Normalizace struktury povrchu, současný stav a trendy vývoje

Rozměr: px
Začít zobrazení ze stránky:

Download "Normalizace struktury povrchu, současný stav a trendy vývoje"

Transkript

1 Normalizace struktury povrchu, současný stav a trendy vývoje Doc. Ing. Miroslav Tykal, CSc. Příspěvek obsahuje stručnou rekapitulaci normalizovaných způsobů hodnocení a měření struktury povrchu založených na profilu získaném řezem nerovností (D) a modernějším způsobem (3D), založeným na hodnocení a měření nerovností na ploše. plikace metody 3D vyžaduje speciální techniky získávání informace pro vyčíslení hodnot definovaných parametrů. Nejobvyklejší je normalizovaný způsob snímání nerovností dotykovým způsobem hrotem snímače. Pro plošné hodnocení jsou obvykle aplikovány bezdotykové optické metody měření povrchu, které umožňují dokonaleji povrch popsat, definovat nové parametry a zejména nalézat souvislostí mezi číselnými hodnotami těchto parametrů a podmínkami vzniku a funkčními vlastnostmi povrchu. 1 Úvod Stopy po obrábění (každá metoda obrábění zanechává na povrchu charakteristické stopy) vytvářející na povrchu nerovnosti jsou prostorově uspořádány (3 D) a jejich hodnocení je poměrně obtížné. Dosud se rutinně používá k jejich hodnocení zjednodušená (normalizovaná) metoda využívající profil nerovností vzniklý v rovině řezu ( D). Třírozměrné hodnocení struktury povrchu (3 D) vyžaduje aplikovat použitelné poznatky z dvourozměrného hodnocení struktury povrchu ( D) a zavést další potřebné informace pro úplný popis. Jedná se o aplikaci pojmů a odvozených matematických vztahů pro popis geometrických vlastností nerovností na povrchu vyjádřené prostřednictvím profilu (čarou - profilová metoda) a zavedení nových pojmů a matematických vztahů pro popis geometrických vlastností nerovností na povrchu vyjádřené prostřednictvím ploch (plochou plošná metoda). Protože obrobený povrch obsahuje soubor nerovností tvořících strukturu povrchu, lišících se zejména svými roztečemi a majících rozdílný vliv na funkci povrchu, je nezbytné při jejich analýze provést jejich separaci. Separace složek struktury povrchu se provádí jejich filtrováním. Filtraci lze provést geometricky nebo filtrováním provedeným elektrickými vlnovými filtry. Reálné filtry (realizované analogově nebo výpočetně) mají svoje inherentní vlastnosti dané vlastním principem a možnostmi realizace. To způsobuje zkreslení zpracovávaného signálu. Platnými normativními dokumenty jsou jednotlivé složky definovány právě na základě filtrace. Vzhledem k vlastnostem filtrů je kriticky nutné splnit stanovené podmínky jejich aplikace. Základní vlastností profilové metody (D) je, že zdrojem informace o struktuře povrchu je profil. Libovolná technologická metoda, použitá při realizaci povrchu technických ploch zanechává nerovnosti, které mají zásadní význam při funkci těchto ploch. Nerovnosti na povrchu představují prostorový útvar, který by bylo velmi obtížné posuzovat. Problém posuzování nerovností (struktury povrchu) se řeší redukcí do roviny řezu rovinou kolmou k povrchu. V rovině řezu se získá profil, který je základním zdrojem informace pro posuzování struktury povrchu. Dosud se rutinně používá k jejich hodnocení zjednodušená (normalizovaná) metoda využívající profil nerovností vzniklý v rovině řezu ( D). V etapě rozvoje strojírenské výroby bylo nezbytně nutné zavést způsob hodnocení struktury. To bylo prováděno nejprve subjektivním způsobem určením tří stupňů nerovností pro něž byl zaveden pojem drsnost. Značení na výkresu bylo pomocí speciálních značek. Posuzování bylo prováděno pomocí porovnávacích povrchů. Pro objektivní posuzování nerovností bylo nutno vytvořit metodiku hodnocení, definovat parametry, zkonstruovat a zavést měřicí techniku a stanovit systém označování pro výrobní dokumentaci (dílenský výkres). Metodika objektivního posuzování a hodnocení nejdůležitější složky struktury povrchu - drsnosti povrchu - má delší historii. Základem tohoto hodnocení je profil nerovností. Nejdříve byl využíván sinusový model nerovností, kdy parametrem pro hodnocení byla veličina H sk (analogie efektivní hodnoty střídavého

2 proudu). V další etapě vývoje byl přednostně zaveden parametr R a (analogie střední hodnoty střídavého proudu) spolu s některými dalšími parametry. Profil nerovností je získáván dotykovou metodou pomocí snímacího hrotu. Byla aplikována také subjektivní metoda posuzování zrakem a hmatem pomocí porovnávacích vzorků, které byly označeny objektivně měřenými hodnotami drsnosti povrchu. Kontrola struktury povrchu je obecně velmi složitá a správnost výsledků kontroly je závislá na splnění řady předpokladů. Provádění kontroly mimo rámec definovaný v normách GPS může poskytnout pouze informativní výsledky Stávající systém hodnocení struktury povrchu (profilová metoda D) Nerovnosti povrchu vytvářející jeho strukturu zásadním způsobem ovlivňují budoucí funkci povrchu. Struktura povrchu je členěna na složky podle rozteče příslušných nerovností. Jedná se o složku s nejmenší roztečí tvořící drsnost povrchu, složku nazvanou vlnitost povrchu a složku s největší roztečí nerovností určenou základním profilem. V souvislosti s novým pojetím geometrické specifikace výrobků (GPS) byl vytvořen dokonalejší systém posuzování a hodnocení struktury povrchu. Systém je ošetřen sadou norem, které jsou v jednotlivých odstavcích uvedeny. Základní vlastností normalizované metody (D) je, že zdrojem informace o struktuře povrchu je profil. Název Profil povrchu Snímaný profil Referenční profil Úplný profil Základní profil Zbytkový profil Profil drsnosti Profil vlnitosti PROFILY (podle normy ČSN EN ISO 374) Definice Průsečnice skutečného povrchu a dané roviny Geometrické místo středů snímacího hrotu stanovených parametrů Dráha, po které se snímač podél vedení pohybuje v rovině řezu Číslicová forma snímaného profilu vzhledem k referenčnímu profilu Úplný profil po aplikaci krátkovlnného filtru λs; základní profil reprezentuje základnu pro číslicové zpracování profilu pomocí filtrů profilu a pro výpočet parametrů profilu. Základní profil je základem pro hodnocení parametrů základního profilu. Základní profil získaný snímáním ideálně hladkého a rovného povrchu (optická rovina). Zbytkový profil je složen z úchylek vedení, vnějších a vnitřních poruch a z úchylek vzniklých při přenosu profilu Profil odvozený ze základního profilu potlačením dlouhovlnných složek použitím filtru profilu λc; profil drsnosti je základem pro hodnocení parametrů profilu drsnosti Profil odvozený postupnou aplikací filtru profilu λf a filtru profilu λc na základní profil; profil vlnitosti je základem pro hodnocení parametrů profilu vlnitosti STŘEDNÍ ČÁRY (od kterých jsou podle normy ČSN EN ISO 487 odměřovány souřadnice profilu) Jmenovitý tvar (získaný specifikovaným typem metody nejmenších čtverců není částí základního profilu) je odstraněn před získáním základního profilu Čára nejmenších čtverců přiléhající jmenovitému tvaru základního Střední čára základního profilu profilu Střední čára profilu vlnitosti Čára odpovídající dlouhovlnné složce profilu potlačené filtrem profilu λf Střední čára drsnosti Čára odpovídající dlouhovlnné složce profilu potlačené filtrem profilu λc Norma ČSN EN ISO 487 definuje na profilu následující geometrické parametry: P - parametr - parametr vypočítaný ze základního profilu. R - parametr - parametr vypočítaný z profilu drsnosti. W - parametr - parametr vypočítaný z profilu vlnitosti.

3 Norma ČSN EN ISO PRMETRY STRUKTURY POVRCHU (podle norem GPS) Název parametru 487 Výškové parametry Značka Definováno na l ln Největší výška výstupku profilu Pp,Rp,Wp x Největší hloubka prohlubně profilu Pv,Rv,Wv x Největší výška profilu Pz,Rz,Wz x Průměrná výška prvků profilu Pc,Rc,Wc x Celková výška profilu Pt,Rt,Wt x Průměrná aritmetická úchylka posuzovaného profilu Pa,Ra,Wa x Průměrná kvadratická úchylka posuzovaného profilu Pq,Rq,Wq x Šikmost posuzovaného profilu (skewness) Psk,Rsk,Wsk x Špičatost posuzovaného profilu (kurtosis) Pku,Rku,Wku x 487 Délkové parametry Průměrná šířka prvků profilu PSm,RSm,WSm x 487 Tvarové parametry Průměrný kvadratický sklon posuzovaného profilu Pdq,Rdq,Wdq x 487 Křivky a odpovídající parametry Materiálový poměr profilu (nosný podíl) Pmr(c), Rmr(c),Wmr(c) x Rozdíl výšky úseku profilu Pdc,Rdc,Wdc x Vzájemný materiálový poměr Pmr,Rmr,Wmr x Empirické rozdělení výšek profilu x 1085 Parametry metody motif pro profil drsnosti Průměrná hloubka prvků motif drsnosti R x Největší hloubka profilu nerovnosti Rx x Průměrná rozteč prvků motif drsnosti R x 1085 Parametry metody motif pro profil vlnitosti Průměrná hloubka prvků motif vlnitosti W x Největší hloubka vlnitosti Wx x Průměrná rozteč prvků motif vlnitosti W x Celková hloubka vlnitosti Wte x Parametry křivky lineárního poměru materiálu filtrace podle Hloubka jádra drsnosti Rk x Materiálový podíl Mr1 x Materiálový podíl Mr x Redukovaná výška výstupků Rpk x Redukovaná hloubka prohlubní Rvk x Parametry křivky lineárního poměru materiálu filtrace podle Hloubka jádra drsnosti Rke x 1085 Materiálový podíl Mr1e x Materiálový podíl Mre x Redukovaná výška výstupků Rpke x Redukovaná výška prohlubní Rvke x Parametry pravděpodobnostní křivky materiálu filtrace podle Sklon regresní přímky vedené oblastí plošinek Ppq,Rpq x Sklon regresní přímky vedené oblastí prohlubní Pvq,Rvq x základní profil Relativní materiálový poměr v místě průsečíku oblastí Pmq,Rmq x Při vlastním hodnocení sejmutého profilu formou číselných hodnot parametrů struktury povrchu se uplatňují základny tvořené použitým typem filtru, který slouží k oddělení frekvenčních složek nerovností profilu. (Jedná se o složky signálu různých vlnových délek, příslušející základnímu profilu, profilu vlnitosti povrchu a drsnosti povrchu.)

4 Měřicí prostředky Realizaci metody zabezpečuje dotykový (hrotový) přístroj - (profilometr), který se skládá z mechanické a elektronické části. Mechanický signál, generovaný snímacím hrotem sledujícím nerovnosti povrchu měřené plochy, je v indukčnostním převodníku polohy transformován na signál elektrický, který je dále zpracováván a interpretován jako číselná hodnota zvoleného parametru struktury povrchu, případně jako grafický záznam profilu nerovností povrchu. Snímání profilu měřeného povrchu může být provedeno jako: - snímání absolutní (přednostně; viz ČSN EN ISO 487, 488) kdy měřicí základnou je velmi přesná přímá nebo tvarová dráha snímače, - snímání relativní - kdy měřicí základnou je dráha generovaná opěrnou (kluznou) patkou klouzající po měřeném povrchu. Pohyb dotykového hrotu podél měřeného povrchu musí být velmi přesný co do přímosti i co do rovnoměrnosti. (Generovaný elektrický signál není jen funkcí snímaných nerovností ale také parametrů pohybu.) Jeho rychlost musí být volena s ohledem na dynamické vlastnosti snímacího systému tak, aby při měření hrot nezanechával stopu na měřeném povrchu a aby nerovnosti povrchu věrně sledoval. Snímací systém svými vlastnostmi ovlivňuje získaný profil. Významný vliv má také poloměr zaoblení kluzné patky snímače (při relativním snímání) a celkové geometrické uspořádání systému snímače.pro zabezpečení správnosti a srovnatelnosti výsledků měření drsnosti povrchu jsou některé hodnoty většiny ovlivňujících parametrů normalizovány (viz tabulku). Mechanický signál, generovaný příčným (vertikálním) pohybem hrotu snímače, představuje sejmutý profil nerovností povrchu vzhledem k základně dané způsobem snímání (absolutní, relativní). Tento signál se mění na signál elektrický, který je v příslušných elektronických obvodech dále zpracováván. JMENOVITÉ HODNOTY CHRKTERISTIK PROFILOMETRU (podle normy ČSN EN ISO 374) Geometrie hrotu snímače Statická měřicí síla Mezní vlnová délka filtru profilu (cut-off) Ideálním tvarem snímacího hrotu je kužel s kulovou špičkou: - Poloměr zaoblení špičky: r tip = µm, 5 µm, 10 µm; - Vrcholový úhel kužele: 60, 90, (přednostně 60 ) Jmenovitá hodnota statické měřicí síly ve střední poloze snímacího hrotu: 0,00075 N; Jmenovitá rychlost změny měřicí síly: 0 N.m -1 (Charakteristiky filtru podrobně popsány v ČSN EN ISO 1156) Jmenovité hodnoty mezních vlnových délek filtru profilu (cut-off) se vybírají z řady: mm; 0,08 mm; 0,5 mm; 0,8 mm;,5 mm; 8 mm; mm Filtry profilu Protože obrobený povrch obsahuje soubor nerovností tvořících strukturu povrchu, lišících se zejména svými roztečemi a majících rozdílný vliv na funkci povrchu, je nezbytné při jejich analýze provést jejich separaci. Separace složek struktury povrchu se provádí jejich filtrováním. Filtraci lze provést geometricky nebo filtrováním získaného elektrického vlnovými filtry. Reálné filtry (realizované analogově nebo výpočetně) mají svoje inherentní vlastnosti dané vlastním principem a možnostmi realizace. To způsobuje zkreslení zpracovávaného signálu. Platnými normativními dokumenty jsou jednotlivé složky definovány právě na základě filtrace. Vzhledem k vlastnostem filtrů je kriticky nezbytné splnit stanovené podmínky jejich aplikace.základním prvkem prostředků na měření parametrů struktury povrchu (hrotových přístrojů) je filtr profilu, jehož charakteristiky bezprostředně ovlivňují číselné hodnoty výsledků měření. Dosud byl normalizován filtr profilu typu RC. (Jedná se o dvojitý analogový RC filtr s oddělenými články, se sklonem charakteristiky 1 db/oct., s fázovým posunem 60 na hodnotě cut-off a s přenosem 0,707 na hodnotě cut-off nebo o číslicovou implementaci téže charakteristiky.) Nedostatkem tohoto typu filtru je velké zkreslení způsobené zejména fázovým posunem. Nedostatky lze odstranit použitím fázově korigovaného filtru (viz tabulku).

5 Název Filtr profilu λs filtr profilu λc filtr profilu λf filtr profilu Fázově korigovaný filtr FILTRY PROFILU (podle normy ČSN EN ISI 1156) Definice Filtr rozdělující profily na dlouhovlnné a krátkovlnné složky Filtr určující rozhraní mezi drsností a kratšími složkami vln přítomnými na povrchu Filtr určující rozhraní mezi složkami drsnosti a vlnitosti Filtr určující rozhraní mezi vlnitostí a delšími složkami vln přítomnými na povrchu Filtr profilu, který nezpůsobuje fázový posuv vedoucí k asymetrickému zkreslení profilu Váhová funkce normou zavedeného fázově korigovaného filtru má rovnici Gaussovy funkce hustoty. Přenosová charakteristika filtru (viz obrázek) pro dlouhovlnné složky profilu (střední čára) odpovídá Fourierově transformaci váhové funkce. Přenosová charakteristika krátkovlnných složek profilu je doplňkem přenosové charakteristiky dlouhovlnných složek profilu. (Krátkovlnné složky profilu jsou tedy rozdílem mezi profilem povrchu a dlouhovlnnými složkami profilu.) Pro fázově korigované filtry nejsou udány žádné hodnoty tolerance přenosu. Místo tolerancí se uvádí grafické znázornění úchylek realizovaného filtru od Gaussova filtru v percentuálních hodnotách, v rozsahu vlnových délek od 0,01 λco do 100 λco. Normalizovaný fázově korigovaný má na hodnotě mezní vlnové délky (cut-off) 50 % přenos.filtr musí být, z důvodů získání srovnatelných výsledků, kompatibilní s existujícím RC filtrem dosud definovaným v národních a mezinárodních normách. Podmínky měření struktury povrchu Objektivní měření hodnot parametrů struktury povrchu vyžaduje respektování podmínek, předepsaných příslušnými normami. Jedná se o vztah normalizovaných hodnot poloměru zaoblení špičky snímacího hrotu r tip a poměru mezních vlnových délek (cut-off) drsnosti λc/λs (tab. 1, ČSN EN ISO 374) a tabulky základních délek drsnosti pro měření jednotlivých parametrů a křivek neperiodických a periodických profilů (tab. 1,,3, ČSN EN ISO 488). VZTH MEZI MEZNÍ VLNOVOU DÉLKOU (cut-off) DRSNOSTI λc, POLOMĚREM ZOBLENÍ ŠPIČKY SNÍMCÍHO HROTU r tip POMĚREM MEZNÍCH VLNOVÝCH DÉLEK (cut-off) DRSNOSTI λc/λs λc (mm) λs (µm) λc/λs r tip (µm) Největší hodnota Největší rozteč bodů profilu (µm) 0,08,5 30 0,5 0,5, ,5 0,8, ) 0,5, ) 1, ) 5 1) Pro povrchy s hodnotami Ra > 0,5 µm nebo Rz > 3 µm se může použít r tip = 5 µm bez znatelných rozdílů ve výsledku měření. ) Pro hodnoty mezní vlnové délky (cut-off) λs =,5 µm a 8 µm je téměř jisté, že útlum charakteristiky daný mechanickou filtrací snímacím hrotem s doporučeným poloměrem zaoblení špičky bude ležet mimo definované pásmo přenosu. však malé změny poloměru zaoblení nebo tvaru hrotu budou mít zanedbatelný vliv na hodnoty parametrů vypočítaných z měřeného profilu. Považuje-li se za nezbytné použít pro některou aplikaci jiný poměr hodnot cut-off musí být tento poměr udán 3 Nově vytvářený systém plošného hodnocení struktury povrchu Třírozměrné hodnocení struktury povrchu (3 D) vyžaduje aplikovat použitelné poznatky z dvourozměrného hodnocení struktury povrchu ( D) a zavést další potřebné informace pro úplný popis. Jedná se o aplikaci pojmů a odvozených matematických vztahů pro popis geometrických vlastností nerovností na povrchu vyjádřené prostřednictvím profilu (čarou - profilová metoda) a zavedení nových pojmů a matematických vztahů pro popis geometrických vlastností nerovností na povrchu vyjádřené prostřednictvím ploch (plochou plošná metoda).

6 Základní vlastností plošné metody (3D) je, že zdrojem informace o struktuře povrchu je plocha. Existuje určitý složitý vztah mezi hodnotami parametrů struktury povrchu a rozměrovou přesností ploch (rozměrovou tolerancí), který závisí na funkci navrhované plochy. Účelná a hospodárná volba hodnot parametrů struktury povrchu by měla být provedena podle významu jednotlivých výrobních oborů. Pro některé účely se pořizují trojdimenzionální záznamy povrchu snímáním profilů, vzájemně posunutých ve směru kolmém na směr snímání (přibližná metoda). Pro plný prostorový popis nerovností povrchu lze aplikovat topografickou metodu využívající spojitý záznam v jednotlivých, diskrétně posunutých rovinách řezu. Při praktické aplikaci topografické metody se využívá zařízení umožňující diskrétně posouvat měřený povrch v příčném směru o velmi malé délky (řádově µm). Celý geometrický útvar se zobrazí v šikmém pohledu. Tím je vytvořena prostorová představa povrchu. Plošné hodnocení (3D) se realizuje specifickými parametry. Vyžaduje to využití speciálního software. Pro praktické využívání metodiky je nejdůležitější nalézt vazbu číselných hodnot definovaných parametrů s předpokládanou funkcí povrchu. Jiný způsob aplikuje vytvoření prostorového dojmu rozlišováním rozdílné výškové úrovně nerovností ve vertikálním směru (v ose z) rozdílným označováním bodů (podobně jako vrstevnice). Podobně jako jednotlivé profily při D hodnocení jsou definovány pomocí filtrů podle ČSN EN ISO 1156:1999 [3], tak jsou i jednotlivé povrchy při 3D hodnocení definovány pomocí filtrů: Filtr povrchu aplikuje filtraci na povrch. S-filtr je filtr povrchu definující průsečík mezi základním povrchem a složkami menší velikosti na skutečném povrchu. C-filtr je filtr povrchu definující průsečík mezi základním povrchem a složkami větší velikosti na skutečném povrchu. F-filtr je filtr povrchu, odstraňující tvar ze základního povrchu. Obecné termíny struktury povrchu Podobně jako při D hodnocení obrobeného povrchu (profilová metoda) jsou i pro 3D hodnocení definovány jednotlivé druhy povrchu: Skutečný povrch obrobku je soubor prvků fyzicky existujících a oddělujících celý obrobek od okolního prostředí. Souřadnicový systém je systém, ve kterém jsou definovány parametry struktury povrchu. Vyčleněný povrch (zjištěný povrch) je číslicová reprezentace skutečného povrchu. Základní povrch je vyčleněný povrch po aplikaci krátkovlnného filtru S-filtru.

7 Neomezený povrch je povrch odvozený ze základního povrchu potlačením kratších složek použitím S-filtru a tvaru použitím F-filtru. Omezený povrch je povrch odvozený z neomezeného povrchu potlačením delších složek použitím C-filtru. Topografický povrch je neomezený nebo omezený povrch. Referenční rovina je přidružená rovina, definovaným způsobem přiléhající k topografickému povrchu, k níž jsou vztaženy parametry struktury povrchu. Definiční plocha je velikost plochy použité k definování parametrů charakterizujících posuzovaný povrch. Hodnotící okno je velikost plochy použité k posouzení hodnocené plochy. Hodnotící okno tvoří celý počet definičních ploch a může být navázáno nebo nemusí být navázáno na definiční plochy. (Výběr místa snímání povrchu: Struktura povrchu není zjišťována (měřena) na celé ploše, ale jen na části (viz Hodnotící okno); podobně jaku u profilové metody se nesnímá celá možná plocha, ale jen část, která svojí velikostí umožňuje získat informaci o charakteru nerovností. Přitom se uvažuje, že počáteční poloha snímání není kritická.) Termíny a definice geometrických parametrů pro hodnocení 3D S-parametr je parametr používající data z definiční plochy. V-parametr je parametr objemu materiálu nebo prázdného objemu používající data z křivky plošného poměru materiálu Parametr pole je S-parametr nebo V-parametr vypočítaný pomocí hodnot všech pořadnic v definiční ploše. Parametr prvku je S-parametr nebo V-parametr vypočítaný z dříve identifikovaných topografických prvků v definiční ploše. Hodnota pořadnice Z(x,y) je výška posuzovaného topografického povrchu v libovolné poloze x,y. Vektor místního sklonu Z Z, x y je sklon posuzovaného topografického povrchu v poloze x,y. utokorelační funkce CF(tx,ty) je funkce, která popisuje korelaci mezi povrchem a stejným povrchem posunutým o (tx,ty).

8 CF ( tx, ty) = Z ( x, y) Z( x tx, y ty) Z ( x, y) Z( x, y) dxdy dxdy Fourierova transformace FT(p,q) je funkce, transformující topografický povrch do frekvenčního prostoru. ( p, q) = Z( x y) FT, e ipx+ iqy dxdy Úhlové výkonové spektrum PS(s) je funkce udávající v definiční ploše výkon v daném směru vzhledem k ose y. PS T = () s FT ( r. sin() s, r.cos() s ) 0 dr Termíny geometrických prvků Výstupek je bod na povrchu vyšší než všechny ostatní body v jeho okolí. Vrchol je oblast okolo výstupku v níž všechny nejstrmější trajektorie končí na výstupku. Koryto je hraniční čára mezi sousedními vrcholy. Prohlubeň je bod na povrchu nižší než všechny ostatní body v jeho okolí. Údolí je oblast okolo prohlubně v níž všechny nejvíce klesající trajektorie končí v prohlubni. Hřbet je hraniční čára mezi sousedními údolími. Sedlový bod je bod na povrchu, ve kterém se koryto a hřbet křižují. Topografický prvek je plošný, lineární nebo bodový prvek na topografickém povrchu. Plošný prvek je vrchol nebo údolí. Lineární prvek je koryto nebo hřbet. Bodový prvek je výstupek, prohlubeň nebo sedlový bod.

9 Vrstevnice je čára na povrchu, sestávající z bodů stejné výšky Definice parametrů pole Výškové (amplitudové) parametry Kvadratický průměr posuzovaného topografického povrchu Sq je kvadratický průměr hodnot pořadnic Z(x,y) v definiční ploše 1 Sq = Z, ( x y) dxdy kde = definiční plocha Šikmost posuzovaného topografického povrchu Ssk je podíl kubického středu hodnot pořadnic Z(x,y) a třetí mocniny Sq v definiční ploše Ssk = Z Sq, 3 ( x y) dxdy Špičatost posuzovaného topografického povrchu Sku je podíl kvartického středu hodnot pořadnic Z(x,y) a čtvrté mocniny Sq v definiční ploše. Sku = Z Sq, 4 ( x y) dxdy Největší výška výstupku Sp je největší hodnota výšky výstupku v definiční ploše. Největší výška prohlubně Sv je největší hodnota výšky prohlubně v definiční ploše. Největší výška topografického povrchu Sz je součet největší hodnoty výšky výstupku a největší hodnoty výšky prohlubně v definiční ploše ritmetický průměr posuzovaného topografického povrchu Sa je aritmetický průměr hodnot pořadnic Z(x,y) v definiční ploše

10 Délkové parametry Hustota vrcholů Sds je počet výstupků na jednotku plochy. Sds = počet výstupků Parametr Sds vyžaduje výškové omezení. Standardní hodnota výškového omezení je 5% hodnoty Sz. Nejrychlejší rozpad délky autokorelační funkce Sal je vodorovná vzdálenost CF(tx,ty) mající nejrychlejší rozpad na hodnotu 0,. MIN Sal + tx ty R {, 0,} = tx ty kde R = ( tx ty) : CF( tx, ty), Činitel podélnosti struktury Str je poměr vodorovné vzdálenosti CF(tx,ty) která má nejrychlejší rozpad na hodnotu 0, k vodorovné vzdálenosti CF(tx,ty) která má nejpomalejší rozpad na hodnotu 0,. MIN tx, ty R Str = MX tx, ty R tx + ty tx + ty kde R = {( tx, ty) : CF( tx, ty) 0,} Tvarové (hybridní) parametry ritmetický průměr zakřivení výstupku Ssc je aritmetický průměr hlavních zakřivení výstupků v definiční ploše ( x, y) Z ( x y) n 1 1 Z, Ssc = + n k = 1 x y pro k-tý vrchol

11 Kvadratický průměr sklonu posuzovaného topografického povrchu Sdq je kvadratický průměr sklonu povrchu v definiční ploše. Sdq = ( x, y) Z ( x y) 1 Z, + x y dxdy kde = definiční plocha Poměr rozvinutých mezistranových ploch Sdr je poměr inkrementu mezistranové plochy topografického povrchu v definiční ploše přes definiční plochu. ( ) 1 Z x, y Z ( x, y) Sdr = dxdy x y kde = definiční plocha Křivky a odpovídající parametry Plošný materiálový poměr topografického povrchu Smr(c) je poměr plochy materiálu na dané úrovni c nad referenční rovinou k definiční ploše. Inverzní plošný materiálový poměr topografického povrchu Smr% (p%) je úroveň c nad referenční rovinou, na které vyhovuje daný plošný materiálový poměr p%. Křivka plošného materiálového poměru topografického povrchu je křivka reprezentující plošný materiálový poměr topografického povrchu jako funkci úrovně. Parametry křivky lineárního plošného materiálového poměru Sk, Spk, Svk, SMr1, SMr jsou parametry definované podle ISO :1996 využívající křivku plošného materiálového poměru mplitudová křivka plošných výšek je vzorová funkce hustoty pravděpodobnosti pořadnic Z(x,y) v definiční ploše. Prázdný objem Vv(p%) je objem prázdných míst na jednotku plochy při daném materiálovém poměru vypočítaný z křivky plošného materiálového poměru.

12 Vv K 100% p% ( p% ) = Smr% ( p% ) Smr% ( p) 100% dp Prázdný objem jádra topografického povrchu Vvc je rozdíl v prázdném objemu mezi 10 % a 80 % materiálového poměru. Vvc = Vv (0 %) Vv (80 %) Prázdný objem prohlubně topografického povrchu Vvv je prázdný objem na 80 % materiálového poměru. Vvv = Vv (80 %) Objem materiálu Vm (p %) je objem materiálu na jednotku plochy na daném materiálovém poměru vypočítaném z plošné křivky materiálového poměru. Vm 0% K 100% p ( p% ) = Smr% ( p) Smr% ( p% ) % dp kde K je konstanta k převodu mililitrů specifikovaného objemu na jednotku plochy. Objem materiálu topografického povrchu Vmp je objem materiálu na 10 %. Objem materiálu jádra topografického povrchu Vmc je rozdíl v objemu materiálu mezi 10 % a 80 % materiálového poměru. Vmc = Vm (80 %) Vm (10 %) Histogram sklonů je histogram vypočítaný z topografického povrchu znázorňující relativní frekvence vůči nejstrmějšímu sklonu α(x,y) a směr nejstrmějšího sklonu β(x,y). z y z x ( x, y) 1 α ( x, y) = tan & β ( x, y) = tan 1 z z + y x ( x, y)

13 Ostatní parametry Směr struktury topografického povrchu Std je úhel největší hodnoty úhlového spektra vzhledem k ose y. Std = s které maximalizuje PS(s) Výška povrchu z deseti bodů S5z je aritmetický průměr hodnot výšek pěti výstupků s velkou souhrnnou výškou výstupku sečtený s aritmetickým průměrem hodnot výšek pěti prohlubní s velkou souhrnnou výškou prohlubně v definiční ploše. Klasifikace přístrojů pro měření struktury povrchu Třídy přístrojů pro měření plošné struktury povrchu Přístroj třídy 1 Přístroj třídy 1 s měřicím rozsahem vhodným pouze pro měření struktury povrchu na rovných plochách nebo povrchů, které mají malé změny tvaru. Obvykle je jejich vertikální rozsah menší než 1 milimetr. Přístroj třídy Bezkontaktní (optický) přístroj používá posuvové jednotky v ose X a v ose Y a bezdotykovou (optickou) snímací hlavu pro hodnocení vertikální amplitudy (Z). Přístroj třídy 3 Bezkontaktní (optický) přístroj je obvykle tvořen mikroskopem k získání obrazu plochy, jehož analýzou se získá informace o vertikálních amplitudách (Z). Rozměr měřené plochy závisí na zvětšení mikroskopu. Obvykle zde není uplatněn posuv v ose X a v ose Y. Veličiny X, Y, Z jsou vzájemně propojeny s optikou. Klasifikace metod pro měření plošné struktury povrchu Profilová metoda je skenovací technika měření povrchu, která vytváří dvojrozměrný (D) graf nebo profil nerovností jako měřící data, která mohou být reprezentována matematicky jako výšková funkce z(x). Pro porovnání, plošná profilová metoda a plošná průměrovací metoda jsou využívány pro kvantifikaci struktury povrchu na vybrané ploše, místo na jednoduchém profilu. Plošná profilová (topografická) metoda je metoda měření povrchu, která vytváří topografický obraz povrchu, který může být reprezentován matematicky jako výšková funkce z(x,y) dvou nezávislých proměnných (x,y). Příklady, kdy byly přístroje speciálně vyvinuty pro plošné topografické měření zahrnují dotykovou hrotovou metodu, interferometrii s fázovým posuvem, Plošná profilová metoda může být rozdělena do dvou tříd, obrazová metoda a skenovací metoda

14 Obrazová metoda je technika měření povrchu, kdy záření emitované a odražené od všech bodů na osvětleném povrchu je simultánně zobrazováno kamerou nebo maticí detektoru. Tedy, topografická data od všech bodů na povrchu jsou akumulována téměř simultánně. Příkladem obrazové metody je fázi měřící interferenční mikroskopie a vertikálně skenující interferenční mikroskopie. Skenovací metoda je technika měření povrchu, kdy skenovací snímací hlava rozpoznává výškové změny na povrchu. Když snímací hlava skenuje rastr na povrchu, je profil generován prostřednictvím souboru posloupných měření. Snímací technika může být optická, elektrická nebo mechanická. Plošná průměrovací metoda je technika měření povrchu, která měří reprezentativní oblast povrchu a vytváří kvantitativní výsledek, který závisí na průměrných vlastnostech plošné struktury povrchu. Když je metoda s rozmyslem použita ve spojení s kalibrovaným porovnávacím vzorkem drsnosti nebo kalibrovaným kontrolním vzorkem, může být plošná průměrovací metoda použita jako komparační metoda pro rozlišení struktury povrchu součástí vyrobených podobnými metodami nebo k provedení opakujících se měření struktury povrchu. Příkladem plošně průměrovacích metod jsou: - metoda úplného rozptylu světla; - úhlově rozloženého rozptylu světla; - kapacitance rovnoběžných desek. Klasifikační schéma Přístroje pro měření struktury (viz obrázek) mohou být rozděleny do tří základních tříd: - profilové metody; - plošné profilové metody; - plošné průměrovací metody. Profilové metody vytvářejí topografický profil z(x). Plošné profilové metody vytvářejí topografický obraz z(x,y). Obvykle je funkce z(x,y) rozvinuta vzájemným srovnáním souboru rovnoběžných profilů. Výšková funkce z(x,y) tradičně reprezentuje úchylky špička-špička mezi měřenou topografií a středním povrchem. Topografická data mohou být použita pro výpočet změn parametrů struktury povrchu. Měřené hodnoty těchto a jiných parametrů však závisí na detailech techniky použité k měření. Přístroje pro plošnou profilovou metodu mohou být použity k měření parametrů povrchu s podmínkou, že prostorová rozlišitelnost a krok vzorkování v každém směru (nebo alternativně plocha vzorkování) jsou pro každé měření udány. Navíc je důležité určit, zda přístroj zjišťuje výškové rozdíly mezi profily rastru rozmístěné ve směru osy Y a je-li tomu tak, zda se běžně tyto rozdíly odfiltrovávají.

15 Klasifikace metod měření struktury povrchu Snímání profilu Snímání plochy Průměrování na ploše Zobrazení Skenování Měření z(x,y) Rastr z(x) Snímací hrot Interferenční profilování Kapacitance proužkového pole Snímání optického ohniska Normarskiho diferenciální snímání profilu Interferenční mikroskopie Snímací hrot Snímání optického ohniska Stereoskopická ektronová řádkovací mikroskopie Konfokální optická mikroskopie Normarskiho diferenciální snímání profilu Tunelová řádkovací mikroskopie Mikroskopie atomických sil Úplný integrovaný rozptyl Úhlově rozložený rozptyl Kapacitance rovnoběžných desek 4 Závěr V rámci mezinárodní organizace ISO, v pracovní skupině WG 16 technické komise TC 13 GPS jsou rozvíjeny a řešeny otázky zdokonalování současně normalizovaného systému D; pozornost je věnována zejména otázkám filtrace. Intenzivně jsou rozvíjeny otázky systému 3D a zejména otázky návaznosti profilové a plošné metody a otázky získávání informace z hodnocené plochy. Nové poznatky jsou určeny k využívání národními normalizačními a metrologickými institucemi, výrobci měřicí techniky, průmyslovými institucemi v oblasti strojírenské výroby a v neposlední řadě výzkumnými ústavy a vysokými školami. Řešení problematiky plošného hodnocení struktury povrchu (3D) zahrnuje následující části: ISO XXXXX-X sestává z následujících částí pod všeobecným názvem Geometrické požadavky na výrobky (GPS) Struktura povrchu: Plošná : Část 1: Termíny, definice a parametry struktury povrchu Část : Specifikace operátorů Část 3: Pravidla porovnávání Část 4: Operátory ověřování Část 5: Jmenovité charakteristiky dotykových (hrotových) přístrojů Část 6: Kalibrace a měřicí etalony dotykových (hrotových) přístrojů Část 7: Klasifikace metod měření struktury povrchu

16 Část 8: Jmenovité charakteristiky optických přístrojů (plán) Část 9: Kalibrace a měřicí etalony optických přístrojů (plán) NORMY G P S PRO HODNOCENÍ, MĚŘENÍ OZNČOVÁNÍ STRUKTURY POVRCHU PRO KLIBRCI PROFILOMETRÚ ČSN EN ISO 374:1997, Geometrické požadavky na výrobky (GPS) Struktura povrchu: Profilová metoda Jmenovité charakteristiky dotykových (hrotových) přístrojů ČSN EN ISO 487:1997, Geometrické požadavky na výrobky (GPS) Struktura povrchu: Profilová metoda Pojmy, definice a parametry struktury povrchu ČSN EN ISO 488:1997, Geometrické požadavky na výrobky (GPS) Struktura povrchu: Profilová metoda Pravidla a postupy pro posuzování struktury povrchu ČSN EN ISO 1156:1997, Geometrické požadavky na výrobky (GPS) Struktura povrchu: Profilová metoda Metrologické charakteristiky fázově korigovaných filtrů ČSN EN ISO 1085:1997, Geometrické požadavky na výrobky (GPS) Struktura povrchu: Profilová metoda Parametry metody motif ČSN EN ISO :1997, Geometrické požadavky na výrobky (GPS) Struktura povrchu: Profilová metoda; Povrchy mající stratifikované funkční vlastnosti - Část 1: Filtrace a všeobecné podmínky měření ČSN EN ISO :1997, Geometrické požadavky na výrobky (GPS) Struktura povrchu: Profilová metoda; Povrchy mající stratifikované funkční vlastnosti - Část : Výškové charakteristiky využívající křivku lineárního poměru materiálu ČSN EN ISO :000, Geometrické požadavky na výrobky (GPS) Struktura povrchu: Profilová metoda; Povrchy mající stratifikované funkční vlastnosti - Část 3: Výškové charakteristiky využívající pravděpodobnostní křivku materiálu ČSN EN ISO 1179:000, Geometrické požadavky na výrobky (GPS) Struktura povrchu: Profilová metoda Kalibrace dotykových (hrotových) přístrojů ČSN EN ISO :00, Geometrické požadavky na výrobky (GPS) Struktura povrchu: Profilová metoda: Měřicí etalony Část 1: Hmotné míry ČSN EN ISO 5436-:00 Geometrické požadavky na výrobky (GPS) Struktura povrchu: Profilová metoda: Měřicí etalony Část : Softwarové měřicí etalony ISO 130:003, Technické výkresy Způsoby označování struktury povrchu Doc. Ing. Miroslav Tykal, CSc. Hoblíkova 3, Brno tel: mobil: tykal.m@volny.cz

» přenosné dílenské «drsnoměry. Surtronic

» přenosné dílenské «drsnoměry. Surtronic » přenosné dílenské «drsnoměry Surtronic Surtronic Duo Univerzální přenosný přístroj pro kontrolu drsnosti povrchu. Jednoduše a rychle, bez seřizování a programování provede měření parametrů drsnosti.

Více

Akční sada drsnoměru Mitutoyo. ( říjen - prosinec 2015 nebo do vyprodání zásob ) -------------------------------------------------------------

Akční sada drsnoměru Mitutoyo. ( říjen - prosinec 2015 nebo do vyprodání zásob ) ------------------------------------------------------------- Akční sada drsnoměru Mitutoyo ( říjen - prosinec 2015 nebo do vyprodání zásob ) ------------------------------------------------------------- Drsnoměr Mitutoyo SJ-210, kat.č. 178-560-01D - hlavní přístroj

Více

Surftest SJ-410. Surftest SJ-411 Vyhodnocovaný rozsah: 25 mm. Přímost posuvu: 0,5 µm / 50 mm. Měřicí síla snímače Obj. č. [mn]

Surftest SJ-410. Surftest SJ-411 Vyhodnocovaný rozsah: 25 mm. Přímost posuvu: 0,5 µm / 50 mm. Měřicí síla snímače Obj. č. [mn] Surftest SJ-410 SJ-411: 25 SJ-412: 50 0,05 /s; 0,1 /s; 0,2 /s; 0,5 /s; 1,0 /s Bez kluzné patky - diferenciální způsob (až 2,4 se snímacím dotekem ze zvl. příslušenství) Polohování ±1,5 (sklon), 10 (nahoru/

Více

Členění podle 505 o metrologii

Členění podle 505 o metrologii Členění podle 505 o metrologii Měřidla slouží k určení hodnoty měřené veličiny. Spolu s nezbytnými měřícími zařízeními se podle zákona č.505/1990 Sb. ve znění č.l 19/2000 Sb. člení na : a. etalony, b.

Více

DRSNOMÌRY A VZORKOVNICE DRSNOSTI

DRSNOMÌRY A VZORKOVNICE DRSNOSTI DRSNOMÌRY A VZORKOVNICE DRSNOSTI Pøenosný drsnomìr TR-100 Kapesní pøístroj, cenovì výhodný, s jednoduchou obsluhou pro rychlé mìøení vnìjších povrchù kovových i nekovových v dílenském provoze. TR 100 Mìøené

Více

DRSNOMĚRY MĚŘENÍ JAKOSTI POVRCHU

DRSNOMĚRY MĚŘENÍ JAKOSTI POVRCHU DRSNOMĚRY MĚŘENÍ JAKOSTI POVRCHU PR 1164 (4) Technicky vyspělé, silné v použití a ekonomické: To jsou DRSNOMĚRY od firmy Mitutoyo. To je Vaše úloha, dodávat kvalitu! SURFT Kontrola jakosti povrchu je požadována

Více

Předmluva...6. Strojírenská metrologie - část 2...7. 1 Kolimační měřidla...8 1.1 Autokolimátor...9

Předmluva...6. Strojírenská metrologie - část 2...7. 1 Kolimační měřidla...8 1.1 Autokolimátor...9 Obsah Předmluva...6 Strojírenská metrologie - část 2...7 1 Kolimační měřidla...8 1.1 Autokolimátor...9 2 Integrita povrchu...10 2.1 Makrogeometrie obrobené plochy...10 2.2 Mikrogeometrie obrobené plochy...10

Více

Laboratorní úloha. Bezkontaktní 3D měření povrchu HDD

Laboratorní úloha. Bezkontaktní 3D měření povrchu HDD Laboratorní úloha Bezkontaktní 3D měření povrchu HDD Ing. Petr Šperka 2009 Bezkontaktní 3D měření povrchu HDD OBSAH Úvod Metoda měření Postup měření Parametry povrchu Vyhodnocení Závěr 2/20 ÚVOD HDD disky»»»»»

Více

Přistroje na měření povrchu a tvaru

Přistroje na měření povrchu a tvaru Přistroje na měření povrchu a tvaru Drsnoměry SURFTEST SJ 201 SJ 301 SJ 401 / SJ 402 SJ 500 SV 3100 SV 3000 CNC Strana 342 352 Profiloměry CONTRACER CV 1000 / 2000 CV 3100 / 4100 CV 3000 CNC / 4000 CNC

Více

Technisches Lexikon (cz.) 16/10/14

Technisches Lexikon (cz.) 16/10/14 Technický lexikon Pojmy z techniky měření sil a točivých momentů a d a tových listů GTM Technisches Lexikon (cz.) 16/10/14 Úvod V tomto Technickém lexikonu najdete vysvětlení pojmů z techniky měření síly

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ Studijní program: B 2301 Strojní inženýrství Studijní zaměření: Strojírenská technologie technologie obrábění BAKALÁŘSKÁ PRÁCE Problematika měření drsnosti

Více

Automobilový průmysl. Elektronický průmysl. Lékařská technika. Strojírenský průmysl 16-3. MarSurf. Přístroje a systémy na měření struktury povrchu

Automobilový průmysl. Elektronický průmysl. Lékařská technika. Strojírenský průmysl 16-3. MarSurf. Přístroje a systémy na měření struktury povrchu 16-3 Automobilový průmysl Elektronický průmysl Měření synchronních kroužků Automobilový průmysl často razí nové směry pro měření jakosti povrchu a kontur. K typickým úlohám patří např. měření klikových

Více

SURFTEST SJ-410. Přenosný přístroj na měření drsnosti povrchu. Přenosný přístroj na měření drsnosti povrchu

SURFTEST SJ-410. Přenosný přístroj na měření drsnosti povrchu. Přenosný přístroj na měření drsnosti povrchu Přístroje na měření tvaru Přenosný přístroj na měření drsnosti povrchu SURFTEST SJ-410 PRC 1387 Přenosný přístroj na měření drsnosti povrchu Bohatý výběr příslušenství poskytuje snadnější, plynulejší a

Více

Porovnání obsahu normy ISO 230-1:2012 a ČSN ISO 230-1:1998

Porovnání obsahu normy ISO 230-1:2012 a ČSN ISO 230-1:1998 Datum vydání zprávy: 11.2.2013 Druh zprávy: průběžná Číslo zprávy: V-13-001 Publikovatelnost: veřejná NÁZEV ZPRÁVY Porovnání obsahu normy ISO 230-1:2012 a ČSN ISO 230-1:1998 PROJEKT VUT.12.01 ZpusStroj

Více

63814 ČSN EN ISO 10628 Schémata průmyslových procesů - Všeobecná pravidla 13010 3.02 1.9.2013 93050 ČSN EN ISO 10628-2 Schémata pro chemický a petrochemický průmysl - Část 2: Grafické značky 13010 8.13

Více

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ převody. Přednáška 6

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ převody. Přednáška 6 Fakulta strojního inženýrství VUT v Brně Ústav konstruování KONSTRUOVÁNÍ STROJŮ převody Přednáška 6 Pevnostní výpočet čelních ozubených kol Don t force it! Use a bigger hammer. ANONYM Kontrolní výpočet

Více

Anotace, klíčová slova, bibliografická citace

Anotace, klíčová slova, bibliografická citace Anotace, klíčová slova, bibliografická citace ANOTACE Cílem této bakalářské práce bylo vypracování odborné rešerše z oblasti geometrické specifikace výrobků (GPS). Práce obsahuje srovnání minulých a současných

Více

Gymnázium Jiřího Ortena, Kutná Hora. volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie, Komplexní čísla Třída: 3. ročník Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor Volné rovnoběžné promítání Zobrazí ve volném rovnoběžném

Více

Drsnoměry. Přenosný drsnoměr Marsurf PS1 Mahr

Drsnoměry. Přenosný drsnoměr Marsurf PS1 Mahr Drsnoměry Zadat poptávku Přenosný drsnoměr Marsurf PS1 Mahr Technická specifikace: Měrná jednotka Princip měření Snímač Parametry (24 s tolerančními mezemi) metrická / palcová dotyková metoda indukční

Více

Měření kruhovitosti a drsnosti povrchu jedním přístrojem

Měření kruhovitosti a drsnosti povrchu jedním přístrojem Měření kruhovitosti a drsnosti povrchu jedním přístrojem Ing. Zdeněk Novák IMECO TH s.r.o., Brno Převratnou novinku v měřící technice představila firma Taylor Hobson přístroj Talyrond 365 připravený k

Více

INFORMACE/REJSTŘÍK. Sortiment výrobků v programu Tailor Made. Výpočtové vztahy a definice. Přehledná tabulka závitů. Měření drsnosti povrchu

INFORMACE/REJSTŘÍK. Sortiment výrobků v programu Tailor Made. Výpočtové vztahy a definice. Přehledná tabulka závitů. Měření drsnosti povrchu NORM/RJSTŘÍK Sortiment výrobků v programu Tailor Made 2 Výpočtové vztahy a definice 4 Přehledná tabulka závitů 11 Měření drsnosti povrchu 14 Tolerance děr 16 Nejčastěji kladené dotazy 18 1 nformace/rejstřík

Více

ŠROUBOVÉ SPOJE VÝKLAD

ŠROUBOVÉ SPOJE VÝKLAD ŠROUBOVÉ SPOJE VÝKLAD Šroubové spoje patří mezi rozebíratelné spoje s tvarovým stykem (lícovaný šroub), popřípadě silovým stykem (šroub prochází součástí volně, je zatížený pouze silou působící kolmo k

Více

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009)

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009) Střední průmyslová škola Jihlava tř. Legionářů 1572/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Strojírenství (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje

Více

FocusVariation Optické 3D měření

FocusVariation Optické 3D měření FocusVariation Optické 3D měření Hannes Geidl-Strallhofer únor 2012 2 Společnost Alicona co děláme 3 Optické 3D měření s vysokým rozlišením Podpůrné systémy založené na Focus-Variation (změna zaostření)

Více

Inovace a zkvalitnění výuky prostřednictvím ICT. Obrábění. Název: Přehled metod, základní pojmy. Téma: Ing. Kubíček Miroslav.

Inovace a zkvalitnění výuky prostřednictvím ICT. Obrábění. Název: Přehled metod, základní pojmy. Téma: Ing. Kubíček Miroslav. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Obrábění Přehled metod, základní pojmy Ing. Kubíček

Více

1.1 Povrchy povlaků - mikrogeometrie

1.1 Povrchy povlaků - mikrogeometrie 1.1 Povrchy povlaků - mikrogeometrie 1.1.1 Požadavky na povrchy povlaků [24] V případě ocelových plechů je kvalita povrchu povlaku určována zejména stavem povrchu hladících válců při finálních úpravách

Více

Metody vyvažování brousicích kotoučů. Jaroslav Hrbáč

Metody vyvažování brousicích kotoučů. Jaroslav Hrbáč Metody vyvažování brousicích kotoučů Jaroslav Hrbáč Bakalářská práce 2009 ABSTRAKT Tato bakalářská práce se zabývá metodami vyvažování brousicích kotoučů a jejich vlivem na drsnost obrobené plochy. Teoretická

Více

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada (Auto)korelační funkce 1 Náhodné procesy Korelace mezi náhodnými proměnnými má široké uplatnění v elektrotechnické praxi, kde se snažíme o porovnávání dvou signálů, které by měly být stejné. Příkladem

Více

ČESKÁ TECHNICKÁ NORMA

ČESKÁ TECHNICKÁ NORMA ČESKÁ TECHNICKÁ NORMA ICS 01.100.20; 17.040.20 2002 Geometrické požadavky na výrobky (GPS) - Označování struktury povrchu v technické dokumentaci výrobků ČSN EN ISO 1302 01 4457 Prosinec idt ISO 1302:

Více

Bezkontaktní měření vzdálenosti optickými sondami MICRO-EPSILON

Bezkontaktní měření vzdálenosti optickými sondami MICRO-EPSILON Laboratoř kardiovaskulární biomechaniky Ústav mechaniky, biomechaniky a mechatroniky Fakulta strojní, ČVUT v Praze Bezkontaktní měření vzdálenosti optickými sondami MICRO-EPSILON 1 Měření: 8. 4. 2008 Trubička:

Více

Řezání vnějších i vnitřních závitů závitovými noži

Řezání vnějších i vnitřních závitů závitovými noži Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Řezání vnějších i vnitřních závitů závitovými noži Soustružení ostrých závitů Princip: Při soustružení musí

Více

Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I. Mechanika hmotného bodu

Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I. Mechanika hmotného bodu Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I Mechanika hmotného bodu Autor: Kateřina Kárová Text vznikl v rámci bakalářské práce roku 2006. Návod na práci s

Více

MATEMATIKA Charakteristika vyučovacího předmětu 2. stupeň

MATEMATIKA Charakteristika vyučovacího předmětu 2. stupeň MATEMATIKA Charakteristika vyučovacího předmětu 2. stupeň Obsahové, časové a organizační vymezení Předmět Matematika se vyučuje jako samostatný předmět v 6. až 8. ročníku 4 hodiny týdně, v 9. ročníku 3

Více

ÚVOD DO PROBLEMATIKY PIV

ÚVOD DO PROBLEMATIKY PIV ÚVOD DO PROBLEMATIKY PIV Jiří Nožička, Jan Novotný ČVUT v Praze, Fakulta strojní, Ú 207.1, Technická 4, 166 07, Praha 6, ČR 1. Základní princip PIV Particle image velocity PIV je měřící technologie, která

Více

Základní škola Moravský Beroun, okres Olomouc

Základní škola Moravský Beroun, okres Olomouc Charakteristika vyučovacího předmětu matematika Vyučovací předmět má časovou dotaci čtyři hodiny týdně v prvním ročníku, pět hodin týdně ve druhém až pátém ročníku, pět hodin týdně v šestém ročníku a čtyři

Více

Vývoj norem ISO pro geometrické specifikace produktů s praktickou ukázkou konkrétní normy. Ladislav Pešička, TNK č. 7

Vývoj norem ISO pro geometrické specifikace produktů s praktickou ukázkou konkrétní normy. Ladislav Pešička, TNK č. 7 Vývoj norem ISO pro geometrické specifikace produktů s praktickou ukázkou konkrétní normy Ladislav Pešička, TNK č. 7 2012 Problematika současných norem GPS především pro malé podniky: - značný rozsah podkladů

Více

Uveďte obecný příklad označení normy vydané Mezinárodní společnosti pro normalizaci ISO pořadové číslo:rok schválení

Uveďte obecný příklad označení normy vydané Mezinárodní společnosti pro normalizaci ISO pořadové číslo:rok schválení Pro zajištění kooperace technických norem v rámci Evropské unie pracují 3 organizace.uveďte jejich názvy a vyjmenujte oblasti jejich působení Evropský výbor pro normalizaci - CEN ( Comité Européen de Normalisation)

Více

Světlo v multimódových optických vláknech

Světlo v multimódových optických vláknech Světlo v multimódových optických vláknech Tomáš Tyc Ústav teoretické fyziky a astrofyziky, Masarykova univerzita, Kotlářská 2, 61137 Brno Úvod Optické vlákno je pozoruhodný fyzikální systém: téměř dokonalý

Více

MENDELOVA UNIVERZITA V BRNĚ

MENDELOVA UNIVERZITA V BRNĚ MENDELOVA UNIVERZITA V BRNĚ Lesnická a dřevařská fakulta Ústav základního zpracování dřeva Hodnocení kvality povrchu OSB desek Bakalářská práce 2013 Lukáš Fukan Prohlašuji, že jsem bakalářskou práci na

Více

Určování výměr Srážka mapového listu Výpočet objemů Dělení pozemků

Určování výměr Srážka mapového listu Výpočet objemů Dělení pozemků Geodézie přednáška 9 Určování výměr Srážka mapového listu Výpočet objemů Dělení pozemků Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.: 545134015 Určování výměr určování

Více

ELEKTRICKÉ SVĚTLO 1 Řešené příklady

ELEKTRICKÉ SVĚTLO 1 Řešené příklady ČESKÉ VYSOKÉ UČENÍ TECHNCKÉ V PRAE FAKULTA ELEKTROTECHNCKÁ magisterský studijní program nteligentní budovy ELEKTRCKÉ SVĚTLO Řešené příklady Prof. ng. Jiří Habel DrSc. a kolektiv Praha Předmluva Předkládaná

Více

Optické měřicí 3D metody

Optické měřicí 3D metody Univerzita Palackého v Olomouci Přírodovědecká fakulta Optické měřicí 3D metod Michal Pochmon Olomouc 212 Oponent: RNDr. Tomáš Rössler Ph.D. Publikace bla připravena v rámci projektu Investice do rozvoje

Více

Akustika. Rychlost zvukové vlny v v prostředí s hustotou ρ a modulem objemové pružnosti K

Akustika. Rychlost zvukové vlny v v prostředí s hustotou ρ a modulem objemové pružnosti K zvuk každé mechanické vlnění v látkovém prostředí, které je schopno vyvolat v lidském uchu sluchový vjem akustika zabývá se fyzikálními ději spojenými se vznikem zvukového vlnění, jeho šířením a vnímáním

Více

Základní škola Fr. Kupky, ul. Fr. Kupky 350, 518 01 Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE - 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 6.

Základní škola Fr. Kupky, ul. Fr. Kupky 350, 518 01 Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE - 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 6. 5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 6. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo ČÍSLO A PROMĚNNÁ M9101 provádí

Více

Struktura povrchů vybraných strojních součástí

Struktura povrchů vybraných strojních součástí Struktura povrchů vybraných strojních součástí Ing. Petr Šperka 2009 STRUKTURA POVRCHŮ VYBRANÝCH STROJNÍCH SOUČÁSTÍ OBSAH Rozdělení Parametry povrchů Příklady povrchů reálných strojních součástí Porovnání

Více

ČESKÁ TECHNICKÁ NORMA

ČESKÁ TECHNICKÁ NORMA ČESKÁ TECHNICKÁ NORMA ICS 17.040.20 1999 Geometrické požadavky na výrobky (GPS) - Struktura povrchu: Profilová metoda - Parametry metody motif ČSN EN ISO 12085 01 4447 Únor idt ISO 12085:1996+Cor.1:1998

Více

CVIČENÍ č. 3 STATIKA TEKUTIN

CVIČENÍ č. 3 STATIKA TEKUTIN Rovnováha, Síly na rovinné stěny CVIČENÍ č. 3 STATIKA TEKUTIN Příklad č. 1: Nákladní automobil s cisternou ve tvaru kvádru o rozměrech H x L x B se pohybuje přímočarým pohybem po nakloněné rovině se zrychlením

Více

MĚŘENÍ DRSNOSTI POVRCHU

MĚŘENÍ DRSNOSTI POVRCHU Přístroje na měření tvaru MĚŘENÍ DRSNOSTI POVRCHU PRC 1164(2) Propracované, výkonné a hospodárné: Mitutoyo přístroje na měření drsnosti povrchu Je to Vaše práce, aby jste dodávali kvalitu! DRSNOM Měření

Více

Integrovaná střední škola, Sokolnice 496

Integrovaná střední škola, Sokolnice 496 Integrovaná střední škola, Sokolnice 496 Název projektu: Moderní škola Registrační číslo: CZ.1.07/1.5.00/34.0467 Název klíčové aktivity: III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Kód výstupu:

Více

5.3.2 Vzdělávací obsah vyučovacího předmětu

5.3.2 Vzdělávací obsah vyučovacího předmětu 5.3.2 Vzdělávací obsah vyučovacího předmětu Předmět: Matematika Ročník: 1. Očekávané výstupy z RVP ZV Školní výstupy Učivo Přesahy a vazby (mezipředmětové vztahy, průřezová témata) používá přirozená čísla

Více

METROLOGICKÁ KONFIRMACE MĚŘIDLA METROLOGICAL CONFIRMATION OF THE MEASURING INSTRUMENT

METROLOGICKÁ KONFIRMACE MĚŘIDLA METROLOGICAL CONFIRMATION OF THE MEASURING INSTRUMENT VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV VÝROBNÍCH STROJŮ, SYSTÉMŮ A ROBOTIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF PRODUCTION MACHINES,

Více

2. RBF neuronové sítě

2. RBF neuronové sítě 2. RBF neuronové sítě Kapitola pojednává o neuronových sítích typu RBF. V kapitole je popsána základní struktura tohoto typu neuronové sítě. Poté následuje definice a charakteristika jednotlivých radiálně

Více

Frézování ozubených kol

Frézování ozubených kol Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Frézování ozubených kol Zuby čelních OK, které patří k nejčastěji používaným můžeme zhotovit těmito způsoby

Více

ELEKTRICKÉ SVĚTLO 1 Řešené příklady

ELEKTRICKÉ SVĚTLO 1 Řešené příklady ČESKÉ VYSOKÉ UČENÍ TECHNCKÉ V PRAE FAKULTA ELEKTROTECHNCKÁ magisterský studijní program nteligentní budovy ELEKTRCKÉ SVĚTLO Řešené příklady Prof. ng. Jiří Habel DrSc. a kolektiv Praha Předmluva Předkládaná

Více

Technická dokumentace

Technická dokumentace Technická dokumentace Obor studia: 23-45-L / 01 Mechanik seřizovač VY_32_inovace_FREI18 : Předepisování jakosti povrchu (drsnost, vlnitost) Datum vypracování: 27.01.2013 Vypracoval: Ing. Bohumil Freisleben

Více

Výroba závitů. a) Vnější závit. Druhy závitů

Výroba závitů. a) Vnější závit. Druhy závitů Výroba závitů Druhy závitů Metrický - 60 [M] Whitworthův - 55 [W] Trubkový válcový - 55 [G] Lichoběžníkový - 30 [Tr] (trapézový) Oblý - 30 [Rd] Základním prvkem šroubu nebo matice je jeho šroubová plocha.

Více

Integrita povrchu a její význam v praktickém využití

Integrita povrchu a její význam v praktickém využití Integrita povrchu a její význam v praktickém využití Michal Rogl Obsah: 7. Válečkování články O. Zemčík 9. Integrita povrchu norma ANSI B211.1 1986 11. Laserová konfokální mikroskopie Válečkování způsob

Více

Regresní a korelační analýza

Regresní a korelační analýza Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)

Více

Souřadnicové měření je měření prostorových souřadnic prováděné pomocí CMM Souřadnicový měřicí stroj CMM je měřicí systém k měření prostorových souřadn

Souřadnicové měření je měření prostorových souřadnic prováděné pomocí CMM Souřadnicový měřicí stroj CMM je měřicí systém k měření prostorových souřadn Seminář z oboru GPS (Geometrické Specifikace Produktů) Současný stav v oblasti návaznosti souřadnicových měřicích strojů v systémech kvality Doc. Tykal Osnova: Úvod Zkoušení CMM: - typy zkoušek - podmínky

Více

TZB - VZDUCHOTECHNIKA

TZB - VZDUCHOTECHNIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ HIRŠ, GÜNTER GEBAUER TZB - VZDUCHOTECHNIKA MODUL BT02-11 HLUK A CHVĚNÍ VE VZDUCHOTECHNICE STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU

Více

ČSN EN 50383 ed. 2 OPRAVA 1

ČSN EN 50383 ed. 2 OPRAVA 1 ČESKÁ TECHNICKÁ NORMA ICS 17.220.20; 33.070.01 Únor 2014 Základní norma pro výpočet a měření intenzity elektromagnetického pole a SAR při vystavení člověka rádiovým základnovým stanicím a pevným koncovým

Více

Dokončovací obrábění termoplastů. Bc. Tomáš Adámek

Dokončovací obrábění termoplastů. Bc. Tomáš Adámek Dokončovací obrábění termoplastů Bc. Tomáš Adámek Diplomová práce 2008 ABSTRAKT Tato diplomová práce je zaměřena na problematiku dokončovacího obrábění termoplastů, zejména broušení, a následné měření

Více

spsks.cz Část druhá - Praxe Technologie řízení robotického ramena Zpracováno v rámci projektu CZ.1.07/3,2, 10/04.0024 financovaného z fondů EU

spsks.cz Část druhá - Praxe Technologie řízení robotického ramena Zpracováno v rámci projektu CZ.1.07/3,2, 10/04.0024 financovaného z fondů EU Část druhá - Praxe Technologie řízení robotického ramena Zpracováno v rámci projektu CZ.1.07/3,2, 10/04.0024 financovaného z fondů EU kapitola 3 Obsah 9 Úvod... 37 10 Metodika... 38 10.1 Úprava vstupních

Více

Strojní, nástrojařské a brusičské práce broušení kovů. Základní metody broušení závitů

Strojní, nástrojařské a brusičské práce broušení kovů. Základní metody broušení závitů Předmět: Ročník: Vytvořil: Datum: PRA- NAS 3.roč Antonín Dombek 26.10.2012 Název zpracovaného celku: Strojní, nástrojařské a brusičské práce broušení kovů Základní metody broušení závitů Závity lze brousit

Více

KULOVÁ ZRCADLA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - Septima

KULOVÁ ZRCADLA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - Septima KULOVÁ ZRCADLA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - Septima Zakřivená zrcadla Zrcadla, která nejsou rovinná Platí pro ně zákon odrazu, deformují obraz My se budeme zabývat speciálním typem zakřivených

Více

Střední průmyslová škola v Teplicích Předmět: Kontrola a měření ve strojírenství

Střední průmyslová škola v Teplicích Předmět: Kontrola a měření ve strojírenství Střední průmyslová škola v Teplicích Předmět: Kontrola a měření ve strojírenství MĚŘENÍ DRSNOSTI POVRCHU Metody kontroly povrchu rozdělujeme na metody kvalitativní a kvantitativní. Metody kvalitativní

Více

6. Střídavý proud. 6. 1. Sinusových průběh

6. Střídavý proud. 6. 1. Sinusových průběh 6. Střídavý proud - je takový proud, který mění v čase svoji velikost a smysl. Nejsnáze řešitelný střídavý proud matematicky i graficky je sinusový střídavý proud, který vyplývá z konstrukce sinusovky.

Více

METODIKA ZKOUŠENÍ CYLINDRICKÝCH VLOŽEK NEDESTRUKTIVNÍ METODOU BUMPINGU

METODIKA ZKOUŠENÍ CYLINDRICKÝCH VLOŽEK NEDESTRUKTIVNÍ METODOU BUMPINGU METODIKA ZKOUŠENÍ CYLINDRICKÝCH VLOŽEK NEDESTRUKTIVNÍ METODOU BUMPINGU 1 Obsah: 1. NORMATIVNÍ ODKAZY:... 3 2. ROZBOR... 3 2.1. ANALÝZA SYSTÉMU CYLINDRICKÉ VLOŽKY... 3 2.2. POVINNÁ DOKUMENTACE... 3 2.3.

Více

ŠVP ZV LMP Charakteristika vyučovacího předmětu Matematika na II. stupni

ŠVP ZV LMP Charakteristika vyučovacího předmětu Matematika na II. stupni ŠVP ZV LMP Charakteristika vyučovacího předmětu Matematika na II. stupni Obsahové, časové a organizační vymezení vyučovacího předmětu Matematika Vyučovací předmět Matematika je tvořen z obsahu vzdělávacího

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009. Protokol měření

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009. Protokol měření Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Protokol měření Kontrola některých dílčích parametrů ozubených kol Přesnost ozubených čelních kol základní

Více

ODBĚR VZDUŠNINY PRO STANOVENÍ AZBESTU V PRACOVNÍM A MIMOPRACOVNÍM PROSTŘEDÍ

ODBĚR VZDUŠNINY PRO STANOVENÍ AZBESTU V PRACOVNÍM A MIMOPRACOVNÍM PROSTŘEDÍ ODBĚR VZDUŠNINY PRO STANOVENÍ AZBESTU V PRACOVNÍM A MIMOPRACOVNÍM PROSTŘEDÍ RNDr. Jana Habalová jana.habalova@zuova.cz Seminář Azbest praxe krok za krokem Hradec Králové 22.10.2013 OVZDUŠÍ 1) pracovní

Více

A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 6. 4 Klíčové kompetence.

A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 6. 4 Klíčové kompetence. A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 6. 4 Klíčové kompetence Výstupy Učivo Průřezová témata Evaluace žáka Poznámky (Dílčí kompetence) 5 Kompetence

Více

Úloha č. 8 Vlastnosti optických vláken a optické senzory

Úloha č. 8 Vlastnosti optických vláken a optické senzory Úloha č. 8 Vlastnosti optických vláken a optické senzory Optické vlákna patří k nejmodernějším přenosovým médiím. Jejich vysoká přenosová kapacita a nízký útlum jsou hlavní výhody, které je staví před

Více

Obsluha měřicích zařízení kontaktní metody

Obsluha měřicích zařízení kontaktní metody T E C H N I C K Á U N I V E R Z I T A V L I B E R C I FAKULTA STROJNÍ KATEDRA VÝROBNÍCH SYSTÉMŮ A AUTOMATIZACE Obsluha měřicích zařízení kontaktní metody Ing. Petr Keller, Ph.D. Ing. Petr Zelený, Ph.D.

Více

Euklidovský prostor Stručnější verze

Euklidovský prostor Stručnější verze [1] Euklidovský prostor Stručnější verze definice Eulidovského prostoru kartézský souřadnicový systém vektorový součin v E 3 vlastnosti přímek a rovin v E 3 a) eprostor-v2, 16, b) P. Olšák, FEL ČVUT, c)

Více

Úvod do zpracování signálů

Úvod do zpracování signálů 1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování

Více

Téma: Světlo a stín. Zpracoval Doc. RNDr. Zdeněk Hlaváč, CSc

Téma: Světlo a stín. Zpracoval Doc. RNDr. Zdeněk Hlaváč, CSc Téma: Světlo a stín Zpracoval Doc. RNDr. Zdeněk Hlaváč, CSc Objekty na nebeské sféře září ve viditelném spektru buď vlastním světlem(hvězdy, galaxie) nebo světlem odraženým(planety, planetky, satelity).

Více

9. Umělé osvětlení. 9.1 Základní veličiny. e. (9.1) I =. (9.6)

9. Umělé osvětlení. 9.1 Základní veličiny. e. (9.1) I =. (9.6) 9. Umělé osvětlení Umělé osvětlení vhodně doplňuje nebo cela nahrauje denní osvětlení v případě jeho nedostatku a tím přispívá ke lepšení rakové pohody člověka. Umělé osvětlení ale potřebuje droj energie,

Více

RODINNÉ DOMY v rámci 3. výzvy k podávání žádostí

RODINNÉ DOMY v rámci 3. výzvy k podávání žádostí Metodický pokyn k upřesnění výpočetních postupů a okrajových podmínek pro podprogram NZÚ RODINNÉ DOMY v rámci 3. výzvy k podávání žádostí Podoblast podpory C.3 Instalace solárních termických a fotovoltaických

Více

Seminář GPS VUT V Brně, 30. května 2007

Seminář GPS VUT V Brně, 30. května 2007 Seminář GPS VUT V Brně, 30. května 2007 VUT v Brně, 30. května 2007 Seminář GPS Úvodní slovo, koncepce GPS Folie 1 z 17 PROGRAM Skopal, M.J. Úvod, představení laboratoře MZDS, koncepce GPS Novák, Z. Přístroje

Více

Přednáška č.7 Jakost povrchu

Přednáška č.7 Jakost povrchu Fakulta strojní VŠB-TUO Přednáška č.7 Jakost povrchu JAKOST POVRCHU K úplnému určení součásti na výrobním výkrese je nutné kromě zobrazení součásti v potřebném počtu pohledů a jejího zakótování včetně

Více

Akční sada drsnoměru Mitutoyo

Akční sada drsnoměru Mitutoyo Akční sada drsnoměru Mitutoyo ( platnost akce do 31.1.2019 ) ------------------------------------------------------------- Drsnoměr Mitutoyo SJ-210, kat.č. 178-560-01D - hlavní přístroj + posuvová jednotka

Více

BRUSKY. a) Brusky pro postupný úběr materiálu - mnoha třískami, přičemž pracují velkým posuvem a malým přísuvem.

BRUSKY. a) Brusky pro postupný úběr materiálu - mnoha třískami, přičemž pracují velkým posuvem a malým přísuvem. BRUSKY Broušení je nejčastěji používanou dokončovací operací s ohledem geometrickou i rozměrovou přesnost a drsnost povrchu. Přídavek na opracování bývá podle velikosti obrobku a s ohledem na použitou

Více

Mapování povrchu pevných těles se zaměřením na kontaktní profilometrii

Mapování povrchu pevných těles se zaměřením na kontaktní profilometrii Univerzita Palackého v Olomouci Přírodovědecká fakulta Mapování povrchu pevných těles se zaměřením na kontaktní profilometrii Martina Havelková Helena Hiklová Olomouc 2014 Oponenti: RNDr. Petr Šmíd, Ph.D.

Více

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 5.

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 5. Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 5. Očekávané výstupy z RVP ZV Ročníkové výstupy Učivo Průřezová témata a přesahy Číslo a početní operace využívá při

Více

Elcometer 7061 Drsnoměr MarSurf PS1

Elcometer 7061 Drsnoměr MarSurf PS1 Elcometer 7061 Drsnoměr MarSurf PS1 Při aplikaci ochranných nátěrů je většinou požadováno měření drsnosti povrchu. Měření drsnosti povrchu je vyjádřeno hodnotami Ra, Rz nebo Tp. Tyto hodnoty zahrnují měření

Více

Nová koncepční a konstrukční řešení pro zobrazení s PMS

Nová koncepční a konstrukční řešení pro zobrazení s PMS Nová koncepční a konstrukční řešení pro zobrazení s PMS P. Bouchal (FSI VUT Brno) a Z. Bouchal (KO PřF UP Olomouc) PB 4 Zobrazování s podporou technologie PMS Garant: R. Chmelík Program PB4: Metody a systémy

Více

ČESKÁ TECHNICKÁ NORMA

ČESKÁ TECHNICKÁ NORMA ČESKÁ TECHNICKÁ NORMA ICS 17.040.20 1999 Geometrické požadavky na výrobky (GPS) - Struktura povrchu: Profilová metoda - Termíny, definice a parametry struktury povrchu ČSN EN ISO 4287 01 4450 Březen idt

Více

Výzkumné centrum spalovacích motorů a automobilů Josefa Božka 2. kolokvium Josefa Božka, Praha 31. 1. 1. 2. 2007

Výzkumné centrum spalovacích motorů a automobilů Josefa Božka 2. kolokvium Josefa Božka, Praha 31. 1. 1. 2. 2007 Obecné cíle Zlepšení parametrů: Mechanická převodná ústrojí: Výzkum vlastností čelních ozubených kol automobilových převodů. Vývoj metodiky predikce pittingu na čelním ozubení automobilových převodovek.

Více

3.2 Rovnice postupné vlny v bodové řadě a v prostoru

3.2 Rovnice postupné vlny v bodové řadě a v prostoru 3 Vlny 3.1 Úvod Vlnění můžeme pozorovat například na vodní hladině, hodíme-li do vody kámen. Mechanické vlnění je děj, při kterém se kmitání šíří látkovým prostředím. To znamená, že například zvuk, který

Více

Stereometrie pro učební obory

Stereometrie pro učební obory Variace 1 Stereometrie pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz 1. Vzájemná poloha prostorových

Více

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Kapitola 9 Skalární součin Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Definice 9.1 Je-li x = (x 1,..., x n ) T R n 1 reálný

Více

Hodnocení snímacích systému souřadnicových měřicích strojů Evaluation sensing systems CMM

Hodnocení snímacích systému souřadnicových měřicích strojů Evaluation sensing systems CMM VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŢENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŢENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Více

Analogie flexibilní hydroabrazivní technologie s klasickými technologiemi třískového obrábění

Analogie flexibilní hydroabrazivní technologie s klasickými technologiemi třískového obrábění VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA Analogie flexibilní hydroabrazivní technologie s klasickými technologiemi třískového obrábění J. Valíček, M. Harničárová, J. Petrů, H. Tozan, M. Kušnerová,

Více

Vliv úpravy břitu monolitních fréz před PVD povlakováním na jejich trvanlivost

Vliv úpravy břitu monolitních fréz před PVD povlakováním na jejich trvanlivost Vliv úpravy břitu monolitních fréz před PVD povlakováním na jejich trvanlivost Influence of Cutting Edge Modification on Durability of PVD Coated Monolithic Shank-Type Cutter Doc. Dr. Ing. Ivan Mrkvica,

Více

Základy matematiky kombinované studium 714 0365/06

Základy matematiky kombinované studium 714 0365/06 Základy matematiky kombinované studium 714 0365/06 1. Některé základní pojmy: číselné množiny, intervaly, operace s intervaly (sjednocení, průnik), kvantifikátory, absolutní hodnota čísla, vzorce: 2. Algebraické

Více

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity Tlumené kmit V praxi téměř vžd brání pohbu nějaká brzdicí síla, jejíž původ je v třecích silách mezi reálnými těles. Matematický popis těchto sil bývá dosti komplikovaný. Velmi často se vsktuje tzv. viskózní

Více

Zefektivnění akumulace energie a zajištění stability rozvodné sítě rozšířením provozního pásma přečerpávacích vodních elektráren

Zefektivnění akumulace energie a zajištění stability rozvodné sítě rozšířením provozního pásma přečerpávacích vodních elektráren Výzkumná zpráva TH01020982-2015V007 Zefektivnění akumulace energie a zajištění stability rozvodné sítě rozšířením provozního pásma přečerpávacích vodních elektráren Autoři: M. Kotek, D. Jašíková, V. Kopecký,

Více

I. O P A T Ř E N Í O B E C N É P O V A H Y

I. O P A T Ř E N Í O B E C N É P O V A H Y Český metrologický institut Okružní 31, 638 00 Brno Manažerské shrnutí pro EK (není součástí tohoto právního předpisu) Optické radiometry pro spektrální oblast 400 nm až 2 800 nm a měření vyzařování v

Více

Jakost povrchu při frézování kulovou frézou na nakloněných plochách. Bc. Lukáš Matula

Jakost povrchu při frézování kulovou frézou na nakloněných plochách. Bc. Lukáš Matula Jakost povrchu při frézování kulovou frézou na nakloněných plochách Bc. Lukáš Matula Bakalářská práce 2014 ABSTRAKT V dané diplomové práci je teoreticky popsána problematika frézování, frézovacích

Více