostohniskaf of hlavního bodu P předmětová ohnisková vzdálenost f vzdálenost ohniska F of hlavního bodu P optická mohutnost φ(jednotka Dioptrie D) φ= n j f = n 1 f 37 K. Postava: Fyzika III Optika A. Geometrická optika

41 Významné body optické soustavy Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika ohniskaf,f,ohniskovéroviny ϕ, ϕ obrazovéohniskof obrazboduv předmětové ohnisko zobrazí se do + hlavníbodyp,p,hlavníroviny η, η předmětovýhlavníbodpsezobrazívobrazovýhlavníbodp a jejich β=1 hlavnímibodyprocházejíhlavníroviny η, η ohniskovévzdálenosti f, f obrazováohniskovávzdálenost f vzdálenostohniskaf of hlavního bodu P předmětová ohnisková vzdálenost f vzdálenost ohniska F of hlavního bodu P optická mohutnost φ(jednotka Dioptrie D) φ= n j f = n 1 f 37 K. Postava: Fyzika III Optika A. Geometrická optika

42 Zobrazení tlustou čočkou Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika n, n 0 indexlomumateriálučočkyaokolníhoprostředí r 1, r 2 poloměrykřivostilámavýchplochčočky ϕ η η ϕ P P F n n 0 F n 0 f f d 1 φ f = = n n ( )+ d(n n 0) 2 n 0 n 0 r 1 r 2 n n 0 r 1 r 2 38 K. Postava: Fyzika III Optika A. Geometrická optika

43 Tenká čočka ve vzduchu Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika φ= 1 ( 1 f =(n 1) 1 ), r 1 r 2 1 b 1 a = 1 f β= b a f ohniskovávzdálenost, β příčnéměřítkozobrazení(zvětšení) 39 K. Postava: Fyzika III Optika A. Geometrická optika

44 Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika Zobrazení spojnou a rozptylnou čočkou 40 K. Postava: Fyzika III Optika A. Geometrická optika

45 Typy čoček Úvod, zákony geometrické optiky Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika 41 K. Postava: Fyzika III Optika A. Geometrická optika

46 Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika Aberace optických soustav sférická(otvorová, aperturní) osováaberace projevujeseiproosovýbod,vlivodchylekod paraxiální aproximace, hranice paprsků kaustika kompenzace pomocí kombinace spojných a rozptylných čoček s optimalizovanými křivostmi clonění apertury otimální clonové číslo vzhledem k rozlišení (difrakce) a světelnosti 42 K. Postava: Fyzika III Optika A. Geometrická optika

47 Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika Sférická aberace jednoduchých čoček Vliv tvaru čočky o dané ohniskové vzdálenosti na velikost sférické aberace.tvarpopsánpomocí q= r 2+r 1 r 2 r K. Postava: Fyzika III Optika A. Geometrická optika

48 Aberace optických soustav koma Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika mimoosová monochromatická abarace korekce kombinací spojných a rozptylných čoček s optimalizovanými lámavými plochami systémy s korigovanou sférickou aberací a komou se nazývají aplanatické 44 K. Postava: Fyzika III Optika A. Geometrická optika

49 Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika Sférická aberace a koma jednoduchých čoček Sférickáaberaceakomačočkyzkorunovéhoskla(n=1.517)of =10cm, pomoměru h = 1 cm při zobrazení dopadajícího rovnoběžného svazku paprsků 45 K. Postava: Fyzika III Optika A. Geometrická optika

50 Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika Aberace optických soustav sklenutí pole 46 K. Postava: Fyzika III Optika A. Geometrická optika

51 Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika Aberace optických soustav astigmatismus Astigmatismus rozdíl mezi tangenciálním a sagitálním sklenutím zobrazení mimoosového bodu pro systémy bez výrobních vad 47 K. Postava: Fyzika III Optika A. Geometrická optika

52 Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika Aberace optických soustav astigmatismus 48 K. Postava: Fyzika III Optika A. Geometrická optika

53 Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika Aberace optických soustav zkreslení 49 K. Postava: Fyzika III Optika A. Geometrická optika

54 Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika Aberace optických soustav barevná(chromatická) kompenzace pomocí kombinace spojných a rozptylných čoček z různých materiálů achromatické systémy zobrazení pomocí zrcadel (teleobjektivy, dalekohledy, mikroskopové objektivy) 50 K. Postava: Fyzika III Optika A. Geometrická optika

55 Maticová optika Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika y n 1 n 2 θ 1 Normovaný úhel: V= nsin θ n θ Lineární systém: y 1 θ 2 y2 optická osa z 1 z 2 z vstupní výstupní rovina vstup Optický systém výstup (y 1, V 1 ) M (y 2, V 2 ) y 2 = Ay 1 + B V 1 V 2 = C y 1 + D V 1 [ ] y2 =M V 2 [ y1 V 1 Přenosová matice: ( ) A B M= C D ] 51 K. Postava: Fyzika III Optika A. Geometrická optika

56 Maticová optika Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika y n 1 n 2 θ 1 Normovaný úhel: V= nsin θ n θ Lineární systém: y 1 θ 2 y2 optická osa z 1 z 2 z vstupní výstupní rovina vstup Optický systém výstup (y 1, V 1 ) M (y 2, V 2 ) y 2 = Ay 1 + B V 1 V 2 = C y 1 + D V 1 [ ] y2 =M V 2 [ y1 V 1 Přenosová matice: ( ) A B M= C D ] 51 K. Postava: Fyzika III Optika A. Geometrická optika

57 Vlastnosti přenosové matice Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika y 2 = Ay 1 + B V 1 V 2 = C y 1 + D V 1 Přenosová matice: M = [ y1 V 1 [ y2 ( A B C D V 2 ] = ( A B C D ] ( ) [ ] D B y2 = C A ) [ y1 V 1 ), det(m)=ad BC=1 V 2 ] M 1 M 2 M N M=M N M N 1 M 2 M 1 52 K. Postava: Fyzika III Optika A. Geometrická optika

58 Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika Přenosové matice základních optických komponent 1 šířenívprostředíoindexumomu natloušt ce t n θ 1 θ 2 y 1 y 2 M t = ( 1 T 0 1 redukovaná tloušt ka: ) z 1 z 2 t z T= t n šíření na vrstvách n 1 n 2 t 1 t 2 n N t N N M t = 1 i=1 T N 0 1 splnění Snellova zákona 53 K. Postava: Fyzika III Optika A. Geometrická optika

59 Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika Přenosové matice základních optických komponent 2 lom na sférickém rozhraní n 1 n θ 2 ε 1 1 θ 2 ε 2 κ θ 1 κ y 1 = y 2 C r M r = ( φ= n 2 n 1 r 1 0 n 2 n 1 1 r optická mohutnost (lámavost) = n 2 f ) odraz na sférické ploše n 1 =1, n 2 = n 1 = 1 M r = 54 K. Postava: Fyzika III Optika A. Geometrická optika ( r 1 )

60 Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika Přenosové matice základních optických komponent 3 zobrazení tenkou čočkou ( 1 0 M r =M r2 M r1 = φ 2 1 kde φ 1 = n 1 r 1, φ 2 = 1 n r 2 ) ( 1 0 φ 1 1 ) ( ) 1 0 = 1 f 1 θ 1 θ 2 n y 1 = y 2 φ=φ 1 + φ 2 φ= 1 ( 1 f =(n 1) 1 ) r 1 r 2 55 K. Postava: Fyzika III Optika A. Geometrická optika

61 Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika Vlastnosti systému popsaného maticí M 1 A=0 y 2 = B V 1 vstupní rovina ϕ θ 1 y 2 výstupní rovina detm=1 BC= 1 výstupní rovina = obrazová ohnisková rovina 56 K. Postava: Fyzika III Optika A. Geometrická optika

62 Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika Vlastnosti systému popsaného maticí M 2 B=0 y 2 = Ay 1 y 1 y 2 vstupní rovina výstupní rovina příčnéměřítkozobrazení β= A= 1 D vstupní a výstupní rovina jsou sdružené 57 K. Postava: Fyzika III Optika A. Geometrická optika

63 θ 1 θ 2 Úvod, zákony geometrické optiky Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika Vlastnosti systému popsaného maticí M 3 C=0 V 2 = D V 1 vstupní rovina výstupní rovina úhlovéměřítkozobrazení: γ= θ 2 θ 1 = D= 1 A afokální soustava 58 K. Postava: Fyzika III Optika A. Geometrická optika

64 Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika Vlastnosti systému popsaného maticí M 4 D=0 V 2 = C y 1 výstupní rovina y 1 θ 2 ϕ vstupní rovina detm=1 BC= 1 vstupní rovina = předmětová ohnisková rovina 59 K. Postava: Fyzika III Optika A. Geometrická optika

65 Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika Určení polohy průsečíku paprsku s optickou osou θ 1 θ 2 y1 y 2 vstupní rovina výstupní rovina r 1 r 2 poloměrkřivostivlnoplochy: r= y θ normovanýpoloměrkřivosti: R= r n = y V ABCD pravidlo y 2 = Ay 1 + B V 2 = C y 1 + D R 2 = AR 1+ B C R 1 + D 60 K. Postava: Fyzika III Optika A. Geometrická optika

66 Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika Určeníohniskovévzdálenosti f zmaticem n 1 n 2 výstupní rovina y 1 y 2 θ 2 vstupní rovina f F [ y2 V 2 ] = ( A B C D ) [ y1 V 1 ] Obrazováohniskovávzdálenost: f = y 1 y 1 = n 2 = n 2 θ 2 V 2 C Optická mohutnost: φ = C 61 K. Postava: Fyzika III Optika A. Geometrická optika

67 Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika Využití maticové optiky pro popis rezonátoru laseru Optickýrezonátortvořenýsférickýmizrcadlyopoloměrech R 1, R 2 : [ ym+1 V m+1 ] = ( A B C D ) [ ym V m ] M= 1 0 2/R 1 1 «1 d 0 1 «1 0 2/R 2 1 «1 d 0 1 «. 62 K. Postava: Fyzika III Optika A. Geometrická optika

68 Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika Využití maticové optiky pro popis rezonátoru laseru Optickýrezonátortvořenýsférickýmizrcadlyopoloměrech R 1, R 2 : [ ym+1 V m+1 ] = ( A B C D ) [ ym V m ] M= 1 0 2/R 1 1 «1 d 0 1 «1 0 2/R 2 1 «1 d 0 1 «. 62 K. Postava: Fyzika III Optika A. Geometrická optika

69 Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika Periodický systém sférických zrcadel v rezonátoru [ ym V m ] = Jaksevyvíjí y m srostoucím m? ( A B C D ) m [ y0 V 0 ] y m+2= Ay m+1+ B V m+1, V m+1= C y m+ D V m, V m= y m+1 A y m B y m+2 =(A+D)y m+1 (AD BC)y m =Tr(M)y m+1 det(m) y } {{ } m =1 63 K. Postava: Fyzika III Optika A. Geometrická optika

70 Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika Periodický systém sférických zrcadel v rezonátoru [ ym V m ] = Jaksevyvíjí y m srostoucím m? ( A B C D ) m [ y0 V 0 ] y m+2= Ay m+1+ B V m+1, V m+1= C y m+ D V m, V m= y m+1 A y m B y m+2 =(A+D)y m+1 (AD BC)y m =Tr(M)y m+1 det(m) y } {{ } m =1 63 K. Postava: Fyzika III Optika A. Geometrická optika

71 Stabilita rezonátoru laseru Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika Předpokládámeřešenívetvaru y m = y 0 h m. dosazením do rekurentního vztahu získáme kvadratickou rovnici: h 2 (A+D)h+1=0,kde A+D=4(1+d/R 1 )(1+d/R 2 ) 2. Podmínka stability zrcadlového rezonátoru: ) ) 1 A+D <1, 0 < (1+ (1+ dr1 dr2 <1 2 } {{ } g 1 } {{ } g 2 64 K. Postava: Fyzika III Optika A. Geometrická optika

72 Stabilita rezonátoru laseru Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika Předpokládámeřešenívetvaru y m = y 0 h m. dosazením do rekurentního vztahu získáme kvadratickou rovnici: h 2 (A+D)h+1=0,kde A+D=4(1+d/R 1 )(1+d/R 2 ) 2. Podmínka stability zrcadlového rezonátoru: ) ) 1 A+D <1, 0 < (1+ (1+ dr1 dr2 <1 2 } {{ } g 1 } {{ } g 2 64 K. Postava: Fyzika III Optika A. Geometrická optika

73 Stabilita rezonátoru laseru Zrcadla, optická rozhraní Optické zobrazení, čočky Aberace optických soustav Maticová paprsková optika 65 K. Postava: Fyzika III Optika A. Geometrická optika

74 Oko Úvod, zákony geometrické optiky Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled 66 K. Postava: Fyzika III Optika A. Geometrická optika

75 Některé parametry oka Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled průměr24mm čočka n=1,42,rohovka n=1,376,očnímok,sklivec n=1,336 maximálníakomodace f =23mm, φ=58d adaptace průměrzornice(duhovky)2 8mm blízkýbod25cm rozlišovací mez 1 67 K. Postava: Fyzika III Optika A. Geometrická optika

76 Oční akomodace Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled 68 K. Postava: Fyzika III Optika A. Geometrická optika

77 Oční vady Úvod, zákony geometrické optiky Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled 69 K. Postava: Fyzika III Optika A. Geometrická optika

78 Vidění tyčinky a čípky Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled čípky barevnévidění,průměrčípku5µm,žlutáaslepá skvrna tyčinky černobílé vidění, max. 510 nm 70 K. Postava: Fyzika III Optika A. Geometrická optika

79 Citlivost očních čípků na barvy Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled Eye sensitivity to colors Tristimulus Values Defining CIE x y z Wavelength (nm) 71 K. Postava: Fyzika III Optika A. Geometrická optika

80 Trichromatické souřadnice Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled Citlivost třemi druhy čípků: x(λ), ȳ(λ), z(λ) x= x x+ȳ+ z Souřadnice zdroje E(λ): y= ȳ x+ȳ+ z z= z x+ȳ+ z X= 0 x(λ)e(λ) dλ, Y = ȳ(λ)e(λ) dλ, Z = 0 0 Možnost přepočtu na RGB, CMYK souřadnice z(λ)e(λ) dλ 72 K. Postava: Fyzika III Optika A. Geometrická optika

81 Barevné souřadnice Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled trichromatické souřadnice x, y, z RGB souřadnice využití v displejích, monitorech a dataprojektorech CMYK souřadnice využití v tiskárnách a plotrech CIELABsouřadnice L a b 73 K. Postava: Fyzika III Optika A. Geometrická optika

82 Barevný trojúhelník Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled 74 K. Postava: Fyzika III Optika A. Geometrická optika

83 Sčítání a odečítání barev Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled 75 K. Postava: Fyzika III Optika A. Geometrická optika

84 Stereoskopické(prostorové) vidění Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled Dáno vzdálenosti očí(asi 65 mm) Umělá prostorová vizualizace: holografické zobrazení prostorová informace obsažena ve fázi digitální prostorovy obraz využití červeného a modrého filtru pro pravéalevéoko využití horizontální a vertikální polarizace 76 K. Postava: Fyzika III Optika A. Geometrická optika

85 Oči jiných živočichů Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled 77 K. Postava: Fyzika III Optika A. Geometrická optika

86 Ověření existence slepé skvrny Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled Naobrázeksedívámepřímozevzdálenostiasi25-40cm.Paklevéoko zavřeme a pravým okem pohlédnem na kolečko. Křížek se zobrazí na sítnici do slepé skvrny a zmizí. 78 K. Postava: Fyzika III Optika A. Geometrická optika

87 Optické klamy Úvod, zákony geometrické optiky Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled Vidění je zpracováno v mozku na základě zkušeností. Pásek je homogenně šedý. 79 K. Postava: Fyzika III Optika A. Geometrická optika

88 Optické klamy Úvod, zákony geometrické optiky Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled 80 K. Postava: Fyzika III Optika A. Geometrická optika

89 Optické klamy Úvod, zákony geometrické optiky Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled Centrálníkruhyjsoustejněvelké.Podobnýjev Sluncesepřiobzoruzdábýt větší. 81 K. Postava: Fyzika III Optika A. Geometrická optika

90 Optické klamy Úvod, zákony geometrické optiky Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled 82 K. Postava: Fyzika III Optika A. Geometrická optika

91 Optické klamy Úvod, zákony geometrické optiky Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled 83 K. Postava: Fyzika III Optika A. Geometrická optika

92 Optické klamy Úvod, zákony geometrické optiky Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled 84 K. Postava: Fyzika III Optika A. Geometrická optika

93 Optické klamy Úvod, zákony geometrické optiky Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled 85 K. Postava: Fyzika III Optika A. Geometrická optika

94 Optické klamy Úvod, zákony geometrické optiky Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled 86 K. Postava: Fyzika III Optika A. Geometrická optika

95 Optické klamy Úvod, zákony geometrické optiky Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled 87 K. Postava: Fyzika III Optika A. Geometrická optika

96 Optické klamy Úvod, zákony geometrické optiky Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled 88 K. Postava: Fyzika III Optika A. Geometrická optika

97 Fotoaparát Úvod, zákony geometrické optiky Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled Clonovéčíslo: c= f Ovlivňuje D osvětlení CCD(filmu) expoziční čas ostrost zobrazení (aberace) hloubku pole rozlišení (difrakce na apertuře) c=1 1.7 } {{ } K. Postava: Fyzika III Optika A. Geometrická optika

98 Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled Fotografický přístroj ZOOM objektivu 90 K. Postava: Fyzika III Optika A. Geometrická optika

99 Fotografický zrcadlový objektiv Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled Zrcadlový objektiv Maksutov 91 K. Postava: Fyzika III Optika A. Geometrická optika

100 Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled Fotografický přístroj využití elektroniky 92 K. Postava: Fyzika III Optika A. Geometrická optika

101 Lupa Úvod, zákony geometrické optiky Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled Lupa je tvořena spojnou čočkou a umožňuje rozlišit předměty menší než 1. konvenční zraková vzdálenost l 0 =25cm zvětšení lupy: Γ= ϕ ϕ 0 = l 0 f zvětšení omezeno aberacemi 93 K. Postava: Fyzika III Optika A. Geometrická optika

102 Mikroskop Úvod, zákony geometrické optiky Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled obrazovépolev f = f 1 f 2 úhlové zvětšení: Γ= l 0 f = f 1 l 0 f 2 = β 1 Γ 2 rozlišovací mez mikroskopu: y= 0.61λ A n, kde A n = nsin σje numerická apertura 94 K. Postava: Fyzika III Optika A. Geometrická optika

103 Mikroskop Úvod, zákony geometrické optiky Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled předmětové pole y objectiv aperturní clona hlavní paprsek σ F 1 F1 polní clona F 2 y okulár výstupní pupila aperturní paprsek ζ f 1 f 1 e f 2 95 K. Postava: Fyzika III Optika A. Geometrická optika

104 Mikroskop reflexní a transmisní Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled 96 K. Postava: Fyzika III Optika A. Geometrická optika

105 Mikroskop Úvod, zákony geometrické optiky Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled 97 K. Postava: Fyzika III Optika A. Geometrická optika

106 Mikroskop reflexní Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled 98 K. Postava: Fyzika III Optika A. Geometrická optika

107 Mikroskopové objektivy Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled 99 K. Postava: Fyzika III Optika A. Geometrická optika

108 Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled Mikroskopové objektivy numerická apertura Numerickáaperturaobjektivu A n = nsin σ 100 K. Postava: Fyzika III Optika A. Geometrická optika

109 Zrcadlové mikroskopové objektivy Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled 101 K. Postava: Fyzika III Optika A. Geometrická optika

110 Mikroskopové okuláry Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled 102 K. Postava: Fyzika III Optika A. Geometrická optika

111 Dalekohled(Keplerův) Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled τ objectiv aperturní clona polní clona F 1 =F 2 okulár výstupní pupila aperturní paprsek τ f 1 f K. Postava: Fyzika III Optika A. Geometrická optika

112 Dalekohledy Úvod, zákony geometrické optiky Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled zvětšení dalekohledu Γ= tan τ tan τ = f 1 f 2 = D D rozlišovací mez(dána difrakcí na apertuře): ψ=1.22 λ D Typy dalekohledů: čočkové Keplerův spojný okulár triedry, lovecké, astronimicke dalekohledy Galileův rozptylný okulár divadelní kukátko zrcadlové Newton, Cassegrain, Gregory, Cassegrain-Maksutov, Cassegrain-Schmidt 104 K. Postava: Fyzika III Optika A. Geometrická optika

113 Binokulární dalekohledy Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled 105 K. Postava: Fyzika III Optika A. Geometrická optika

114 Zrcadlové dalekohledy Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled Newton Cassegrain Gregory 106 K. Postava: Fyzika III Optika A. Geometrická optika

115 Zrcadlový dalekohled typu Newton Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled Zkonstruován Isaacem Newtonem vroce K. Postava: Fyzika III Optika A. Geometrická optika

116 Dalekohled Hubblův teleskop Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled 108 K. Postava: Fyzika III Optika A. Geometrická optika

117 Dalekohled Hubblův teleskop Oko optika vidění, barevné vidění Fotografický přístroj kamera, Lupa Mikroskop Dalekohled 109 K. Postava: Fyzika III Optika A. Geometrická optika

118 Úvod, variační metody Paprsková a eikonálová rovnice Optika nehomogenního prostředí gradientního indexu lomu (GRIN) n=n(r) Vznik fata-morgany index lomu vzduchu závisí na teplotě; dochází k nehomogenitám teploty 110 K. Postava: Fyzika III Optika A. Geometrická optika

119 Úvod, variační metody Paprsková a eikonálová rovnice Astronomická refrakce lom na nehomogenní atmosféře atmosférasvýškouřídneaklesájejíindexlomu 111 K. Postava: Fyzika III Optika A. Geometrická optika

120 Úvod, variační metody Paprsková a eikonálová rovnice Využití optiky gradientního indexu lomu GRIN čočka gradientní optické vlákno(potlačená modová disperze) 112 K. Postava: Fyzika III Optika A. Geometrická optika

121 Variační počet Úvod, zákony geometrické optiky Úvod, variační metody Paprsková a eikonálová rovnice řeší úlohu najít takové funkce, pro které daný integrál (funkcionál) nabývá extrémních hodnot. Jedánafunkce F(l,y 1,,y n,y 1,,,y n).integrál l2 I= F(l,y 1,,y n,y 1,,,y n )dl,jehoždefiničnímoborem l 1 je třída křivek podle nichž integrujeme, se nazývá funkcionál Necht tento funkcionál má extrém podél křivky parametricky popsané y i = y i (l) i=1,,n,pakkřivkavyhovujesoustavě diferenciálních rovnic: F d F y i dl y i které nazýváme Eulerovy rovnice. =0, i=1,,n, 113 K. Postava: Fyzika III Optika A. Geometrická optika

122 Paprsková rovnice Úvod, variační metody Paprsková a eikonálová rovnice Fermatůvprincip:SvětlosešířízboduAdoboduBtakovými paprsky, aby potřebná optická dráha byla minimální B δ n(r)ds=0 A B ds= (dx) 2 +(dy) 2 +(dz) 2 A ds Integrál se nazývá funkcionálem a jeho hodnota závisí na volbě křivky podel které integrujeme. Nutnou podmínkou pro existenci funkcionálu je splnění Eulerových diferenciálních rovnic. 114 K. Postava: Fyzika III Optika A. Geometrická optika

123 Paprsková rovnice Úvod, variační metody Paprsková a eikonálová rovnice Parameterizace optické dráhy proměnnou l (dx ) 2 ds= + dl ( ) 2 dy + dl ( ) 2 dz dl, F= n(r), dl = ds dl Úpravou získáme: F x = n nds = x xdl, F 2 x x = n 2 = ndx ds, Dosazením do Eulerovy rovnice F x d dl F x =0 d dl =ds dl d ds n x d ( n dx ) =0 ds ds 115 K. Postava: Fyzika III Optika A. Geometrická optika

124 Paprsková rovnice Úvod, variační metody Paprsková a eikonálová rovnice Parameterizace optické dráhy proměnnou l (dx ) 2 ds= + dl ( ) 2 dy + dl ( ) 2 dz dl, F= n(r), dl = ds dl Úpravou získáme: F x = n nds = x xdl, F 2 x x = n 2 = ndx ds, Dosazením do Eulerovy rovnice F x d dl F x =0 d dl =ds dl d ds n x d ( n dx ) =0 ds ds 115 K. Postava: Fyzika III Optika A. Geometrická optika

125 Paprsková rovnice Úvod, variační metody Paprsková a eikonálová rovnice Parameterizace optické dráhy proměnnou l (dx ) 2 ( ) 2 ( ) 2 dy dz ds= + + dl, F= n(r) dl dl dl Eulerovy diferenciální rovnice: n x d ( n dx ) =0, ds ds n y d ds ( n dy ) =0, ds n z d ( n dz ) =0 ds ds Paprsková rovnice ( d n dr ) = n, ds ds kde =i x +j y +k z jegradient Řešením paprskové rovnice určíme trajektorii paprsku. 116 K. Postava: Fyzika III Optika A. Geometrická optika

126 Paraxiální paprsková rovnice Úvod, variační metody Paprsková a eikonálová rovnice paprskysvírajímaléúhlysosou z, ( ) 2 ( ) 2 dx dy pak ds=dz 1+ + dz dz dz Paraxiální paprsková rovnice: ( d n dx ) n dz dz x ( d n dy ) n dz dz y Speciální parabolický profil indexu lomu n: [ ] n(x, y, z)=n 0 1 α2 (x 2 + y 2 ) n 0 1 α2 2 (x2 + y 2 ) 117 K. Postava: Fyzika III Optika A. Geometrická optika

127 Speciální řešení paprskové rovnice Úvod, variační metody Paprsková a eikonálová rovnice paraxiální aproximace, parabolický profil d 2 x dz 2= α2 x d 2 y dz 2= α2 y počátečnípodmínky:pro z=0 x 0, y 0, dx dz = θ x0, dy dz = θ y0 y y θ y0 y 0 z n 0 n Řešení: x= θ x0 α sin αz+ x 0cos αz y= θ y0 α sin αz+ y 0cos αz 118 K. Postava: Fyzika III Optika A. Geometrická optika

128 Speciální řešení paprskové rovnice Úvod, variační metody Paprsková a eikonálová rovnice paraxiální aproximace, parabolický profil d 2 x dz 2= α2 x d 2 y dz 2= α2 y počátečnípodmínky:pro z=0 x 0, y 0, dx dz = θ x0, dy dz = θ y0 y y θ y0 y 0 z n 0 n Řešení: x= θ x0 α sin αz+ x 0cos αz y= θ y0 α sin αz+ y 0cos αz 118 K. Postava: Fyzika III Optika A. Geometrická optika

129 GRIN čočka Úvod, zákony geometrické optiky Úvod, variační metody Paprsková a eikonálová rovnice GRIN čočka je tvořena válečkem z materiálu s parabolickým profilem indexu lomu. θ y0 =0 y 0 θ y (y) θ z F d a F f f = y 0 θ = 1 n 0 αsin αd a F =y(d) θ = 1 n 0 αtan αd 119 K. Postava: Fyzika III Optika A. Geometrická optika

130 Eikonálová rovnice Úvod, variační metody Paprsková a eikonálová rovnice Eikonála S(r) je skalární funkce plochy konstantní S(r) jsou kolmé k paprskům Eikonálová rovnice: ( ) S 2 ( ) S 2 ( ) S = n 2 neboli S 2 = n 2 x y z Eikonálová rovnice, Fermatův princip a paprsková rovnice jsou ekvivalentní. optická dráha: B A n ds= B A S ds=s(r B ) S(r A ) 120 K. Postava: Fyzika III Optika A. Geometrická optika

131 Úvod, variační metody Paprsková a eikonálová rovnice Shrnutí paprsková optika Fermatůvprincip:SvětlosešířízboduAdoboduBtakovýmipaprsky, aby potřebná optická dráha byla minimální B δ n(r)ds=0 A Zákon odrazu a lomu: A ds θ 1 = θ 3, n 1 sin θ 1 = n 2 sin θ 2 Zobrazení kulovým zrcadlem a na kulovém rozhraní: B 1 a +1 a =2 r Zobrazení tenkou čočkou: φ= 1 f =(n 1) ( 1 r 1 1 r 2 ), n n r = n a n a 1 a 1 a = 1 f β= a a 121 K. Postava: Fyzika III Optika A. Geometrická optika

Fyzika III Optika a částicová fyzika

Fyzika III Optika a částicová fyzika Fyzika III Optika a částicová fyzika A. Geometrická optika Kamil Postava kamil.postava@vsb.cz Institut fyziky, VŠB Technická univerzita Ostrava (A931,tel.3104) 4. března 2009 1 K. Postava: Fyzika III Optika

Více

9. Geometrická optika

9. Geometrická optika 9. Geometrická optika 1 Popis pomocí světelných paprsků těmi se šíří energie a informace, zanedbává vlnové vlastnosti světla světelný paprsek = křivka (často přímka), podél níž se šíří světlo, jeho energie

Více

Optika pro mikroskopii materiálů I

Optika pro mikroskopii materiálů I Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických

Více

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného

Více

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce

Více

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 -

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 - Geometrická optika Optika je část fyziky, která zkoumá podstatu světla a zákonitosti světelných jevů, které vznikají při šíření světla a při vzájemném působení světla a látky. Světlo je elektromagnetické

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ODRAZ A LOM SVĚTLA 1) Index lomu vody je 1,33. Jakou rychlost má

Více

OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Základní poznatky Zdroje světla světlo vzniká různými procesy (Slunce, žárovka, svíčka, Měsíc) Bodový zdroj Plošný zdroj Základní poznatky Optická prostředí

Více

Geometrická optika. Optické přístroje a soustavy. převážně jsou založeny na vzájemné interakci světelného pole s látkou nebo s jiným fyzikálním polem

Geometrická optika. Optické přístroje a soustavy. převážně jsou založeny na vzájemné interakci světelného pole s látkou nebo s jiným fyzikálním polem Optické přístroje a soustav Geometrická optika převážně jsou založen na vzájemné interakci světelného pole s látkou nebo s jiným fzikálním polem Důsledkem této t to interakce je: změna fzikáln lních vlastností

Více

Světlo 1) Světlo patří mezi elektromagnetické vlnění (jako rádiový signál, Tv signál) elmg. vlnění = elmg. záření

Světlo 1) Světlo patří mezi elektromagnetické vlnění (jako rádiový signál, Tv signál) elmg. vlnění = elmg. záření OPTIKA = část fyziky, která se zabývá světlem Studuje zejména: vznik světla vlastnosti světla šíření světla opt. přístroje (opt. soustavami) Otto Wichterle (gelové kontaktní čočky) Světlo 1) Světlo patří

Více

Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm.

Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm. 1. Podstata světla Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm. Vznik elektromagnetických vln (záření): 1. při pohybu elektricky nabitých částic s nenulovým zrychlením

Více

Optické zobrazení - postup, kterým získáváme optické obrazy bodů a předmětů

Optické zobrazení - postup, kterým získáváme optické obrazy bodů a předmětů Optické soustav a optická zobrazení Přímé vidění - paprsek od zobrazovaného předmětu dopadne přímo do oka Optická soustava - soustava optických prostředí a jejich rozhraní, která mění chod paprsků Optické

Více

Optika. Zápisy do sešitu

Optika. Zápisy do sešitu Optika Zápisy do sešitu Světelné zdroje. Šíření světla. 1/3 Světelné zdroje - bodové - plošné Optická prostředí - průhledné (sklo, vzduch) - průsvitné (matné sklo) - neprůsvitné (nešíří se světlo) - čirá

Více

GEOMETRICKÁ OPTIKA. Znáš pojmy A. 1. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci.

GEOMETRICKÁ OPTIKA. Znáš pojmy A. 1. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci. Znáš pojmy A. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci. Tenká spojka při zobrazování stačí k popisu zavést pouze ohniskovou vzdálenost a její střed. Znaménková

Více

S v ě telné jevy. Optika - nauka - o světle, jeho vlastnostech a účincích - o přístrojích, které jsou založeny na zákonech šíření světla

S v ě telné jevy. Optika - nauka - o světle, jeho vlastnostech a účincích - o přístrojích, které jsou založeny na zákonech šíření světla S v ě telné jevy Optika - nauka - o světle, jeho vlastnostech a účincích - o přístrojích, které jsou založeny na zákonech šíření světla Světelný zdroj - těleso v kterém světlo vzniká a vysílá je do okolí

Více

Optika OPTIKA. June 04, 2012. VY_32_INOVACE_113.notebook

Optika OPTIKA. June 04, 2012. VY_32_INOVACE_113.notebook Optika Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1 Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1 Ing. Jakub Ulmann Zobrazování optickými soustavami 1. Optické

Více

3. OPTICKÉ ZOBRAZENÍ

3. OPTICKÉ ZOBRAZENÍ FYZIKA PRO IV. ROČNÍK GYMNÁZIA - OPTIKA 3. OPTICKÉ ZOBRAZENÍ Mgr. Monika Bouchalová Gymnázium, Havířov-Město, Komenského 2, p.o. Tento digitální učební materiál (DUM) vznikl na základě řešení projektu

Více

Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát

Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát Michal Veselý, 00 Základní části fotografického aparátu tedy jsou: tělo přístroje objektiv Pochopení funkce běžných objektivů usnadní zjednodušená představa, že objektiv jako celek se chová stejně jako

Více

Zákon lomu světla (Snellův zákon) lze matematicky vyjádřit vztahem: , n2. opticky řidšího do prostředí opticky hustšího, láme se ke kolmici.

Zákon lomu světla (Snellův zákon) lze matematicky vyjádřit vztahem: , n2. opticky řidšího do prostředí opticky hustšího, láme se ke kolmici. 26. Optické zobrazování lomem a odrazem, jeho využití v optických přístrojích Světlo je elektromagnetické vlnění, které můžeme vnímat zrakem. Rozsah jeho vlnových délek je 390 nm 760 nm. Prostředí, kterým

Více

VY_32_INOVACE_FY.12 OPTIKA II

VY_32_INOVACE_FY.12 OPTIKA II VY_32_INOVACE_FY.12 OPTIKA II Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Optická čočka je optická soustava dvou centrovaných

Více

Fyzika 2 - rámcové příklady Geometrická optika

Fyzika 2 - rámcové příklady Geometrická optika Fyzika 2 - rámcové příklady Geometrická optika 1. Stanovte absolutní index lomu prostředí, jestliže rychlost elektromagnetických vln v daném prostředí dosahuje hodnoty 0,65c. Jaký je rozdíl optických drah

Více

OPTIKA - NAUKA O SVĚTLE

OPTIKA - NAUKA O SVĚTLE OPTIKA OPTIKA - NAUKA O SVĚTLE - jeden z nejstarších oborů yziky - studium světla, zákonitostí jeho šíření a analýza dějů při vzájemném působení světla a látky SVĚTLO elektromagnetické vlnění λ = 380 790

Více

M I K R O S K O P I E

M I K R O S K O P I E Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066

Více

FYZIKA II. Marek Procházka 1. Přednáška

FYZIKA II. Marek Procházka 1. Přednáška FYZIKA II Marek Procházka 1. Přednáška Historie Dělení optiky Základní pojmy Reflexe (odraz) Refrakce (lom) jevy na rozhraní dvou prostředí o různém indexu lomu. Disperze (rozklad) prostorové oddělení

Více

Světlo x elmag. záření. základní principy

Světlo x elmag. záření. základní principy Světlo x elmag. záření základní principy Jak vzniká a co je to duha? Spektrum elmag. záření Viditelné 380 760 nm, UV 100 380 nm, IR 760 nm 1mm Spektrum elmag. záření Harmonická vlna Harmonická vlna E =

Více

Fyzika II. Marek Procházka Vlnová optika II

Fyzika II. Marek Procházka Vlnová optika II Fyzika II Marek Procházka Vlnová optika II Základní pojmy Reflexe (odraz) Refrakce (lom) jevy na rozhraní dvou prostředí o různém indexu lomu. Disperze (rozklad) prostorové oddělení složek vlnění s různou

Více

Aplikovaná optika I: příklady k procvičení celku Geometrická optika. Jana Jurmanová

Aplikovaná optika I: příklady k procvičení celku Geometrická optika. Jana Jurmanová Aplikovaná optika I: příklady k procvičení celku Geometrická optika Jana Jurmanová Geometrická optika Následující úlohy řešte graficky či výpočtem. 1. Předmět vysoký 1cm je umístěn 30cm od spojky, která

Více

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA OPTIKA ZÁKLADNÍ POJMY Optika a její dělení Světlo jako elektromagnetické vlnění Šíření světla Odraz a lom světla Disperze (rozklad) světla OPTIKA

Více

25. Zobrazování optickými soustavami

25. Zobrazování optickými soustavami 25. Zobrazování optickými soustavami Zobrazování zrcadli a čočkami. Lidské oko. Optické přístroje. Při optickém zobrazování nemusíme uvažovat vlnové vlastnosti světla a stačí považovat světlo za svazek

Více

ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptylkách. PaedDr. Jozef Beňuška jbenuska@nextra.sk

ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptylkách. PaedDr. Jozef Beňuška jbenuska@nextra.sk ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptlkách PaedDr. Jozef Beňuška jbenuska@nextra.sk Optická soustava - je soustava optických prostředí a jejich rozhraní, která mění směr chodu světelných

Více

Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku

Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku V tomto článku uvádíme shrnutí poznatků učiva II. ročníku

Více

Typy světelných mikroskopů

Typy světelných mikroskopů Typy světelných mikroskopů Johann a Zacharias Jansenové (16. stol.) Systém dvou čoček délka 1,2 m 17. stol. Typy světelných mikroskopů Jednočočkový mikroskop 17. stol. Typy světelných mikroskopů Italský

Více

Rozdělení přístroje zobrazovací

Rozdělení přístroje zobrazovací Optické přístroje úvod Rozdělení přístroje zobrazovací obraz zdánlivý subjektivní přístroje lupa mikroskop dalekohled obraz skutečný objektivní přístroje fotoaparát projekční přístroje přístroje laboratorní

Více

Maticová optika. Lenka Přibylová. 24. října 2010

Maticová optika. Lenka Přibylová. 24. října 2010 Maticová optika Lenka Přibylová 24. října 2010 Maticová optika Při průchodu světla optickými přístroji dochází k transformaci světelného paprsku, vlnový vektor mění úhel, který svírá s optickou osou, paprsek

Více

ZOBRAZOVÁNÍ ČOČKAMI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Septima - Optika

ZOBRAZOVÁNÍ ČOČKAMI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Septima - Optika ZOBRAZOVÁNÍ ČOČKAMI Mgr. Jan Ptáčník - GJVJ - Fyzika - Septima - Optika Čočky Zobrazování čočkami je založeno na lomu světla Obvykle budeme předpokládat, že čočka je vyrobena ze skla o indexu lomu n 2

Více

Ing. Jakub Ulmann. Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Ing. Jakub Ulmann. Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami II Ing. Jakub Ulmann Zobrazování optickými soustavami 1. Optické

Více

DUM č. 5 v sadě. 12. Fy-3 Průvodce učitele fyziky pro 4. ročník

DUM č. 5 v sadě. 12. Fy-3 Průvodce učitele fyziky pro 4. ročník projekt GML Brno Docens DUM č. 5 v sadě 12. Fy-3 Průvodce učitele fyziky pro 4. ročník Autor: Miroslav Kubera Datum: 05.04.2014 Ročník: 4B Anotace DUMu: Písemný test navazuje na témata probíraná v hodinách

Více

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í OPTICKÉ ZOBRAZOVÁNÍ. Zrcdl prcují n principu odrzu světl druhy: rovinná kulová relexní plochy: ) rovinná zrcdl I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í obyčejné kovová vrstv npřená n sklo

Více

Bodový zdroj světla A vytvoří svazek rozbíhajících se paprsků, které necháme projít optickou soustavou.

Bodový zdroj světla A vytvoří svazek rozbíhajících se paprsků, které necháme projít optickou soustavou. Optické zobrazení Optické zobrazení je proces, kterým optické soustavy vytvářejí obrazy reálných předmětů. Tyto soustavy mění chod světelných paprsků. Obsahují zrcadla, čočky, odrazné hranoly aj. Princip

Více

Sylabus přednášky Kmity a vlny. Optika

Sylabus přednášky Kmity a vlny. Optika Sylabus přednášky Kmity a vlny. Optika Semestr zimní 4/2 PS, (4 společné konzultace + 2 pracovní semináře po 4 hodinách) z, zk - 7 KB Doporučeno pro 2. rok bakalářského studia. A. Kmity a vlny 1. Volné

Více

Čočky Čočky jsou skleněná (resp. plastová) tělesa ohraničená rovinnými nebo kulovými plochami. Pracují na principu lomu. 2 typy: spojky rozptylky

Čočky Čočky jsou skleněná (resp. plastová) tělesa ohraničená rovinnými nebo kulovými plochami. Pracují na principu lomu. 2 typy: spojky rozptylky Zobrazení čočkami Čočky Čočky jsou skleněná (resp. plastová) tělesa ohraničená rovinnými nebo kulovými plochami. Pracují na principu lomu. 2 typy: spojky rozptylky Spojky schematická značka (ekvivalentní

Více

08 - Optika a Akustika

08 - Optika a Akustika 08 - Optika a Akustika Zvuk je mechanické vlnění v látkovém prostředí, které je schopno vyvolat sluchový vjem. Člověk je schopen vnímat vlnění o frekvenci 16 Hz až 20000 Hz (20kHz). Frekvenci nižší než

Více

ODRAZ A LOM SVĚTLA. Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika

ODRAZ A LOM SVĚTLA. Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika ODRAZ A LOM SVĚTLA Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika Odraz světla Vychází z Huygensova principu Zákon odrazu: Úhel odrazu vlnění je roven úhlu dopadu. Obvykle provádíme konstrukci pomocí

Více

Seznam součástek. A. Seznam prvků soupravy GON. Rozměry (cm) nebo Poloměry* (cm) Značka Název prvku

Seznam součástek. A. Seznam prvků soupravy GON. Rozměry (cm) nebo Poloměry* (cm) Značka Název prvku Seznam součástek Sklo, ze kterého jsou zhotoveny optické prvky, má index lomu 1, 5 a tloušťku 15 mm. V následujících tabulkách uvádíme seznam prvků v soupravách GON a GON+ a absolutní hodnoty velikostí

Více

R8.1 Zobrazovací rovnice čočky

R8.1 Zobrazovací rovnice čočky Fyzika pro střední školy II 69 R8 Z O B R A Z E N Í Z R C A D L E M A Č O Č K O U R8.1 Zobrazovací rovnice čočky V kap. 8.2 je ke konstrukci chodu světelných paprsků při zobrazování tenkou čočkou použit

Více

rychlostí šíření světla v tomto prostředí ku vakuu, n = c/v. Pro vzduch je index lomu přibližně 1, voda má 1.33, sklo od 1.5 do 1.9.

rychlostí šíření světla v tomto prostředí ku vakuu, n = c/v. Pro vzduch je index lomu přibližně 1, voda má 1.33, sklo od 1.5 do 1.9. 1 Transport světla Pro popis šíření světla se může použít více metod v závislosti na okolnostech. Pokud je vlnová délka zanedbatelně malá nebo překážky, které klademe světlu do cesty, jsou mnohem větší

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012. Číslo DUM: VY_32_INOVACE_20_FY_C

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012. Číslo DUM: VY_32_INOVACE_20_FY_C Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012 Číslo DUM: VY_32_INOVACE_20_FY_C Ročník: II. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:

Více

5.2.12 Dalekohledy. y τ τ F 1 F 2. f 2. f 1. Předpoklady: 5211

5.2.12 Dalekohledy. y τ τ F 1 F 2. f 2. f 1. Předpoklady: 5211 5.2.12 Dalekohledy Předpoklady: 5211 Pedagogická poznámka: Pokud necháte studenty oba čočkové dalekohledy sestavit v lavicích nepodaří se Vám hodinu stihnout za 45 minut. Dalekohledy: už z názvu poznáme,

Více

Základy geometrické optiky a maticová optika

Základy geometrické optiky a maticová optika Ústav fyzikálního inženýrství Fakulta strojního inženýrství VUT v Brně Základy geometrické optiky a maticová optika ZAO/1 Doc. Ing. Jozef Kaiser, Ph.D. 1 Obsah Úvod Základ geometrické (paprskové) optiky

Více

F - Lom světla a optické přístroje

F - Lom světla a optické přístroje F - Lom světla a optické přístroje Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl

Více

Optika nauka o světle

Optika nauka o světle Optika nauka o světle 50_Světelný zdroj, šíření světla... 2 51_Stín, fáze Měsíce... 3 52_Zatmění Měsíce, zatmění Slunce... 3 53_Odraz světla... 4 54_Zobrazení předmětu rovinným zrcadlem... 4 55_Zobrazení

Více

Paprsková optika. Zobrazení zrcadly a čočkami. Rovinné zrcadlo. periskop 13.11.2014. zobrazování optickými soustavami.

Paprsková optika. Zobrazení zrcadly a čočkami. Rovinné zrcadlo. periskop 13.11.2014. zobrazování optickými soustavami. Paprsková optika Zobrazení zrcadl a čočkami zobrazování optickými soustavami tvořené zrcadl a čočkami obecné označení: objekt, který zobrazujeme, nazýváme předmět cílem je nalézt jeho obraz vzdálenost

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Viková, M. : MIKROSKOPIE I Mikroskopie I M. Viková

Viková, M. : MIKROSKOPIE I Mikroskopie I M. Viková Mikroskopie I M. Viková LCAM DTM FT TU Liberec, martina.vikova@tul.cz MIKROSVĚT nano Poměry velikostí mikro 9 10 10 8 10 7 10 6 10 5 10 4 10 3 size m 2 9 7 5 3 4 8 1 micela virus světlo 6 písek molekula

Více

F. Pluháček. František Pluháček Katedra optiky PřF UP v Olomouci

F. Pluháček. František Pluháček Katedra optiky PřF UP v Olomouci František Pluháček Katedra optiky PřF UP v Olomouci Obsah přednášky Optický systém lidského oka Zraková ostrost Dioptrické vady oka a jejich korekce Další vady optické soustavy oka Akomodace a vetchozrakost

Více

Fyzika aplikovaná v geodézii

Fyzika aplikovaná v geodézii Průmyslová střední škola Letohrad Vladimír Stránský Fyzika aplikovaná v geodézii 1 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního rozpočtu

Více

Optika pro studijní obory

Optika pro studijní obory Variace 1 Optika pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Světlo a jeho šíření Optika

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Zrcadla Zobrazení zrcadlem Zrcadla jistě všichni znáte z každodenního života ráno se do něj v koupelně díváte,

Více

6. Geometrická optika

6. Geometrická optika 6. Geometrická optika 6.1 Měření rychlosti světla Jak už bylo zmíněno v kapitole o elektromagnetickém vlnění, předpokládali přírodovědci z počátku, že rychlost světla je nekonečná. Tento předpoklad zpochybnil

Více

Jednou z nejstarších partií fyziky je nauka o světle tj. optika. Existovaly dva názory na fyzikální podstatu světla:

Jednou z nejstarších partií fyziky je nauka o světle tj. optika. Existovaly dva názory na fyzikální podstatu světla: Optika Jednou z nejstarších partií fyziky je nauka o světle tj. optika. Existovaly dva názory na fyzikální podstatu světla: Světlo je proud částic (I. Newton, 1704). Ale tento částicový model nebyl schopen

Více

Historie světelné mikroskopie. Světelná mikroskopie. Robert Hook (1670) a Antonie van Leeuwenhoek (1670) zakladatelé světelné mikroskopie

Historie světelné mikroskopie. Světelná mikroskopie. Robert Hook (1670) a Antonie van Leeuwenhoek (1670) zakladatelé světelné mikroskopie Historie světelné mikroskopie Světelná mikroskopie Robert Hook (1670) a Antonie van Leeuwenhoek (1670) zakladatelé světelné mikroskopie 1 Historie světelné mikroskopie Světelná mikroskopie Robert Hook

Více

Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký. Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený

Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký. Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený Jan Olbrecht Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený Jaký typ lomu nastane při průchodu světla z opticky

Více

Fokální korektory. Okuláry. Miroslav Palatka

Fokální korektory. Okuláry. Miroslav Palatka Přednášky - Přístroje pro astronomii 1 Fokální korektory Příslušenství - doplňky Okuláry Miroslav Palatka Palatka SLO/PA1 2011 1 Fokální korektory korektory aberací v blízkosti ohniskové roviny Korektory

Více

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:

Více

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 2

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 2 Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Fyzikální praktikum 2 Zpracoval: Markéta Kurfürstová Naměřeno: 16. října 2012 Obor: B-FIN Ročník: II Semestr: III

Více

ZOBRAZOVÁNÍ ODRAZEM NA KULOVÉ PLOŠE aneb Kdy se v zrcadle vidíme převrácení. PaedDr. Jozef Beňuška jbenuska@nextra.sk

ZOBRAZOVÁNÍ ODRAZEM NA KULOVÉ PLOŠE aneb Kdy se v zrcadle vidíme převrácení. PaedDr. Jozef Beňuška jbenuska@nextra.sk ZOBRAZOVÁNÍ ODRAZEM NA KULOVÉ PLOŠE aneb Kd se v zrcadle vidíme převrácení PaedDr. Jozef Beňuška jbenuska@nextra.sk Kulová zrcadla - jsou zrcadla, jejichž zrcadlící plochu tvoříčást povrchu koule (kulový

Více

Centrovaná optická soustava

Centrovaná optická soustava Centrovaná optická soustava Dvě lámavé kulové ploch: Pojem centrovaná optická soustava znamená, že splývají optické os dvou či více optických prvků. Základním příkladem takové optické soustav jsou dvě

Více

Vady optických zobrazovacích prvků

Vady optických zobrazovacích prvků Vady optických zobrazovacích prvků 1. Úvod 2. Základní druhy čoček a základní pojmy 3. Zobrazení pomocí čoček 4. Optické vady čoček 5. Monochromatické vady čoček 6. Odstranění monochromatických vad 7.

Více

Optika Elektromagnetické záření

Optika Elektromagnetické záření Elektromagnetické záření Záření, jehož energie se přenáší prostorem prostřednictvím elektromagnetického vlnění, nazýváme elektromagnetické záření. Ke svému šíření nepotřebuje látkové prostředí, může se

Více

Někdy je výhodné nerozlišovat mezi odrazem a lomem tím způsobem, že budeme pokládat odraz za lom s relativním indexem lomu n = 1.

Někdy je výhodné nerozlišovat mezi odrazem a lomem tím způsobem, že budeme pokládat odraz za lom s relativním indexem lomu n = 1. nauka o optickém zobrazování pracuje s pojmem světelného paprsku úzký svazek světla, který by vycházel z malého osvětleného otvoru v limitním případě, kdy by se jeho příčný rozměr blížil k nule a stejně

Více

Geometrická optika 1

Geometrická optika 1 Geometrická optika 1 Popis pomocí světelných paprsků těmi se šíří energie a informace, zanedbává vlnové vlastnosti světla světelný paprsek = přímka, podél níž se šíří světlo, jeho energie index lomu (základní

Více

OPTIKA -p vodní význam NAUKA O SV TLE

OPTIKA -p vodní význam NAUKA O SV TLE OPTIKA OPTIKA -p vodní význam NAUKA O SV TLE SV TLO elektromagnetické vln ní = 380 790 nm - jeden z nejstarších oborů fyziky -studium sv tla, zákonitostí jeho šíření a analýza d jů při vzájemném působení

Více

Odraz světla na rozhraní dvou optických prostředí

Odraz světla na rozhraní dvou optických prostředí Odraz světla na rozhraní dvou optických prostředí Může kulová nádoba naplněná vodou sloužit jako optická čočka? Exponát demonstruje zaostření světla procházejícího skrz vodní kulovou čočku. Pohyblivý světelný

Více

Laboratorní úloha č. 7 Difrakce na mikro-objektech

Laboratorní úloha č. 7 Difrakce na mikro-objektech Laboratorní úloha č. 7 Difrakce na mikro-objektech Úkoly měření: 1. Odhad rozměrů mikro-objektů z informací uváděných výrobcem. 2. Záznam difrakčních obrazců (difraktogramů) vzniklých interakcí laserového

Více

Radiometrie se zabývá objektivním a fotometrie subjektivním měřením světla.

Radiometrie se zabývá objektivním a fotometrie subjektivním měřením světla. 12. Radiometrie a fotometrie 12.1. Základní optické schéma 12.2. Zdroj světla 12.3. Objekt a prostředí 12.4. Detektory světla 12.5. Radiometrie 12.6. Fotometrie 12.7. Oko 12.8. Měření barev 12. Radiometrie

Více

Elektromagnetické vlnění

Elektromagnetické vlnění Elektromagnetické vlnění kolem vodičů elmag. oscilátoru se vytváří proměnné elektrické i magnetické pole http://www.walter-fendt.de/ph11e/emwave.htm Radiotechnika elmag vlnění vyzářené dipólem můžeme zachytit

Více

Optické přístroje. Oko

Optické přístroje. Oko Optické přístroje Oko Oko je orgán živočichů reagující na světlo. Obratlovci a hlavonožci mají jednoduché oči, členovci, kteří mají menší rozměry a jednoduché oko by trpělo difrakčními jevy, mají složené

Více

Učební texty z fyziky 2. A OPTIKA. Obor zabývající se poznatky o a zákonitostmi světelných jevů. V posledních letech rozvoj optiky vynález a využití

Učební texty z fyziky 2. A OPTIKA. Obor zabývající se poznatky o a zákonitostmi světelných jevů. V posledních letech rozvoj optiky vynález a využití OPTIKA Obor zabývající se poznatky o a zákonitostmi světelných jevů Světlo je vlnění V posledních letech rozvoj optiky vynález a využití Podstata světla Světlo je elektromagnetické vlnění Zdrojem světla

Více

Světlo jako elektromagnetické záření

Světlo jako elektromagnetické záření Světlo jako elektromagnetické záření Základní pojmy: Homogenní prostředí prostředí, jehož dané vlastnosti jsou ve všech místech v prostředí stejné. Izotropní prostředí prostředí, jehož dané vlastnosti

Více

O z n a č e n í m a t e r i á l u : V Y _ 3 2 _ I N O V A C E _ S T E I V _ F Y Z I K A 2 _ 1 4

O z n a č e n í m a t e r i á l u : V Y _ 3 2 _ I N O V A C E _ S T E I V _ F Y Z I K A 2 _ 1 4 O z n a č e n í m a t e r i á l u : V Y _ 3 2 _ I N O V A C E _ S T E I V _ F Y Z I K A 2 _ 1 4 N á z e v m a t e r i á l u : S v ě t l o j a k o v l n ě n í. T e m a t i c k á o b l a s t : F y z i k

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 6: Geometrická optika. Abstrakt

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 6: Geometrická optika. Abstrakt FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 8. 3. 2010 Úloha 6: Geometrická optika Jméno: Jiří Slabý Pracovní skupina: 4 Ročník a kroužek: 2. ročník, 1. kroužek, pondělí 13:30 Spolupracovala: Eliška

Více

Geometrická optika. Vnímání a měření barev. světlo určitého spektrálního složení vyvolá po dopadu na sítnici oka v mozku subjektivní barevný vjem

Geometrická optika. Vnímání a měření barev. světlo určitého spektrálního složení vyvolá po dopadu na sítnici oka v mozku subjektivní barevný vjem Vnímání a měření barev světlo určitého spektrálního složení vyvolá po dopadu na sítnici oka v mozku subjektivní barevný vjem fyzikální charakteristika subjektivní vjem světelný tok subjektivní jas vlnová

Více

Přednáška č.14. Optika

Přednáška č.14. Optika Přednáška č.14 Optika Obsah základní pojmy odraz a lom světla disperze polarizace geometrická optika elektromagnetické záření Světlo = elektromagnetické vlnění o vlnové délce 390nm (fialové) až 790nm (červené)

Více

Praktická geometrická optika

Praktická geometrická optika Praktická geometrická optika Václav Hlaváč České vysoké učení technické v Praze Fakulta elektrotechnická, katedra kybernetiky Centrum strojového vnímání http://cmp.felk.cvut.cz/ hlavac, hlavac@fel.cvut.cz

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Zobrazení čočkou

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Zobrazení čočkou Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Zobrazení čočkou Čočky, stejně jako zrcadla, patří pro mnohé z nás do běžného života. Někdo nosí brýle, jiný

Více

3. Optika III. 3.1. Přímočaré šíření světla

3. Optika III. 3.1. Přímočaré šíření světla 3. Optika III Popis soupravy: Souprava Haftoptik s níž je prováděn soubor experimentů Optika III je určena k demonstraci optických jevů pomocí segmentů se silnými magnety. Ty umožňují jejich fixaci na

Více

Charakteristiky optického záření

Charakteristiky optického záření Fyzika III - Optika Charakteristiky optického záření / 1 Charakteristiky optického záření 1. Spektrální charakteristika vychází se z rovinné harmonické vlny jako elementu elektromagnetického pole : primární

Více

Optika - základní pojmy

Optika - základní pojmy Optika - základní pojmy 1. Jaká je fyzikální podstata světla? Jaká je přibližně jeho rychlost? Uveďte jeden příklad, jak ji lze určit. Jedná se o vlnění podélné nebo příčné? Který jev je toho dokladem?

Více

Praktická geometrická optika

Praktická geometrická optika Praktická geometrická optika Václav Hlaváč České vysoké učení technické v Praze Centrum strojového vnímání (přemosťuje skupiny z) Český institut informatiky, robotiky a kybernetiky Fakulta elektrotechnická,

Více

Krafková, Kotlán, Hiessová, Nováková, Nevímová

Krafková, Kotlán, Hiessová, Nováková, Nevímová Krafková, Kotlán, Hiessová, Nováková, Nevímová Optická čočka je optická soustava dvou centrovaných ploch, nejčastěji kulových, popř. jedné kulové a jedné rovinné plochy. Čočka je tvořena z průhledného

Více

MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis

MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis Ivana Krestýnová, Josef Zicha Abstrakt: Absolutní vlhkost je hmotnost

Více

Lasery základy optiky

Lasery základy optiky LASERY Lasery se staly jedním ze základních nástrojů moderních strojírenských technologií. Optimální využití laserových technologií předpokládá znalosti o jejich principech a o vlastnostech laserového

Více

Profilová část maturitní zkoušky 2017/2018

Profilová část maturitní zkoušky 2017/2018 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2017/2018 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: FYZIKA

Více

Sada Optika. Kat. číslo 100.7200

Sada Optika. Kat. číslo 100.7200 Sada Optika Kat. číslo 100.7200 Strana 1 z 63 Všechna práva vyhrazena. Dílo a jeho části jsou chráněny autorskými právy. Jeho použití v jiných než zákonem stanovených případech podléhá předchozímu písemnému

Více

MODUL 4. OPTIKA 4.1. ÚVODNÍ POJMY, SVĚTLO, ŠÍŘENÍ SVĚTLA, INDEX LOMU SHRNUTÍ

MODUL 4. OPTIKA 4.1. ÚVODNÍ POJMY, SVĚTLO, ŠÍŘENÍ SVĚTLA, INDEX LOMU SHRNUTÍ MODUL 4. OPTIKA 4.1. ÚVODNÍ POJMY, SVĚTLO, ŠÍŘENÍ SVĚTLA, INDEX LOMU SHRNUTÍ Světlo - ze zdroje světla se světlo šíří jako elektromagnetické vlnění příčné, které má ve vakuu vlnovou délku c λ = υ, a to

Více

27. Vlnové vlastnosti světla

27. Vlnové vlastnosti světla 27. Vlnové vlastnosti světla Základní vlastnosti světla (rychlost světla, šíření světla v různých prostředích, barva tělesa) Jevy potvrzující vlnovou povahu světla Ohyb a polarizace světla (ohyb světla

Více

Vznik a šíření elektromagnetických vln

Vznik a šíření elektromagnetických vln Vznik a šíření elektromagnetických vln Hlavní body Rozšířený Coulombův zákon lektromagnetická vlna ve vakuu Zdroje elektromagnetických vln Přehled elektromagnetických vln Foton vlna nebo částice Fermatův

Více