Kombinatorika, výpočty
|
|
- Ladislav Kraus
- před 8 lety
- Počet zobrazení:
Transkript
1 Kombinatorika, výpočty Radek Pelánek IV122
2 Styl jednoduché výpočty s čísly vesměs spíše opakování + pár dílčích zajímavostí užitečný trénink programování
3 Kombinace, permutace, variace Daná množina M s n prvky 1 permutace =... 2 k prvkové kombinace =... 3 k prvkové kombinace s opakováním =... 4 k prvkové variace =... 5 k prvkové variace s opakováním =...
4 Kombinace, permutace, variace Daná množina M s n prvky 1 permutace = uspořádání zadaných prvků do fixního pořadí 2 k prvkové kombinace = všechny možné výběry k prvků ze zadané množiny 3 k prvkové kombinace s opakováním = všechny možné výběry k prvků ze zadané množiny, přičemž prvky se mohou opakovat 4 k prvkové variace = všechny možné uspořádané výběry k prvků ze zadané množiny 5 k prvkové variace s opakováním = všechny možné uspořádané výběry k prvků ze zadané množiny, přičemž prvky se mohou opakovat
5 Kombinace, permutace, variace příklady Úloha Vstup Výstup permutace A, B, C ABC, ACB, BAC, BCA, CAB, CBA kombinace A, B, C, D AB, AC, AD, BC, BD, CD k = 2 kombinace A, B, C, D AA, AB, AC, AD, BB, BC, BD, s opakováním k = 2 CC, CD, DD variace A, B, C, D AB, AC, AD, BA, BC, BD, CA, k = 2 CB, CD, DA, DB, DC variace A, B, C AA, AB, AC, BA, BB, BC, CA, s opakováním k = 2 CB, CC
6 Kombinace, permutace, variace počty prvků Počet všech permutací n prvků =... k prvkových kombinací z n =... k prvkových kombinací s opakováním z n prvků =... k prvkových variací z n prvků =... k prvkových variací s opakováním z n prvků =...
7 Kombinace, permutace, variace počty prvků Počet všech permutací n prvků = n! k prvkových kombinací z n = ( ) n k = n! (n k)!k! k prvkových kombinací s opakováním z n prvků = ( ) n+k 1 k k prvkových variací z n prvků = n! (n k)! k prvkových variací s opakováním z n prvků = n k
8 Úkol: generování kombinací, permutací, variací Vstup: množina (seznam) a případně k Výstup: (uspořádaný) výpis všech permutací/kombinací/variací (s opakováním) vede na přirozené využití rekurze myšlenkově podobné programy by měly být podobné
9 Výpočet kombinačního čísla ( ) n = k ( ) n 1 + k 1 ( ) n 1 k def comb_number(n, k): if k == 0 or k == n: return 1 else: return comb_number(n-1, k-1) + \ comb_number(n-1, k)
10 Výpočet kombinačního čísla neefektivní opakované výpočty podobné jako klasická ukázka neefektivního použití rekurze u Fibonacciho čísel efektivněji: explicitní vztah počítání od spodu
11 Pascalův trojúhelník Explicitní vzorec Rekurzivní vztah
12 Pascalův trojúhelník a Sierpińského fraktál
13 Obarvování čísel: Pascal a Ulam video Vi Hart: Sick Number Games obarvování Pascalova trojúhelníku modulo k vztah k jednorozměrným buněčným automatům
14 Počítání cest S n S m C C
15 Umocňování x y x, y kladná čísla (ne nutně celá) např co to vlastně znamená? jak vypočítat? přibližná hodnota, jen pomocí základních aritmetických operací
16 Umocňování: úkol x y vypočítat přibližnou hodnotu, jen pomocí základních aritmetických operací stačí jednoduché metody experimentálně prozkoumat chování: rychlost, přesnost
17 Efektivní umocňování a n mod k a, n, k přirozená čísla n může být velké (stovky cifer) jak vypočítat efektivně? (lépe než lineárně vzhledem k n) aplikace např. v kryptologii
18 Výpočet π π = 3, iracionální číslo známé s přesností na miliardy cifer jak se určuje hodnota π? zmíníme jen velmi naivní metody přímočaré cvičení na experimentální porovnání
19 Výpočet π Gregoryho-Leibnizova řada (součet je π): 4 k=0 ( 1) k 2k + 1 = (Důkaz: arctan(1), integrál)
20 Výpočet π Archimedova metoda (dvě posloupnosti a n, b n společně konvergující k π) a 0 = 2 3; b 0 = 3 a n+1 = 2a nb n a n + b n b n+1 = a n+1 b n
21 Výpočet π Monte Carlo 1 y 0 x 1 obsah čtvrtdisku: π/4 obsah čtverce: 1
22 Úkol: Výpočet π implementujte uvedené metody (najděte další metody a implementujte je) experimentálně vyhodnoťte jednotlivé metody jaké přesnosti jsou schopny dosáhnout během 1 vteřiny?
23 Umocňování: rady x a/b = b x a výpočet odmocniny: vstup: číslo x výstup: přibližná hodnota x základní metoda: binární půlení (rozhodně ne nejvíce efektivní)
24 Výpočet odmocniny: binární půlení spodní odhad střed horní odhad
25 Umocňování a Taylorova řada Taylorova řada: f (x) = n=0 f (n) (x 0 ) (x x 0 ) n n! Pro f (x) = x k a x 0 = 1 lze snadno vypočítat.
Programy a algoritmy pracující s čísly. IB111 Úvod do programování skrze Python
Programy a algoritmy pracující s čísly IB111 Úvod do programování skrze Python 2013 1 / 60 Připomenutí z minule proměnné, výrazy, operace řízení výpočtu: if, for, while funkce příklady: faktoriál, binární
y (5) (x) y (4) (x) + 4y (3) (x) 12y (x) 45y (x) 27y(x) (horní indexy značí derivaci) pro 3. y(x) = x sin 3x 4. y(x) = x cos 3x 9.
Přezdívka: Jméno a příjmení: výsledek 101 Vypočtěte y x y 4 x + 4y x 12y x 4y x 27yx horní indexy značí derivaci pro 1. yx = sin x 2. yx = cos x. yx = x sin x 4. yx = x cos x. yx = e x 1 6. yx = xe x 7.
B A B A B A B A A B A B B
AB ABA BA BABA B AB A B B A A B A B AB A A B B B B ABA B A B A A A A A B A A B A A B A A B A BA B A BA B D A BC A B C A B A B C C ABA B D D ABC D A A B A B C D C B B A A B A B A B A A AB B A AB A B A A
Upozornění : barevné odstíny zobrazené na této stránce se mohou z důvodu možného zkreslení Vašeho monitoru lišit od fyzické dodávky.
Upozornění : barevné odstíny zobrazené na této stránce se mohou z důvodu možného zkreslení Vašeho monitoru lišit od fyzické dodávky. ODSTÍN SKUPINA CENOVÁ SKUPINA ODRÁŽIVOST A10-A BRIGHT A 1 81 A10-B BRIGHT
Programy a algoritmy pracující s čísly. IB111 Úvod do programování skrze Python
Programy a algoritmy pracující s čísly IB111 Úvod do programování skrze Python 2015 1 / 66 Rozcvička 1 2 + 2 2 + 3 2 + + 99 2 + 100 2 2 / 66 Připomenutí z minule proměnné, výrazy, operace řízení výpočtu:
výsledek 2209 y (5) (x) y (4) (x) y (3) (x) 7y (x) 20y (x) 12y(x) (horní indexy značí derivaci) pro 1. y(x) = sin2x 2. y(x) = cos2x 3.
Vypočtěte y (5) (x) y (4) (x) y (3) (x) 7y (x) 20y (x) 12y(x) (horní indexy značí derivaci) pro 1. y(x) = sin2x 2. y(x) = cos2x 3. y(x) = x sin2x 4. y(x) = x cos2x 5. y(x) = e x 1 6. y(x) = xe x 7. y(x)
Programování: základní konstrukce, příklady, aplikace. IB111 Programování a algoritmizace
Programování: základní konstrukce, příklady, aplikace IB111 Programování a algoritmizace 2011 Připomenutí z minule, ze cvičení proměnné, výrazy, operace řízení výpočtu: if, for, while funkce příklady:
= 8 25 + 19 12 = 32 43 32 = 11. 2 : 1 k > 0. x k + (1 x) 4k = 2k x + 4 4x = 2 x = 2 3. 1 x = 3 1 2 = 2 : 1.
4 4 = 8 8 8 = 5 + 19 1 = 4 = 11 : 1 k > 0 k 4k x 1 x x k + (1 x) 4k = k x + 4 4x = x = x 1 x = 1 = : 1. v h h s 75 v 50 h s v v 50 s h 75 180 v h 90 v 50 h 180 90 50 = 40 s 65 v 80 60 80 80 65 v 50 s 50
Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice
MATURITNÍ TÉMATA Z MATEMATIKY
MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické
6.1.2 Operace s komplexními čísly
6.. Operace s komplexními čísly Předpoklady: 60 Komplexním číslem nazýváme výraz ve tvaru a + bi, kde a, b jsou reálná čísla a i je číslo, pro něž platí i =. V komplexním čísle a + bi se nazývá: číslo
Závěrečná zkouška z informatiky 2011
Závěrečná zkouška z informatiky 2011 1) Číslo A je v dvojkové soustavě a má hodnotu 1101011. Číslo B je v šestnáctkové soustavě a má hodnotu FF3. Vypočítejte : A * B a výsledek napište v desítkové soustavě.
Rekurze. Pavel Töpfer, 2017 Programování 1-8 1
Rekurze V programování ve dvou hladinách: - rekurzivní algoritmus (řešení úlohy je definováno pomocí řešení podúloh stejného charakteru) - rekurzivní volání procedury nebo funkce (volá sama sebe přímo
Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy
1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x
1 ZOBRAZENÍ 1 Zobrazení a algebraické struktury 1 Zobrazení Příklad 1.1. (a) Ukažte, že zobrazení f : x na otevřený interval ( 1, 1). x x +1 je bijekce množiny reálných čísel R (b) Necht a, b R, a < b.
Jednoznačné a nejednoznačné gramatiky
BI-AAG (2011/2012) J. Holub: 11. Bezkontextové gramatiky p. 2/36 Jednoznačné a nejednoznačné gramatiky BI-AAG (2011/2012) J. Holub: 11. Bezkontextové gramatiky p. 4/36 Automaty a gramatiky(bi-aag) 11.
Poznámky k Fourierově transformaci
Poznámky k Fourierově transformaci V těchto poznámkách jsou uvedeny základní vlastnosti jednorozměrné Fourierovy transformace a její aplikace na jednoduché modelové případy. Pro určitost jsou sdružené
IB111 Úvod do programování skrze Python
Vyhledávání, řazení, složitost IB111 Úvod do programování skrze Python 2012 Otrávené studny 8 studen, jedna z nich je otrávená laboratorní rozbor dokáže rozpoznat přítomnost jedu ve vodě je drahý (je časově
S T A T I S T I K A. Jan Melichar Josef Svoboda. U n iverzita Jan a Evangelist y P u rk yn ě v Ústí nad La b em
U n iverzita Jan a Evangelist y P u rk yn ě v Ústí nad La b em P e d a g o g i c k á f a k u l t a S T A T I S T I K A p ro studium učitelství. stupně z ák l ad ní školy Jan Melichar Josef Svoboda 0 0
Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021
Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,
Notice:Jagran Infotech Ltd. Printed by Fontographer 4.1 on 6/3/2003 at 7:12 PM
$ % $0 Undefined $1 Undefined $2 Undefined $3 Undefined $4 Undefined $5 Undefined $6 Undefined $7 Undefined $8 Undefined $9 Undefined $A Undefined $B Undefined $C Undefined $D Undefined $E Undefined $F
Rekurze. IB111 Úvod do programování skrze Python
Rekurze IB111 Úvod do programování skrze Python 2015 1 / 64 XKCD: Tabletop Roleplaying https://xkcd.com/244/ 2 / 64 To iterate is human, to recurse divine. (L. Peter Deutsch) 3 / 64 Rekurze použití funkce
Motory šetřící energii s vlastním chlazením a zvýšenou účinností
s vlastním chlazením a zvýšenou účinností Jmenovitý Velikost Provozní hodnoty při jmenovitém výkonu Objednací číslo Hmotnost výkon motoru Jmenovité Jmenovitý Třída Účinnost Účinnost Účiník Jmenovitý při
Zjednodušení generativního systému redukcí rozlišení
Zjednodušení generativního systému redukcí rozlišení Ze studie zahrnující dotaz na vzdělání. Obor hodnot v i : e základní vzdělání h střední vzdělání c bakalář g magistr Možné redukce rozlišení cg vysoké
Maturitní témata z matematiky
Maturitní témata z matematiky 1. Lineární rovnice a nerovnice a) Rovnice a nerovnice s absolutní hodnotou absolutní hodnota reálného čísla definice, geometrický význam, srovnání řešení rovnic s abs. hodnotou
1. LINEÁRNÍ ALGEBRA Vektory Operace s vektory... 8 Úlohy k samostatnému řešení... 8
1 Lineární algebra 1 LINEÁRNÍ ALGEBRA 8 11 Vektory 8 111 Operace s vektory 8 8 112 Lineární závislost a nezávislost vektorů 8 8 113 Báze vektorového prostoru 9 9 12 Determinant 9 9 13 Matice 1 131 Operace
Matematika PRŮŘEZOVÁ TÉMATA
Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory
Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.
Kapitola 3 Počítání s maticemi Matice stejného typu můžeme sčítat a násobit reálným číslem podobně jako vektory téže dimenze. Definice 3.1 Jsou-li A (a ij ) a B (b ij ) dvě matice stejného typu m n, pak
Matematika II. dvouletý volitelný předmět
Název předmětu: Zařazení v učebním plánu: O7A, C3A, S5A, O8A, C4A, S6A dvouletý volitelný předmět Cíle předmětu Tento předmět je koncipován s cílem umožnit studentům dosáhnout lepší výsledky ve společné
CZ 1.07/1.1.32/02.0006
PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI
Syntetická geometrie II
Mnohoúhelníky Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Čtyřúhelníky Definice (Čtyřúhelník) Jsou dány čtyři body A, B, C, D v rovině, z nichž žádné tři nejsou kolineární. Čtyřúhelník ABCD
Kombinatorika. November 12, 2008
Kombinatorika November 12, 2008 Příklad Do školní jídelny přišla skupina 35 žáků. Určete kolika způsoby se mohli seřadit do fronty u výdeje obědů. Řešení: Počet možností je 1 2... 35 = 35! (Permutace bez
Programy a algoritmy pracující s čísly. IB111 Úvod do programování
Programy a algoritmy pracující s čísly IB111 Úvod do programování 2016 1 / 56 Dnešní přednáška práce s čísly v Pythonu ukázky programů, ilustrace použití základních konstrukcí ukázky jednoduchých algoritmů,
Stiga Eurochallange 2017
Výsledky 4. ročníku turnaje Stiga Eurochallange 2017 4 základní skupiny A, B, C a D po 4 -ech týmech: skupina A AA Philadelphia skupina A: AB AC AD HC Malba Gang CK Orion Odborář Sokolovo AA Philadelphia
A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky
Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace
Požadavky k opravným zkouškám z matematiky školní rok 2014-2015
Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,
Pravděpodobnost, náhoda, kostky
Pravděpodobnost, náhoda, kostky Radek Pelánek IV122, jaro 2015 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností krátké
TEMATICKÝ PLÁN VÝUKY
TEMATICKÝ PLÁN VÝUKY Studijní obor: 23-41 - M/1 Strojírenství Zaměření: Předmět: Matematika Ročník: 4. Počet hodin týdně: 4 Počet hodin celkem: Tento plán vychází z rámcového vzdělávacího programu pro
Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky Systematizace a prohloubení učiva matematiky 4. ročník 2 hodiny Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné
Úlohy krajského kola kategorie C
6. ročník matematické olympiády Úlohy krajského kola kategorie C. Pro libovolná reálná čísla x, y, z taková, že x < y < z, dokažte nerovnost x 2 y 2 + z 2 > (x y + z) 2. 2. Honza má tři kartičky, na každé
Úvod do diskrétní matematiky
Název předmětu: Úvod do diskrétní matematiky Zkratka předmětu: KAP/UDMK Počet kreditů: 4 Forma studia: kombinovaná Způsob ukončení: klasifikovaný zápočet Anotace: Předmět je úvodem do klasické kombinatoriky
CVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 41 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán magický čtverec, pro nějž platí,
Maturitní otázky z předmětu MATEMATIKA
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti
3 Množiny, Relace a Funkce
3 Množiny, Relace a Funkce V přehledu matematických formalismů informatiky se v této lekci zaměříme na základní datové typy matematiky, tj. na množiny, relace a funkce. O množinách jste sice zajisté slyšeli
DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ
DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti
Maturitní témata z matematiky
Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy
Pravděpodobnost, náhoda, kostky
Pravděpodobnost, náhoda, kostky Radek Pelánek IV122 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností připomenutí, souvislosti
Maturitní témata profilová část
Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,
Dynamické programování. Optimální binární vyhledávací strom
The complexity of different algorithms varies: O(n), Ω(n ), Θ(n log (n)), Dynamické programování Optimální binární vyhledávací strom Různé algoritmy mají různou složitost: O(n), Ω(n ), Θ(n log (n)), The
z přímek a kružnic 35. Čtverec s danou stranou: 1. Oblouky A-B, B-A (přímka CED); 2. Oblouk E-AB (F); 3. Přímky AF, BF a vzniklé průsečíky
ČTVERCE A KOSOčTVERCE z přímek a kružnic Jednoduché čtyřúhelníkové konstrukce se dají zvládnout snadno. Abyste sestrojili kružnici opsanou čtverci nebo obdélníku, nejprve zakreslete úhlopříčky a pak narýsujte
Počítání v planimetrii Michal Kenny Rolínek
Počítání v planimetrii Michal Kenny Rolínek Cílem této přednášky je obohatit vaše znalosti z planimetrie o nové metody, založené na algebraickém přístupu. Nebudeme ovšem sáhodlouze upravovat obrovskévýrazy,jakbysemohlozdát.naopaksiukážemepříklady,vnichžnástrocha
CVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 13 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V trojúhelníku ABC na obrázku dělí úsečka
f n je n-té Fibonacciho číslo, definováno takto: f 0 = 0, f 1 = 1, f n+2 = f n+1 +f n. f k+1
Pokročilá lineární algebra úlohy pro zimní semestr Matice pro výpočet lineárních rekurencí (0 bodů) Na úvod si ve stručnosti popišme, jak počítat Fibonacciho čísla pomocí umocňování matic; ve větších podrobnostech
Implementace slovníku bitovým vektorem
Implementace slovníku bitovým vektorem Martina Linhartová L06628 Implementace slovníku bitovým vektorem Slovník Slovník je ve své podstatě množina. Množiny jsou pro matematiku i pro informatiku základní
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -
Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová
Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.
Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi
2.2. Cíle Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi Předpokládané znalosti Předpokladem zvládnutí
NALG 001 Lineární algebra a geometrie 1, zimní semestr MFF UK Doba řešení: 3 hodiny
NALG 001 Lineární algebra a geometrie 1, zimní semestr MFF UK Závěrečná zkouška verze cvičná 9.1.2013 Doba řešení: 3 hodiny Přednášející: L. Barto, J. Tůma Křestní jméno: Příjmení: Instrukce Neotvírejte
Slovní úlohy 1. 2,42cm; 7cm; 11,58cm; 2. původní cena; dní; 4. 2,3*10 15 kg; 5. 2,8*10 14 ; ; 27325; 7. 3, 9, 27; -3, 9, -27;
1. Posloupnosti 1.1. Úvod geometrické znázornění, monotonie posloupnosti, rekurentní vzorec a vzorec pro n-tý člen. 1.A) 15, 17, 19; B) 128, 256, 512; C) 45, 51, 57; D) 6, 2, 4; E) 32768, 131072, 524288;
Algoritmy I, složitost
A0B36PRI - PROGRAMOVÁNÍ Algoritmy I, složitost České vysoké učení technické Fakulta elektrotechnická v 1.01 Rychlost... Jeden algoritmus (program, postup, metoda ) je rychlejší než druhý. Co ta věta znamená??
Hranová konzistence. Arc consistency AC. Nejprve se zabýváme binárními CSP. podmínka odpovídá hraně v grafu podmínek
Hranová konzistence Arc consistency AC Nejprve se zabýváme binárními CSP podmínka odpovídá hraně v grafu podmínek Hrana (V i, V j ) je hranově konzistentní, právě když pro každou hodnotu x z aktuální domény
Syntetická geometrie I
Kolineace Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Incidence Incidence je základní vztah - nedefinujeme ji. Bod leží na přímce = Přímka prochází bodem = Bod je incidentní s přímkou. Definice
MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]
MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě
[1] Determinant. det A = 0 pro singulární matici, det A 0 pro regulární matici
[1] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A = 0 pro singulární matici, det A 0 pro regulární matici používá se při řešení lineárních soustav... a v mnoha dalších aplikacích
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometire Gradovaný řetězec úloh Téma: obsahy a obvody mnohoúhelníků, grafy funkcí s absolutní
Datové struktury 2: Rozptylovací tabulky
Datové struktury 2: Rozptylovací tabulky prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy
Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:
Studijní obor: Aplikovaná chemie Učební osnova předmětu Matematika Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za
Opakování k maturitě matematika 4. roč. TAD 2 <
8.. Otázka číslo Mocniny a odmocniny. b.) Zjednodušte: 6 b. b Opakování k maturitě matematika. roč. TAD : 6.) Zjednodušte: 6 6.) Vypočtěte: a. y : ( a. y ) =.) Usměrněte zlomek =.. Otázka číslo Lineární
Kombinatorický předpis
Gravitace : Kombinatorický předpis Petr Neudek 1 Kombinatorický předpis Kombinatorický předpis je rozšířením Teorie pravděpodobnosti kapitola Kombinatorický strom. Její praktický význam je zřejmý právě
4. Model M1 syntetická geometrie
4. Model M1 sytetiká geometrie V této kapitole se udeme zaývat vektory, jejih vlastostmi a využitím v geometrii. Neudeme přitom rozlišovat, jestli se jedá je o roviu (dvě dimeze) eo prostor (tři dimeze).
M - Pythagorova věta, Eukleidovy věty
M - Pythagorova věta, Eukleidovy věty Určeno jako učební text pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací
(a kryptografické odbočky) IB111 Úvod do programování skrze Python
Řetězce a seznamy (a kryptografické odbočky) IB111 Úvod do programování skrze Python 2014 1 / 56 Rozcvička: šifry 1 C S A R B V E K T E O A 2 A J L B N O C E 3 C S B U J T M B W B 2 / 56 Transpoziční šifry
1. Kombinatorika 1.1. Faktoriál výrazy a rovnice
1. Kombinatorika 1.1. Faktoriál výrazy a rovnice 1.A) 210; B) 990; C) 29260; D) 1/5; E) 1/240; F) 157; G) 81/712; H) 1/100; I) 3,98*10 11 ; J) 86296950; K) 65824; L) 195878760; 2. A) x 3 +3x 2 +2x; x Z,
Základy algoritmizace a programování
Základy algoritmizace a programování Přednáška 1 Olga Majlingová Katedra matematiky, ČVUT v Praze 19. září 2011 Obsah Úvodní informace 1 Úvodní informace 2 3 4 Doporučená literatura web: http://marian.fsik.cvut.cz/zapg
Základy algoritmizace a programování
Základy algoritmizace a programování Přednáška 1 Olga Majlingová Katedra matematiky, ČVUT v Praze 21. září 2009 Obsah Úvodní informace 1 Úvodní informace 2 3 4 Organizace předmětu Přednášky 1. 5. Základní
Stromy. Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy
Stromy úvod Stromy Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy Neorientovaný strom Orientovaný strom Kořenový orientovaný
Různé algoritmy mají různou složitost
/ 1 Různé algoritmy mají různou složitost 1/ 1 Rychlost... Jeden algoritmus (program, postup, metoda ) je rychlejší než druhý. Co ta věta znamená?? 2/ 1 Asymptotická složitost y y x x Každému algoritmu
KTE / PPEL Počítačová podpora v elektrotechnice
KTE / PPEL Počítačová podpora v elektrotechnice Ing. Lenka Šroubová, Ph.D. email: lsroubov@kte.zcu.cz http://home.zcu.cz/~lsroubov 3. 10. 2012 Základy práce s výpočetními systémy opakování a pokračování
CVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23
CVIČNÝ TEST 1 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23 I. CVIČNÝ TEST 1 Určete výraz V, který je největším společným dělitelem výrazů V 1 V 3 :
Bezkontextové jazyky 2/3. Bezkontextové jazyky 2 p.1/27
Bezkontextové jazyky 2/3 Bezkontextové jazyky 2 p.1/27 Transformace bezkontextových gramatik Bezkontextové jazyky 2 p.2/27 Ekvivalentní gramatiky Definice 6.1 Necht G 1 a G 2 jsou gramatiky libovolného
Binární soubory (datové, typované)
Binární soubory (datové, typované) - na rozdíl od textových souborů data uložena binárně (ve vnitřním tvaru jako v proměnných programu) není čitelné pro člověka - všechny záznamy téhož typu (může být i
CVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 10 Mgr. Renáta Koubková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Pro x R řešte rovnici: 5 x 1 + 5 x + 5 x + 3 = 3 155. 2 Za předpokladu
Testování prvočíselnosti
Dokumentace zápočtového programu z Programování II (NPRG031) Testování prvočíselnosti David Pěgřímek http://davpe.net Úvodem V různých oborech (například v kryptografii) je potřeba zjistit, zda je číslo
SIGNUM 3SB3 Tlačítka a signálky
SGNUM Tlačítka a signálky Ovladač s nosičem Kulaté plastové 0..-.. Kulaté kovové 5..-.. Čtvercové plastové 1..-.. pro otvor 26 26mm Upozornění! Prosvětlená tlačítka se dodávají včetně montážního můstku
Maturitní okruhy z matematiky - školní rok 2007/2008
Maturitní okruhy z matematiky - školní rok 2007/2008 1. Některé základní poznatky z elementární matematiky: Číselné obory, dělitelnost přirozených čísel, prvočísla a čísla složená, největší společný dělitel,
CVIČNÝ TEST 24. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 24 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Písemnou práci z chemie psalo všech 28 žáků ze
Marie Duží
Marie Duží marie.duzi@vsb.cz Co je to množina? Množina je soubor prvků a je svými prvky plně určena; množinu s prvky a, b, c značíme: {a, b, c}. Prvkem množiny může být opět množina, množina nemusí mít
Limita ve vlastním bodě
Výpočty it Definice (a případné věty) jsou z knihy [] příklady z [] [] a []. Počítám u zkoušky dvacátou itu hlavu mám dávno už do čista vymytu papír se značkami skvěje z čela mi pot v proudech leje než
Psychologie 03. Otázka číslo: 1. Přiřaď příslušné písmeno ke jménu významné osobnosti:
Psychologie 03 Otázka číslo: 1 Přiřaď příslušné písmeno ke jménu významné osobnosti: a) Wilhelm Wundt b) J. B. Watson c) Sigmund Freud d) Carl Gustav Jung e) Alfred Adler A) byl zakladatelem behaviorismu
ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup
KOMBINATORIKA (4.ročník I.pololetí DE, 2.ročník I.pololetí NS)
KOMBINATORIKA (4.ročník I.pololetí DE,.ročník I.pololetí NS) Kombinatorika je část matematiky, zabývající se uspořádáváním daných prvků podle jistých pravidel do určitých skupin a výpočtem množství těchto
Rekurze. Jan Hnilica Počítačové modelování 12
Rekurze Jan Hnilica Počítačové modelování 12 1 Rekurzivní charakter úlohy Výpočet faktoriálu faktoriál : n! = n (n - 1) (n - 2)... 2 1 (0! je definován jako 1) můžeme si všimnout, že výpočet n! obsahuje
Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné
Kombinatorika. Michael Krbek. 1. Základní pojmy. Kombinatorika pracuje se spočitatelnými (tedy obvykle
Kombinatorika Michael Krbek. Základní pojmy. Kombinatorika pracuje se spočitatelnými (tedy obvykle konečnými) strukturami a patří kvůli tomu mezi nejstarší oblasti matematiky. Je těžké podat přesný výčet
CVIČNÝ TEST 27. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 27 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Karel povídá: Myslím si celé číslo. Je záporné. Nyní
VYŠŠÍ ODBORNÁ ŠKOLA a STŘEDNÍ PRŮMYSLOVÁ ŠKOLA Mariánská 1100, 407 47 Varnsdorf PROGRAMOVÁNÍ FUNKCE, REKURZE, CYKLY
Jméno a příjmení: Školní rok: Třída: VYŠŠÍ ODBORNÁ ŠKOLA a STŘEDNÍ PRŮMYSLOVÁ ŠKOLA Mariánská 1100, 407 47 Varnsdorf 2007/2008 VI2 PROGRAMOVÁNÍ FUNKCE, REKURZE, CYKLY Petr VOPALECKÝ Číslo úlohy: Počet
PŘEDNÁŠKA 7 Kongruence svazů
PŘEDNÁŠKA 7 Kongruence svazů PAVEL RŮŽIČKA Abstrakt. Definujeme svazové kongruence a ukážeme jak pro vhodné binární relace svazu ověřit, že se jedná o svazové kongruence. Popíšeme svaz Con(A) kongruencí
A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 8. 4 Klíčové kompetence. Opakování 7.
A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 8. 4 Klíčové kompetence Výstupy Učivo Průřezová témata Evaluace žáka Poznámky (Dílčí kompetence) 5 Kompetence